JP2022099960A - Method for manufacturing oxide single crystal, and electrode used for method for manufacturing the same - Google Patents

Method for manufacturing oxide single crystal, and electrode used for method for manufacturing the same Download PDF

Info

Publication number
JP2022099960A
JP2022099960A JP2020214055A JP2020214055A JP2022099960A JP 2022099960 A JP2022099960 A JP 2022099960A JP 2020214055 A JP2020214055 A JP 2020214055A JP 2020214055 A JP2020214055 A JP 2020214055A JP 2022099960 A JP2022099960 A JP 2022099960A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
oxide single
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020214055A
Other languages
Japanese (ja)
Inventor
清充 小泉
Kiyomitsu Koizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020214055A priority Critical patent/JP2022099960A/en
Publication of JP2022099960A publication Critical patent/JP2022099960A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To prevent such a fault that electric polarity is not the same when simultaneously subjected to annealing and polling to improve productivity.SOLUTION: A method for manufacturing an oxide single crystal, capable of subjecting an oxide single crystal grown by the Cz method to annealing and polling comprises: arranging a pair of electrodes to the oxide single crystal embedded in a crystalline oxide powder in a heat-resistant vessel; annealing the oxide single crystal at a predetermined temperature; and applying voltage to the electrodes to poll the oxide single crystal. One of the pair of electrodes has an open hole in the central part, and the seed crystal part of the oxide single crystal is installed in the open hole.SELECTED DRAWING: Figure 1

Description

本発明は、タンタル酸リチウム(LiTaO:以下、LTと略称する)単結晶やニオブ酸リチウム(LiNbO:以下、LNと略称する)等の酸化物単結晶の熱処理と単一分域化処理を同時に行う処理方法に関する。 The present invention relates to heat treatment and single segmentation treatment of oxide single crystals such as lithium tantalate (LiTaO 3 : hereinafter abbreviated as LT) single crystal and lithium niobate (LiNbO 3 : hereinafter abbreviated as LN). Concerning the processing method of performing at the same time.

単結晶から得られる基板は、様々な材料として用いられている。例えば、タンタル酸リチウム(LT)単結晶から得られるタンタル酸リチウム単結晶基板(LT単結晶基板)やニオブ酸リチウム(LN)単結晶から得られるニオブ酸リチウム単結晶基板(LN単結晶基板)等の圧電性単結晶基板(以下、「単結晶基板」と略す場合もある)は、移動体通信機器に用いられる電気信号ノイズ除去用の表面弾性波素子(SAWフィルター)の材料として用いられている。 Substrates obtained from single crystals are used as various materials. For example, a lithium tantalate single crystal substrate (LT single crystal substrate) obtained from a lithium tantalate (LT) single crystal, a lithium niobate single crystal substrate (LN single crystal substrate) obtained from a lithium niobate (LN) single crystal, and the like. Piezoelectric single crystal substrate (hereinafter, may be abbreviated as "single crystal substrate") is used as a material for a surface elastic wave element (SAW filter) for removing electrical signal noise used in mobile communication equipment. ..

LT単結晶やLN単結晶は、主にチョクラルスキー法(以下、Cz法と略記する場合がある)で製造されており、Cz法は、単結晶の原料が収容された坩堝を高周波誘導加熱炉や抵抗加熱炉等で加熱して結晶原料を融液状態とし、所望とする方位の種結晶を上記融液面に接触させた後、温度勾配のついた炉内において上記種結晶を引き上げて種結晶と同じ方位の単結晶を育成する手法である。Cz法で育成された単結晶は、熱応力による残留歪みがあり、これを取り除くため融点に近い均熱下での熱処理(アニール)を施す。更に、Cz法で育成された単結晶は多分域状態となっており、多分域状態のままでは単結晶のウエハ加工時にクラックが入り易く、また、非線形光学材料や表面弾性波デバイス等の特性に影響を及ぼす。このため、育成された単結晶には単一分域化処理(ポーリング)を施す必要がある。単一分域化処理では、単結晶を室温からキュリー温度以上の所定温度まで昇温させ、単結晶に電圧を印加し、電圧を印加したままキュリー温度以下の所定温度まで降温させた後、電圧印加を停止して室温まで冷却する一連の処理が施される。育成された単結晶は、ポーリング処理後、外形を整えるために外表面が研削され、円柱状に加工された単結晶インゴットからウエハ状の単結晶基板へと加工される。 The LT single crystal and the LN single crystal are mainly manufactured by the Czochralski method (hereinafter, may be abbreviated as the Cz method), and the Cz method heats the pit containing the raw material of the single crystal by high-frequency induction heating. The crystal raw material is brought into a melt state by heating in a furnace or a resistance heating furnace, the seed crystal in the desired orientation is brought into contact with the melt surface, and then the seed crystal is pulled up in a furnace having a temperature gradient. This is a method for growing a single crystal in the same orientation as the seed crystal. The single crystal grown by the Cz method has residual strain due to thermal stress, and in order to remove this, heat treatment (annealing) is performed under soaking heat close to the melting point. Furthermore, the single crystal grown by the Cz method is in a multi-regional state, and if it is in the multi-regional state, cracks are likely to occur during wafer processing of the single crystal, and the characteristics of nonlinear optical materials, surface acoustic wave devices, etc. affect. Therefore, it is necessary to perform a single segmentation process (polling) on the grown single crystal. In the single-segmentation process, the temperature of the single crystal is raised from room temperature to a predetermined temperature above the Curie temperature, a voltage is applied to the single crystal, the temperature is lowered to a predetermined temperature below the Curie temperature while the voltage is still applied, and then the voltage is applied. A series of treatments are performed to stop the application and cool to room temperature. After the polling process, the outer surface of the grown single crystal is ground to adjust the outer shape, and the single crystal ingot processed into a columnar shape is processed into a wafer-shaped single crystal substrate.

上記説明のアニールとポーリングは、個別に行うものであるが、キュリー温度と融点が近い品種、例えば、LN単結晶の場合、アニールとポーリングを同時に行い、アニール後の冷却時間や、単結晶の上下を切断する電極形成部の切断作業を短縮し生産性を向上させる方法が検討されている。アニールとポーリングを同時(一括)に行う方法としては、下記の特許文献1や特許文献2に記載されている。 The annealing and polling described above are performed individually, but in the case of a variety having a Curie temperature close to the melting point, for example, an LN single crystal, the annealing and polling are performed at the same time, and the cooling time after annealing and the upper and lower sides of the single crystal are performed. A method of shortening the cutting work of the electrode forming portion for cutting the polling and improving the productivity is being studied. A method of performing annealing and polling at the same time (collectively) is described in Patent Document 1 and Patent Document 2 below.

