JP7396790B2 - 転がり軸受用保持器の製造方法 - Google Patents

転がり軸受用保持器の製造方法 Download PDF

Info

Publication number
JP7396790B2
JP7396790B2 JP2018152054A JP2018152054A JP7396790B2 JP 7396790 B2 JP7396790 B2 JP 7396790B2 JP 2018152054 A JP2018152054 A JP 2018152054A JP 2018152054 A JP2018152054 A JP 2018152054A JP 7396790 B2 JP7396790 B2 JP 7396790B2
Authority
JP
Japan
Prior art keywords
resin
cavity
cage
reservoir
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018152054A
Other languages
English (en)
Other versions
JP2020026856A (ja
Inventor
吉和 倉本
成明 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2018152054A priority Critical patent/JP7396790B2/ja
Publication of JP2020026856A publication Critical patent/JP2020026856A/ja
Application granted granted Critical
Publication of JP7396790B2 publication Critical patent/JP7396790B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、転がり軸受用保持器の製造方法関する。
射出成形により製造された転がり軸受用保持器が知られている。この転がり軸受用保持器を射出成形する際には、例えば、成形体である保持器に対応する環状のキャビティが形成された成形金型を用い、このキャビティの周面に配置した樹脂射出ゲートからキャビティ内に溶融樹脂を注入する。そして、キャビティ内の溶融樹脂を冷却固化させる。これにより、転がり軸受用保持器が製造される。
キャビティに注入された溶融樹脂は、キャビティ内を周方向に一方と他方との二つの流れとなって流動する。キャビティ内の溶融樹脂は、樹脂射出ゲートと径方向に対向する反対側の位置で合流し、相互に接合されてウエルド部が形成される。このような溶融樹脂が会合して一体化されたウエルド部は、溶融樹脂の均一な混合が起こらず、強度が低下する傾向がある。
このような射出成形品のウエルド部を乱す技術が特許文献1に記載されている。特許文献1には、樹脂製保持器に補強繊維材を含有させると樹脂製保持器の耐久性が向上すると開示されている。しかし、樹脂製保持器の製造時に不可避的に生じるウエルド部(最弱部)が、保持器のどの部位に位置すれば最弱部とならないか等、樹脂製保持器を成形する際の最適な樹脂流れについては検討の余地があった。
ところで、用途によって転がり軸受が高速で使用される場合、高速回転する際の玉の公転速度と樹脂製保持器の公転速度の差が、玉と保持器ポケットの衝突を招く。この衝突のため、樹脂製保持器に摩耗や損傷が生じてしまい、転がり軸受が通常よりも寿命が低下する場合も考えられる。また、射出成形により製造された転がり軸受用保持器は、どこで破断するかを見極める目的で試験を行うと、強度が低下するウエルド部から破損することが多いことが分かっている。ここで言う高速回転する転がり軸受とは、1分間に10~20万回転するものが一例として挙げられる。ただし、回転速度はこれに限定されない。
そこで、本願の発明者らは、保持器を射出成形する際の溶融樹脂の流れを制御するため、樹脂溜まりを適用した軸受用保持器の製造方法を開発してきた(例えば、特許文献2参照)。この製造方法では、溶融樹脂が相互に接合された会合部、又はその近傍に樹脂溜まりを付設し、樹脂溜まりに溶融樹脂を流入させて、キャビティ内に充填された溶融樹脂を強制的に流動させる。これにより、一旦形成されたウエルド部を凹凸形状にして、合流した溶融樹脂同士の接合強度を向上させている。
特開2016-83831号公報 特開2016-50616号公報
しかしながら、上記した樹脂溜まりを付設する製法では、溶融粘度の比較的高い樹脂材料を用いる場合、樹脂溜まりの開口部の開口面積が小さいため、保持器を射出成形する際、キャビティ内にウエルド部が形成された後に樹脂溜まりへの溶融樹脂の流れが滞留し、樹脂溜まりをスルーして溶融樹脂が流れてしまうことがある。また、ウエルド部において補強繊維材が溶融樹脂の流動方向に対して垂直に配向する傾向があり、溶融樹脂の流動状態によっては、補強効果が十分に発現しない懸念がある。そして、ウエルド部以外の部分では、補強繊維材が溶融樹脂の流動方向に対して平行に配向するため、ウエルド部とそれ以外の部分との強度差が生じることもある。このように、ウエルド部においては、更なる強度向上が望まれていた。
本発明の目的は、溶融粘度の比較的高い樹脂材料を用いて保持器を製造する場合でも、溶融樹脂を確実に樹脂溜まりに充填させることで、保持器に形成されるウエルド部の密着強度を向上させ、ウエルド部からの損傷が生じにくくなる転がり軸受用保持器の製造方法提供することにある。
本発明は下記の構成からなる。
(1) 成形金型内に形成されたキャビティの周面に樹脂射出ゲートが設けられ、前記樹脂射出ゲートから溶融樹脂を前記キャビティ内に射出して形成する転がり軸受用保持器の製造方法であって、
前記転がり軸受用保持器は、軸方向に離間して配置された一対の円環部と、前記一対の円環部の円周方向にわたってそれぞれ等間隔に配置され、前記円環部同士を連結する複数かつ奇数個の柱部と、隣り合う一対の前記柱部と前記一対の円環部により画成され、前記柱部と同数のポケットと、を有し、
前記樹脂射出ゲートは、前記キャビティの2つ以上の前記柱部にそれぞれ設けられ、
前記キャビティの2つ以上の前記樹脂射出ゲートと径方向に対向する各周方向位置のそれぞれにゲート対向側ポケットが配置され、該ゲート対向側ポケットを画成する一対の前記柱部の少なくとも一方の周方向位置に、前記キャビティ内の前記溶融樹脂を流入させる樹脂溜まり部が設けられ、
前記樹脂射出ゲートが前記キャビティに接続される部位の前記キャビティの周面における開口面積を、前記樹脂溜まり部と前記キャビティとを接続する連通部の前記キャビティの周面における開口面積より大きくする、
転がり軸受用保持器の製造方法。
この転がり軸受用保持器の製造方法によれば、樹脂溜まり部がキャビティに接続される連通部のキャビティ周面における開口面積が、樹脂射出ゲートがキャビティに接続される部位のキャビティ周面における開口面積より大きいため、樹脂溜まり部の連通部に溶融樹脂が通過するときの圧力損失が、樹脂射出ゲートを通過するときの圧力損失より小さくなる。これにより、キャビティに溶融樹脂が充填された後、キャビティ内の溶融樹脂が樹脂溜まり部へ、滞留することなく円滑に流入する。その結果、分流した溶融樹脂が合流して形成されたウエルド部の溶融樹脂同士の接合面(樹脂会合面)が変形し、溶融樹脂同士が互いに会合する接触面積が増大するため、ウエルド部の接合強度が向上する。よって、比較的高い溶融粘度の樹脂材料を用いた場合でも、安定してウエルド部が補強され、転がり軸受用保持器の強度を向上できる。
