JP7396151B2 - Manufacturing method of RTB based sintered magnet - Google Patents

Manufacturing method of RTB based sintered magnet Download PDF

Info

Publication number
JP7396151B2
JP7396151B2 JP2020053407A JP2020053407A JP7396151B2 JP 7396151 B2 JP7396151 B2 JP 7396151B2 JP 2020053407 A JP2020053407 A JP 2020053407A JP 2020053407 A JP2020053407 A JP 2020053407A JP 7396151 B2 JP7396151 B2 JP 7396151B2
Authority
JP
Japan
Prior art keywords
diffusion
rtb
sintered magnet
magnet material
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020053407A
Other languages
Japanese (ja)
Other versions
JP2021153147A (en
Inventor
大介 山道
晶仁 水野
綾二 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Priority to JP2020053407A priority Critical patent/JP7396151B2/en
Publication of JP2021153147A publication Critical patent/JP2021153147A/en
Application granted granted Critical
Publication of JP7396151B2 publication Critical patent/JP7396151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本開示は、R-T-B系焼結磁石の製造方法に関する。 The present disclosure relates to a method for manufacturing an RTB-based sintered magnet.

Fe14B型化合物を主相とするR-T-B系焼結磁石(Rは希土類元素、TはFe又はFeとCo)は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品等に使用されている。 The RTB system sintered magnet (R is a rare earth element, T is Fe or Fe and Co), which has an R 2 Fe 14 B type compound as its main phase, is known as the highest performance magnet among permanent magnets. It is used in various motors such as voice coil motors (VCM) of hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R-T-B系焼結磁石は、主としてRFe14B型化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるRFe14B型化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R-T-B系焼結磁石の特性の根幹をなしている。 The RTB-based sintered magnet is composed of a main phase mainly composed of an R 2 Fe 14 B type compound and a grain boundary phase located at the grain boundaries of this main phase. The R 2 Fe 14 B type compound, which is the main phase, is a ferromagnetic material with high saturation magnetization and anisotropic magnetic field, and is the basis of the characteristics of RTB-based sintered magnets.

R-T-B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」という場合がある)が低下するため、不可逆熱減磁が起こる。そのため、特に電気自動車用モータに使用されるR-T-B系焼結磁石では、高いHcJを有することが要求されている。 In RTB-based sintered magnets, irreversible thermal demagnetization occurs because the coercive force H cJ (hereinafter sometimes simply referred to as "H cJ ") decreases at high temperatures. Therefore, especially RTB-based sintered magnets used in electric vehicle motors are required to have a high H cJ .

R-T-B系焼結磁石において、R14B化合物中のRに含まれる軽希土類元素RL(例えば、NdやPr)の一部を重希土類元素RH(例えば、DyやTb)で置換すると、HcJが向上することが知られている。RHの置換量の増加に伴い、HcJは向上する。しかし、特にTbやDyなどのRHは、資源存在量が少ないうえ、産出地が限定されているなどの理由から、供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、RHをできるだけ使用することなく、HcJを向上させることが求められている。 In the RTB system sintered magnet, a part of the light rare earth element RL (for example, Nd or Pr) contained in R in the R 2 T 14 B compound is replaced with a heavy rare earth element RH (for example, Dy or Tb). It is known that substitution improves H cJ . As the amount of RH substitution increases, H cJ improves. However, in particular, RH such as Tb and Dy have problems such as unstable supply and large fluctuations in price due to the limited amount of resources and limited production areas. There is. Therefore, in recent years, it has been desired to improve H cJ without using RH as much as possible.

特許文献1には、R-T-B系合金焼結体にR、Ga、Cuを含む合金を拡散させることにより、RHをできるだけ使用することなく、高いHcJを有する焼結磁石が得られることが記載されている。 Patent Document 1 discloses that by diffusing an alloy containing R, Ga, and Cu into an RTB alloy sintered body, a sintered magnet having a high H cJ can be obtained without using RH as much as possible. It is stated that.