特開昭58-2083号公報Japanese Unexamined Patent Publication No. 58-2083 特開2007-1775号公報Japanese Unexamined Patent Publication No. 2007-1775

ところで、Cz法で育成された単結晶は、所望とする方位の種結晶を融液面に接触させた後、種結晶を回転させながら引き上げて単結晶を育成する。このように育成された単結晶は、上方に種結晶を有する。種結晶の長さは5~10cm程度ある。従来、種結晶は、アニールを施し、冷却した後に種結晶を切断し、その後ポーリング処理をしている。 By the way, in the single crystal grown by the Cz method, the seed crystal in a desired orientation is brought into contact with the melt surface, and then the seed crystal is pulled up while rotating to grow the single crystal. The single crystal grown in this way has a seed crystal on the upper side. The length of the seed crystal is about 5 to 10 cm. Conventionally, a seed crystal is annealed, cooled, cut, and then polled.

しかしながら、アニールとポーリングを同時に行う場合、アニール前の単結晶の状態は育成時の熱応力による残留歪みがあり、種結晶を切断した時に単結晶にクラックが入る確率が高くなることから、アニール前に切断することは難しい。このため、アニールとポーリングを同時に行う場合、単結晶に種結晶がある状態で行う必要がある。 However, when annealing and polling are performed at the same time, the state of the single crystal before annealing has residual strain due to thermal stress during growth, and there is a high probability that the single crystal will crack when the seed crystal is cut. It is difficult to cut into. Therefore, when annealing and polling are performed at the same time, it is necessary to perform the annealing and polling in a state where the single crystal has a seed crystal.

特許文献1では、単結晶上側の種結晶部(種結晶の部分)を筒状の白金電極で覆い、この電極内を、銀粉粉末を含んだ熱硬化性樹脂からなるAgペースト等の導電性材料で充填している。単結晶下側は、白金電極の上に単結晶と同種の粉末を介して単結晶を設置している。この方法では、上側電極と下側電極で形状が違い、特に上側電極が結晶形状よりも小さいことにより、結晶全体に電圧をかけられず適切に処理できない可能性がある。また、上側電極内にAgペースト等を充填する必要があり、作業性が悪い等の問題点がある。 In Patent Document 1, the seed crystal portion (seed crystal portion) on the upper side of the single crystal is covered with a tubular platinum electrode, and the inside of this electrode is a conductive material such as Ag paste made of a thermosetting resin containing silver powder. It is filled with. On the lower side of the single crystal, the single crystal is placed on the platinum electrode via a powder of the same type as the single crystal. In this method, the upper electrode and the lower electrode have different shapes, and in particular, the upper electrode is smaller than the crystal shape, so that there is a possibility that voltage cannot be applied to the entire crystal and proper processing cannot be performed. In addition, it is necessary to fill the upper electrode with Ag paste or the like, which causes problems such as poor workability.

また、ポーリングは、単結晶を耐熱容器に設置し、白金電極を単結晶の上下に対になるように配置し結晶粉末に埋め込む方法もある。この方法の場合、単結晶を埋め込む際、単結晶上側には種結晶があるため、種結晶に接触しないように種結晶上端の上側に配置する必要がある。このため、電極と単結晶の上下間距離を同一にできず、その結果、適切にポーリングができず、単結晶の電気的極性が揃わないことがあった。電気的極性が揃わない場合、再度ポーリングをする必要がある。ポーリングを再度実施すると、単結晶の割れ率が高くなる。このように、従来の方法では、アニールとポーリングを同時に行った際、単結晶の電気的極性が揃わないことがあり、再度ポーリングを実施する等生産性低下の要因となっていることがわかった。 In polling, there is also a method in which a single crystal is placed in a heat-resistant container and platinum electrodes are arranged in pairs above and below the single crystal and embedded in crystal powder. In the case of this method, when embedding a single crystal, since there is a seed crystal on the upper side of the single crystal, it is necessary to arrange it on the upper side of the upper end of the seed crystal so as not to come into contact with the seed crystal. Therefore, the vertical distance between the electrode and the single crystal cannot be made the same, and as a result, polling cannot be performed properly, and the electrical polarities of the single crystal may not be uniform. If the electrical polarities are not aligned, you will need to poll again. When polling is performed again, the crack rate of the single crystal becomes high. As described above, it was found that in the conventional method, when annealing and polling are performed at the same time, the electrical polarities of the single crystal may not be the same, which causes a decrease in productivity such as polling again. ..

そこで、本発明は、上記のような問題点に着目してなされたもので、その課題とするところは、アニールとポーリングを同時に行う処理において、電気的極性が揃わない等の不具合を防止し、生産性を向上させることにある。 Therefore, the present invention has been made by paying attention to the above-mentioned problems, and the problem thereof is to prevent problems such as the electrical polarities not being aligned in the process of performing annealing and polling at the same time. The purpose is to improve productivity.

本発明の態様によれば、Cz法で育成された酸化物単結晶にアニール及びポーリングを行う酸化物単結晶の製造方法であって、耐熱容器内に酸化物結晶粉末に埋め込んだ酸化物単結晶に対して、対の電極を配置して、所定の温度でアニールした後、電極に電圧を印加して酸化物単結晶をポーリングすることを備え、対の電極の一方は、中央部に貫通孔を有し、貫通孔内に酸化物単結晶の種結晶部が設置されている、酸化物単結晶の製造方法が提供される。 According to the aspect of the present invention, it is a method for producing an oxide single crystal in which an oxide single crystal grown by the Cz method is annealed and polled, and the oxide single crystal is embedded in an oxide crystal powder in a heat-resistant container. On the other hand, a pair of electrodes is arranged, annealed at a predetermined temperature, and then a voltage is applied to the electrodes to poll the oxide single crystal, and one of the pair of electrodes has a through hole in the center. Provided is a method for producing an oxide single crystal, wherein the seed crystal portion of the oxide single crystal is installed in the through hole.

また、対の電極は、酸化物単結晶の上下にほぼ均等に配置されてもよい。また、電極の貫通孔の孔径は、種結晶の大きさより5mm以上20mm以下大きくてもよい。また、酸化物単結晶の種結晶部を電極の貫通孔に挿入する前に、種結晶部を絶縁性のシートで覆うことを備えてもよい。 Further, the pair of electrodes may be arranged substantially evenly above and below the oxide single crystal. Further, the hole diameter of the through hole of the electrode may be 5 mm or more and 20 mm or less larger than the size of the seed crystal. Further, the seed crystal portion may be covered with an insulating sheet before the seed crystal portion of the oxide single crystal is inserted into the through hole of the electrode.

また、本発明の態様によれば、上記酸化物単結晶の製造方法に使用する電極であって、電極は、中央部に貫通孔を有し、貫通孔内に酸化物単結晶の種結晶部を設置可能である、電極が提供される。 Further, according to the aspect of the present invention, the electrode used in the above-mentioned method for producing an oxide single crystal, the electrode has a through hole in the central portion, and the seed crystal portion of the oxide single crystal is contained in the through hole. Electrodes are provided, which can be installed.

本発明の態様によれば、アニールとポーリングを同時に行う処理において、電気的極性が揃わない等の不具合を防止し、生産性を向上させることにある。 According to the aspect of the present invention, in the process of performing annealing and polling at the same time, it is intended to prevent problems such as inconsistent electrical polarities and improve productivity.

