JP7396183B2 - Heat-resistant container used for single-segmentation treatment of oxide single crystal and method for single-segmentation treatment of oxide single crystal - Google Patents

Heat-resistant container used for single-segmentation treatment of oxide single crystal and method for single-segmentation treatment of oxide single crystal Download PDF

Info

Publication number
JP7396183B2
JP7396183B2 JP2020076008A JP2020076008A JP7396183B2 JP 7396183 B2 JP7396183 B2 JP 7396183B2 JP 2020076008 A JP2020076008 A JP 2020076008A JP 2020076008 A JP2020076008 A JP 2020076008A JP 7396183 B2 JP7396183 B2 JP 7396183B2
Authority
JP
Japan
Prior art keywords
single crystal
oxide single
heat
resistant container
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020076008A
Other languages
Japanese (ja)
Other versions
JP2021172541A (en
Inventor
大輔 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020076008A priority Critical patent/JP7396183B2/en
Publication of JP2021172541A publication Critical patent/JP2021172541A/en
Application granted granted Critical
Publication of JP7396183B2 publication Critical patent/JP7396183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、タンタル酸リチウム(LiTaO:以下、LTと略称する)単結晶やニオブ酸リチウム(LiNbO3:以下、LNと略称する)等の酸化物単結晶の単一分域化処理に用いる耐熱容器、酸化物単結晶の単一分域化方法に関する。 The present invention is used for single domain treatment of oxide single crystals such as lithium tantalate (LiTaO 3 :hereinafter abbreviated as LT) single crystals and lithium niobate (LiNbO 3 :hereinafter abbreviated as LN). This invention relates to a heat-resistant container and a method for dividing an oxide single crystal into a single domain.

酸化物単結晶(以下「単結晶」と略記する場合もある)は、非線形光学材料や表面弾性波デバイス用材料等に用いられている。単結晶の育成は、工業的にはチョクラルスキー法(以下、Cz法と略記する場合がある)が利用されている。Cz法は、単結晶の原料が収容された坩堝を高周波誘導加熱炉や抵抗加熱炉等で加熱して結晶原料を融液状態とし、所望とする方位の種結晶を上記融液面に接触させた後、温度勾配のついた炉内において上記種結晶を引き上げて種結晶と同じ方位の単結晶を育成する手法である。 Oxide single crystals (hereinafter sometimes abbreviated as "single crystals") are used in nonlinear optical materials, materials for surface acoustic wave devices, and the like. For growing single crystals, the Czochralski method (hereinafter sometimes abbreviated as Cz method) is used industrially. In the Cz method, a crucible containing a single crystal raw material is heated in a high-frequency induction heating furnace, a resistance heating furnace, etc. to turn the crystal raw material into a melt state, and a seed crystal with a desired orientation is brought into contact with the surface of the melt. After that, the seed crystal is pulled up in a furnace with a temperature gradient to grow a single crystal with the same orientation as the seed crystal.

なお、Cz法で育成された単結晶は多分域状態となっており、多分域状態のままでは単結晶のウエハ加工時にクラックが入り易く、また、非線形光学材料や表面弾性波デバイス等の特性に影響を及ぼす。このため、育成された単結晶には単一分域化処理を施す必要がある。 In addition, the single crystal grown by the Cz method is in a multi-region state, and if it remains in the multi-region state, cracks are likely to occur during single crystal wafer processing, and the characteristics of nonlinear optical materials and surface acoustic wave devices may be affected. affect. Therefore, it is necessary to subject the grown single crystal to a single domain treatment.

単一分域化を行う方法としては、例えば下記の特許文献1に、LN単結晶を単一分域化処理する方法が記載されている。特許文献1には、LN粉末が収容された耐熱容器のLN粉末内にLN単結晶を埋め込み、LN粉末を介してLN単結晶を一対の電極で挟み、LN単結晶をキュリー点以上の温度に昇温、保持し、電極間に電圧を印加して単一分域化する方法が記載されている。 As a method for single-domaining, for example, Patent Document 1 below describes a method for single-domaining an LN single crystal. Patent Document 1 discloses that an LN single crystal is embedded in the LN powder of a heat-resistant container containing the LN powder, the LN single crystal is sandwiched between a pair of electrodes via the LN powder, and the LN single crystal is heated to a temperature higher than the Curie point. A method is described in which the temperature is raised, maintained, and a voltage is applied between the electrodes to form a single region.

特開2019-127411号公報JP2019-127411A

ところで、単一分域化処理に用いられる耐熱容器は、一般に、アルミナ製で、底部と側壁からなる円柱状の容器と蓋で構成されている(図8参照)。この耐熱容器を用いた単一分域化処理では、耐熱容器の底面に電極板を配置し、その上に単結晶と同類の単結晶粉末を40mm程度敷き、単結晶を設置し、設置した単結晶の周りが覆われるまで単結晶粉末を充填し、その上に電極板を設置し、最後に耐熱容器に蓋を載せて完了する。 By the way, the heat-resistant container used for the single-segmentation process is generally made of alumina and consists of a cylindrical container consisting of a bottom and a side wall, and a lid (see FIG. 8). In this single-area processing using a heat-resistant container, an electrode plate is placed on the bottom of the heat-resistant container, a single crystal powder similar to the single crystal is spread on it to a thickness of about 40 mm, the single crystal is placed, and the placed single crystal is placed on the electrode plate. Fill the single crystal powder until the area around the crystal is covered, place an electrode plate on top of it, and finally place the lid on the heat-resistant container to complete the process.

この作業の中で、単結晶と一対の電極間の距離は、所定の電圧がかかるように設定されており、例えば15mm~25mmに設定される。また、耐熱容器内で処理される単結晶が均一な温度になるように、単結晶は、容器内に充填された単結晶粉末内において上下左右均等に設置されることが好ましい。このため、耐熱容器の内径の大きさは、例えば処理する単結晶の直径より30mm~50mm大きい径となる。従来、単結晶の大きさは4インチ径が主流であったが、現在では6インチあるいは6インチを超える大口径化が進んでいる。4インチ径の単結晶は重量が小さいが、6インチを超える単結晶の場合、10kgを超える重さとなる。さらに、単結晶と耐熱容器の内径の差(単結晶Cと耐熱容器20の内壁との距離)は、片側あたり20mm前後となる。このような状況で、単一分域化処理のために耐熱容器に単結晶を設置する時、あるいは、単一分域化処理後、耐熱容器から単結晶を取り出す時、単結晶を耐熱容器に接触させてクラックが入る不具合や、単結晶を耐熱容器に接触させないよう作業を慎重に行う必要があるため、作業性が低下する等の不具合が生じる、といった問題があった。 During this work, the distance between the single crystal and the pair of electrodes is set so that a predetermined voltage is applied, and is set, for example, to 15 mm to 25 mm. Furthermore, it is preferable that the single crystals are placed evenly on the top, bottom, left and right sides of the single crystal powder filled in the container so that the temperature of the single crystals processed in the heat resistant container is uniform. Therefore, the inner diameter of the heat-resistant container is, for example, 30 mm to 50 mm larger than the diameter of the single crystal to be treated. Traditionally, the mainstream size of single crystals was 4 inches in diameter, but now the diameter is increasing to 6 inches or larger than 6 inches. A single crystal with a diameter of 4 inches has a small weight, but a single crystal with a diameter of more than 6 inches weighs more than 10 kg. Furthermore, the difference in the inner diameter between the single crystal and the heat-resistant container (the distance between the single crystal C and the inner wall of the heat-resistant container 20) is approximately 20 mm per side. In such a situation, when placing a single crystal in a heat-resistant container for single-segmentation processing, or when taking out a single crystal from a heat-resistant container after single-segmentation processing, it is necessary to place the single crystal in a heat-resistant container. There were problems such as problems such as cracks occurring due to contact, and problems such as decreased workability because the work had to be carried out carefully so as not to allow the single crystal to come into contact with the heat-resistant container.

そこで、本発明は、上記のような問題点に着目してなされたもので、その課題とするところは、酸化物単結晶の単一分域化処理において、耐熱容器に酸化物単結晶を設置する際あるいは耐熱容器から酸化物単結晶を取り出す際における、酸化物単結晶の耐熱容器への接触によるクラック等の不具合を抑制し、かつ、作業性を向上させることにある。 Therefore, the present invention has been made by focusing on the above-mentioned problems, and its problem is to place the oxide single crystal in a heat-resistant container in the single-zonal treatment of the oxide single crystal. The object of the present invention is to suppress defects such as cracks caused by the oxide single crystal coming into contact with the heat-resistant container and to improve workability when the oxide single crystal is removed from the heat-resistant container.