(2) 前記キャビティの前記ゲート対向側ポケットを画成する前記一対の柱部で、前記柱部の軸方向の一端側と他端側からそれぞれ軸方向中央に向けて流動する溶融樹脂が合流して柱部ウエルドの樹脂会合面を形成した後、
前記樹脂溜まり部に前記キャビティ内の溶融樹脂を流入させて、前記樹脂会合面を前記柱部ウエルドの保持器周面におけるウエルドラインの位置から軸方向にずらし、前記樹脂会合面を凹凸形状にする、(1)に記載の転がり軸受用保持器の製造方法。
この転がり軸受用保持器の製造方法によれば、柱部ウエルドの樹脂会合面が、樹脂溜まり部へ溶融樹脂に流入する際の溶融樹脂の流動によって変形して、樹脂会合面がウエルドラインの位置から樹脂溜まり部に向けて突出する。その結果、樹脂会合面が凹凸形状となって柱部ウエルドの接合強度が向上する。
(3) 前記キャビティの前記ゲート対向側ポケットを画成する前記一対の円環部の各周方向位置で、前記キャビティ内の溶融樹脂が周方向に合流して円環部ウエルドの樹脂会合面を形成した後、
前記樹脂溜まり部に前記キャビティ内の溶融樹脂を流入させて前記樹脂会合面を前記円環部ウエルドの保持器周面におけるウエルドラインの位置から円周方向にずらし、前記樹脂会合面を凹凸形状に形成する、(1)又は(2)に記載の転がり軸受用保持器の製造方法。
この転がり軸受用保持器の製造方法によれば、円環部ウエルドの樹脂会合面が、樹脂溜まり部へ溶融樹脂に流入する際の溶融樹脂の流動によって変形して、樹脂会合面がウエルドラインの位置から樹脂溜まり部に向けて突出する。その結果、樹脂会合面が凹凸形状となって円環部ウエルドの接合強度が向上する。
(4) 前記樹脂溜まり部は、前記キャビティの前記ゲート対向側ポケットを画成する前記一対の柱部の一方と他方にそれぞれ設けられ、
一方の前記樹脂溜まり部に接続される前記連通部の前記キャビティの周面における開口面積は、他方の前記樹脂溜まり部に接続される前記連通部の前記キャビティの周面における開口面積より大きい、(2)又は(3)に記載の転がり軸受用保持器の製造方法。
この転がり軸受用保持器の製造方法によれば、連通部の開口面積が大きい側の樹脂溜まり部は、開口面積が小さい側の樹脂溜まり部よりも樹脂流入の圧力損失が小さいため、溶融樹脂の流入速度が速くなる。そのため、開口面積が大きい側の樹脂溜まりが、先に溶融樹脂の充填を完了する。すると、キャビティに溶融樹脂が充填された後、双方の樹脂溜まり部に溶融樹脂が流入する際の溶融樹脂の流動と、一方の樹脂溜まり部が溶融樹脂の充填を完了した後、他方の樹脂溜まり部に溶融樹脂が流入する際の溶融樹脂の流動とがキャビティ内に生じる。その結果、ウエルド部の樹脂会合面に更に大きな変形を生じさせ、ウエルド部の接合強度を更に向上できる。
(5) 前記樹脂会合面を、一対の前記樹脂溜まり部の前記開口面積が小さい側に向けてずらす(4)に記載の転がり軸受用保持器の製造方法。
この転がり軸受用保持器の製造方法によれば、溶融樹脂を開口面積が小さい側の樹脂溜まり部に向けて流動させることで、樹脂会合面を、その樹脂溜まり部側に突出した凹凸形状にすることができる。
(6) 前記樹脂溜まり部は、前記キャビティの前記ゲート対向側ポケットを画成する前記一対の柱部の一方と他方にそれぞれ設けられ、
一方の前記樹脂溜まり部における溶融樹脂の最大貯留量は、他方の前記樹脂溜まり部における溶融樹脂の最大貯留量より大きい、(2)又は(3)に記載の転がり軸受用保持器の製造方法。
この転がり軸受用保持器の製造方法によれば、最大貯留量が小さい側の樹脂溜まり部は、最大貯留量が大きい側の樹脂溜まり部よりも先に溶融樹脂の充填が完了する。すると、キャビティ内には、キャビティに溶融樹脂が充填された後に、双方の樹脂溜まり部へ溶融樹脂が流入する溶融樹脂の流動と、一方の樹脂溜まり部が溶融樹脂の充填を完了し、他方の樹脂溜まり部にのみ溶融樹脂が流入する溶融樹脂の流動とが順次に生じる。その結果、ウエルド部の樹脂会合面に更に大きな変形を生じさせ、ウエルド部の接合強度を更に向上できる。
(7) 前記樹脂会合面を、最大貯留量の大きい側の前記樹脂溜まり部に向けてずらす(6)に記載の転がり軸受用保持器の製造方法。
この転がり軸受用保持器の製造方法によれば、溶融樹脂を最大貯留量の大きい側の樹脂溜まり部に向けて流動させることで、樹脂会合面を、その樹脂溜まり部側に突出した凹凸形状にすることができる。
(8) 射出成形により形成された転がり軸受用保持器であって、
軸方向に離間して配置された一対の円環部と、前記一対の円環部の円周方向にわたってそれぞれ等間隔に配置され、前記円環部同士を連結する複数かつ奇数個の柱部と、隣り合う一対の前記柱部と前記一対の円環部により画成され、前記柱部と同数個のポケットと、を有し、
2つ以上の前記柱部の周方向位置に設けられた第1切断跡と、
前記2つ以上の柱部と径方向に対向する各周方向位置に対向側ポケットがそれぞれ配置され、前記対向側ポケットを画成する一対の前記柱部の少なくとも一方の周方向位置設けられた第2切断跡と、
を有し、
前記第2切断跡の保持器周面における面積は、前記第1切断跡の保持器周面における面積より大きい、転がり軸受用保持器。
この転がり軸受用保持器によれば、金型の樹脂射出ゲートがキャビティに接続された部位が第1切断跡で、金型の樹脂溜まり部がキャビティに接続された部位が第2切断跡である場合に、樹脂溜まり部に溶融樹脂が流入するときの圧力損失が、樹脂射出ゲートを通過するときの圧力損失より小さくなる。これにより、成形金型のキャビティに溶融樹脂が充填された後、キャビティ内の溶融樹脂が滞留することなく、溶融樹脂が樹脂溜まり部に円滑に流動し、ウエルド部において溶融樹脂が合流して形成される樹脂会合面が確実に変形する。その結果、互いに会合する溶融樹脂同士の接触面積が増大し、ウエルド部の接合強度が向上する。
(9) 前記対向側ポケットを画成する前記一対の柱部の他方の周方向位置に第3切断跡を有し、
前記第3切断跡の前記保持器周面における面積は、前記第1切断跡の前記保持器周面における面積より大きい、(8)に記載の転がり軸受用保持器。
この転がり軸受用保持器によれば、金型の樹脂射出ゲートがキャビティに接続された部位が第1切断跡で、金型の樹脂溜まり部がキャビティに接続された部位が第3切断跡である場合に、樹脂溜まり部に溶融樹脂が流入するときの圧力損失が、樹脂射出ゲートを通過するときの圧力損失より小さくなる。そのため、成形金型のキャビティに溶融樹脂が充填された後、キャビティ内の溶融樹脂が滞留することなく、溶融樹脂が樹脂溜まり部に円滑に流動し、ウエルド部において溶融樹脂が合流して形成される樹脂会合面を確実に変形させることができる。
(10) 前記第2切断跡と前記第3切断跡とは、前記保持器周面における面積が互いに異なる(9)に記載の転がり軸受用保持器。
この転がり軸受用保持器によれば、樹脂溜まり部のキャビティに接続される部位が第3切断跡で、この樹脂溜まり部よりも開口面積が小さい樹脂溜まり部のキャビティに接続される部位が第2切断跡である場合に、開口面積が大きい側の樹脂溜まり部は、開口面積が小さい側の樹脂溜まり部よりも圧力損失が小さくなる。そのため、各樹脂溜まり部に溶融樹脂が流入する際の溶融樹脂の流動と、流動速度の差とによって、樹脂会合面を確実に変形させることができる。
(11) 前記一対の柱部の軸方向中央部で溶融樹脂が合流して形成される柱部ウエルドの樹脂会合面は、該樹脂会合面が前記一対の柱部ウエルドの保持器周面におけるウエルドラインの位置から軸方向にずれて、凹凸形状に形成されている(8)~(10)のいずれか一つに記載の転がり軸受用保持器。
この転がり軸受用保持器によれば、溶融樹脂が合流して形成される樹脂会合面が変形し、互いに会合する溶融樹脂同士の接触面積が増大するため、柱部ウエルドの接合強度が向上する。