実施形態に係る酸化物単結晶の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the oxide single crystal which concerns on embodiment. 実施形態に係る酸化物単結晶の製造方法の一例のフローチャートである。It is a flowchart of an example of the manufacturing method of the oxide single crystal which concerns on embodiment. 実施形態に係る酸化物単結晶の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the oxide single crystal which concerns on embodiment. 実施形態に係る酸化物単結晶の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the oxide single crystal which concerns on embodiment. 実施形態に係る酸化物単結晶の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the oxide single crystal which concerns on embodiment. 実施形態に係る酸化物単結晶の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the oxide single crystal which concerns on embodiment. 実施形態に係る酸化物単結晶の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the oxide single crystal which concerns on embodiment.

[実施形態]
以下、本発明の実施形態について図を用いて詳細に説明する。なお、各図面においては、適宜、一部又は全部が模式的に記載され、縮尺が変更されて記載される。また、以下の説明において、「A~B」との記載は、「A以上B以下」又は「B以上A以下」を意味する。
[Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each drawing, a part or the whole is schematically described as appropriate, and the scale is changed and described. Further, in the following description, the description of "A to B" means "A or more and B or less" or "B or more and A or less".

上述のように、Cz法等で育成された単結晶は、熱応力による残留歪みがあり、これを取り除くため融点に近い均熱下での熱処理(アニール)を施す。更に、Cz法で育成された単結晶は多分域状態となっており、多分域状態のままでは単結晶のウエハ加工時にクラックが入り易く、また、非線形光学材料や表面弾性波デバイス等の特性に影響を及ぼす。このため、育成された単結晶には単一分域化処理(ポーリング)を施す必要がある。単一分域化処理では、単結晶を室温からキュリー温度以上の所定温度まで昇温させ、単結晶に電圧を印加し、電圧を印加したままキュリー温度以下の所定温度まで降温させた後、電圧印加を停止して室温まで冷却する一連の処理が施される。 As described above, the single crystal grown by the Cz method or the like has residual strain due to thermal stress, and in order to remove this, heat treatment (annealing) is performed under a soaking temperature close to the melting point. Furthermore, the single crystal grown by the Cz method is in a multi-regional state, and if it is in the multi-regional state, cracks are likely to occur during wafer processing of the single crystal, and the characteristics of nonlinear optical materials, surface acoustic wave devices, etc. affect. Therefore, it is necessary to perform a single segmentation process (polling) on the grown single crystal. In the single-segmentation process, the temperature of the single crystal is raised from room temperature to a predetermined temperature above the Curie temperature, a voltage is applied to the single crystal, the temperature is lowered to a predetermined temperature below the Curie temperature while the voltage is still applied, and then the voltage is applied. A series of treatments are performed to stop the application and cool to room temperature.

上記説明で、アニールとポーリングは、個別に行うものであるが、キュリー温度と融点が近い品種、例えば、LN単結晶の場合、アニールとポーリングを同時に行うことが可能である。但し、アニール前の状態は育成時の熱応力による残留歪みがあり、切断した時に単結晶にクラックが入る確率が高くなることから種結晶部を切断数することは難しい。このため、アニールとポーリングを同時に行う場合、単結晶に種結晶がある状態で行う必要がある。しかしながら、従来の方法では、上述の問題があった。 In the above description, annealing and polling are performed individually, but in the case of a variety having a Curie temperature close to the melting point, for example, an LN single crystal, annealing and polling can be performed at the same time. However, in the state before annealing, there is residual strain due to thermal stress during growth, and the probability that a single crystal will crack when cut is high, so it is difficult to cut the seed crystal portion. Therefore, when annealing and polling are performed at the same time, it is necessary to perform the annealing and polling in a state where the single crystal has a seed crystal. However, the conventional method has the above-mentioned problems.

本実施形態のアニールとポーリングを同時に行う酸化物単結晶の製造方法(以下「同時処理方法」と称すこともある)について、図面を参照しながら説明する。図1は、本実施形態の酸化物単結晶の製造方法の一例を示す図である。 A method for producing an oxide single crystal (hereinafter, also referred to as “simultaneous treatment method”) in which annealing and polling of the present embodiment are performed at the same time will be described with reference to the drawings. FIG. 1 is a diagram showing an example of a method for producing an oxide single crystal according to the present embodiment.

本実施形態の酸化物単結晶の製造方法(同時処理方法)は、Cz法で育成された酸化物単結晶C(「単結晶」と略す場合もある)にアニール及びポーリングを行う酸化物単結晶の製造方法であって、耐熱容器1内に酸化物結晶粉末Pに埋め込んだ酸化物単結晶Cに対して、対の電極E1、E2を配置して、所定の温度でアニールした後、電極E1、E2に電圧を印加して酸化物単結晶Cをポーリングすることを備え、対の電極E1、E2の一方E2は、中央部に貫通孔Hを有し、貫通孔H内に酸化物単結晶Cの種結晶部SCが設置されている。本実施形態の同時処理方法は、上述の問題を解決するものである。 The method for producing an oxide single crystal (simultaneous treatment method) of the present embodiment is an oxide single crystal obtained by annealing and polling an oxide single crystal C (sometimes abbreviated as "single crystal") grown by the Cz method. The pair of electrodes E1 and E2 are arranged with respect to the oxide single crystal C embedded in the oxide crystal powder P in the heat-resistant container 1, annealed at a predetermined temperature, and then the electrode E1. , E2 is provided with a voltage applied to the oxide single crystal C to poll the oxide single crystal C, and one of the pair of electrodes E1 and E2 E2 has a through hole H in the central portion and the oxide single crystal in the through hole H. The seed crystal part SC of C is installed. The simultaneous processing method of the present embodiment solves the above-mentioned problem.

以下、同時処理方法について具体的に説明する。同時処理方法は、従来のポーリングで用いる耐熱容器を用いて実施することができる。本同時処理方法に用いる耐熱容器1は、例えば図1に示すような、底部2と、側壁部3を有する容器である。また、耐熱容器1は蓋部を備えてもよい。蓋部の構成は、特に限定されず任意である。耐熱容器1の形状は、特に限定はないが、有底円筒状あるいは有底方形状(有底方形筒状)でもよい。耐熱容器1の各部の材質は、ポーリング処理温度に耐えられる材質であればよく、例えば、従来の耐熱容器と同様にアルミナ等を用いることができる。耐熱容器1内には、結晶粉末Pが収容される。この結晶粉末Pは、従来の方法と同様のものを用いることができる。例えば、結晶粉末Pは単結晶Cと類似の組成であるのが好ましく、実質的に同一の組成であるのが単結晶Cの組成に対する影響が低い等の点で好ましい。また、結晶粉末Pは、単結晶の粉末であるのが上記影響が低い等の点で好ましい。耐熱容器1内に収容した結晶粉末Pには、単結晶C及び対の電極E1、E2が埋め込まれる。 Hereinafter, the simultaneous processing method will be specifically described. The simultaneous processing method can be carried out using a heat-resistant container used in conventional polling. The heat-resistant container 1 used in this simultaneous treatment method is a container having a bottom portion 2 and a side wall portion 3, as shown in FIG. 1, for example. Further, the heat-resistant container 1 may be provided with a lid portion. The configuration of the lid portion is not particularly limited and is arbitrary. The shape of the heat-resistant container 1 is not particularly limited, but may be a bottomed cylinder or a bottomed square (bottomed square cylinder). The material of each part of the heat-resistant container 1 may be any material that can withstand the polling processing temperature, and for example, alumina or the like can be used as in the conventional heat-resistant container. Crystal powder P is housed in the heat-resistant container 1. As the crystal powder P, the same one as the conventional method can be used. For example, the crystal powder P preferably has a composition similar to that of the single crystal C, and substantially the same composition is preferable in that the influence on the composition of the single crystal C is small. Further, the crystal powder P is preferably a single crystal powder in that the above influence is low. The single crystal C and the pair of electrodes E1 and E2 are embedded in the crystal powder P housed in the heat-resistant container 1.