国際公開第2016/133071号International Publication No. 2016/133071

拡散処理は、例えば、R-T-B系焼結磁石素材の表面に拡散源を存在させた磁石素材を拡散用板上に設置し、拡散用熱処理炉内に搬送して拡散用板ごと磁石素材を加熱することによって実行され得る。このため、拡散用板は拡散に必要な熱処理の温度(例えば500℃)に耐える材料から形成される。具体的には、拡散用板の材料としては、モリブデンおよびステンレス鋼が使用されている。本発明者らの検討によると、特に特許文献1などのR-M系合金粉末を拡散源として用いた場合、拡散工程後、拡散用板上に希土類成分を主とする付着物(以下、単に「付着物」という場合がある)が溶着する場合があることがわかった。これは、拡散源及び拡散磁石素材の成分(主に希土類成分)が拡散処理中(加熱中)に拡散板と反応し、その後、冷却されることで溶着されるものだと考えられる。付着物が溶着した拡散用板をくりかえし用いて拡散処理を行うと、磁石素材と拡散用板との溶着が顕著に起こり、磁石素材を拡散用板から持ち上げるときに磁石素材が破損する場合があることがわかった。さらに、付着物が溶着した拡散用板上は溶着部分により平坦でなくなり、これにより拡散用板上に設置された磁石が拡散中に変形を起こし、寸法不良が発生する場合があることがわかった。また、拡散用板は、上述したようにモリブデンやステンレス鋼のため高価であり、くりかえし用いなければ生産コストの増大をまねく。よって、拡散用板から溶着した付着物を取り除く必要がある。しかし、本発明者らの検討によると、拡散用板に対してショットブラスト等を行っても溶着した付着物を容易に取り除くことができないことがわかった。そのため、手作業で溶着した付着物を削り落としたり、溶着した付着物を避けて磁石素材をセットしたりしなければならず、これにより、R-T-B系焼結磁石の生産性の悪化を招いていた。
そこで、本開示は、拡散板上に溶着した付着物を容易に取り除くことができ、生産性の悪化を抑制するR-T-B系焼結磁石の製造方法を提供することを目的とする。
In the diffusion treatment, for example, a magnet material with a diffusion source present on the surface of an RTB-based sintered magnet material is placed on a diffusion plate, and the magnet material is transported to a diffusion heat treatment furnace and the magnet is removed together with the diffusion plate. It can be carried out by heating the material. Therefore, the diffusion plate is formed from a material that can withstand the heat treatment temperature (for example, 500° C.) necessary for diffusion. Specifically, molybdenum and stainless steel are used as materials for the diffusion plate. According to the studies of the present inventors, especially when the RM alloy powder such as Patent Document 1 is used as a diffusion source, deposits mainly containing rare earth components (hereinafter simply referred to as It has been found that there are cases where welding (sometimes referred to as "deposits") may occur. This is thought to be because the components of the diffusion source and the diffusion magnet material (mainly rare earth components) react with the diffusion plate during the diffusion process (during heating), and are then welded by cooling. If a diffusion plate with deposits welded to it is repeatedly used for diffusion treatment, welding between the magnet material and the diffusion plate will occur significantly, and the magnet material may be damaged when lifting the magnet material from the diffusion plate. I understand. Furthermore, it was found that the surface of the diffusion plate to which the deposits were welded was no longer flat due to the welded parts, and as a result, the magnets installed on the diffusion plate were deformed during the diffusion process, resulting in dimensional defects. . Furthermore, as mentioned above, the diffusion plate is made of molybdenum or stainless steel and is therefore expensive, leading to increased production costs if it is not used repeatedly. Therefore, it is necessary to remove the welded deposits from the diffusion plate. However, according to studies conducted by the present inventors, it has been found that even if shot blasting or the like is performed on the diffusion plate, the welded deposits cannot be easily removed. Therefore, it is necessary to manually scrape off the welded deposits and set the magnet material while avoiding the welded deposits, which deteriorates the productivity of RTB sintered magnets. was inviting.
Therefore, an object of the present disclosure is to provide a method for manufacturing an RTB-based sintered magnet in which deposits deposited on a diffuser plate can be easily removed and deterioration in productivity can be suppressed.