(12) 前記円環部で溶融樹脂が合流して形成される円環部ウエルドの樹脂会合面は、該樹脂会合面が前記円環部ウエルドの保持器周面におけるウエルドラインの位置から周方向にずれて、凹凸形状に形成されている(8)~(11)のいずれか一つに記載の転がり軸受用保持器。
この転がり軸受用保持器によれば、溶融樹脂が合流して形成される樹脂会合面が変形し、互いに会合する溶融樹脂同士の接触面積が増大するため、円環部ウエルドの接合強度が向上する。
(13) 内輪と、外輪と、前記内輪と前記外輪との間の環状空間に配置される複数の転動体と、前記転動体をポケット内に保持する(8)~(12)のいずれか一つに記載の転がり軸受用保持器と、を備える転がり軸受。
この転がり軸受によれば、高い強度を有する転がり軸受用保持器を備えることで、例えば、転がり軸受を高速回転させて保持器への負荷を高めた場合でも、保持器がウエルド部から損傷することがない。
本発明によれば、溶融粘度の比較的高い樹脂材料を用いて保持器を製造する場合でも、溶融樹脂を確実に樹脂溜まりに充填させることで、保持器に形成されるウエルド部の密着強度を向上できる。よって、ウエルド部からの損傷が生じにくくなる。
本発明の実施形態に係る転がり軸受の概略断面図である。 図1に示す転がり軸受用保持器の概略斜視図である。 成形金型に形成される保持器成形用のキャビティを含む成形空間を示す斜視図である。 図3に示す成形金型に形成される成形空間の上視図である。 (A),(B)は、図3に示す成形空間からスプルー、ランナー、樹脂射出ゲート、及び第1樹脂溜まり部をそれぞれ切断した保持器内周面の一部を示す斜視図である。 (A),(B)は保持器の外周面に形成されるゲート開口部及び樹脂溜まり開口部の軸方向断面の一例を示す概略的な一部拡大断面図である。 成形金型のキャビティの内側から外側に向かって見たときのキャビティと第1樹脂溜まり部を模式的に示す説明図である。 円環部ウエルドと柱部ウエルドが形成された後、第1樹脂溜まり部に溶融樹脂が流入し始めた様子を模式的に示す説明図である。 第2実施形態の成形金型のキャビティと第1樹脂溜まり部、第2樹脂溜まり部を示す模式的に示す説明図である。 図9に示す成形金型に形成される成形空間の上視図である。 成形金型のキャビティと第1樹脂溜まり部及び第2樹脂溜まり部とを模式的に示す説明図である。 円環部ウエルドと柱部ウエルドが形成された後、第1樹脂溜まり部と第2樹脂溜まり部に溶融樹脂が流入し始めた様子を模式的に示す説明図である。 第2樹脂溜まり部に溶融樹脂の充填が完了して第1樹脂溜まり部にのみ溶融樹脂が流入する様子を模式的に示す説明図である。 第3実施形態の成形金型のキャビティと第1樹脂溜まり部及び第2樹脂溜まり部とを模式的に示す説明図である。 円環部ウエルドと柱部ウエルドが形成された後、第1樹脂溜まり部と第2樹脂溜まり部に溶融樹脂が流入し始めた様子を模式的に示す説明図である。 第2樹脂溜まり部への溶融樹脂の充填が完了して第1樹脂溜まり部にのみ溶融樹脂が流入する様子を模式的に示す説明図である。 (A),(B)は樹脂射出ゲートを3個とした場合の成形空間を示す平面図である。
以下、本発明の実施形態について、図面を参照して詳細に説明する。ここでは、転がり軸受用保持器として、アンギュラ玉軸受用の保持器を例示して説明するが、本発明はこれに限らず、他の種類の保持器に対しても適用可能である。
図1は本発明の実施形態に係る転がり軸受1の概略断面図である。
転がり軸受1は、内輪3と、外輪5と、内輪3と外輪5との間に配置された複数の転動体(玉)7と、複数の転動体7のそれぞれを回転自在にポケットに収容する転がり軸受用保持器100と、を有する。
図2は図1に示す転がり軸受用保持器100の概略斜視図である。
転がり軸受用保持器(以下、保持器と略称する。)100は、軸方向に一定の間隔で離間して配置された一対の円環部11A,11Bと、柱部13と、転動体を回転自在に保持するポケット15と、を備える。
柱部13は、一対の円環部11A,11Bの円周方向にわたってそれぞれ等間隔に複数かつ奇数個が配置され、円環部11A,11B同士を連結する。
ポケット15は、隣り合う一対の柱部13と、一対の円環部11A,11Bにより画成され、柱部13の数と同数個が形成される。保持器100は、図2に示す例の直径、幅、形状に限らない。また、ポケットの個数は奇数個であればよく、図2に示す例のポケットの個数に限らない。
保持器100の材料としては、46ナイロンや66ナイロン等のポリアミド系樹脂、ポリブチレンテレフタレート、ポリフェニレンサルファイド(PPS)、ポリエチレンテレフタレート(PET)等の合成樹脂に、例えば、ガラス繊維、炭素繊維、金属繊維等の補強繊維材を添加した樹脂組成物が用いられる。
保持器100の材料としては、46ナイロンや66ナイロン等のポリアミド系樹脂、ポリブチレンテレフタレート、ポリフェニレンサルファイド(PPS)、ポリエチレンテレフタレート(PET)等の合成樹脂を用いることができる。また、高い溶融粘度の樹脂組成物を用いることもでき、例えば、耐熱性に優れる熱可塑性ポリイミド(TPI)、ポリエーテルエーテルケトン(PEEK)等を使用しても良い。上記合成樹脂に補強繊維材、例えば、ガラス繊維、炭素繊維、金属繊維等の補強繊維材を添加することができる。また、保持器100の材料は、補強繊維を含まないものであってもよい。
本発明の製造方法は、溶融粘度の低い樹脂、例えば50Pa・sec~数百Pa・sec程度の樹脂が適用できるほか、更に比較的高溶融粘度、例えば、数百Pa・sec~1万Pa・sec程度の樹脂でも適用できる。例えば、TPIの溶融粘度は、数千から1万Pa・sec程度であり、PEEKの溶融粘度は、数百から数千Pa・sec程度である。
<第1実施形態>
次に、上記した転がり軸受用保持器100の製造方法の第1実施形態を説明する。
図3は成形金型に形成される保持器成形用のキャビティを含む成形空間を示す斜視図、図4は図3に示す成形金型に形成される成形空間の上視図である。
射出成形用の成形金型における略円環状のキャビティ17内に、補強繊維材が添加された溶融樹脂が供給される。この溶融樹脂は、スプルー19及び複数(図3,図4に示す例では5つ)のランナー21を介して、各ランナー21の先端に設けられた樹脂射出ゲート23からキャビティ17内に射出される。射出された溶融樹脂は、キャビティ17内に充填されて冷却固化され、保持器100が成形される。本実施形態では、樹脂射出ゲート23が、保持器100の柱部13Aの周方向位置で、保持器11の周面の複数箇所(図3,図4に示す例では5箇所)に接続される。本構成の樹脂射出ゲート23は、柱部13Aの片側端部に接続される。これにより、ポケット上下の円環部11A,11B位置と比較して幅広となる柱部13Aから溶融樹脂を注入でき、キャビティ17内へ溶融樹脂を円滑に充填できる。
なお、樹脂射出ゲート23は、保持器の2箇所以上に設けられていればよい。樹脂射出ゲート23が3箇所以上設けられることで、キャビティ17内への溶融樹脂の供給を短時間で均一に行える。一方、3箇所未満である場合は、キャビティ17内の長い距離を溶融樹脂が流動するため、充填が完了するまでの時間が長くなる。
保持器100には奇数個のポケット15が等間隔に形成される。ここで、複数のポケット15のうち、樹脂射出ゲート23が接続された柱部13Aと径方向に対向する保持器100の周方向位置に配置されたポケットは、ゲート対向側ポケット15Aと呼称する。本実施形態の構成においては、合計5つのゲート対向側ポケット15Aを有する。また、保持器100における、ゲート対向側ポケット15Aを画成する一対の柱部13B,13Cの、一方の柱部13Cには、溶融樹脂を貯留可能な第1樹脂溜まり部25が配置される。