本同時処理方法に用いる電極は特徴がある。電極E1、E2は、単結晶Cを挟んで、対になるように配置される。下電極E1は単結晶下側に配置され、上電極E2は単結晶上側に配置される。例えば、本実施形態では、対の電極E1、E2は、図1に例示するように単結晶Cを耐熱容器1の上下方向(鉛直方向)から単結晶Cを挟んで配置する。本同時処理方法では、単結晶C上側に配置される上電極E2は、電極E2の上方から視た(平面視における)中央部に貫通孔Hを有している。この貫通孔Hは、後述する単結晶Cの種結晶部SCを設置可能に形成されており、種結晶部SCを挿入する孔となる。この貫通孔Hの大きさ(孔径)は、電極E2を耐熱容器1に設置する時に種結晶SCが貫通孔Hに接触することを防止するため、種結晶の大きさよりも5mm~20mm大きく設定することが好ましい。5mm未満では、電極E2を設置する時に種結晶部SCと接触する可能性が高くなる。20mmを超えると単結晶Cの中心部に電圧がかからなくなる可能性がある。なお、貫通孔Hの形状は、特に限定されず、例えば、貫通孔Hの孔軸と直交する断面の形状が円形でもよいし、矩形でもよい。種結晶部SCの大きさは、円形の場合は、直径とし、方形の場合は対角線の長さとする。なお、本同時処理方法に用いる単結晶Cは、Cz法により製造され、種結晶部SCを有するものであれば特に限定されず、任意である。例えば、単結晶Cの成分(組成)、大きさ、形状は任意である。 The electrodes used in this simultaneous processing method are characteristic. The electrodes E1 and E2 are arranged so as to be paired with the single crystal C interposed therebetween. The lower electrode E1 is arranged on the lower side of the single crystal, and the upper electrode E2 is arranged on the upper side of the single crystal. For example, in the present embodiment, in the pair of electrodes E1 and E2, the single crystal C is arranged so as to sandwich the single crystal C from the vertical direction (vertical direction) of the heat-resistant container 1 as illustrated in FIG. In this simultaneous processing method, the upper electrode E2 arranged on the upper side of the single crystal C has a through hole H in the central portion (in a plan view) viewed from above the electrode E2. The through hole H is formed so that the seed crystal portion SC of the single crystal C, which will be described later, can be installed, and is a hole into which the seed crystal portion SC is inserted. The size (hole diameter) of the through hole H is set to be 5 mm to 20 mm larger than the size of the seed crystal in order to prevent the seed crystal SC from coming into contact with the through hole H when the electrode E2 is installed in the heat-resistant container 1. Is preferable. If it is less than 5 mm, there is a high possibility that it will come into contact with the seed crystal portion SC when the electrode E2 is installed. If it exceeds 20 mm, the voltage may not be applied to the central portion of the single crystal C. The shape of the through hole H is not particularly limited, and for example, the shape of the cross section orthogonal to the hole axis of the through hole H may be circular or rectangular. The size of the seed crystal portion SC is the diameter in the case of a circle and the diagonal length in the case of a square. The single crystal C used in this simultaneous treatment method is not particularly limited as long as it is produced by the Cz method and has a seed crystal portion SC, and is arbitrary. For example, the component (composition), size, and shape of the single crystal C are arbitrary.

更に、単結晶Cの種結晶部SCを上電極E2の貫通孔Hに挿入する時、これらが接触しないように、挿入前に単結晶Cの種結晶部SCを絶縁シート(図示せず)で覆ってもよい。絶縁シートで種結晶部SCを覆う際、種結晶部SCの全体を覆ってもよいし、種結晶部SCの側部を覆ってもよい。 Further, when the seed crystal portion SC of the single crystal C is inserted into the through hole H of the upper electrode E2, the seed crystal portion SC of the single crystal C is formed with an insulating sheet (not shown) before the insertion so that they do not come into contact with each other. You may cover it. When covering the seed crystal portion SC with the insulating sheet, the entire seed crystal portion SC may be covered, or the side portion of the seed crystal portion SC may be covered.

アニール前の育成された単結晶Cは、焦電性が大きいために、電極等の金属が接触すると放電を起こしクラックが入りやすい。このため、上記のように、絶縁シートで種結晶部SCを保護することで、電極との接触を防止しクラックの発生を抑制できる。 Since the grown single crystal C before annealing has high pyroelectricity, when it comes into contact with a metal such as an electrode, it causes an electric discharge and easily cracks. Therefore, as described above, by protecting the seed crystal portion SC with the insulating sheet, contact with the electrode can be prevented and the generation of cracks can be suppressed.

絶縁シート(図示せず)は、通電性がないものであれば、特に限定はないが、例えば、テフロンシート(テフロンは登録商標)等耐熱性を有する樹脂素材であってもよい。上述したように育成された単結晶Cは、焦電性が大きいために、単結晶Cの温度を50℃以下に下げると、温度変化による結晶内外の温度差によって、結晶表面が荷電してしまい、結晶表面の雰囲気等により放電を起こしてしまい、単結晶Cにクラックを生じてしまうことがあり、アニール前の単結晶は50°以上に保温した状態で作業が行われる。このため、絶縁シートは、100℃程度の耐熱性を有していることが好ましい。絶縁シートの厚みは、0.1mm~0.5mmが好ましい。絶縁シートの厚みが厚いと種結晶部SCに巻きづらくなる。なお、絶縁シートは、電極E1、E2を結晶粉末P内に埋め込み電極E1、E2が固定されたら取り除く。 The insulating sheet (not shown) is not particularly limited as long as it does not have electrical conductivity, but may be, for example, a heat-resistant resin material such as a Teflon sheet (Teflon is a registered trademark). Since the single crystal C grown as described above has high pyroelectricity, when the temperature of the single crystal C is lowered to 50 ° C. or lower, the crystal surface is charged due to the temperature difference between the inside and outside of the crystal due to the temperature change. The single crystal C may be cracked due to a discharge due to the atmosphere of the crystal surface or the like, and the work is performed in a state where the single crystal before annealing is kept at a temperature of 50 ° or more. Therefore, the insulating sheet preferably has a heat resistance of about 100 ° C. The thickness of the insulating sheet is preferably 0.1 mm to 0.5 mm. If the thickness of the insulating sheet is thick, it becomes difficult to wind it around the seed crystal portion SC. The insulating sheet is removed when the electrodes E1 and E2 are embedded in the crystal powder P and the electrodes E1 and E2 are fixed.