本発明の態様によれば、酸化物単結晶粉末に埋め込んだ酸化物単結晶に対して、所定の温度で電圧を印加して酸化物単結晶を単一分域化する単一分域化処理に用いる耐熱容器であって、底部及び壁部を有する受皿部と、円筒状であり、受皿部の上方に設置する円筒部と、を備え、円筒部は、酸化物単結晶及び酸化物単結晶粉末を内部に収容可能であり、受皿部は、酸化物単結晶粉末と、酸化物単結晶及び酸化物単結晶粉末を保持している円筒部と、を保持可能であり、円筒部の外径は、受皿部の内径よりも小さい、耐熱容器が提供される。 According to an aspect of the present invention, a single-domaining process is performed in which a voltage is applied at a predetermined temperature to an oxide single-crystal embedded in an oxide single-crystal powder to make the oxide single-crystal into a single domain. A heat-resistant container used for a heat-resistant container, comprising a saucer portion having a bottom and a wall portion, and a cylindrical portion having a cylindrical shape and installed above the saucer portion, the cylindrical portion being used for oxide single crystals and oxide single crystals. The powder can be stored inside, and the saucer part can hold the oxide single crystal powder and the cylindrical part holding the oxide single crystal and the oxide single crystal powder, and the outer diameter of the cylindrical part is Provided is a heat-resistant container whose inner diameter is smaller than the inner diameter of the saucer portion.

また、円筒部の外径が、受皿部の内径よりも30mm以上50mm以下小さい構成でもよい。また、受皿部が、単一分域化処理の際に耐熱容器中に充填される酸化物単結晶粉末の全量を保持可能に形成される構成でもよい。また、円筒部の内径が、190mm以上である構成でもよい。 Further, the outer diameter of the cylindrical portion may be smaller than the inner diameter of the saucer portion by 30 mm or more and 50 mm or less. Alternatively, the saucer portion may be configured to be able to hold the entire amount of the oxide single crystal powder that is filled into the heat-resistant container during the single-segmentation process. Further, the inner diameter of the cylindrical portion may be 190 mm or more.

また、本発明の態様によれば、酸化物単結晶粉末に埋め込んだ酸化物単結晶に対して、所定の温度で電圧を印加して酸化物単結晶を単一分域化する、酸化物単結晶の単一分域化処理方法であって、上記の耐熱容器を用いて酸化物単結晶に単一分域化処理をすることを含む、酸化物単結晶の単一分域化処理方法が提供される。 Further, according to an aspect of the present invention, a voltage is applied to the oxide single crystal embedded in the oxide single crystal powder at a predetermined temperature to form the oxide single crystal into a single domain. A method for single-segmenting a crystal, the method comprising performing a single-sectoring treatment on an oxide single crystal using the above-mentioned heat-resistant container. provided.

また、単一分域化処理は、受皿部に酸化物単結晶粉末を設置することと、受皿部に設置した酸化物単結晶粉末に、酸化物単結晶の端部の一部を埋め込むことと、酸化物単結晶粉末に埋め込んだ酸化物単結晶を円筒部で覆い、且つ、受皿部に設置した酸化物単結晶粉末に円筒部の端部を設置することと、酸化物単結晶を覆った円筒部の内部に酸化物単結晶粉末を充填し、酸化物単結晶の全体を酸化物単結晶粉末に埋め込むことと、酸化物単結晶粉末に埋め込んだ酸化物単結晶に対して、所定の温度で電圧を印加して酸化物単結晶を単一分域化することと、を含んでもよい。 In addition, the single-segmentation process involves placing oxide single crystal powder in a saucer and embedding a part of the end of the oxide single crystal in the oxide single crystal powder installed in the saucer. , the oxide single crystal embedded in the oxide single crystal powder is covered with a cylindrical part, and the end of the cylindrical part is placed in the oxide single crystal powder placed in the saucer part, and the oxide single crystal is covered. Filling the inside of the cylindrical part with oxide single crystal powder, embedding the entire oxide single crystal in the oxide single crystal powder, and heating the oxide single crystal embedded in the oxide single crystal powder to a predetermined temperature. forming the oxide single crystal into a single domain by applying a voltage.

本発明の態様によれば、酸化物単結晶の単一分域化処理において、耐熱容器に酸化物単結晶を設置する際あるいは耐熱容器から酸化物単結晶を取り出す際における、酸化物単結晶の耐熱容器への接触によるクラック等の不具合を抑制し、かつ、作業性を向上させることができる。 According to an aspect of the present invention, in the single-segmentation treatment of the oxide single crystal, when the oxide single crystal is placed in a heat-resistant container or when the oxide single crystal is taken out from the heat-resistant container, Problems such as cracks caused by contact with a heat-resistant container can be suppressed, and workability can be improved.

本実施形態に係る耐熱容器の一例を示す斜視図である。It is a perspective view showing an example of a heat-resistant container concerning this embodiment. 本実施形態に係る耐熱容器の一例を示す断面図である。It is a sectional view showing an example of a heat-resistant container concerning this embodiment. 本実施形態に係る酸化物単結晶の単一分域化処理方法の一例を示すフローチャートである。2 is a flowchart illustrating an example of a single-domain processing method for an oxide single crystal according to the present embodiment. 本実施形態に係る酸化物単結晶の単一分域化処理方法の説明図である。FIG. 2 is an explanatory diagram of a single-domain processing method for an oxide single crystal according to the present embodiment. 本実施形態に係る酸化物単結晶の単一分域化処理方法の説明図である。FIG. 2 is an explanatory diagram of a single-domain processing method for an oxide single crystal according to the present embodiment. 本実施形態に係る酸化物単結晶の単一分域化処理方法の説明図である。FIG. 2 is an explanatory diagram of a single-domain processing method for an oxide single crystal according to the present embodiment. 本実施形態に係る酸化物単結晶の単一分域化処理方法の説明図である。FIG. 2 is an explanatory diagram of a single-domain processing method for an oxide single crystal according to the present embodiment. 従来技術に係る耐熱容器の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a heat-resistant container according to the prior art.

以下の説明において、適宜、図1などに示すXYZ直交座標系を参照する。このXYZ直交座標系は、X方向及びY方向が水平方向であり、Z方向が、X方向及びY方向に垂直な鉛直方向である。また、各方向において、適宜、矢印の先端と同じ側(方向)を+側(方向)(例、+Z側)、矢印の先端と反対側(方向)を-側(方向)(例、-Z側)と称す。例えば、鉛直方向(Z方向)において、上方が+Z側であり、下方が-Z側である。なお、各図面においては、適宜、一部又は全部が模式的に記載され、縮尺が変更されて記載される。また、以下の説明において、「A~B」との記載は、「A以上B以下」を意味する。 In the following description, reference will be made to the XYZ orthogonal coordinate system shown in FIG. 1 and the like as appropriate. In this XYZ orthogonal coordinate system, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction perpendicular to the X direction and the Y direction. Also, in each direction, the same side (direction) as the tip of the arrow is the + side (direction) (e.g., +Z side), and the side (direction) opposite to the tip of the arrow is the - side (direction) (e.g., -Z side). side). For example, in the vertical direction (Z direction), the upper side is the +Z side, and the lower side is the -Z side. In addition, in each drawing, a part or the whole is suitably described schematically, and the scale is changed and described. In addition, in the following description, the description "A to B" means "above A and below B".

[実施形態]
以下、本発明の実施形態について図を用いて詳細に説明する。なお、図1及び図2は、本実施形態に係る耐熱容器の一例を示す図である。図1は斜視図である。図2は断面図である。なお、図2は、耐熱容器を使用する状態の一例を示す図であり、単結晶及び単結晶粉末を耐熱容器に設置した状態を示している。図8は、従来技術に係る耐熱容器の一例を示す概略図である。
[Embodiment]
Embodiments of the present invention will be described in detail below with reference to the drawings. In addition, FIG.1 and FIG.2 is a figure which shows an example of the heat-resistant container based on this embodiment. FIG. 1 is a perspective view. FIG. 2 is a cross-sectional view. Note that FIG. 2 is a diagram showing an example of a state in which a heat-resistant container is used, and shows a state in which a single crystal and a single-crystal powder are placed in the heat-resistant container. FIG. 8 is a schematic diagram showing an example of a heat-resistant container according to the prior art.

上述のように、Cz法等で育成された単結晶は多分域状態となっており、多分域状態のままでは単結晶のウエハ加工時にクラックが入り易く、また、非線形光学材料や表面弾性波デバイス等の特性にも影響を及ぼす。このため、Cz法等で育成された多分域状態となっている単結晶には、単一分域化処理を行う。 As mentioned above, single crystals grown by the Cz method etc. are in a multi-domain state, and if they remain in a multi-domain state, cracks are likely to occur during single crystal wafer processing, and they are also difficult to use for nonlinear optical materials and surface acoustic wave devices. It also affects other characteristics. For this reason, a single crystal in a multi-domain state grown by the Cz method or the like is subjected to a single-domain processing.

単一分域化処理の方法として、例えば、単結晶粉末が収容された耐熱容器の単結晶粉末内に単結晶を埋め込み、かつ、単結晶粉末を介して単結晶を一対の電極で挟み、単結晶をキュリー点以上の温度に昇温、保持し、電極間に電圧を印加して単一分域化する方法が用いられている。 As a method for single-segmentation treatment, for example, a single crystal is embedded in the single-crystal powder in a heat-resistant container containing the single-crystal powder, and the single-crystal is sandwiched between a pair of electrodes via the single-crystal powder. The method used is to raise the temperature of the crystal to a temperature above the Curie point, maintain it, and apply a voltage between the electrodes to form a single domain.