図3に示すように、円環部11A,11Bのゲート対向側ポケット15Aが配置される周方向位置には、ウエルドラインWLa,WLbが形成され、ゲート対向側ポケット15Aを画成する柱部13B,13Cの軸方向中央の位置には、ウエルドラインWLc,WLdが形成される。また、他の柱部にも柱部13B,13Cと同様のウエルドラインWLc,WLdが形成される。これらウエルドラインWLa,WLb,WLc,WLdについては、詳細を後述する。
保持器100の柱部13Bの周方向位置に設けられた第1樹脂溜まり部25は、本体部25a、及び本体部25aと円環部11Aとを連通する連通部25bを有する。本体部25aは図3においては直方体であるが、円柱状等の他の形状であってもよい。
樹脂射出ゲート23は、図3の上側に配置される円環部11Aの柱部13Aの周方向位置に接続され、溶融樹脂をキャビティ17内に射出する。
第1樹脂溜まり部25は、その連通部25bが円環部11Aの柱部13Bが配置される周方向位置に接続される。
図5(A),(B)は、図3に示す成形空間からスプルー19、ランナー21、樹脂射出ゲート23、及び第1樹脂溜まり部25をそれぞれ切断した保持器内周面の一部を示す斜視図である。
図5(A)は図中点線で示す樹脂射出ゲート23が柱部13Aに接続されたゲート開口部35を示す説明図であり、図5(B)は図中点線で示す第1樹脂溜まり部の連通部25bが柱部13Bに接続された樹脂溜まり開口部37を示す説明図である。
図5(A)に示すように、保持器100は、柱部13Aに、樹脂射出ゲート23が接続されていたゲート開口部35が配置される。図中のゲート開口部35は、キャビティ17の周面における開口面積であり、また、樹脂射出ゲート23を保持器100から切断した切断跡(第1切断跡)である。
樹脂射出ゲート23は、柱部13Aと円環部11Aとの交差位置(図5(A)に示す例の柱部13Aよりも更に上方)に接続されていてもよい。
図5(B)に示すように、保持器100は、柱部13Bに、第1樹脂溜まり部の連通部25bが接続されていた樹脂溜まり開口部37が配置される。図中の樹脂溜まり開口部37は、キャビティ17の周面における開口面積であり、また、第1樹脂溜まり部の連通部25bを保持器100から切断した切断跡(第2切断跡)である。これら切断跡は、樹脂射出ゲート23、連通部25bの切断方法や、切断後の仕上げの加工等によっては、凸部や凹部、又は平坦面にすることもできる。
図6(A),(B)は保持器100の外周面に形成されるゲート開口部35及び樹脂溜まり開口部37の軸方向断面の一例を示す概略的な一部拡大断面図である。
ゲート開口部35、及び樹脂溜まり開口部37である各切断跡は、図6(A)に示すように、保持器100の内周側の保持器周面(保持器内周面)から窪んだ凹部として形成されてもよく、図6(B)に示すように保持器周面から突出した凸部として形成されてもよい。
ここで、保持器内周面におけるゲート開口部35の開口面積、すなわち、図5(A)に示す樹脂射出ゲート23が保持器100となるキャビティ17に接続されるキャビティ内周面における開口面積をAgtとする。
同様に、保持器内周面における樹脂溜まり開口部37の開口面積、すなわち、第1樹脂溜まり部25の連通部25bがキャビティ17に接続されるキャビティ内周面における連通部25bの開口面積をAt1とする。
樹脂射出ゲート23と第1樹脂溜まり部25の切断後におけるゲート開口部35と樹脂溜まり開口部37が凸部、凹部のいずれの場合であっても、上記した開口面積Agt,At1とは、保持器内周面の径方向位置における仮想面上での面積を意味する。
本実施形態の保持器100では、樹脂射出ゲート23が接続されたゲート開口部35の開口面積Agtは、第1樹脂溜まり部25に接続された樹脂溜まり開口部37の開口面積At1よりも小さい(Agt<At1)。
次に、本実施形態の保持器100の製造工程における溶融樹脂の流動について説明する。
図7は成形金型のキャビティ17の内側から外側に向かって見たときのキャビティ17と第1樹脂溜まり部25を模式的に示す説明図である。図7は保持器100の径方向内側から見た保持器内周面を示しており、図8についても同様である。
ゲート対向側ポケット15Aを画成する一対の柱部13B,13Cの、一方の柱部13Bの片側端部(柱部13Bと円環部11Aの交差位置)には、第1樹脂溜まり部25が設けられる。
成形金型のキャビティ17(保持器部分)に溶融樹脂Rの充填が完了すると、円環部11A,11Bのゲート対向側ポケット15Aの各周方向位置と、柱部13B,13Cの各軸方向中央部とに、それぞれウエルド部が形成される。
つまり、キャビティ内に射出された溶融樹脂Rは、キャビティ内を流動して、一対の円環部11A,11Bのゲート対向側ポケット15Aを画成する周方向位置で、それぞれ周方向に合流して互いに接合される。これにより、溶融樹脂Rの合流位置には樹脂同士が接合された樹脂会合面が形成される。この樹脂会合面が円環部ウエルドとなる。
また、キャビティ内を流動する溶融樹脂Rは、ゲート対向側ポケット15Aを画成する一対の柱部13B,13Cに到達する。そして、一対の柱部13B,13Cの軸方向の一端側と他端側からそれぞれ軸方向中央に向けて溶融樹脂Rが流動し、柱部13B,13Cの軸方向の略中央部でこれら溶融樹脂Rが合流して互いに接合される。これにより、溶融樹脂Rの合流位置には樹脂同士が接合された樹脂会合面が形成される。この樹脂会合面が柱部ウエルドとなる。柱部ウエルドは、上記一対の柱部13B,13C以外の他の柱部にもそれぞれ形成される。
円環部11A,11Bのそれぞれに形成された円環部ウエルドは、保持器周面に、ウエルドラインWLa,WLbを形成する。また、柱部13B,13Cに形成された柱部ウエルドは、保持器周面に、ウエルドラインWLc,WLdを形成する。このときの各ウエルドラインWLa,WLb,WLc,WLdは、略平面状の樹脂会合面に対応し、略直線状に形成される。
図8は円環部ウエルドと柱部ウエルドが形成された後、第1樹脂溜まり部25に溶融樹脂Rが流入し始めた様子を模式的に示す説明図である。
柱部ウエルドと円環部ウエルドの形成後、第1樹脂溜まり部25の本体部25aには、キャビティ内の溶融樹脂Rがそれぞれ連通部25bを通じて流入する。
ここで、前述した樹脂射出ゲート23(図5(A)参照)のゲート開口部35の開口面積Agtと、樹脂溜まり開口部37の開口面積At1と(図5(B)参照)では、樹脂溜まり開口部37の開口面積Agtがゲート開口部35の開口面積At1より大きい(Agt<At1)。よって、溶融樹脂が樹脂溜まり開口部37を通過するときの圧力損失は、樹脂射出ゲート23を通過するときの圧力損失より小さくなる。
そのため、溶融樹脂Rは、キャビティ内で滞留することなく、第1樹脂溜まり部25に向けて強制的に流動する。すると、各円環部ウエルドでは、図7に示すような樹脂会合面を、元の直線状のウエルドラインWLa,WLbの位置(保持器の円環部11A,11Bにおける、ポケット内周面から保持器端面までの幅方向が最短になる位置)から、図8に示すように円周方向にずらした凹凸形状の樹脂会合面が形成される。
また、ゲート対向側ポケット15Aを画成する一対の柱部13B,13Cに形成された各柱部ウエルドでは、図7に示すような樹脂会合面を、元の直線状のウエルドラインWLc,WLdの位置(保持器の柱部13B,13Cにおける、隣り合うポケット同士間の周方向長さが最短になる位置)から、図8に示すように軸方向にずらした凹凸形状の樹脂会合面が形成される。
特に、熱可塑性ポリイミド(TPI)やポリエーテルエーテルケトン(PEEK)等の比較的高い溶融粘度を有する樹脂材料では、第1樹脂溜まり部25へ流入させる際の圧力損失が大きくなり、溶融樹脂Rがキャビティ内に溜まる傾向がある。その場合でも、上記した第1樹脂溜まり部25の樹脂溜まり開口部37の開口面積At1と、樹脂射出ゲート23のゲート開口部35の開口面積Agtとの関係を、Agt<At1にすることで、溶融樹脂Rが第1樹脂溜まり部25に円滑に流入するようになる。