単結晶Cと一対の電極E1、電極E2の間には、所定の電圧がかかるように設定されている。単結晶Cと一対の電極E1、E2間との距離L1、L2(最短距離)は、ほぼ均一であるのが望ましい。単結晶Cと一対の電極E1、E2間との距離L1、L2(最短距離)は、結晶の口径にもよるが15mm~50mmであるのが好ましい。ここで、電極E1、E2と単結晶Cとの最短距離L1、L2は、種結晶部SCを除いた単結晶Cと電極E1又は電極E2との最短距離とする。本実施形態では種結晶部SCを上電極E2の貫通孔Hに挿入するため、単結晶Cの下側と電極E1との最短距離L1になるように、上電極E2の位置を合わせることが可能となり、電極E1、E2と単結晶Cとの最短距離L1、L2がほぼ均等になるように容易に設置することができる。これにより、電極E1、E2と単結晶Cの上下間距離L1、L2を同一にすることが可能となるため、適切にポーリングができず、単結晶Cの電気的極性が揃わないことを抑制することができる。なお、ほぼ均等とは、±5mmの差は含まれる範囲である。例えば、単結晶Cと一対の電極E1、E2間との距離L1、L2(最短距離)を20mmに設定した場合、この最短距離L1、L2は15mm~25mmの範囲であればほぼ均等である。 A predetermined voltage is set between the single crystal C and the pair of electrodes E1 and E2. It is desirable that the distances L1 and L2 (shortest distance) between the single crystal C and the pair of electrodes E1 and E2 are substantially uniform. The distances L1 and L2 (shortest distance) between the single crystal C and the pair of electrodes E1 and E2 are preferably 15 mm to 50 mm, although it depends on the diameter of the crystal. Here, the shortest distance L1 and L2 between the electrodes E1 and E2 and the single crystal C is the shortest distance between the single crystal C excluding the seed crystal portion SC and the electrode E1 or the electrode E2. In this embodiment, since the seed crystal portion SC is inserted into the through hole H of the upper electrode E2, the position of the upper electrode E2 can be aligned so that the shortest distance L1 between the lower side of the single crystal C and the electrode E1 is obtained. Therefore, the electrodes E1 and E2 can be easily installed so that the shortest distances L1 and L2 between the electrodes E1 and E2 and the single crystal C are substantially uniform. As a result, the vertical distances L1 and L2 between the electrodes E1 and E2 and the single crystal C can be made the same, so that polling cannot be performed properly and it is possible to prevent the single crystal C from having the same electrical polarity. be able to. In addition, almost uniform is a range including a difference of ± 5 mm. For example, when the distances L1 and L2 (shortest distance) between the single crystal C and the pair of electrodes E1 and E2 are set to 20 mm, the shortest distances L1 and L2 are almost equal if they are in the range of 15 mm to 25 mm.

また、耐熱容器1内で処理される単結晶Cが均一な温度になるように、単結晶Cは耐熱容器1内に充填された結晶粉末P内において上下左右均等に設置されることが好ましい。 Further, it is preferable that the single crystal C is evenly installed vertically and horizontally in the crystal powder P filled in the heat-resistant container 1 so that the single crystal C treated in the heat-resistant container 1 has a uniform temperature.

電極E1、E2の大きさは単結晶Cの大きさに応じて設定するのが好ましい。電極E1、E2の大きさは、任意の方向から投影視した単結晶Cよりも大きいものが好ましい。単結晶Cは、対の電極E1、E2間内の領域R1(図1参照)に配置するのが好ましい。これにより、単結晶Cの全体に対して電圧を印加することができる。なお、対の電極E1、E2間内の領域R1は、図1の2点鎖線に示すように、電極E1と電極E2との間の領域である。 The size of the electrodes E1 and E2 is preferably set according to the size of the single crystal C. The size of the electrodes E1 and E2 is preferably larger than that of the single crystal C projected from an arbitrary direction. The single crystal C is preferably arranged in the region R1 (see FIG. 1) within the pair of electrodes E1 and E2. As a result, a voltage can be applied to the entire single crystal C. The region R1 between the pair of electrodes E1 and E2 is a region between the electrodes E1 and E2 as shown by the two-dot chain line in FIG.

次に、本同時処理方法の一例について単結晶の事例で説明する。図2は、本同時処理方法の一例のフローチャートである。図3から図7は、本同時処理方法の一例を示す図である。 Next, an example of this simultaneous processing method will be described with the case of a single crystal. FIG. 2 is a flowchart of an example of this simultaneous processing method. 3 to 7 are diagrams showing an example of the present simultaneous processing method.

本同時処理方法では、耐熱容器1に単結晶の結晶粉末P、単結晶C、電極E1、E2をセットする。用いる電極E1、E2は、上記のものとする。 In this simultaneous treatment method, the single crystal crystal powder P, the single crystal C, and the electrodes E1 and E2 are set in the heat-resistant container 1. The electrodes E1 and E2 used are as described above.

(ステップS1)
本同時処理方法では、まず、電極E1を配置する。例えば、上記下電極E1をアルミナ製等の耐熱容器1の底部2に設置(セット)する(図2のステップS1、図3)。
(Step S1)
In this simultaneous processing method, first, the electrode E1 is arranged. For example, the lower electrode E1 is installed (set) on the bottom 2 of a heat-resistant container 1 made of alumina or the like (steps S1 and 3 in FIG. 2).

(ステップS2)
続いて、耐熱容器1内に結晶粉末Pを設置する(図2のステップS2、図4)。ステップS2では、結晶の結晶粉末Pを所定量入れる。単結晶Cと電極E1との最小距離L1が所定距離となるように、結晶粉末Pを設置する。この際、好ましくは、電極E1と単結晶Cとの最小距離L1が20mm前後(15~25mm)になるように、結晶粉末Pを設置する。耐熱容器1内に設置する結晶粉末Pは、育成された単結晶は単結晶下側が円錐状に吐出しているので、結晶粉末Pの中央部が凹むようにすり鉢状に成形することで、単結晶Cが安定して配置しやすくなるので、好ましい。
(Step S2)
Subsequently, the crystal powder P is placed in the heat-resistant container 1 (steps S2 and 4 in FIG. 2). In step S2, a predetermined amount of crystalline crystal powder P is added. The crystal powder P is installed so that the minimum distance L1 between the single crystal C and the electrode E1 is a predetermined distance. At this time, preferably, the crystal powder P is installed so that the minimum distance L1 between the electrode E1 and the single crystal C is about 20 mm (15 to 25 mm). As for the crystal powder P installed in the heat-resistant container 1, since the grown single crystal is discharged in a conical shape on the lower side of the single crystal, it is simply formed into a mortar shape so that the central portion of the crystal powder P is recessed. It is preferable because the crystal C is stable and easy to arrange.