単一分域化処理に用いる従来の耐熱容器20は、図8に示すように、底部22と側壁23からなる円柱状の容器21と蓋24で構成されている。この耐熱容器20を用いて単一分域化処理を行う場合、容器21の底面に電極25(電極板)を配置し、その上に単結晶Cと同類の単結晶粉末Pを敷き、単結晶Cを設置し、設置した単結晶Cの周り及び単結晶Cが覆われるまで単結晶粉末Pを充填し、その上に電極26(電極板)を設置し、最後に耐熱容器20に蓋24を載せて、単一分域化処理に供する耐熱容器20及び単結晶C等の設置が完了する。 As shown in FIG. 8, a conventional heat-resistant container 20 used for single-zone processing is composed of a cylindrical container 21 having a bottom portion 22 and a side wall 23, and a lid 24. When carrying out single-segmentation processing using this heat-resistant container 20, an electrode 25 (electrode plate) is placed on the bottom of the container 21, and a single-crystal powder P similar to the single-crystal C is spread on top of the electrode 25 (electrode plate). C is installed, single crystal powder P is filled around the installed single crystal C and until the single crystal C is covered, an electrode 26 (electrode plate) is installed on top of it, and finally a lid 24 is placed on the heat resistant container 20. The installation of the heat-resistant container 20, single crystal C, etc. to be used for single-segmentation processing is completed.

上記の作業の中で、単結晶Cと一対の電極25、電極26間の距離は、所定の電圧がかかるように設定されており、例えば15mm~25mmに設定される。また、耐熱容器20内で処理される単結晶Cが均一な温度になるように、単結晶Cは、容器21内に充填された単結晶粉末P内において上下左右均等に設置されることが好ましい。 In the above work, the distance between the single crystal C and the pair of electrodes 25 and 26 is set so that a predetermined voltage is applied, and is set to, for example, 15 mm to 25 mm. Further, it is preferable that the single crystals C are placed evenly on the top, bottom, left and right in the single crystal powder P filled in the container 21 so that the single crystal C processed in the heat resistant container 20 has a uniform temperature. .

このため、耐熱容器20の内径の大きさは、処理する単結晶Cの直径より30mm~50mm大きい径となる。従来、単結晶Cの大きさは4インチ径が主流であったが、現在では6インチあるいは6インチを超える大口径化が進んでいる。4インチ径の単結晶Cは、重量が比較的小さいが、6インチを超える単結晶Cの場合、10kgを超える重さとなる。さらに、単結晶Cと耐熱容器20の内径の差(単結晶Cと耐熱容器20の内壁との距離)は、片側あたり20mm前後であり、このような状況で、耐熱容器20に単結晶Cを設置する時、あるいは、単一分域化処理後、耐熱容器20から単結晶Cを取り出す時、単結晶Cを耐熱容器20に接触させてクラック等が入る不具合や、耐熱容器20に接触させないように作業を慎重に行う必要があるため、作業性が低下する等不具合が生じる、といった問題があった。 Therefore, the inner diameter of the heat-resistant container 20 is 30 mm to 50 mm larger than the diameter of the single crystal C to be treated. Conventionally, the main size of single crystal C was 4 inches in diameter, but now the diameter is increasing to 6 inches or larger than 6 inches. A single crystal C with a diameter of 4 inches has a relatively small weight, but a single crystal C with a diameter of more than 6 inches weighs more than 10 kg. Furthermore, the difference in the inner diameter of the single crystal C and the heat-resistant container 20 (distance between the single crystal C and the inner wall of the heat-resistant container 20) is approximately 20 mm per side, and under such circumstances, it is difficult to place the single crystal C in the heat-resistant container 20. When installing the single crystal C, or when taking out the single crystal C from the heat resistant container 20 after the single segmentation process, be careful not to let the single crystal C come into contact with the heat resistant container 20 and cause cracks, etc. Since the work must be carried out carefully, there have been problems such as reduced work efficiency and other problems.

そこで、本実施形態の耐熱容器1は、図1及び図2に示すように、受皿部2と円筒部3とを備え、円筒部3の外径が受皿部2の内径よりも小さいことを特徴としている。以下、詳細に説明する。 Therefore, as shown in FIGS. 1 and 2, the heat-resistant container 1 of this embodiment includes a saucer portion 2 and a cylindrical portion 3, and is characterized in that the outer diameter of the cylindrical portion 3 is smaller than the inner diameter of the saucer portion 2. It is said that This will be explained in detail below.

本実施形態の耐熱容器1は、受皿部2と、円筒部3と、蓋部4と、を備える。蓋部4は任意の構成であり、耐熱容器1は、必要に応じて、蓋部4を備えてもよい。受皿部2は、底部6及び壁部7を有する。受皿部2の内部底面8には、電極E1が配置され、単結晶粉末Pが収容される。内部底面8は、受皿部2の内部(壁部7の内側)の底面である。円筒部3は、円筒状である。円筒部3は、受皿部2の上方に設置される。円筒部3は、単結晶C及び単結晶粉末Pを内部に収容(保持)可能である。受皿部2は、単結晶粉末Pと、単結晶C及び単結晶粉末Pを保持している円筒部3と、を保持可能である。円筒部3の外径L1は受皿部2の内径L2よりも小さく設定されている。 The heat-resistant container 1 of this embodiment includes a saucer portion 2, a cylindrical portion 3, and a lid portion 4. The lid part 4 has an arbitrary configuration, and the heat-resistant container 1 may be provided with the lid part 4 as necessary. The saucer portion 2 has a bottom portion 6 and a wall portion 7. An electrode E1 is arranged on the inner bottom surface 8 of the saucer part 2, and the single crystal powder P is accommodated therein. The internal bottom surface 8 is the bottom surface inside the saucer section 2 (inside the wall section 7). The cylindrical portion 3 has a cylindrical shape. The cylindrical part 3 is installed above the saucer part 2. The cylindrical portion 3 is capable of accommodating (holding) the single crystal C and the single crystal powder P therein. The saucer part 2 can hold the single crystal powder P and the cylindrical part 3 holding the single crystal C and the single crystal powder P. The outer diameter L1 of the cylindrical portion 3 is set smaller than the inner diameter L2 of the saucer portion 2.

耐熱容器1の各部の材質は、単一分域化処理温度に耐えられる材質であればよく、例えば、従来の耐熱容器と同様にアルミナ等を用いることができる。 The material for each part of the heat-resistant container 1 may be any material that can withstand the single-zone treatment temperature, and for example, alumina or the like can be used as in the case of conventional heat-resistant containers.

図2に示すように、耐熱容器1の使用時には、円筒部3は、受皿部2に収容された単結晶粉末Pの上に設置され、円筒部3内は単結晶Cと単結晶Cの周囲を覆う単結晶粉末Pで充填される。 As shown in FIG. 2, when the heat-resistant container 1 is used, the cylindrical part 3 is placed on top of the single crystal powder P housed in the saucer part 2, and the inside of the cylindrical part 3 includes the single crystal C and the surrounding area of the single crystal C. filled with single-crystal powder P covering the

受皿部2の形状は、底部6及び壁部7を有するものであれば、限定されない。本実施形態の受皿部2の形状は、有底円筒状の容器である。すなわち、本実施形態の壁部7は、受皿部2の外周部分に設けられている。受皿部2の内径L2は、円筒部3の外径L1より大きく設定される。この時、受皿部2の内径L2の大きさは、単結晶Cを設置する時の作業性を考慮して決定される。受皿部2の中央部の上方には単結晶Cが設置される。上記したように、大口径の単結晶Cは10kgを超える重量となるため、作業空間として単結晶C周辺に十分な空間が必要である。例えば、受皿部2の壁部7と単結晶Cとの距離L3は、30mm~50mmであるのが好ましく、40mmであるのが特に好ましい。 The shape of the saucer part 2 is not limited as long as it has a bottom part 6 and a wall part 7. The shape of the saucer portion 2 of this embodiment is a cylindrical container with a bottom. That is, the wall portion 7 of this embodiment is provided on the outer peripheral portion of the saucer portion 2. The inner diameter L2 of the saucer portion 2 is set larger than the outer diameter L1 of the cylindrical portion 3. At this time, the size of the inner diameter L2 of the saucer portion 2 is determined in consideration of workability when installing the single crystal C. A single crystal C is installed above the central portion of the saucer portion 2. As described above, since the large-diameter single crystal C weighs more than 10 kg, sufficient space is required around the single crystal C as a working space. For example, the distance L3 between the wall portion 7 of the saucer portion 2 and the single crystal C is preferably 30 mm to 50 mm, and particularly preferably 40 mm.