本開示のR-T-B系焼結磁石の製造方法は、例示的な実施形態において、R-T-B系焼結磁石素材(Rは希土類元素の少なくとも1種であり、Nd、PrおよびCeからなる群から選択される少なくとも1種を必ず含む、TはFeまたはFeとCoである)を準備する工程と、R1-M系合金粉末(R1は希土類元素の少なくとも1種であり、MはCu、Ga、Al、Zn、Fe、Co、Niからなる群から選択される少なくとも1種を必ず含む)からなる拡散源を準備する工程と、前記R-T-B系焼結磁石素材の表面に前記拡散源を存在させて拡散用磁石素材を準備する工程と、前記拡散用磁石素材を拡散用板上に設置する工程と、前記拡散用板上に設置された前記拡散用磁石素材の温度を400℃以上1000℃以下に加熱する拡散工程と、前記拡散工程後の拡散用板を処理容器内に配置し、処理容器内の温度を110℃以上160℃以下、圧力を150kPa以上650kPa以下、相対湿度を75%以上、にして2時間以上10時間以下に加熱する付着物除去工程と、
を含む。
In an exemplary embodiment, the method for manufacturing an RTB-based sintered magnet of the present disclosure includes an RTB-based sintered magnet material (R is at least one rare earth element, Nd, Pr, and a step of preparing an R1-M alloy powder (R1 is at least one rare earth element, T is Fe or Fe and Co) which always contains at least one selected from the group consisting of Ce; (always contains at least one selected from the group consisting of Cu, Ga, Al, Zn, Fe, Co, and Ni); and a step of preparing a diffusion magnet material with the diffusion source present on its surface; a step of installing the diffusion magnet material on a diffusion plate; and a step of installing the diffusion magnet material on the diffusion plate. A diffusion step of heating the temperature to 400° C. or more and 1000° C. or less, and placing the diffusion plate after the diffusion step in a processing container, and setting the temperature in the processing container at 110° C. or more and 160° C. or less and the pressure from 150 kPa to 650 kPa. , a deposit removal step of heating at a relative humidity of 75% or more for 2 hours or more and 10 hours or less;
including.

ある実施形態において、前記拡散工程は、前記拡散源除去工程が為された拡散用板を用いる。 In one embodiment, the diffusion step uses a diffusion plate that has been subjected to the diffusion source removal step.

ある実施形態において、前記R1-M系合金粉末におけるR1は、Nd、Pr、Ce、Dy、Tbからなる群から選ばれる少なくとも一種である。 In one embodiment, R1 in the R1-M alloy powder is at least one member selected from the group consisting of Nd, Pr, Ce, Dy, and Tb.

ある実施形態において、前記R1-M系合金粉末におけるMは、Cu、Ga、Zn、Fe、Coからなる群から選ばれる少なくとも一種である。 In one embodiment, M in the R1-M alloy powder is at least one selected from the group consisting of Cu, Ga, Zn, Fe, and Co.

ある実施形態において、前記R1-M系合金粉末におけるR1の含有量は、R1-M系合金粉末全体の60mass%以上98mass%以下であり、Mの含有量は、R1-M系合金粉末全体の2mass%以上40mass%以下である。 In one embodiment, the content of R1 in the R1-M alloy powder is 60 mass% or more and 98 mass% or less of the entire R1-M alloy powder, and the content of M is 60 mass% or more and 98 mass% or less of the entire R1-M alloy powder. It is 2 mass% or more and 40 mass% or less.

本開示により、拡散板上に溶着した付着物を容易に取り除くことができ、生産性の悪化を抑制するR-T-B系焼結磁石の製造方法を提供することができる。 According to the present disclosure, it is possible to provide a method for manufacturing an RTB-based sintered magnet in which deposits deposited on a diffuser plate can be easily removed and deterioration in productivity can be suppressed.

本発明者らは検討の結果、拡散工程後の拡散用板を処理容器内に配置し、特定範囲の圧力をかけた上で、特定の温度、相対湿度及び時間で加熱することにより、拡散板上に溶着した付着物を容易に取り除くことができることを見出した。これにより、手作業で付着物を削り落とす必要もなく、さらに、複数枚の拡散用板を処理容器内に配置することにより、一度に多くの拡散板を処理することができるため、生産性の悪化を抑制するR-T-B系焼結磁石の製造方法を提供することができる。 As a result of studies, the present inventors found that by placing the diffusion plate after the diffusion process in a processing container, applying pressure in a specific range, and heating it at a specific temperature, relative humidity, and time, the diffusion plate It has been found that deposits welded on the surface can be easily removed. This eliminates the need to manually scrape off deposits, and by arranging multiple diffusion plates in the processing container, many diffusion plates can be processed at once, increasing productivity. It is possible to provide a method for manufacturing an RTB-based sintered magnet that suppresses deterioration.