図8に示すウエルドラインWLa,WLb,WLc,WLdは、樹脂会合面の縁部を示すラインであり、樹脂会合面の凹凸形状に倣って曲線状となる。つまり、円環部ウエルドのウエルドラインWLa,WLbと、柱部ウエルドのウエルドラインWLc,WLdは、保持器周面においてそれぞれ直線状から曲線状に変化し、樹脂会合面が凸曲面又は凹曲面になる。なお、各ウエルドラインWLa,WLb,WLc,WLdは、樹脂会合面の凹凸形状の大きさによっては、保持器内部では、樹脂会合面が凸曲面又は凹曲面になり、保持器周面では、凸状若しくは略直線状のウエルドラインが見られる。
このように、保持器100に第1樹脂溜まり部25を設けて、円環部ウエルドと柱部ウエルドの各樹脂会合面を凹凸形状にすることで、互いに会合する溶融樹脂同士の接触面積が増大してウエルドの接合強度が向上する。
そして、樹脂射出ゲート23は、保持器100の周方向に沿って等間隔に2つ以上が配置される。具体的には、保持器100を成形するキャビティにおける、互いに等間隔に配置された2つ以上の柱部13Aに、それぞれ樹脂射出ゲート23が配置される。そのため、溶融樹脂がキャビティ内に均等に供給され、溶融樹脂をキャビティ内に充填する時間を短縮でき、保持器の生産効率を向上させることができる。また、複数位置から溶融樹脂がキャビティ内に供給されるため、保持器の真円度を高めて回転精度を向上させることができる。
上記構成の保持器100は、樹脂成形体により構成される玉軸受、円錐ころ軸受、円筒ころ軸受、ニードル軸受等、各種の転がり軸受の保持器として好適に使用できる。
また、上記構成の保持器100は、内輪と、外輪と、内輪と外輪との間の環状空間に配置される複数の転動体を備える転がり軸受において、複数の転動体をポケット内に保持する保持器として使用できる。
この転がり軸受によれば、保持器100のウエルド部が高強度に補強されるため、例えば、1分間に3万回転以上で高速回転される軸を支持する軸受として使用しても、ウエルド部分から損傷することがない。高速回転する転がり軸受の玉の公転速度と保持器の公転速度とに差が生じた場合には、玉が保持器ポケットに衝突を繰り返し、特に円環部ウエルドには大きな引張荷重が負荷される。その場合でも、円環部ウエルドの強度が向上し、更に比較的脆弱となる柱部ウエルドの強度も向上することで、保持器100の耐摩耗性や耐衝撃強度を向上でき、保持器100の摩耗や損傷が抑制される。よって、転がり軸受の寿命の低下を抑制できる。
また、上記した保持器100を備える転がり軸受は、工作機械等の回転軸(主軸等)を支持する軸受のほか、ターボチャージャや電動チャージャ等の回転軸を支持する軸受としても好適に使用でき、上記同様の効果が得られる。
<第2実施形態>
図9は第2実施形態の成形金型のキャビティ17Aと第1樹脂溜まり部25、第2樹脂溜まり部27を示す模式的に示す説明図、図10は図9に示す成形金型に形成される成形空間の上視図である。
本実施形態においては、第1樹脂溜まり部25に加えて、第2樹脂溜まり部27を設けた点以外は、前述の第1実施形態の構成と同様である。そのため、以降に説明においては、同一の部材、部位については、同一の符号を付与することで、その説明を簡単化又は省略する。
樹脂射出ゲート23が接続された柱部13Aと径方向に対向する保持器200の各周方向位置には、ゲート対向側ポケット15Aが配置される。ゲート対向側ポケット15Aを画成する一対の柱部13B,13Cには、溶融樹脂を貯留可能な前述の第1樹脂溜まり部25と、第2樹脂溜まり部27とが配置される。
第1樹脂溜まり部25は、柱部13Bに設けられ、第2樹脂溜まり部27は、柱部13Cに設けられる。
第2樹脂溜まり部27は、第1樹脂溜まり部25と同様に、本体部27aと、本体部27aと円環部11Aとを連通する連通部27bを有する。
本実施形態では、第1樹脂溜まり部25の溶融樹脂Rの最大貯留量Vaと第2樹脂溜まり部27の溶融樹脂Rの最大貯留量Vbとが等しい(Va=Vb)。
ここで、保持器内周面における第2樹脂溜まり部27の樹脂溜まり開口部39の開口面積、すなわち、第2樹脂溜まり部27の連通部27bがキャビティ17Aに接続されるキャビティ内周面における連通部27bの開口面積をAt2とする。第2樹脂溜まり部27の切断後における樹脂溜まり開口部39が突部、凹部のいずれの場合であっても、上記した開口面積At2とは、保持器内周面の径方向位置における仮想面上での面積を意味する。
また、樹脂溜まり開口部39は、キャビティ17の周面における開口面積であり、また、第2樹脂溜まり部の連通部27bを保持器100から切断した切断跡(第3切断跡)となる。
ゲート開口部35や樹脂溜まり開口部37,39は、前述の図6(A),(B)に示すものと同様に、樹脂射出ゲート23の開口面積Agtが、樹脂溜まり開口部37の開口面積At1、及び開口面積At2よりも小さい(Agt<At1,Agt<At2)。
次に、本実施形態の保持器200の製造工程における溶融樹脂の流動について説明する。
図11は成形金型のキャビティ17Aと第1樹脂溜まり部25及び第2樹脂溜まり部27とを模式的に示す説明図である。図11は保持器100の径方向内側から見た保持器内周面を示しており、以降の図12~図16についても同様である。
成形金型のキャビティ17A(保持器部分)に溶融樹脂Rの充填が完了すると、円環部11A,11Bのゲート対向側ポケット15Aの各周方向位置に円環部ウエルドが形成され、柱部13B,13Cの各軸方向中央部に、柱部ウエルドが形成される。このときの円環部ウエルドのウエルドラインWLa,WLbと、柱部ウエルドのウエルドラインWLc,WLdは、それぞれ直線状に形成される。
図12は円環部ウエルドと柱部ウエルドが形成された後、第1樹脂溜まり部25と第2樹脂溜まり部27に溶融樹脂Rが流入し始めた様子を模式的に示す説明図である。
柱部ウエルドと円環部ウエルドの形成後、第1樹脂溜まり部25と第2樹脂溜まり部27の各本体部25a,27aには、キャビティ内の溶融樹脂Rがそれぞれ連通部25b,27bを通じて流入する。
すると、ゲート対向側ポケット15Aを画成する柱部13B,13Cに形成された各柱部ウエルドでは、樹脂会合面を、図11に示す元の直線状のウエルドラインWLc,WLdの位置(保持器の柱部13B,13Cにおける、隣り合うポケット同士間の周方向長さが最短になる位置)から、図12に示すように軸方向にずらした凹凸形状の樹脂会合面が形成される。
一方、円環部ウエルドのウエルドラインWLa,WLbは、溶融樹脂の軸方向への移動が殆ど生じないため、元の直線状のままとなる。
ここで、前述した樹脂溜まり開口部37の開口面積At1は、樹脂溜まり開口部39の開口面積At2より小さい(At1<At2)。よって、溶融樹脂Rが第1樹脂溜まり部25の連通部25bを通過する際の圧力損失は、第2樹脂溜まり部27の連通部27bを通過する際の圧力損失より大きくなる。そのため、溶融樹脂Rの流動抵抗は第1樹脂溜まり部25側が大きくなり、第2樹脂溜まり部27の本体部27aへの溶融樹脂の充填は、第1樹脂溜まり部25の本体部25aへの充填より先に完了する。
なお、各開口面積At1,At2は、樹脂射出ゲート23(図6(A)参照)のゲート開口部35の開口面積Agtより大きい(Agt<At1,Agt<At2)。そのため、第1実施形態と同様に、溶融樹脂が各樹脂溜まり開口部37,39を通過するときの圧力損失は、樹脂射出ゲート23を通過するときの圧力損失より小さくなる。よって、キャビティ内の溶融樹脂Rは、第1樹脂溜まり部25と第2樹脂溜まり部27に向けて、滞留せずに円滑に流入する。