次に、受皿部2の壁部7の高さL4は、特に制限はないが、高さL4が低い方が単結晶Cの設置及び取り出しに支障が少ないため、好ましい。また、後述するように、単一分域化処理後、単結晶Cを耐熱容器1から取り出す際、円筒部3を外してから単結晶Cを取り出すが、この際、単結晶粉末Pが受皿部2から溢れ出ないように、受皿部2の内径L2及び壁部7の高さL4を設定することが好ましい。言い換えれば、受皿部2は、単一分域化処理の際に耐熱容器1中に充填される単結晶粉末Pの全量を保持可能であるのが好ましい。上記した受皿部2が単一分域化処理の際に耐熱容器中に充填される単結晶粉末Pの全量を保持可能とする構成は、対象とする単結晶Cのサイズ等にもよるが、計算、予備実験等によって求めることができる。例えば、単結晶Cの外径がφ160mm、結晶長が100mm、円筒部3の内径L5がφ200mmであれば、受皿部2の内径L2がφ275mm、壁部7の高さL4を100mmと設定することができる。上記の構成により、単結晶粉末Pの飛散がなく、また、耐熱容器1からの単結晶Cの取り出しも容易になる。 Next, the height L4 of the wall portion 7 of the saucer portion 2 is not particularly limited, but it is preferable that the height L4 is lower because there is less trouble in installing and taking out the single crystal C. In addition, as will be described later, when taking out the single crystal C from the heat-resistant container 1 after the single-segmentation treatment, the cylindrical part 3 is removed and then the single crystal C is taken out. It is preferable to set the inner diameter L2 of the saucer part 2 and the height L4 of the wall part 7 so as not to overflow from the container part 2. In other words, it is preferable that the saucer portion 2 is able to hold the entire amount of the single crystal powder P filled into the heat-resistant container 1 during the single-segmentation process. The configuration in which the above-mentioned saucer portion 2 can hold the entire amount of single crystal powder P filled into the heat-resistant container during the single-segmentation process depends on the size of the target single crystal C, etc. It can be determined by calculation, preliminary experiment, etc. For example, if the outer diameter of the single crystal C is φ160 mm, the crystal length is 100 mm, and the inner diameter L5 of the cylindrical portion 3 is φ200 mm, the inner diameter L2 of the saucer portion 2 is set to φ275 mm, and the height L4 of the wall portion 7 is set to 100 mm. I can do it. With the above configuration, the single crystal powder P is not scattered, and the single crystal C can be easily taken out from the heat-resistant container 1.

円筒部3の内径L5は、対象とする単結晶Cのサイズ等にもよるが、従来の耐熱容器の内径と同等でよい。円筒部3の内径L5は、単結晶Cの外径よりも30mm~50mm大きい径とするのが好ましい。例えば、単結晶Cの外形が160mmの場合、円筒部3の内径L5は、190mm~210mmとするのが好ましい。すなわち、円筒部3で単結晶Cを覆った際、円筒部3の内壁と単結晶Cとの距離が15mm~25mmになるように、円筒部3の内径L5を設定することが好ましい。本実施形態の耐熱容器1は、円筒部3の内径L5を190mm以上とすることにより、6インチ(152.4mm)あるいは6インチを超える大口径の単結晶Cの単一分域化処理に好適に用いることができ、本実施形態の耐熱容器1の効果も顕著となる。 The inner diameter L5 of the cylindrical portion 3 may be equal to the inner diameter of a conventional heat-resistant container, although it depends on the size of the single crystal C to be treated. The inner diameter L5 of the cylindrical portion 3 is preferably 30 mm to 50 mm larger than the outer diameter of the single crystal C. For example, when the outer diameter of the single crystal C is 160 mm, the inner diameter L5 of the cylindrical portion 3 is preferably 190 mm to 210 mm. That is, it is preferable to set the inner diameter L5 of the cylindrical portion 3 so that when the cylindrical portion 3 covers the single crystal C, the distance between the inner wall of the cylindrical portion 3 and the single crystal C is 15 mm to 25 mm. The heat-resistant container 1 of this embodiment has an inner diameter L5 of 190 mm or more of the cylindrical portion 3, and is therefore suitable for single-segmentation treatment of a large-diameter single crystal C of 6 inches (152.4 mm) or more than 6 inches. The effect of the heat-resistant container 1 of this embodiment is also significant.

単結晶Cの上下には電極E1、E2が配置される。単結晶Cと電極E1、E2との間の距離は、所定の電圧がかかるように設定されており、例えば15mm~25mmに設定される。耐熱容器1内で処理される単結晶Cが均一な温度になるように、単結晶Cは、耐熱容器1内に充填された単結晶粉末P内に上下左右均等に設置されることが好ましい。 Electrodes E1 and E2 are arranged above and below the single crystal C. The distance between the single crystal C and the electrodes E1 and E2 is set so that a predetermined voltage is applied, and is set to, for example, 15 mm to 25 mm. It is preferable that the single crystals C are placed evenly in the top, bottom, right and left in the single crystal powder P filled in the heat resistant container 1 so that the single crystal C processed in the heat resistant container 1 has a uniform temperature.

円筒部3の長さL7は、単結晶長に単結晶Cと電極E1、E2との間の距離を加えた長さ以上に設定するのが好ましい。なお、単結晶長は、育成時の状況により前後することがあるため、円筒部3の長さL7は、余裕をもって設定することが好ましい。例えば、単結晶長に単結晶Cと電極E1、E2との間の距離を加えた長さに、さらに40mm程度長くしてもよい。 The length L7 of the cylindrical portion 3 is preferably set to be equal to or longer than the length of the single crystal plus the distance between the single crystal C and the electrodes E1 and E2. Note that since the single crystal length may vary depending on the conditions during growth, it is preferable to set the length L7 of the cylindrical portion 3 with a margin. For example, the length may be increased by about 40 mm to the length of the single crystal plus the distance between the single crystal C and the electrodes E1 and E2.

蓋部4は、円筒部3の上に設置する。蓋部4は、円筒部3の開口を覆う。上記したように、蓋部4は必須ではないが、単結晶粉末Pの上側に蓋部4を設置することで、単一分域化処理の際、単結晶Cの上下左右の条件をより近くすることができるため、単結晶Cに対して安定した単一分域化処理を施すことができる。 The lid part 4 is installed on the cylindrical part 3. The lid part 4 covers the opening of the cylindrical part 3. As mentioned above, the lid part 4 is not essential, but by installing the lid part 4 above the single crystal powder P, the vertical and horizontal conditions of the single crystal C can be made closer to each other during the single-domaining process. Therefore, stable single-domaining treatment can be performed on single crystal C.

なお、耐熱容器1の各部の厚みは、特に限定はない。例えば、耐熱容器1の各部の厚みは、10mm~30mmとすることができる。 Note that the thickness of each part of the heat-resistant container 1 is not particularly limited. For example, the thickness of each part of the heat-resistant container 1 can be 10 mm to 30 mm.

次に、上記した本実施形態に係る耐熱容器の使用方法の一例を説明すると共に、本実施形態に係る単結晶酸化物の単一分域化処理方法(以下、単一分域化処理方法と略す)の一例について説明する。図3は、本実施形態に係る単一分域化処理方法の一例を示すフローチャートである。図4から図7は、本実施形態に係る単一分域化処理方法の説明図である。なお、本実施形態に係る単一分域化処理方法は、以下の説明に限定されない。例えば、本実施形態に係る単一分域化処理方法は、上記した事項を含んでもよい。 Next, an example of how to use the heat-resistant container according to the present embodiment described above will be explained, and a method for single-segmenting a single crystal oxide according to this embodiment (hereinafter referred to as a "single-segmenting processing method") will be explained. An example of (omitted) will be explained. FIG. 3 is a flowchart illustrating an example of the single domain processing method according to the present embodiment. 4 to 7 are explanatory diagrams of the single domain processing method according to this embodiment. Note that the single segmentation processing method according to this embodiment is not limited to the following description. For example, the single segmentation processing method according to the present embodiment may include the above-described matters.

本実施形態に係る単一分域化処理方法は、本実施形態に係る耐熱容器を用いて、単結晶の単一分域化処理を行うことを含む。 The single-segmentation treatment method according to the present embodiment includes performing single-sectorization treatment on a single crystal using the heat-resistant container according to this embodiment.

(ステップS1)
本実施形態に係る単一分域化処理方法では、まず、図4(A)に示すように、受皿部2の内部底面8に電極E1を設置する(図3のステップS1)。電極E1は、受皿部2の中央部分に設置する。電極E1は、特に限定されず、例えば、従来の単一分域化処理に用いられる電極を使用することができる。
(Step S1)
In the single segmentation processing method according to this embodiment, first, as shown in FIG. 4(A), an electrode E1 is installed on the internal bottom surface 8 of the saucer portion 2 (step S1 in FIG. 3). The electrode E1 is installed at the center of the saucer portion 2. The electrode E1 is not particularly limited, and for example, an electrode used in conventional single segmentation processing can be used.