(R-T-B系焼結磁石素材を準備する工程)
Rは希土類元素の少なくとも1種であり、Nd、PrおよびCeからなる群から選択される少なくとも1種を必ず含む、TはFeまたはFeとCoである。
R-T-B系焼結磁石素材は公知のものが使用できる。例えば、以下の組成を有する。
希土類元素R:27.5~35.0質量%、
B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):0.80~1.20質量%、
Ga:0~0.8質量%、
添加元素M(Al、Cu、Zr、Nbからなる群から選択された少なくとも1種):0~2質量%、
T((TはFe又はFeとCo)及び不可避不純物:残部。
Rは重希土類元素RH(RHは、Tb、DyおよびHoからなる群から選択された少なくとも1種)を含有していてもよい。
上記組成のR-T-B系焼結磁石素材は、公知の任意の製造方法によって製造される。R-T-B系焼結磁石素材は焼結上がりでもよいし、切削加工や研磨加工が施されていてもよい。
(Process of preparing RTB-based sintered magnet material)
R is at least one rare earth element and always includes at least one selected from the group consisting of Nd, Pr and Ce, and T is Fe or Fe and Co.
As the RTB-based sintered magnet material, known materials can be used. For example, it has the following composition.
Rare earth element R: 27.5 to 35.0% by mass,
B (a part of B (boron) may be substituted with C (carbon)): 0.80 to 1.20% by mass,
Ga: 0 to 0.8% by mass,
Additive element M (at least one selected from the group consisting of Al, Cu, Zr, and Nb): 0 to 2% by mass,
T ((T is Fe or Fe and Co) and inevitable impurities: remainder.
R may contain a heavy rare earth element RH (RH is at least one selected from the group consisting of Tb, Dy, and Ho).
The RTB-based sintered magnet material having the above composition is manufactured by any known manufacturing method. The RTB-based sintered magnet material may be sintered, or may be subjected to cutting or polishing.

(R1-M系合金粉末からなる拡散源を準備する工程)
R1は希土類元素の少なくとも1種であり、MはCu、Ga、Al、Zn、Fe、Co、Niからなる群から選択される少なくとも1種を必ず含む。
好ましくは、R1は、Nd、Pr、Ce、Dy、Tbからなる群から選ばれる少なくとも一種であり、Mは、Cu、Ga、Zn、Fe、Coからなる群から選ばれる少なくとも一種である。
R1―M合金の典型例は、NdCu合金、PrCu合金、NdPrCu合金、DyNdCu合金、TbNdCu合金、DyPrCu合金、TbPrCu合金、DyNdPrCu合金、TbNdPrCu合金、NdCeCu合金、DyNdCeCu合金、TbNdCeCu合金、NdCePrCu合金、DyNdCePrCu合金、TbNdCePrCu合金、NdGa合金、DyNdGa合金、TbNdGa合金、NdGaCu合金、DyNdGaCu合金、TbNdGaCu合金、NdCeGaCu合金、DyNdCeGaCu合金、TbNdCeGaCu合金、NdPrGaCu合金、DyNdPrGaCu合金、TbNdPrGaCu合金、NdPrCuZn合金、NdPrGaFe合金、NdPrGaCo合金などである。また、R1―M合金粉末と共にRHのフッ化物、酸化物、酸フッ化物等を準備してもよい。RHのフッ化物、酸化物、酸フッ化物としては、例えば、TbF、DyF、Tb、Dy、TbOF、DyOFが挙げられる。
R1の含有量は、R1-M系合金粉末全体の60mass%以上98mass%以下が好ましい。Mの含有量は、R1-M系合金粉末全体の2mass%以上40mass%以下が好ましい。
R1-M系合金粉末の作製方法は、特に限定されない。ロール急冷法によって合金薄帯を作製し、この合金薄帯を粉砕する方法で作製してもよいし、遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。鋳造法で作製したインゴットを粉砕してもよい。
(Step of preparing a diffusion source made of R1-M alloy powder)
R1 is at least one rare earth element, and M always includes at least one selected from the group consisting of Cu, Ga, Al, Zn, Fe, Co, and Ni.
Preferably, R1 is at least one selected from the group consisting of Nd, Pr, Ce, Dy, and Tb, and M is at least one selected from the group consisting of Cu, Ga, Zn, Fe, and Co.
Typical examples of R1-M alloys are NdCu alloy, PrCu alloy, NdPrCu alloy, DyNdCu alloy, TbNdCu alloy, DyPrCu alloy, TbPrCu alloy, DyNdPrCu alloy, TbNdPrCu alloy, NdCeCu alloy, DyNdCeCu alloy, TbNdCeCu alloy, NdCePrCu alloy, D yNdCePrCu alloy , TbNdCePrCu alloy, NdGa alloy, DyNdGa alloy, TbNdGa alloy, NdGaCu alloy, DyNdGaCu alloy, TbNdGaCu alloy, NdCeGaCu alloy, DyNdCeGaCu alloy, TbNdCeGaCu alloy, NdPrGaCu alloy, DyNdPrGaCu alloy, Tb NdPrGaCu alloy, NdPrCuZn alloy, NdPrGaFe alloy, NdPrGaCo alloy, etc. be. Furthermore, RH fluoride, oxide, oxyfluoride, etc. may be prepared together with the R1-M alloy powder. Examples of the RH fluoride, oxide, and acid fluoride include TbF 3 , DyF 3 , Tb 2 O 3 , Dy 2 O 3 , Tb 4 OF, and Dy 4 OF.
The content of R1 is preferably 60 mass% or more and 98 mass% or less of the entire R1-M alloy powder. The content of M is preferably 2 mass% or more and 40 mass% or less of the entire R1-M alloy powder.
The method for producing the R1-M alloy powder is not particularly limited. It may be produced by producing an alloy ribbon by a roll quenching method and then pulverizing this alloy ribbon, or by a known atomization method such as a centrifugal atomization method, a rotating electrode method, a gas atomization method, or a plasma atomization method. It's okay. An ingot produced by a casting method may be crushed.