(ステップS3、S4)
続いて、結晶粉末Pに単結晶Cを設置する(図2のステップS3、図5)。なお、単結晶Cは、設置する前に種結晶部SCを上述した絶縁シート(図示せず)で覆うことにより、絶縁シートで種結晶部SCを保護することが好ましい(図2のステップS4)。なお、単結晶Cは、種結晶部SCが上方になるように設置する。
(Steps S3, S4)
Subsequently, the single crystal C is placed on the crystal powder P (steps S3 and 5 in FIG. 2). In the single crystal C, it is preferable to protect the seed crystal portion SC with the insulating sheet by covering the seed crystal portion SC with the above-mentioned insulating sheet (not shown) before installation (step S4 in FIG. 2). .. The single crystal C is installed so that the seed crystal portion SC is on the upper side.

(ステップS5)
続いて、結晶粉末Pを充填し、単結晶C全体を結晶粉末Pに埋め込む(図2のステップS5、図6)。例えば、単結晶Cの表面を覆う程度に結晶粉末Pを充填し、単結晶Cの全体を埋め込む。
(Step S5)
Subsequently, the crystal powder P is filled, and the entire single crystal C is embedded in the crystal powder P (steps S5 and 6 in FIG. 2). For example, the crystal powder P is filled so as to cover the surface of the single crystal C, and the entire single crystal C is embedded.

(ステップS6)
続いて、単結晶Cを埋め込んだ結晶粉末Pに上電極E2を設置する(図2のステップS6、図7)。上電極E2は貫通孔Hを有しており、単結晶Cの絶縁シートで覆った種結晶SCを貫通孔Hに挿入して、上電極E2を設置する。この時、上電極E2と単結晶Cの種結晶部SCを除いた単結晶Cとの距離L2が、電極E1と単結晶Cとの最小距離L1と同等になるように設置する。このように本同時処理方法によれば、電極E1、E2と単結晶Cの上下間距離L1、L2を同一にすることが可能となるため、適切にポーリングができず、単結晶の電気的極性が揃わないことを抑制することができる。
(Step S6)
Subsequently, the upper electrode E2 is placed on the crystal powder P in which the single crystal C is embedded (steps S6 and 7 in FIG. 2). The upper electrode E2 has a through hole H, and the seed crystal SC covered with the insulating sheet of the single crystal C is inserted into the through hole H to install the upper electrode E2. At this time, the distance L2 between the upper electrode E2 and the single crystal C excluding the seed crystal portion SC of the single crystal C is set to be equal to the minimum distance L1 between the electrode E1 and the single crystal C. As described above, according to this simultaneous processing method, the vertical distances L1 and L2 between the electrodes E1 and E2 and the single crystal C can be made the same, so that polling cannot be performed properly and the electrical polarity of the single crystal cannot be obtained. It can be suppressed that the polling is not aligned.

(ステップS7)
続いて、再度結晶粉末Pを適宜量充填して電極E2を覆い、種結晶部SCの上端部を結晶粉末Pに埋め込む(図2のステップS7、図1)。なお、上電極E2を結晶粉末P内に埋め込み、上電極E2が固定されたら絶縁シートは取り除く。
(Step S7)
Subsequently, the crystal powder P is refilled in an appropriate amount to cover the electrode E2, and the upper end portion of the seed crystal portion SC is embedded in the crystal powder P (step S7 in FIG. 2, FIG. 1). The upper electrode E2 is embedded in the crystal powder P, and when the upper electrode E2 is fixed, the insulating sheet is removed.

(ステップS8)
続いて、ステップS7のように結晶粉末Pに埋め込んだ単結晶Cにアニール及びポーリングを同時(一括)に行う(図2のステップS8)。ステップS8では、結晶粉末Pに埋め込んだ単結晶Cに対して、同じ耐熱容器1内で移動等の他の処理を施すことなしに、アニール及びポーリングを同時(一括)に行う。ステップS8では、結晶粉末Pに埋め込んだ単結晶Cを所定の温度でアニールし、その後、ポーリングする。ポーリングする所定温度にて、電圧を印加する。アニール、ポーリングの際の温度、電圧は、公知の条件を用いることができる。
(Step S8)
Subsequently, annealing and polling are simultaneously (collectively) performed on the single crystal C embedded in the crystal powder P as in step S7 (step S8 in FIG. 2). In step S8, the single crystal C embedded in the crystal powder P is annealed and polled at the same time (collectively) without performing other treatments such as movement in the same heat-resistant container 1. In step S8, the single crystal C embedded in the crystal powder P is annealed at a predetermined temperature, and then polled. A voltage is applied at a predetermined temperature to be polled. Known conditions can be used for the temperature and voltage at the time of annealing and polling.

以上のように、本同時処理方法は、Cz法で育成された単結晶Cにアニール及びポーリングを行う酸化物単結晶の製造方法であって、耐熱容器1内に結晶粉末Pに埋め込んだ単結晶Cに対して、対の電極E1、E2を配置して、所定の温度でアニールした後、電極E1、E2に電圧を印加して単結晶Cをポーリングすることを備え、対の電極E1、E2の一方の電極E2は、中央部に貫通孔Hを有し、貫通孔H内に単結晶Cの種結晶部SCが設置されている。なお、本同時処理方法において、上記以外の構成は、任意の構成である。本同時処理方法によれば、アニールとポーリングを同時に行う処理において、電気的極性が揃わない等の不具合を防止し、生産性を向上させることができる。また、本同時処理方法は、電極E2に貫通孔Hを形成すること以外は、従来と同様の方法であるため、容易に実施することができる。 As described above, this simultaneous treatment method is a method for producing an oxide single crystal in which the single crystal C grown by the Cz method is annealed and polled, and the single crystal is embedded in the crystal powder P in the heat-resistant container 1. A pair of electrodes E1 and E2 are arranged with respect to C, annealed at a predetermined temperature, and then a voltage is applied to the electrodes E1 and E2 to poll the single crystal C, and the pair of electrodes E1 and E2 are provided. One of the electrodes E2 has a through hole H in the central portion, and the seed crystal portion SC of the single crystal C is installed in the through hole H. In this simultaneous processing method, the configurations other than the above are arbitrary configurations. According to this simultaneous processing method, in the processing of performing annealing and polling at the same time, it is possible to prevent problems such as inconsistent electrical polarities and improve productivity. Further, since this simultaneous treatment method is the same as the conventional method except that the through hole H is formed in the electrode E2, it can be easily carried out.