(ステップS2)
ステップS1の次に、図4(B)に示すように、受皿部2に単結晶粉末Pを設置(充填)する(図3のステップS2)。ステップS2では、電極E1を設置した受皿部2に、所定量の単結晶粉末Pを設置する。この際、電極E1は単結晶粉末Pで覆われる。なお、単結晶粉末Pは、特に限定はないが、単一分域化処理する単結晶Cと同じ組成の単結晶粉末であるのが好ましい。また、単結晶粉末Pは、単結晶の粉砕粉でもよいし原料粉であってもよい。また、ステップS2における上記単結晶粉末Pの所定量は、上記した単結晶C下端と電極E1との間の距離にすることが可能な量であるのが好ましい。なお、本実施形態の耐熱容器1及び単一分域化処理方法に用いる単結晶Cは、特に限定されず、任意である。例えば、単結晶Cの成分(組成)、大きさ、形状は任意である。
(Step S2)
Next to step S1, as shown in FIG. 4(B), single crystal powder P is placed (filled) in the saucer portion 2 (step S2 in FIG. 3). In step S2, a predetermined amount of single crystal powder P is placed on the saucer portion 2 on which the electrode E1 is placed. At this time, the electrode E1 is covered with the single crystal powder P. Although the single crystal powder P is not particularly limited, it is preferably a single crystal powder having the same composition as the single crystal C to be subjected to the single-segmentation treatment. Further, the single crystal powder P may be a ground single crystal powder or a raw material powder. Moreover, it is preferable that the predetermined amount of the single crystal powder P in step S2 is an amount that can provide the distance between the lower end of the single crystal C and the electrode E1. Note that the single crystal C used in the heat-resistant container 1 and the single-segmentation treatment method of this embodiment is not particularly limited, and is arbitrary. For example, the component (composition), size, and shape of the single crystal C are arbitrary.

また、ステップS2において充填する単結晶粉末Pは、図4(B)に示すように、単結晶Cの下面が円錐状に下側に凸形状となっている場合は、単結晶粉末Pの中央部を盛り上げてもよい。後述するが、単結晶Cの円錐部を、上記盛り上げた単結晶粉末Pに埋め込むことで、単結晶Cを安定して設置することができる。なお、充填した単結晶粉末Pの形状は、任意であり、盛り上げなくてもよい。 Furthermore, as shown in FIG. 4(B), the single crystal powder P filled in step S2 is placed at the center of the single crystal powder P when the lower surface of the single crystal C is conically convex downward. You can also liven up the club. As will be described later, by embedding the conical portion of the single crystal C in the raised single crystal powder P, the single crystal C can be stably installed. Note that the shape of the filled single crystal powder P is arbitrary and does not need to be raised.

本実施形態の耐熱容器1及び単一分域化処理方法では、受皿部2の内壁と単結晶Cとの距離L3を従来の耐熱容器20を用いる場合よりも広くすることができ、かつ、受皿部2の壁部7の高さも従来の耐熱容器20に比べ低く設定されているので、単結晶Cを設置する際の作業性を従来よりも顕著に向上させることができると共に、受皿部2と単結晶Cとの接触によるクラック等の不具合を抑制できる。この効果は、受皿部2の内壁と単結晶Cとの距離L3を上記の好ましい範囲に設定すること、及び/又は、壁部7の高さL4を上記した好ましい範囲に設定することで、より顕著に発現する。また、前記の効果は、上記したような径が大きく重量が大きい単結晶Cを対象とする場合、さらに顕著となる。 In the heat-resistant container 1 and the single-segmentation processing method of the present embodiment, the distance L3 between the inner wall of the saucer portion 2 and the single crystal C can be made wider than when using the conventional heat-resistant container 20, and the saucer Since the height of the wall portion 7 of the portion 2 is also set lower than that of the conventional heat-resistant container 20, the workability when installing the single crystal C can be significantly improved compared to the conventional case, and the height of the wall portion 7 of the saucer portion 2 and Problems such as cracks caused by contact with single crystal C can be suppressed. This effect can be further improved by setting the distance L3 between the inner wall of the saucer portion 2 and the single crystal C within the above-mentioned preferable range, and/or by setting the height L4 of the wall portion 7 within the above-mentioned preferable range. Significantly expressed. Moreover, the above-mentioned effect becomes even more remarkable when the single crystal C having a large diameter and a large weight as described above is targeted.

(ステップS3)
ステップS2の次に、図5(A)に示すように、受皿部2に設置した単結晶粉末Pに、単結晶Cの端部の一部を埋め込む。これにより、単結晶Cの位置が、単結晶粉末Pに固定される。この際、単結晶C下端と電極E1との間の距離を、上記した好ましい範囲に設定することが好ましい。また、単結晶Cは、受皿部2の中央部に配置するのが好ましい。
(Step S3)
Next to step S2, as shown in FIG. 5(A), a part of the end of the single crystal C is embedded in the single crystal powder P placed in the saucer part 2. Thereby, the position of the single crystal C is fixed to the single crystal powder P. At this time, it is preferable to set the distance between the lower end of the single crystal C and the electrode E1 within the above-described preferable range. Further, it is preferable that the single crystal C be placed in the center of the saucer portion 2.

(ステップS4)
ステップS3の次に、図5(B)に示すように、単結晶粉末Pに埋め込んだ単結晶Cを円筒部3で覆い、且つ、受皿部2に設置した単結晶粉末Pに円筒部3の端部を設置する(ステップS4)。ステップS4では、ステップS2で単結晶粉末Pに固定した単結晶Cに円筒部3を被せ、円筒部3の端部を、受皿部2内の単結晶粉末P上に設置することにより、円筒部3の位置が固定される。ステップS4では、平面視(+Z方向から見た場合)において受皿部2に設置した単結晶Cが円筒部3の中心になるように、円筒部3を単結晶粉末Pの上に設置するのが好ましい。これにより、単一分域化処理の際の単結晶Cに対する水平方向の条件を揃えることができ、単結晶Cに対して安定した単一分域化処理を施すことができる。
(Step S4)
Next to step S3, as shown in FIG. 5(B), the single crystal C embedded in the single crystal powder P is covered with the cylindrical part 3, and the cylindrical part 3 is covered with the single crystal powder P placed in the saucer part 2. The end portion is installed (step S4). In step S4, the cylindrical part 3 is placed over the single crystal C fixed to the single crystal powder P in step S2, and the end of the cylindrical part 3 is placed on the single crystal powder P in the saucer part 2. The position of 3 is fixed. In step S4, the cylindrical part 3 is placed on the single crystal powder P so that the single crystal C installed in the saucer part 2 is at the center of the cylindrical part 3 in plan view (when viewed from the +Z direction). preferable. This makes it possible to align the horizontal conditions for the single crystal C during the single-segmentation process, and to perform the stable single-segmentation process on the single crystal C.

本実施形態の耐熱容器1及び単一分域化処理方法によれば、位置が固定された単結晶Cに対して、円筒部3を被せることにより覆うため、従来の耐熱容器よりも容易に単結晶Cを耐熱容器1内に設置することができる。前記の効果は、上記したような径が大きく重量が大きい単結晶Cを対象とする場合、さらに顕著となる。 According to the heat-resistant container 1 and the single-segmentation processing method of the present embodiment, since the single crystal C whose position is fixed is covered by the cylindrical portion 3, it is easier to cover the single crystal C than with conventional heat-resistant containers. The crystal C can be placed inside the heat-resistant container 1. The above effect becomes even more remarkable when the single crystal C having a large diameter and weight as described above is targeted.

(ステップS5)
ステップS4の次に、図6(A)に示すように、単結晶Cを覆った円筒部3の内部に単結晶粉末Pを充填し、単結晶Cの全体を単結晶粉末Pに埋め込む(ステップS5)。この際、受皿部2は、酸化物単結晶粉末Pと、酸化物単結晶C及び酸化物単結晶粉末Pを保持している円筒部3と、を保持する。この際、単結晶C上端と電極E2との間の距離を上記した好ましい範囲に設定するように、単結晶粉末Pの量を調整することが好ましい。
(Step S5)
Next to step S4, as shown in FIG. 6(A), the inside of the cylindrical part 3 covering the single crystal C is filled with single crystal powder P, and the entire single crystal C is embedded in the single crystal powder P (step S5). At this time, the saucer portion 2 holds the oxide single crystal powder P, and the cylindrical portion 3 holding the oxide single crystal C and the oxide single crystal powder P. At this time, it is preferable to adjust the amount of single crystal powder P so that the distance between the upper end of single crystal C and electrode E2 is set within the above-described preferable range.

(ステップS6)
ステップS5の次に、図6(B)に示すように、単結晶Cの全体を埋め込んだ単結晶粉末Pに電極E2を設置する(ステップS6)。この際、単結晶C上端と電極E2との間の距離を上記した好ましい範囲に設定することが好ましい。
(Step S6)
Next to step S5, as shown in FIG. 6(B), an electrode E2 is installed on the single crystal powder P in which the entire single crystal C is embedded (step S6). At this time, it is preferable to set the distance between the upper end of the single crystal C and the electrode E2 within the above-described preferable range.