(R-T-B系焼結磁石素材の表面に前記拡散源を存在させて拡散用磁石素材を準備する工程)
前記R-T-B系焼結磁石素材の表面の少なくとも一部に、前記拡散源(R1-M系合金粉末)の少なくとも一部を存在させて拡散用磁石素材を準備する。R-T-B系焼結磁石素材の表面に拡散源粉末を存在させる方法は特に問わない。R-T-B系焼結磁石素材の表面の少なくとも一部に、拡散源粉末の少なくとも一部を付着させることができればどのような方法でも良い。例えば、スプレー法、浸漬法、ディスペンサーによる塗布などがあげられる。また、R-T-B系焼結磁石素材の表面に粘着剤を塗布し、粘着剤が付着したR-T-B系焼結磁石素材の表面に拡散源粉末を散布する方法により付着させてもよい。例えば、流動させた拡散源粉末の中に粘着剤が塗布されたR-T-B系焼結磁石素材を浸漬させる方法いわゆる流動浸漬法(fulidized bed coating process)を用いてもよい。
(Step of preparing a diffusion magnet material by making the diffusion source exist on the surface of the RTB-based sintered magnet material)
A diffusion magnet material is prepared by allowing at least a portion of the diffusion source (R1-M alloy powder) to exist on at least a portion of the surface of the RTB sintered magnet material. The method for making the diffusion source powder present on the surface of the RTB sintered magnet material is not particularly limited. Any method may be used as long as at least a portion of the diffusion source powder can be attached to at least a portion of the surface of the RTB sintered magnet material. Examples include a spray method, a dipping method, and application using a dispenser. In addition, the adhesive is applied to the surface of the RTB sintered magnet material, and the diffusion source powder is applied to the surface of the RTB sintered magnet material to which the adhesive is attached. Good too. For example, a so-called fluidized bed coating process may be used, in which an RTB sintered magnet material coated with an adhesive is immersed in fluidized diffusion source powder.

(拡散用磁石素材を拡散用板上に設置する工程)
表面に拡散源が存在させた拡散用磁石素材を拡散板上に設置する。拡散用板のサイズは、例えば、300mm×200mm×2mm(厚さ)である。拡散用板は拡散に必要な熱処理の温度(例えば500℃)に耐える材料から形成され、例えば、モリブデン、ステンレス鋼から形成される。拡散用磁石素材の拡散板上への設置方法は特に問わない。ロボットなどの機械により拡散用磁石素材を拡散板上に設置してもよいし、手作業で配置してもよい。
(Process of installing the diffusion magnet material on the diffusion plate)
A diffusion magnet material with a diffusion source on its surface is placed on a diffusion plate. The size of the diffusion plate is, for example, 300 mm x 200 mm x 2 mm (thickness). The diffusion plate is made of a material that can withstand the heat treatment temperature (for example, 500° C.) necessary for diffusion, and is made of, for example, molybdenum or stainless steel. There is no particular limitation on the method of installing the diffusion magnet material on the diffusion plate. The diffusion magnet material may be placed on the diffusion plate by a machine such as a robot, or may be placed manually.