(電極)
次に、実施形態に係る電極について説明する。実施形態に係る電極は、上記の同時処理方法に使用する上記の電極E2である。電極E2は、上記のように、中央部に貫通孔Hを有し、貫通孔H内に単結晶Cの種結晶部SCを設置可能である。本実施形態の電極によれば、上記の同時処理方法を行うことができるので、アニールとポーリングを同時に行う処理において電気的極性が揃わない等の不具合を防止し生産性を向上させることができる。
(electrode)
Next, the electrodes according to the embodiment will be described. The electrode according to the embodiment is the above-mentioned electrode E2 used in the above-mentioned simultaneous processing method. As described above, the electrode E2 has a through hole H in the central portion, and the seed crystal portion SC of the single crystal C can be installed in the through hole H. According to the electrode of the present embodiment, since the above-mentioned simultaneous processing method can be performed, it is possible to prevent problems such as the electrical polarities not being aligned in the processing of performing annealing and polling at the same time, and improve productivity.

以下、本発明の実施例を用いて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない Hereinafter, the present invention will be specifically described with reference to examples of the present invention, but the present invention is not limited to these examples.

[実施例1]
実施例1では、上記した本実施形態に係る同時処理方法及び電極を用いて、LN単結晶のアニール及びポーリングを行った。実施例1では、コングルエント組成を有する直径φ160mm(6.3インチ)全長100mmの128゜RYのLN単結晶(キュリー点:1140℃)とした。種結晶は、大きさφ10mm、長さ70mmとした。
[Example 1]
In Example 1, the LN single crystal was annealed and polled using the simultaneous treatment method and electrodes according to the present embodiment described above. In Example 1, a 128 ° RY LN single crystal (Curie point: 1140 ° C.) having a congluent composition and a diameter of φ160 mm (6.3 inches) and a total length of 100 mm was used. The seed crystal had a size of φ10 mm and a length of 70 mm.

まず、図1に示すような、底部を有する円筒形状の耐熱容器を用意した。耐熱容器は、内径φ300mm、高さ300mm、厚み20mmのアルミナ製とした。次に、底部(底面)に直径φ200mm、厚み0.3mmの電極(下電極)を設置した。次に、LN結晶を粉砕した単結晶粉末Pを耐熱容器の底面に敷いた。また、単結晶粉末は、上方から視て中央部付近が凹んだ形状であるすり鉢状に成形した。 First, as shown in FIG. 1, a cylindrical heat-resistant container having a bottom was prepared. The heat-resistant container was made of alumina having an inner diameter of φ300 mm, a height of 300 mm, and a thickness of 20 mm. Next, an electrode (lower electrode) having a diameter of φ200 mm and a thickness of 0.3 mm was installed on the bottom (bottom surface). Next, the single crystal powder P obtained by crushing the LN crystal was laid on the bottom surface of the heat-resistant container. Further, the single crystal powder was formed into a mortar shape having a concave shape in the vicinity of the central portion when viewed from above.

LN単結晶の種結晶部には、厚み0.1mmの絶縁シートを1周巻いた。このLN単結晶を耐熱容器内に設置した。電極と単結晶との最小距離は20mmになるように設定した。耐熱容器内を単結晶の周辺を単結晶粉末で充填した。種結晶を除いた単結晶上面から20mmの位置に直径φ200mm、厚み0.3mm、中央部にφ25mmの貫通孔を有する電極(上電極)を、絶縁シートで覆われた種結晶部に、電極貫通孔に挿入し配置した。上電極の上に単結晶粉末を充填し、上電極が単結晶粉末で固定されてから絶縁シートを取り除いた。その後、種結晶の端部より10mmの位置まで単結晶粉末を充填した。 An insulating sheet having a thickness of 0.1 mm was wound around the seed crystal portion of the LN single crystal. This LN single crystal was placed in a heat-resistant container. The minimum distance between the electrode and the single crystal was set to 20 mm. The inside of the heat-resistant container was filled with a single crystal powder around the single crystal. An electrode (upper electrode) having a through hole with a diameter of φ200 mm, a thickness of 0.3 mm, and a through hole of φ25 mm in the center is placed 20 mm from the upper surface of the single crystal excluding the seed crystal, and the electrode penetrates the seed crystal part covered with an insulating sheet. It was inserted into the hole and placed. The single crystal powder was filled on the upper electrode, and the insulating sheet was removed after the upper electrode was fixed with the single crystal powder. Then, the single crystal powder was filled up to a position 10 mm from the end of the seed crystal.

上記のように単結晶を収容した耐熱容器を昇降式電気炉の炉床板上に配置した後、単結晶の下側に対峙する電極の白金線をプラス電極とし、単結晶の上側に対峙する電極の白金線をマイナス電極として直流電源に接続した。電気炉を1150℃に昇温し、単結晶が安定するまで30時間保持し、1150℃に到達してから28時間後に、上記電極間に15V電圧を印加し、約90分後降温することにより、アニール、ポーリングの同時処理を行った。 After arranging the heat-resistant container containing the single crystal on the hearth plate of the elevating electric furnace as described above, the platinum wire of the electrode facing the lower side of the single crystal is used as the positive electrode, and the electrode facing the upper side of the single crystal is used. The platinum wire was connected to a DC power supply as a negative electrode. The temperature of the electric furnace was raised to 1150 ° C., held for 30 hours until the single crystal became stable, and 28 hours after reaching 1150 ° C., a 15 V voltage was applied between the electrodes, and the temperature was lowered after about 90 minutes. , Annealing, and polling were performed at the same time.

アニール、ポーリング処理後、電気炉より耐熱容器を取りだした。その後、耐熱容器より単結晶を取り出した。 After annealing and polling, the heat-resistant container was taken out from the electric furnace. Then, the single crystal was taken out from the heat-resistant container.

アニール、ポーリング処理後のLN単結晶を調べたところクラックの発生はなく、また、LN単結晶の分極状態を評価したところ反対向きの分極はなく、良好に単一分域化されていた。上記を繰り返し50回行ったところ、電気的極性が揃わない不具合の発生はなかった。なお、結晶の単一分域化の評価は、オシロスコープ、プローブ端子を用い、得られた波形に基づいて行った。波形が出ない場合、単一分域化されていないとした。 When the LN single crystal after the annealing and polling treatment was examined, no cracks were generated, and when the polarization state of the LN single crystal was evaluated, there was no polarization in the opposite direction, and the single domain was satisfactorily divided. When the above was repeated 50 times, there was no problem that the electrical polarities were not aligned. The evaluation of the single segmentation of the crystal was performed based on the obtained waveform using an oscilloscope and a probe terminal. If no waveform appears, it is considered that it is not single-segmented.

[比較例1]
比較例1では、単結晶に種結晶を付けたままで、単結晶の種結晶の端部から上側に20mm距離に貫通孔のない上電極を設けた。その他の条件は、実施例1と同じとして、アニール、ポーリング処理を行った。処理後の結晶の単一分域化の評価したところ、電気的極性が揃わない不具合が発生した。
[Comparative Example 1]
In Comparative Example 1, the seed crystal was left attached to the single crystal, and an upper electrode having no through hole was provided at a distance of 20 mm above the end of the seed crystal of the single crystal. Other conditions were the same as in Example 1, and annealing and polling processing were performed. As a result of evaluation of the single segmentation of the crystal after the treatment, a problem that the electrical polarities were not aligned occurred.