(ステップS7)
ステップS6の次に、図7(A)に示すように、ステップS6で設置した電極E2を単結晶粉末Pで埋め込む(ステップS7)。例えば、10mm程度埋め込み、電極E2を固定してもよい。電極E2は、特に限定されず、例えば、従来の単一分域化処理に用いられる電極を使用することができる。なお、ステップS7は、任意である。電極E2を設置後、次工程の蓋部を設置することで電極E2が固定されれば、ステップS7を行わなくてもよい。
(Step S7)
Next to step S6, as shown in FIG. 7(A), the electrode E2 installed in step S6 is embedded with single crystal powder P (step S7). For example, the electrode E2 may be embedded by about 10 mm and fixed. The electrode E2 is not particularly limited, and for example, an electrode used in conventional single segmentation processing can be used. Note that step S7 is optional. After installing the electrode E2, if the electrode E2 is fixed by installing the lid in the next step, step S7 may not be performed.

(ステップS8)
ステップS7の次に、図2に示すように、蓋部4を設置し、円筒部3の開口を覆う(ステップS8)。上記したように、単結晶粉末Pの上側に蓋部4を設置することで、単一分域化処理の際、単結晶Cの上下の条件をより近くすることができるため、単結晶Cに対して安定した単一分域化処理を施すことができる。
(Step S8)
Next to step S7, as shown in FIG. 2, the lid part 4 is installed to cover the opening of the cylindrical part 3 (step S8). As mentioned above, by installing the lid part 4 above the single crystal powder P, the vertical conditions of the single crystal C can be made more similar during the single-segmentation process. A stable single domain processing can be applied to the data.

(ステップS9)
ステップS8の次に、単結晶粉末Pに埋め込んだ単結晶Cに対して、所定の温度で電圧を印加して単結晶Cを単一分域化する(ステップS9)。ステップS9では、単結晶Cが収納された耐熱容器1を熱処理炉(図示せず)内に配置する。この状態で炉内温度を単結晶Cのキュリー温度以上の温度に昇温・保持しながら電極E1、E2間に電圧を印加して単一分域化処理を実施する。これにより、耐熱容器1に単結晶粉末Pを収容し、単結晶粉末P内に単結晶Cを埋め込み、かつ、単結晶粉末Pを介して単結晶Cを一対の電極E1、E2で挟むと共に、単結晶Cを単結晶Cのキュリー温度以上の温度に昇温、保持し、一対の電極E1、E2に電圧を印加して単結晶Cを単一分域化する単結晶Cの単一分域化処理が行われる。なお、ステップS9の単一分域化の処理において、熱処理の温度及び時間、電圧等の条件は、特に制限はなく、例えば、公知の条件を使用することができる。
(Step S9)
Next to step S8, a voltage is applied at a predetermined temperature to the single crystal C embedded in the single crystal powder P to transform the single crystal C into a single domain (step S9). In step S9, the heat-resistant container 1 containing the single crystal C is placed in a heat treatment furnace (not shown). In this state, a voltage is applied between the electrodes E1 and E2 while the temperature in the furnace is raised and maintained at a temperature equal to or higher than the Curie temperature of the single crystal C, thereby carrying out a single segmentation process. As a result, the single crystal powder P is housed in the heat-resistant container 1, the single crystal C is embedded in the single crystal powder P, and the single crystal C is sandwiched between the pair of electrodes E1 and E2 via the single crystal powder P. A single domain of the single crystal C, in which the temperature of the single crystal C is raised to a temperature equal to or higher than the Curie temperature of the single crystal C, and a voltage is applied to a pair of electrodes E1 and E2 to form a single domain of the single crystal C. processing is performed. In addition, in the process of single segmentation in step S9, there are no particular restrictions on the conditions such as temperature, time, voltage, etc. of the heat treatment, and for example, known conditions can be used.

(ステップS10)
ステップS9の処理終了後、単結晶Cを耐熱容器1から取り出す(ステップS10)。ステップS10では、ステップS9の処理終了後、冷却し、熱処理炉より単結晶Cが収容された耐熱容器1を取り出す。次に、耐熱容器1から単結晶Cを取り出す。この際、耐熱容器1の蓋部4、電極E2を外した後、円筒部3を上方に引き上げて、円筒部3を取り外す。これにより、円筒部3を単結晶Cに接触させずに容易に取り外すことができる。また、この際、単結晶粉末Pは受皿部2に広がり、埋め込まれていた単結晶Cが単結晶粉末P内から露出するため、単結晶Cを容易に取り出すことができる。この効果は、上記したような径が大きく重量が大きい単結晶Cを対象とする場合、顕著となる。
(Step S10)
After completing the process in step S9, the single crystal C is taken out from the heat-resistant container 1 (step S10). In step S10, after the process in step S9 is completed, the heat-resistant container 1 containing the single crystal C is cooled and taken out from the heat treatment furnace. Next, the single crystal C is taken out from the heat-resistant container 1. At this time, after removing the lid part 4 and the electrode E2 of the heat-resistant container 1, the cylindrical part 3 is pulled upward and removed. Thereby, the cylindrical portion 3 can be easily removed without coming into contact with the single crystal C. Further, at this time, the single crystal powder P spreads over the saucer portion 2, and the buried single crystal C is exposed from within the single crystal powder P, so that the single crystal C can be easily taken out. This effect becomes remarkable when the single crystal C, which has a large diameter and a large weight as described above, is targeted.

以上のように、本実施形態の耐熱容器1は、酸化物単結晶粉末Pに埋め込んだ酸化物単結晶Cに対して、所定の温度で電圧を印加して酸化物単結晶Cを単一分域化する単一分域化処理に用いる耐熱容器であって、底部6及び壁部7を有する受皿部2と、円筒状であり、受皿部2の上方に設置する円筒部3と、を備え、円筒部3は、酸化物単結晶C及び酸化物単結晶粉末Pを内部に収容可能であり、受皿部2は、酸化物単結晶粉末Pと、酸化物単結晶C及び酸化物単結晶粉末Pを保持している円筒部3と、を保持可能であり、円筒部3の外径L1は、受皿部2の内径L2よりも小さい。上記以外の構成は、耐熱容器1において、任意の構成である。本実施形態の耐熱容器1によれば、酸化物単結晶Cの単一分域化処理において、耐熱容器1に酸化物単結晶Cを設置する際あるいは耐熱容器1から単結晶Cを取り出す際における、単結晶Cの耐熱容器1への接触による不具合を抑制し、かつ、作業性を向上させることができる。 As described above, in the heat-resistant container 1 of the present embodiment, a voltage is applied to the oxide single crystal C embedded in the oxide single crystal powder P at a predetermined temperature to separate the oxide single crystal C into a single unit. This is a heat-resistant container used for single-zoning treatment, and includes a saucer part 2 having a bottom part 6 and a wall part 7, and a cylindrical part 3 that is cylindrical and installed above the saucer part 2. , the cylindrical part 3 can accommodate the oxide single crystal C and the oxide single crystal powder P, and the saucer part 2 can accommodate the oxide single crystal powder P, the oxide single crystal C, and the oxide single crystal powder. The outer diameter L1 of the cylindrical portion 3 is smaller than the inner diameter L2 of the saucer portion 2. The configuration other than the above is an arbitrary configuration in the heat-resistant container 1. According to the heat-resistant container 1 of the present embodiment, when the oxide single crystal C is placed in the heat-resistant container 1 or when the single crystal C is taken out from the heat-resistant container 1 in the single segmentation treatment of the oxide single crystal C, , it is possible to suppress problems caused by contact of the single crystal C with the heat-resistant container 1, and to improve workability.