図13は第2樹脂溜まり部27に溶融樹脂の充填が完了して第1樹脂溜まり部25にのみ溶融樹脂が流入する様子を模式的に示す説明図である。
第2樹脂溜まり部27への溶融樹脂Rの充填が、第1樹脂溜まり部25より先に完了すると、第1樹脂溜まり部25のみに引き続き溶融樹脂Rが流入する。これに伴い、円環部11A,11Bと柱部13B,13Cに、第1樹脂溜まり部25へ向けた強制的な溶融樹脂の流動が更に生じる。
すると、円環部ウエルドにおいては、各樹脂会合面が、ウエルドラインWLa,WLbの位置から円周方向に第1樹脂溜まり部25側へずれた凹凸形状に形成される。また、柱部13B,13Cの柱部ウエルドにおいては、各樹脂会合面が、ウエルドラインWLc,WLdの位置から軸方向に第1樹脂溜まり部25側へ更にずれた凹凸形状に形成される。
このように、保持器200に第1樹脂溜まり部25と第2樹脂溜まり部27を設けることで、柱部ウエルドの樹脂会合面が凹凸形状になる。また、第1樹脂溜まり部25の樹脂溜まり開口部37の開口面積At1と、第2樹脂溜まり部27の樹脂溜まり開口部39の開口面積At2との差によって、円環部ウエルドでは、樹脂会合面が凹凸形状になり、柱部ウエルドでは、第1樹脂溜まり部25側に向けて更に大きな凹凸形状となる。これにより、互いに会合する溶融樹脂同士の接触面積が増大して、ウエルドの接合強度を向上でき、保持器100の強度をより高められる。
<第3実施形態>
図14は第3実施形態の成形金型のキャビティ17Bと第1樹脂溜まり部25及び第2樹脂溜まり部47とを模式的に示す説明図である。
保持器300における、ゲート対向側ポケット15Aを画成する一対の柱部13B,13Cの、一方の柱部13Bの片側端部(柱部13Bと円環部11Aの交差位置)には第1樹脂溜まり部25が設けられ、他方の柱部13Cの片側端部(柱部13Cと円環部11Aの交差位置)には第2樹脂溜まり部47が設けられる。
第1樹脂溜まり部25の最大貯留量Vaは、第2樹脂溜まり部47の最大貯留量Vbより大きい(Va>Vb)。また、第1樹脂溜まり部25の脂溜まり開口部37の開口面積At1と、第2樹脂溜まり部47の樹脂溜まり開口部39の開口面積At2とは互いに等しい(At1=At2)。
成形金型のキャビティ17B(保持器部分)に溶融樹脂Rの充填が完了すると、円環部11A,11Bのゲート対向側ポケット15Aの各周方向位置に円環部ウエルドが形成され、柱部13B,13Cの各軸方向中央部に柱部ウエルドが形成される。
図15は円環部ウエルドと柱部ウエルドが形成された後、第1樹脂溜まり部25と第2樹脂溜まり部47に溶融樹脂Rが流入し始めた様子を模式的に示す説明図である。
柱部ウエルドと円環部ウエルドの形成後、第1樹脂溜まり部25と第2樹脂溜まり部27の各本体部25a,47aには、キャビティ内の溶融樹脂Rがそれぞれ連通部25b,47bを通じて流入する。
ここで、前述した樹脂溜まり開口部37の開口面積At1と樹脂溜まり開口部39の開口面積At2は互いに等しい(At1=At2)ため、溶融樹脂Rが各連通部25b,47bを通過するときの圧力損失が等しくなり、溶融樹脂Rは本体部25a,47aに略同じ速度で流入する。
また、各開口面積At1,At2は、樹脂射出ゲート23(図5(A)参照)のゲート開口部35の開口面積Agtより大きい(Agt<At1,Agt<At2)ため、溶融樹脂が各樹脂溜まり開口部37,39を通過するときの圧力損失は、樹脂射出ゲート23を通過するときの圧力損失より小さくなる。
そのため、溶融樹脂Rは、キャビティ内で滞留することなく、第1樹脂溜まり部25と第2樹脂溜まり部47に向けて強制的に流動する。すると、各円環部ウエルドでは、樹脂会合面を、元の直線状のウエルドラインWLa,WLbの位置(図14に示す保持器の円環部11A,11Bにおける、ポケット内周面から保持器端面までの幅方向が最短になる位置)から、図15に示すように円周方向にずらした凹凸形状の樹脂会合面が形成される。
また、一対の柱部13B,13Cに形成された各柱部ウエルドでは、樹脂会合面を、柱部ウエルドの保持器周面(図14に示す保持器の柱部13B,13Cにおける、隣り合うポケット同士間の周方向長さが最短になる位置)における元の直線状のウエルドラインWLc,WLdの位置から、図15に示すように軸方向にずらした凹凸形状の樹脂会合面が形成される。
図16は第2樹脂溜まり部47への溶融樹脂の充填が完了して第1樹脂溜まり部25にのみ溶融樹脂が流入する様子を模式的に示す説明図である。
第1樹脂溜まり部25の最大貯留量Vaは、第2樹脂溜まり部47の最大貯留量Vbより大きい(Va>Vb)ため、第2樹脂溜まり部47への溶融樹脂Rの充填は、第1樹脂溜まり部25より先に完了する。
第2樹脂溜まり部47への溶融樹脂Rの充填が完了すると、第1樹脂溜まり部25のみに引き続き溶融樹脂Rが流入する。これに伴い、円環部11A,11Bと柱部13B,13Cに、第1樹脂溜まり部25へ向けた強制的な溶融樹脂の流動が更に生じる。
すると、円環部ウエルドにおいては、各樹脂会合面が、図15に示すウエルドラインWLa,WLbの位置から円周方向に第1樹脂溜まり部25側へ更にずれた凹凸形状に形成される。また、柱部ウエルドにおいては、各樹脂会合面が、図15に示すウエルドラインWLc,WLdの位置から軸方向に第1樹脂溜まり部25側へ更にずれた凹凸形状に形成される。
このように、保持器300に第1樹脂溜まり部25と第2樹脂溜まり部47を設けて、円環部ウエルドと柱部ウエルドの各樹脂会合面を凹凸形状にすることで、互いに会合する溶融樹脂同士の接触面積が増大してウエルドの接合強度が向上する。
そして、第1樹脂溜まり部25と第2樹脂溜まり部47との最大貯留量の差によって、各ウエルドが、第1樹脂溜まり部25側に向けて更に大きな凹凸形状となることで、溶融樹脂同士の接触面積が更に増大する。これにより、各ウエルドを更に高強度にでき、保持器300の強度をより高められる。
<その他の実施形態>
上記した各実施形態は、5つの各ランナー21の先端に設けられた樹脂射出ゲートが、キャビティの5箇所に接続され、それぞれの樹脂射出ゲートから溶融樹脂をキャビティ内に射出する構成であるが、樹脂射出ゲートの数はこれに限らない。例えば、樹脂射出ゲートを3個とした場合には、図17(A)に示すように、スプルー19を中心として放射状に3本のランナー21を等しい中心角で配置し、各ランナー21の先端部の樹脂射出ゲート23をキャビティに接続した成形空間とすればよい。図17(A)は、第1樹脂溜まり部55を、ゲート対向側ポケット15Aを画成する一方の柱部に設けた例であるが、図17(B)に示すように、一方の柱部に第1樹脂溜まり部55、他方の柱部に第2樹脂溜まり部57を設けてもよい。第2樹脂溜まり部57は、第1樹脂溜まり部55に対して、開口面積が互いに異なる構成や、最大貯留量が互いに異なる構成にすることができる。
いずれの場合でも、前述した実施形態と同様に、粘性の高い樹脂材料であっても、樹脂溜まり部への円滑な溶融樹脂の流入が可能となる。
このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
11A,11B 円環部
13,13A,13B,13C 柱部
15 ポケット
15A ゲート対向側ポケット
17,17A,17B キャビティ
23 樹脂射出ゲート
25 第1樹脂溜まり部
25a 本体部
25b 連通部
27,47,57 第2樹脂溜まり部
27a,47a 本体部
27b,47b 連通部
35 ゲート開口部(第1切断跡)
37 樹脂溜まり開口部(第2切断跡)
39 樹脂溜まり開口部(第3切断跡)
100 転がり軸受用保持器