上記実施例及び比較例の結果から、本実施形態の酸化物単結晶の製造方法は、酸化物単結晶のポーリングにおいて電気的極性が揃わない等の不具合を防止する顕著な効果があることが確認される。 From the results of the above Examples and Comparative Examples, it was confirmed that the method for producing an oxide single crystal of the present embodiment has a remarkable effect of preventing problems such as the electrical polarities not being aligned in polling of the oxide single crystal. Will be done.

なお、本発明の技術範囲は、上述の実施形態等で説明した態様に限定されない。上述の実施形態等で説明した要件の1つ以上は、省略されることがある。また、上述の実施形態等で説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、上述の実施形態等で引用した全ての文献の開示を援用して本文の記載の一部とする。 The technical scope of the present invention is not limited to the embodiments described in the above-described embodiments. One or more of the requirements described in the above embodiments and the like may be omitted. Further, the requirements described in the above-described embodiments and the like can be appropriately combined. In addition, to the extent permitted by law, the disclosure of all documents cited in the above-mentioned embodiments, etc. shall be incorporated as part of the description in the main text.

1・・・耐熱容器
2・・・底部
3・・・側壁部
C・・・酸化物単結晶(単結晶)
SC・・・種結晶
P・・・酸化物結晶粉末(結晶粉末)
E1、E2・・・電極
H・・・貫通孔
1 ... Heat-resistant container 2 ... Bottom 3 ... Side wall C ... Oxide single crystal (single crystal)
SC ... Seed crystal P ... Oxide crystal powder (crystal powder)
E1, E2 ... Electrode H ... Through hole

Claims (5)

Cz法で育成された酸化物単結晶にアニール及びポーリングを行う酸化物単結晶の製造方法であって、
耐熱容器内に酸化物結晶粉末に埋め込んだ酸化物単結晶に対して、対の電極を配置して、所定の温度でアニールした後、前記電極に電圧を印加して酸化物単結晶をポーリングすることを備え、
前記対の電極の一方は、中央部に貫通孔を有し、前記貫通孔内に前記酸化物単結晶の種結晶部が設置されている、酸化物単結晶の製造方法。
It is a method for producing an oxide single crystal in which an oxide single crystal grown by the Cz method is annealed and polled.
A pair of electrodes are placed on the oxide single crystal embedded in the oxide crystal powder in a heat-resistant container, annealed at a predetermined temperature, and then a voltage is applied to the electrodes to poll the oxide single crystal. In preparation for that
A method for producing an oxide single crystal, wherein one of the pair of electrodes has a through hole in the center and a seed crystal portion of the oxide single crystal is installed in the through hole.
前記対の電極は、前記酸化物単結晶の上下にほぼ均等に配置される、請求項1に記載の酸化物単結晶の製造方法。 The method for producing an oxide single crystal according to claim 1, wherein the pair of electrodes are arranged substantially evenly above and below the oxide single crystal. 前記電極の貫通孔の孔径は、前記種結晶の大きさより5mm以上20mm以下大きい、請求項1又は請求項2に記載の酸化物単結晶の製造方法。 The method for producing an oxide single crystal according to claim 1 or 2, wherein the pore diameter of the through hole of the electrode is 5 mm or more and 20 mm or less larger than the size of the seed crystal. 前記酸化物単結晶の種結晶部を前記電極の貫通孔に挿入する前に、前記種結晶部を絶縁性のシートで覆う、請求項1から請求項3のいずれか一項に記載の酸化物単結晶の製造方法。 The oxide according to any one of claims 1 to 3, wherein the seed crystal portion of the oxide single crystal is covered with an insulating sheet before the seed crystal portion is inserted into the through hole of the electrode. A method for producing a single crystal. 請求項1に記載の酸化物単結晶の製造方法に使用する電極であって、
前記電極は、中央部に貫通孔を有し、
前記貫通孔内に前記酸化物単結晶の種結晶部を設置可能である、電極。
An electrode used in the method for producing an oxide single crystal according to claim 1.
The electrode has a through hole in the center and has a through hole.
An electrode in which the seed crystal portion of the oxide single crystal can be installed in the through hole.
JP2020214055A 2020-12-23 2020-12-23 Method for manufacturing oxide single crystal, and electrode used for method for manufacturing the same Pending JP2022099960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020214055A JP2022099960A (en) 2020-12-23 2020-12-23 Method for manufacturing oxide single crystal, and electrode used for method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020214055A JP2022099960A (en) 2020-12-23 2020-12-23 Method for manufacturing oxide single crystal, and electrode used for method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2022099960A true JP2022099960A (en) 2022-07-05

Family

ID=82269646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020214055A Pending JP2022099960A (en) 2020-12-23 2020-12-23 Method for manufacturing oxide single crystal, and electrode used for method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2022099960A (en)

Similar Documents

Publication Publication Date Title
KR100573664B1 (en) Lithium tantalate substrate and method of manufacturing same
JP6992607B2 (en) Manufacturing method of lithium tantalate substrate
JP2005119908A (en) Lithium tantalate substrate and its producing method
JP2019127411A (en) Method for making single domain of lithium niobate monocrystal
JP7024389B2 (en) Manufacturing method of lithium tantalate substrate
JP2022099960A (en) Method for manufacturing oxide single crystal, and electrode used for method for manufacturing the same
JP7037120B2 (en) Manufacturing method of lithium tantalate substrate
KR20060126925A (en) Lithium tantalate substrate and method for producing same
US10651818B2 (en) Method of producing lithium niobate single crystal substrate
CN108624961B (en) Method for recycling lithium tantalate black chips
JP2004328712A (en) Lithium-tantalate substrate and its manufacturing method
JP2022007556A (en) Method for forming oxide single crystal into single domain
JP7236962B2 (en) Method for producing lithium tantalate single crystal
KR102601394B1 (en) Lithium niobate single crystal substrate and manufacturing method thereof
KR102611710B1 (en) Lithium niobate single crystal substrate and manufacturing method thereof
JP2007001775A (en) Method for production of ferroelectric crystal
JP2005317822A (en) Manufacturing method of singly polarized lithium tantalate
JP7396183B2 (en) Heat-resistant container used for single-segmentation treatment of oxide single crystal and method for single-segmentation treatment of oxide single crystal
JP2664508B2 (en) Method for producing lithium niobate single crystal
JP7447537B2 (en) Lithium tantalate substrate manufacturing method and lithium tantalate substrate
KR20180019540A (en) Lithium niobate single crystal substrate and manufacturing method thereof
JP2021028283A (en) Manufacturing method of lithium niobate substrate
JP2017114725A (en) Method for raising lithium tantalate single crystal
US10301742B2 (en) Lithium niobate single crystal substrate and method of producing the same
KR20050109174A (en) Method of producing lithium tantalate substrate for surface acoustic wave element and the substrate the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221128