(拡散用板上に設置された拡散用磁石素材の温度を400℃以上1000℃以下に加熱する拡散工程)
拡散用板上に設置された拡散用磁石素材の温度を400℃以上1000℃以下に加熱する熱処理をして、前記拡散源に含まれる元素をR-T-B系焼結磁石素材の表面から内部に拡散させる。加熱温度が400℃以下であると、R-T-B系焼結磁石の内部への拡散が不十分となり高いHcJを得ることが出来ない可能性があり、1000℃を超えると、磁石素材に異常粒成長が発生し、B及びHcJが大きく低下する可能性がある。加熱温度は、好ましくは850℃以上950℃以下である。より高いHcJを得ることができる。また、熱処理は、公知の熱処理装置を用いて行うことができる。この拡散工程中に、磁石素材表面に存在した拡散源(R1-M系合金粉末)や磁石素材に含まれる主に希土類成分が拡散用板と反応し、その後、冷却されることで付着物が溶着される。そのため、本開示では、付着物が溶着した拡散用板を付着物除去工程によって除去する。
拡散工程を行った後のR-T-B系焼結磁石は、磁気特性を向上させることを目的とした第二の熱処理を行ってもよい。第二の熱処理における温度、時間などの条件は、拡散温度より低く、焼結磁石の熱処理条件として公知の条件を採用することができる。また、最終的な磁石寸法の調整を研削などの機械加工等により行ってもよい。この場合、第二の熱処理の前に行っても、後に行ってもよい。
(Diffusion process in which the temperature of the diffusion magnet material placed on the diffusion plate is heated to 400°C or more and 1000°C or less)
The diffusion magnet material placed on the diffusion plate is heat-treated to a temperature of 400°C or more and 1000°C or less to remove the elements contained in the diffusion source from the surface of the RTB sintered magnet material. Diffuse inside. If the heating temperature is below 400°C, the diffusion into the inside of the RTB sintered magnet may be insufficient and it may not be possible to obtain a high H cJ . If the heating temperature exceeds 1000°C, the magnet material Abnormal grain growth may occur, and B r and H cJ may decrease significantly. The heating temperature is preferably 850°C or higher and 950°C or lower. Higher H cJ can be obtained. Further, the heat treatment can be performed using a known heat treatment apparatus. During this diffusion process, the diffusion source (R1-M alloy powder) present on the surface of the magnet material and mainly rare earth components contained in the magnet material react with the diffusion plate, and then the deposits are removed by cooling. Welded. Therefore, in the present disclosure, the diffusion plate to which the deposits have been welded is removed by a deposit removal process.
The RTB-based sintered magnet after the diffusion process may be subjected to a second heat treatment for the purpose of improving its magnetic properties. Conditions such as temperature and time in the second heat treatment are lower than the diffusion temperature, and conditions known as heat treatment conditions for sintered magnets can be adopted. Further, the final magnet dimensions may be adjusted by machining such as grinding. In this case, it may be performed before or after the second heat treatment.

(拡散工程後の拡散用板を処理容器内に配置し、処理容器内の温度を110℃以上160℃以下、圧力を150kPa以上650kPa以下、相対湿度を75%以上、にして2時間以上10時間以下に加熱する付着物除去工程)
拡散工程後の拡散用板を処理容器内に配置し、処理容器内の温度を110℃以上160℃以下、圧力を150kPa以上650kPa以下、相対湿度を75%以上、にして2時間以上10時間以下に加熱して、拡散用板に溶着した付着物を除去する。
処理温度が110℃未満であると拡散用板に付着物が残存する可能性があり、160℃を超えると拡散用板が変形する可能性がある。好ましくは、処理温度は125℃以上150℃以下である
処理容器内の圧力が150kPa未満であると拡散用板に付着物が残存する可能性があり、650kPaを超えると、拡散用板が変形する可能性がある。好ましくは、処理容器内の圧力は200kPa以上300kPa以下である。また、処理容器の相対湿度は、75%以上である。相対湿度が75%未満であると、水分量が少ないため、拡散用板に付着物が残存する可能性がある。好ましくは、相対湿度は85%以上である。より確実に付着物を除去することができる。加熱時間が2時間未満であると拡散用板に付着物が残存する可能性があり、10時間を超えると、処理時間が長すぎるため、量産コストが増大する可能性がある。好ましくは、加熱時間は3時間以上6時間以下である。
(Place the diffusion plate after the diffusion process in the processing container, keep the temperature inside the processing container at 110°C or more and 160°C or less, the pressure at 150kPa or more and 650kPa or less, and the relative humidity at 75% or more for 2 hours or more and 10 hours. Deposit removal process using heating as follows)
After the diffusion process, the diffusion plate is placed in the processing container, and the temperature inside the processing container is set to 110°C or more and 160°C or less, the pressure is 150kPa or more and 650kPa or less, and the relative humidity is 75% or more for 2 hours or more and 10 hours or less. to remove deposits welded to the diffusion plate.
If the treatment temperature is less than 110°C, deposits may remain on the diffusion plate, and if it exceeds 160°C, the diffusion plate may be deformed. Preferably, the processing temperature is 125° C. or higher and 150° C. or lower. If the pressure inside the processing container is lower than 150 kPa, deposits may remain on the diffusion plate, and if it exceeds 650 kPa, the diffusion plate may be deformed. there is a possibility. Preferably, the pressure inside the processing container is 200 kPa or more and 300 kPa or less. Further, the relative humidity of the processing container is 75% or more. If the relative humidity is less than 75%, there is a possibility that deposits may remain on the diffusion plate due to the small amount of moisture. Preferably the relative humidity is 85% or higher. Adhesive matter can be removed more reliably. If the heating time is less than 2 hours, deposits may remain on the diffusion plate, and if it exceeds 10 hours, the processing time is too long and the mass production cost may increase. Preferably, the heating time is 3 hours or more and 6 hours or less.