Claims (7)

  1. 成形金型内に形成されたキャビティの周面に複数の樹脂射出ゲートを接続し、前記樹脂射出ゲートから溶融樹脂を前記キャビティ内に射出して形成する転がり軸受用保持器の製造方法であって、
    前記転がり軸受用保持器は、軸方向に離間して配置された一対の円環部と、前記一対の円環部の円周方向にわたってそれぞれ等間隔に配置され、前記円環部同士を連結する複数かつ奇数個の柱部と、隣り合う一対の前記柱部と前記一対の円環部により画成され、前記柱部と同数のポケットと、を有し、
    前記複数の樹脂射出ゲートのそれぞれは、前記キャビティの別々の前記柱部を形成する領域に接続し、
    前記キャビティにおける前記樹脂射出ゲートのそれぞれと径方向に対向する各周方向位置には、ゲート対向側ポケットを形成する領域を配置
    前記ゲート対向側ポケットを画成する一対の前記柱部の一方を形成する前記キャビティの周方向位置に、前記キャビティ内の前記溶融樹脂が流入する樹脂溜まり部設け
    前記樹脂溜まり部と前記キャビティとを接続する連通部の前記キャビティの周面における開口面積を、前記樹脂射出ゲートが前記キャビティに接続する部位の前記キャビティの周面における開口面積よりも大きくして前記溶融樹脂が前記樹脂溜まり部の開口部を通過するときの圧力損失を、前記樹脂射出ゲートを通過するときの圧力損失よりも小さくする、
    転がり軸受用保持器の製造方法。
  2. 前記樹脂射出ゲートから前記キャビティ内に溶融樹脂を射出したとき、
    前記ゲート対向側ポケットを画成する前記一対の柱部の形成位置において、前記柱部の軸方向の一端側と他端側とからそれぞれ軸方向中央に向けて流動する溶融樹脂が合流して形成された柱部ウエルドの樹脂会合面が、前記樹脂溜まり部への前記キャビティ内の溶融樹脂の流入により、前記柱部ウエルドの保持器周面におけるウエルドラインの位置から軸方向にずれて、凹凸形状に変形させる、
    請求項1に記載の転がり軸受用保持器の製造方法。
  3. 前記樹脂射出ゲートから前記キャビティ内に溶融樹脂を射出したとき、
    前記ゲート対向側ポケットを画成する前記一対の円環部の各周方向位置において、周方向を互いに異なる方向に流動する溶融樹脂が合流して形成された二つの円環部ウエルドの樹脂会合面が、前記樹脂溜まり部への前記キャビティ内の溶融樹脂の流入により、前記円環部ウエルドの保持器周面におけるウエルドラインの位置から円周方向にずれて、凹凸形状に変形させる、
    請求項1又は2に記載の転がり軸受用保持器の製造方法。
  4. 前記樹脂溜まり部は、前記キャビティの前記ゲート対向側ポケットを画成する前記一対の柱部の一方と他方にそれぞれ設けられ、
    一方の前記樹脂溜まり部に接続される前記連通部の前記キャビティの周面における開口面積は、他方の前記樹脂溜まり部に接続される前記連通部の前記キャビティの周面における開口面積より大きい、
    請求項に記載の転がり軸受用保持器の製造方法。
  5. 前記円環部ウエルドの前記樹脂会合面を、一対の前記樹脂溜まり部の前記開口面積が小さい側に向けてずらす請求項4に記載の転がり軸受用保持器の製造方法。
  6. 前記樹脂溜まり部は、前記キャビティの前記ゲート対向側ポケットを画成する前記一対の柱部の一方と他方にそれぞれ設けられ、
    一方の前記樹脂溜まり部における溶融樹脂の最大貯留量は、他方の前記樹脂溜まり部における溶融樹脂の最大貯留量より大きい、
    請求項に記載の転がり軸受用保持器の製造方法。
  7. 前記円環部ウエルドの前記樹脂会合面を、最大貯留量の大きい側の前記樹脂溜まり部に向けてずらす請求項6に記載の転がり軸受用保持器の製造方法。
JP2018152054A 2018-08-10 2018-08-10 転がり軸受用保持器の製造方法 Active JP7396790B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018152054A JP7396790B2 (ja) 2018-08-10 2018-08-10 転がり軸受用保持器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152054A JP7396790B2 (ja) 2018-08-10 2018-08-10 転がり軸受用保持器の製造方法