また、本実施形態の酸化物単結晶の単一分域化処理方法は、酸化物単結晶粉末に埋め込んだ酸化物単結晶に対して、所定の温度で電圧を印加して酸化物単結晶を単一分域化する、酸化物単結晶の単一分域化処理方法であって、上記した本実施形態の耐熱容器1を用いて、酸化物単結晶に単一分域化処理をすることを含む。本実施形態の酸化物単結晶の単一分域化処理方法によれば、酸化物単結晶Cの単一分域化処理において、耐熱容器1に酸化物単結晶Cを設置する際あるいは耐熱容器1から単結晶Cを取り出す際における、単結晶Cの耐熱容器1への接触による不具合を抑制し、かつ、作業性を向上させることができる。なお、上記本実施形態の酸化物単結晶の単一分域化処理方法において、上記以外の構成は、任意の構成である。本実施形態の単一分域化処理方法は、上記以外の他の工程を含んでもよい。例えば、本実施形態の単一分域化処理方法は、受皿部2に酸化物単結晶粉末Pを設置することと、受皿部2に設置した酸化物単結晶粉末Pに、酸化物単結晶Cの端部の一部を埋め込むことと、酸化物単結晶粉末Pに埋め込んだ酸化物単結晶Cを円筒部3で覆い、且つ、受皿部2に設置した酸化物単結晶粉末Pに円筒部3の端部を設置することと、酸化物単結晶Cを覆った円筒部3の内部に酸化物単結晶粉末Pを充填し、酸化物単結晶Cの全体を酸化物単結晶粉末Pに埋め込むことと、酸化物単結晶粉末Pに埋め込んだ酸化物単結晶Cに対して、所定の温度で電圧を印加して酸化物単結晶Cを単一分域化することと、を含んでもよい。また、本実施形態の単一分域化処理方法は上記した本実施形態の耐熱容器1で説明した事項を含んでもよい。 In addition, in the method for single-segmenting an oxide single crystal of the present embodiment, a voltage is applied at a predetermined temperature to the oxide single crystal embedded in the oxide single crystal powder to separate the oxide single crystal. A method for single-segmenting an oxide single crystal, which involves performing a single-sectoring process on an oxide single crystal using the heat-resistant container 1 of the present embodiment described above. including. According to the method for single-segmenting an oxide single crystal of the present embodiment, in the single-segmenting treatment of the oxide single crystal C, when the oxide single crystal C is placed in the heat-resistant container 1 or the heat-resistant container When taking out the single crystal C from the heat-resistant container 1, problems caused by the single crystal C coming into contact with the heat-resistant container 1 can be suppressed, and workability can be improved. In addition, in the single-domain treatment method for an oxide single crystal of the present embodiment, the configurations other than those described above are arbitrary configurations. The single segmentation processing method of the present embodiment may include steps other than those described above. For example, the single-segmentation processing method of the present embodiment includes placing the oxide single crystal powder P in the saucer part 2, and adding the oxide single crystal powder P to the oxide single crystal powder P installed in the saucer part 2. In addition, the oxide single crystal C embedded in the oxide single crystal powder P is covered with the cylindrical part 3, and the oxide single crystal powder P placed in the saucer part 2 is covered with the cylindrical part 3. and filling the inside of the cylindrical part 3 covering the oxide single crystal C with oxide single crystal powder P, and embedding the entire oxide single crystal C in the oxide single crystal powder P. and applying a voltage at a predetermined temperature to the oxide single crystal C embedded in the oxide single crystal powder P to transform the oxide single crystal C into a single domain. Further, the single-zone processing method of this embodiment may include the matters described in the heat-resistant container 1 of this embodiment described above.

以下、本発明の実施例を用いて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない The present invention will be specifically explained below using examples, but the present invention is not limited to these examples in any way.

[実施例1]
実施例1では、上記した本実施形態に係る耐熱容器及び単一分域化処理方法を用いて、LN単結晶の単一分域化処理を行った。実施例1では、コングルエント組成(Li:Nb=48.4:51.6(モル比))を有する直径φ160mm(6.3インチ)全長100mmのLN単結晶(キュリー点:1138℃)を単一分域化処理した。
[Example 1]
In Example 1, LN single crystal was subjected to single-segmentation treatment using the heat-resistant container and single-segmentation treatment method according to the present embodiment described above. In Example 1, a single LN single crystal (Curie point: 1138°C) having a congruent composition (Li:Nb=48.4:51.6 (molar ratio)) and a diameter of 160 mm (6.3 inches) and a total length of 100 mm was used. Segmentation processing was performed.

まず、上記図2に示す耐熱容器1と同様の、受皿部、円筒部、蓋からなる耐熱容器を用意した。受皿部は、内径φ270mm、壁部の高さ100mm、厚み20mmのアルミナ製とした。円筒部は内径φ200mm、長さ170mm、厚さ15mmのアルミナ製とした。蓋部は外径φ310mm、厚さ20mmのアルミナ製とした。次に、受皿部の内部底面に直径φ180mm、厚み0.3mmの電極を敷いた。次に、LN結晶を粉砕した単結晶粉末を25mm敷いた。また、単結晶粉末は中央部を山状に盛り上げた。山状に盛り上げた部分に単結晶の円錐状の下部を埋め込み設置した。次に円筒部を、単結晶が円筒部の中心になるように被せ、受皿部の単結晶粉末の上に設置した。円筒部内を単結晶の周辺を単結晶粉末で充填し、単結晶上面から25mmに位置に直径φ180mm、厚み0.3mmの電極を配置し、その上に10mm厚さで単結晶粉末を充填した。円筒部の上に蓋部を設置し閉止した。 First, a heat-resistant container similar to the heat-resistant container 1 shown in FIG. 2 described above, consisting of a saucer portion, a cylindrical portion, and a lid, was prepared. The saucer part was made of alumina and had an inner diameter of 270 mm, a wall height of 100 mm, and a thickness of 20 mm. The cylindrical part was made of alumina and had an inner diameter of 200 mm, a length of 170 mm, and a thickness of 15 mm. The lid was made of alumina and had an outer diameter of 310 mm and a thickness of 20 mm. Next, an electrode having a diameter of 180 mm and a thickness of 0.3 mm was placed on the inner bottom surface of the saucer part. Next, 25 mm of single crystal powder obtained by crushing LN crystal was spread. Moreover, the single crystal powder was raised into a mountain shape at the center. The cone-shaped lower part of the single crystal was embedded in the mountain-like part. Next, a cylindrical part was placed over the single crystal powder in the saucer part so that the single crystal was in the center of the cylindrical part. The inside of the cylindrical part was filled with single crystal powder around the single crystal, an electrode with a diameter of 180 mm and a thickness of 0.3 mm was placed at a position 25 mm from the top surface of the single crystal, and the single crystal powder was filled on top of the electrode to a thickness of 10 mm. A lid part was placed on top of the cylindrical part and closed.

単結晶を収容した耐熱容器を昇降式電気炉の炉床板上に配置した後、単結晶の下側に対峙する電極の白金線をプラス電極とし、単結晶の上側に対峙する電極の白金線をマイナス電極として直流電源に接続した。電気炉の、1150℃に昇温し、単結晶が1150℃で安定するまで5.5時間保持した。1150℃に到達してから5.5時間後に、0.4V/minの条件で上記電極間に電圧を印加し、約45分後に電極間の電圧を18Vとする。18Vになってから75分後、電極間に18Vを印加した状態で電気炉の降温し、温度が900℃付近となった時点で電極間電圧を0Vとした。 After placing the heat-resistant container containing the single crystal on the hearth plate of an elevating electric furnace, use the platinum wire of the electrode facing the bottom of the single crystal as the positive electrode, and the platinum wire of the electrode facing the top of the single crystal. It was connected to a DC power source as a negative electrode. The temperature of the electric furnace was raised to 1150°C and held for 5.5 hours until the single crystal became stable at 1150°C. 5.5 hours after reaching 1150° C., a voltage is applied between the electrodes at a rate of 0.4 V/min, and about 45 minutes later, the voltage between the electrodes is set to 18 V. Seventy-five minutes after the voltage reached 18V, the temperature of the electric furnace was lowered while applying 18V between the electrodes, and when the temperature reached around 900°C, the voltage between the electrodes was set to 0V.

単一分域化処理後、電気炉より耐熱容器を取りだした。耐熱容器の蓋部及び上側の電極を外した。その後、円筒部を上側に持ち上げ取り外すことで、単結晶粉末が受皿内に広がり、単結晶粉末内から露出した単結晶を取り出した。 After the single-zone treatment, the heat-resistant container was taken out from the electric furnace. The lid and upper electrode of the heat-resistant container were removed. Thereafter, by lifting the cylindrical part upward and removing it, the single crystal powder spread in the saucer, and the exposed single crystal was taken out from within the single crystal powder.

単一分域化処理後のLN単結晶を調べたところクラックの発生はなく、また、LN単結晶の分極状態を評価したところ反対向きの分極はなく、良好に単一分域化されていた。また、単結晶を耐熱容器に設置する作業及び耐熱容器より取り出す作業は、従来の耐熱容器の作業に比べ50%作業効率が向上した。 When we examined the LN single crystal after the single domain treatment, there were no cracks, and when we evaluated the polarization state of the LN single crystal, there was no polarization in the opposite direction, and it was found that it was well formed into a single domain. . Furthermore, the work efficiency of placing the single crystal in the heat-resistant container and taking it out from the heat-resistant container was improved by 50% compared to the work of conventional heat-resistant containers.

上記実施例の結果から、本実施形態の耐熱容器及び単一分域化処理方法によれば、単結晶の単一分域化処理において、耐熱容器に単結晶を設置する際あるいは耐熱容器から単結晶を取り出す際における、単結晶の耐熱容器への接触による不具合を抑制し、かつ、作業性を向上させることができる顕著な効果があることが確認される。 From the results of the above examples, it is clear that according to the heat-resistant container and the single-segmentation processing method of the present embodiment, when the single crystal is placed in the heat-resistant container or from the heat-resistant container, It is confirmed that there is a remarkable effect of suppressing problems caused by contact of the single crystal with the heat-resistant container when taking out the crystal, and improving workability.