本開示の付着物除去工程は、付着物が溶着した拡散用板を一度に大量に処理容器に投入できるため、効率よく付着物を除去することができる。そして、前記付着物除去工程が為された拡散用板を用いて前記拡散工程を行うことにより、生産性の悪化を抑制してR-T-B系焼結磁石を製造することが可能となる。 In the deposit removal step of the present disclosure, a large amount of diffusion plates to which deposits have been welded can be introduced into the processing container at one time, so that deposits can be efficiently removed. By performing the diffusion process using the diffusion plate that has been subjected to the deposit removal process, it is possible to suppress deterioration of productivity and manufacture RTB-based sintered magnets. .

本開示を実施例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。 The present disclosure will be explained in more detail with reference to Examples, but the present disclosure is not limited thereto.

実験例1
(R-T-B系焼結磁石素材を準備する工程)
R-T-B系焼結磁石素材がおよそ表1の符号1-Aの組成となるよう各元素を秤量しストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 1
(Process of preparing RTB-based sintered magnet material)
Each element is weighed so that the RTB-based sintered magnet material has a composition approximately as shown in code 1-A in Table 1, and is cast by a strip casting method to form a flake-like raw material alloy with a thickness of 0.2 to 0.4 mm. I got it. The obtained flake-like raw material alloy was hydrogen-pulverized and then subjected to dehydrogenation treatment in which it was heated to 550° C. in vacuum and then cooled to obtain coarsely pulverized powder. Next, 0.04% by mass of zinc stearate was added as a lubricant to the obtained coarsely pulverized powder based on 100% by mass of the coarsely pulverized powder, and after mixing, the powder was milled using an air flow mill (jet mill device). The powder was dry-pulverized in a nitrogen stream to obtain finely pulverized powder (alloy powder) having a particle size D50 of 4 μm. Note that the particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量%に対して0.05質量%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 To the finely pulverized powder, 0.05% by mass of zinc stearate was added as a lubricant based on 100% by mass of the finely pulverized powder, mixed, and then molded in a magnetic field to obtain a molded body. The forming apparatus used was a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction were perpendicular to each other.

得られた成形体を4時間焼結(焼結による緻密化が十分起こる温度を選定)し、R-T-B系焼結磁石素材(No.1-A)を複数個用意した。得られたR-T-B系焼結磁石素材の密度は7.5Mg/m以上であった。得られたR-T-B系焼結磁石素材の成分の結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。なお、焼結体の酸素量をガス融解-赤外線吸収法で測定した結果、0.1質量%前後であることを確認した。また、No.1-AのR-T-B系焼結磁石素材を切断、切削加工し、4.4mm×10.0mm×11.0mmの直方体(10.0mm×11.0mmの面が配向方向と垂直な面、4.4mm方向が厚み方向であり、配向方向)とした。 The obtained molded body was sintered for 4 hours (a temperature at which sufficient densification by sintering occurred was selected), and a plurality of RTB-based sintered magnet materials (No. 1-A) were prepared. The density of the obtained RTB-based sintered magnet material was 7.5 Mg/m 3 or more. Table 1 shows the results of the components of the obtained RTB-based sintered magnet material. Note that each component in Table 1 was measured using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). Furthermore, as a result of measuring the oxygen content of the sintered body by gas melting-infrared absorption method, it was confirmed that it was around 0.1% by mass. Also, No. 1-A RTB system sintered magnet material is cut and machined to form a rectangular parallelepiped of 4.4 mm x 10.0 mm x 11.0 mm (the 10.0 mm x 11.0 mm surface is perpendicular to the orientation direction). The 4.4 mm direction was the thickness direction, which was the orientation direction).

Figure 0007396151000001
Figure 0007396151000001

(R1-M系合金粉末からなる拡散源を用意する工程)
表2のNo.1-aに示す組成の合金粉末をアトマイズ法により作成することにより、R1-M系合金粉末を用意した。得られた拡散源粉末の粒度は106μm以下であった。
(Process of preparing a diffusion source made of R1-M alloy powder)
No. of Table 2 An R1-M alloy powder was prepared by producing an alloy powder having the composition shown in 1-a by an atomization method. The particle size of the obtained diffusion source powder was 106 μm or less.