Publications (2)

Publication Number Publication Date
JP2020026856A JP2020026856A (ja) 2020-02-20
JP7396790B2 true JP7396790B2 (ja) 2023-12-12

Family

ID=69619826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152054A Active JP7396790B2 (ja) 2018-08-10 2018-08-10 転がり軸受用保持器の製造方法

Country Status (1)

Country Link
JP (1) JP7396790B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236363A (ja) 2011-05-12 2012-12-06 Nsk Ltd 軸受用樹脂製保持器、及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029164A (ja) * 2011-07-28 2013-02-07 Nsk Ltd 軸受用樹脂製保持器及びその製造方法、並びに転がり軸受
JP6578827B2 (ja) * 2015-09-03 2019-09-25 日本精工株式会社 軸受用保持器の製造方法
JP6911320B2 (ja) * 2016-10-05 2021-07-28 日本精工株式会社 転がり軸受用樹脂材料製保持器の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236363A (ja) 2011-05-12 2012-12-06 Nsk Ltd 軸受用樹脂製保持器、及びその製造方法

Also Published As

Publication number Publication date
JP2020026856A (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
JP5768486B2 (ja) 軸受用樹脂製保持器、及びその製造方法
WO2017164398A1 (ja) 軸受用樹脂製保持器およびその製造方法、並びに転がり軸受
JP6575672B2 (ja) 軸受用保持器の製造方法、及び軸受用保持器
JP6222146B2 (ja) 軸受用保持器の製造方法
JP6772587B2 (ja) 合成樹脂製保持器の製造方法及び合成樹脂製保持器
JP2015224664A (ja) 転がり軸受用保持器の製造方法
JP2013046982A (ja) 円環状樹脂製品の製造方法、転がり軸受用樹脂保持器、転がり軸受、及び成形金型
JP6405973B2 (ja) 軸受用保持器の製造方法
JP7396790B2 (ja) 転がり軸受用保持器の製造方法
JP7040356B2 (ja) 転がり軸受用保持器の製造方法、及び転がり軸受用保持器、並びに転がり軸受
JP6405974B2 (ja) 軸受用保持器の製造方法
JP6988509B2 (ja) 軸受用保持器の製造方法
JP6299529B2 (ja) 軸受用保持器、及びその製造方法
JP6413729B2 (ja) 軸受用保持器の製造方法
JP6578827B2 (ja) 軸受用保持器の製造方法
JP6471813B2 (ja) 軸受用保持器
JP6451190B2 (ja) 軸受用保持器の製造方法
JP6874873B2 (ja) 転がり軸受用合成樹脂製保持器
JP6702384B2 (ja) 軸受用保持器
JP6658053B2 (ja) 転がり軸受用合成樹脂製保持器
JP6413730B2 (ja) 軸受用保持器の製造方法
JP2015075201A (ja) 軸受用樹脂製保持器、及びその製造方法
JP2019173831A (ja) 樹脂保持器、及び、樹脂保持器の製造方法
JP2015075229A (ja) ころ軸受用保持器、及びその製造方法、並びにころ軸受
JP2019007625A (ja) 軸受用保持器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231130

R150 Certificate of patent or registration of utility model

Ref document number: 7396790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150