なお、本発明の技術範囲は、上述の実施形態等で説明した態様に限定されない。上述の実施形態等で説明した要件の1つ以上は、省略されることがある。また、上述の実施形態等で説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、上述の実施形態等で引用した全ての文献の開示を援用して本文の記載の一部とする。 Note that the technical scope of the present invention is not limited to the aspects described in the above-mentioned embodiments. One or more of the requirements described in the above embodiments etc. may be omitted. Furthermore, the requirements described in the above embodiments and the like can be combined as appropriate. In addition, to the extent permitted by law, the disclosures of all documents cited in the above-mentioned embodiments, etc. are incorporated into the description of the main text.

1・・・耐熱容器
2・・・受皿部
3・・・円筒部
4・・・蓋部
6・・・底部
7・・・壁部
8・・・内部底面
E1、E2・・・電極
C・・・酸化物単結晶(単結晶)
P・・・酸化物単結晶粉末(単結晶粉末)
1...Heat-resistant container 2...Saucer part 3...Cylindrical part 4...Lid part 6...Bottom part 7...Wall part 8...Inner bottom surface E1, E2...Electrode C・・・Oxide single crystal (single crystal)
P...Oxide single crystal powder (single crystal powder)

Claims (6)

酸化物単結晶粉末に埋め込んだ酸化物単結晶に対して、所定の温度で電圧を印加して酸化物単結晶を単一分域化する単一分域化処理に用いる耐熱容器であって、
底部及び壁部を有する受皿部と、
円筒状であり、前記受皿部の上方に設置する円筒部と、を備え、
前記円筒部は、前記酸化物単結晶及び前記酸化物単結晶粉末を内部に収容可能であり、
前記受皿部は、前記酸化物単結晶粉末と、前記酸化物単結晶及び前記酸化物単結晶粉末を保持している前記円筒部と、を保持可能であり、
前記円筒部の外径は、前記受皿部の内径よりも小さい、耐熱容器。
A heat-resistant container used for a single-segmentation process in which a voltage is applied at a predetermined temperature to an oxide single-crystal embedded in an oxide single-crystal powder to form the oxide single-crystal into a single-segmentation process,
a saucer portion having a bottom portion and a wall portion;
a cylindrical part having a cylindrical shape and installed above the saucer part;
The cylindrical portion is capable of accommodating the oxide single crystal and the oxide single crystal powder therein,
The saucer portion is capable of holding the oxide single crystal powder, and the cylindrical portion holding the oxide single crystal and the oxide single crystal powder,
The outer diameter of the cylindrical portion is smaller than the inner diameter of the saucer portion.
前記円筒部の外径は、前記受皿部の内径よりも、30mm以上50mm以下小さい、請求項1に記載の耐熱容器。 The heat-resistant container according to claim 1, wherein the outer diameter of the cylindrical portion is smaller than the inner diameter of the saucer portion by 30 mm or more and 50 mm or less. 前記受皿部は、前記単一分域化処理の際に耐熱容器中に充填される前記酸化物単結晶粉末の全量を保持可能である、請求項1又は請求項2に記載の耐熱容器。 The heat-resistant container according to claim 1 or 2, wherein the saucer portion is capable of holding the entire amount of the oxide single crystal powder filled into the heat-resistant container during the single-segmentation treatment. 前記円筒部の内径は、190mm以上である、請求項1から請求項3のいずれか一項に記載の耐熱容器。 The heat-resistant container according to any one of claims 1 to 3, wherein the cylindrical portion has an inner diameter of 190 mm or more. 酸化物単結晶粉末に埋め込んだ酸化物単結晶に対して、所定の温度で電圧を印加して酸化物単結晶を単一分域化する、酸化物単結晶の単一分域化処理方法であって、
請求項1から請求項4のいずれか一項に記載の耐熱容器を用いて、前記酸化物単結晶に単一分域化処理をすることを含む、酸化物単結晶の単一分域化処理方法。
A single domain treatment method for oxide single crystals in which a voltage is applied at a predetermined temperature to the oxide single crystal embedded in oxide single crystal powder to make the oxide single crystal into a single domain. There it is,
A single-segmenting treatment for an oxide single crystal, comprising performing a single-sectoring process on the oxide single crystal using the heat-resistant container according to any one of claims 1 to 4. Method.
前記単一分域化処理は、
前記受皿部に前記酸化物単結晶粉末を設置することと、
前記受皿部に設置した前記酸化物単結晶粉末に、前記酸化物単結晶の端部の一部を埋め込むことと、
前記酸化物単結晶粉末に埋め込んだ前記酸化物単結晶を前記円筒部で覆い、且つ、前記受皿部に設置した前記酸化物単結晶粉末に前記円筒部の端部を設置することと、
前記酸化物単結晶を覆った前記円筒部の内部に前記酸化物単結晶粉末を充填し、前記酸化物単結晶の全体を前記酸化物単結晶粉末に埋め込むことと、
前記酸化物単結晶粉末に埋め込んだ前記酸化物単結晶に対して、所定の温度で電圧を印加して酸化物単結晶を単一分域化することと、を含む、請求項5に記載の酸化物単結晶の単一分域化処理方法。
The single segmentation process is
placing the oxide single crystal powder in the saucer portion;
embedding a part of the end of the oxide single crystal in the oxide single crystal powder placed in the saucer;
Covering the oxide single crystal embedded in the oxide single crystal powder with the cylindrical part, and placing an end of the cylindrical part on the oxide single crystal powder placed in the saucer part;
filling the inside of the cylindrical portion that covers the oxide single crystal with the oxide single crystal powder, and embedding the entire oxide single crystal in the oxide single crystal powder;
6. Applying a voltage at a predetermined temperature to the oxide single crystal embedded in the oxide single crystal powder to transform the oxide single crystal into a single domain. Single-domain processing method for oxide single crystals.
JP2020076008A 2020-04-22 2020-04-22 Heat-resistant container used for single-segmentation treatment of oxide single crystal and method for single-segmentation treatment of oxide single crystal Active JP7396183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020076008A JP7396183B2 (en) 2020-04-22 2020-04-22 Heat-resistant container used for single-segmentation treatment of oxide single crystal and method for single-segmentation treatment of oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020076008A JP7396183B2 (en) 2020-04-22 2020-04-22 Heat-resistant container used for single-segmentation treatment of oxide single crystal and method for single-segmentation treatment of oxide single crystal

Publications (2)

Publication Number Publication Date
JP2021172541A JP2021172541A (en) 2021-11-01
JP7396183B2 true JP7396183B2 (en) 2023-12-12

Family

ID=78279246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020076008A Active JP7396183B2 (en) 2020-04-22 2020-04-22 Heat-resistant container used for single-segmentation treatment of oxide single crystal and method for single-segmentation treatment of oxide single crystal

Country Status (1)

Country Link
JP (1) JP7396183B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001775A (en) 2005-06-21 2007-01-11 Shin Etsu Chem Co Ltd Method for production of ferroelectric crystal
JP2019127411A (en) 2018-01-24 2019-08-01 住友金属鉱山株式会社 Method for making single domain of lithium niobate monocrystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001775A (en) 2005-06-21 2007-01-11 Shin Etsu Chem Co Ltd Method for production of ferroelectric crystal
JP2019127411A (en) 2018-01-24 2019-08-01 住友金属鉱山株式会社 Method for making single domain of lithium niobate monocrystal

Also Published As

Publication number Publication date
JP2021172541A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
CN109196144A (en) The manufacturing method and device of monocrystalline silicon
JP6467056B2 (en) Silicon single crystal ingot growth equipment
CN101792926B (en) Method for growing terbium-aluminum garnet crystal by using guide die pulling method
JP2015000834A (en) Garnet type single crystal and method for producing the same
JP2019127411A (en) Method for making single domain of lithium niobate monocrystal
JP7396183B2 (en) Heat-resistant container used for single-segmentation treatment of oxide single crystal and method for single-segmentation treatment of oxide single crystal
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JPH0357072B2 (en)
JP3512480B2 (en) Method for producing potassium niobate single crystal
KR20170088120A (en) Single crystal ingot growth apparatus and the growing method of it
JP2022007556A (en) Method for forming oxide single crystal into single domain
CN206070038U (en) A kind of crystal growth by flux method platinum crucible cover
JP7069886B2 (en) Single crystal transport device and single crystal transport method
JP6988624B2 (en) How to grow lithium niobate single crystal
JP2003221299A (en) Large lithium niobate single crystal for optical application, and method and apparatus of the same
JP6593157B2 (en) Method for growing lithium tantalate single crystals
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
CN107636212B (en) Lithium niobate single crystal substrate and method for producing same
JP7310347B2 (en) Method for growing lithium niobate single crystal
JP7275674B2 (en) Method for growing lithium niobate single crystal
JP2022099960A (en) Method for manufacturing oxide single crystal, and electrode used for method for manufacturing the same
JP7271841B2 (en) Manufacturing method of lithium niobate substrate
JP2011225408A (en) Method for manufacturing silicon single crystal
JP6842056B2 (en) Rod-shaped seed crystal holder
KR960005520B1 (en) Preparation of single crystal

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7396183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150