Figure 0007396151000002
Figure 0007396151000002

(R-T-B系焼結磁石素材の表面に拡散源を存在させて拡散用磁石素材を準備する工程)
次に、表1のNo.1-AのR-T-B系焼結磁石素材表面全面に粘着剤を塗布した。塗布方法は、R-T-B系焼結磁石素材をホットプレート上で60℃に加熱後、スプレー法でR-T-B系焼結磁石素材に粘着剤を塗布した。粘着剤としてPVP(ポリビニルピロリドン)を用いた。
次に、粘着剤を塗布したR-T-B系焼結磁石素材(No.1-A)に対して、表2のNo.1-aの拡散源粉末を付着させた。付着方法は、容器に拡散源粉末を広げ、容器内で拡散源粉末を粘着剤を塗布したR-T-B系焼結磁石素材全面にまぶすように付着させた。
(Process of preparing a diffusion magnet material by providing a diffusion source on the surface of the RTB-based sintered magnet material)
Next, No. of Table 1. An adhesive was applied to the entire surface of the RTB-based sintered magnet material of 1-A. The coating method was to heat the RTB sintered magnet material to 60° C. on a hot plate, and then apply the adhesive to the RTB sintered magnet material using a spray method. PVP (polyvinylpyrrolidone) was used as the adhesive.
Next, No. 1 in Table 2 was applied to the RTB-based sintered magnet material (No. 1-A) coated with an adhesive. Diffusion source powder 1-a was attached. As for the attachment method, the diffusion source powder was spread in a container, and inside the container, the diffusion source powder was attached so as to be sprinkled over the entire surface of the RTB-based sintered magnet material coated with the adhesive.

(拡散用磁石素材を拡散用板上に設置する工程)
サイズが300mm×200mm×2mm(厚さ)の拡散用板(モリブデン)を複数枚準備し、拡散用板上に拡散用磁石素材を設置した。なお、拡散用板1枚に対して拡散用磁石素材を10個設置した。
(Process of installing the diffusion magnet material on the diffusion plate)
A plurality of diffusion plates (molybdenum) having a size of 300 mm x 200 mm x 2 mm (thickness) were prepared, and a diffusion magnet material was placed on the diffusion plates. Note that 10 diffusion magnet materials were installed for each diffusion plate.

(拡散工程)
拡散処理用の炉を用いて、200Paに制御した減圧アルゴン中で、拡散源粉末(No.1-a)が接触した状態の拡散用磁石素材を、920℃で8時間加熱する熱処理(拡散処理)を行った。更に拡散処理後のR-T-B系焼結磁石に対し、490℃で6時間加熱する第二の熱処理を行いR-T-B系焼結磁石を得た。拡散工程後の拡散用板を確認した所、拡散板上に付着物が溶着していることを確認した。また、付着物の組成を確認した所、主に希土類成分(Nd及びPr)であることを確認した。
(diffusion process)
Heat treatment (diffusion treatment) in which the diffusion magnet material in contact with the diffusion source powder (No. 1-a) is heated at 920°C for 8 hours in a reduced pressure argon controlled at 200 Pa using a diffusion treatment furnace. ) was carried out. Furthermore, the RTB-based sintered magnet after the diffusion treatment was subjected to a second heat treatment of heating at 490° C. for 6 hours to obtain an RTB-based sintered magnet. When the diffusion plate was checked after the diffusion process, it was confirmed that deposits were welded onto the diffusion plate. Further, when the composition of the deposit was confirmed, it was confirmed that it mainly consisted of rare earth components (Nd and Pr).

(付着物除去工程)
付着物が溶着した拡散工程後の拡散用板を処理容器内に配置し、表3に示す処理条件で拡散除去工程を行った。また、圧力拡散除去工程後の拡散用板上の付着物の溶着残りの有無を観察した。溶着残りが無い場合は〇と、溶着残りがある場合は×として、結果を表3にしめす。
(Deposit removal process)
The diffusion plate on which deposits were welded after the diffusion process was placed in a processing container, and the diffusion removal process was performed under the processing conditions shown in Table 3. In addition, the presence or absence of welded deposits remaining on the diffusion plate after the pressure diffusion removal process was observed. The results are shown in Table 3, with ○ if there is no welding residue, and × if there is welding residue.

Figure 0007396151000003
Figure 0007396151000003

表3に示すように、本開示の拡散除去工程の条件を満たすNo.1~4は、溶着残りが確認されなかった。これに対し、圧力が本開示から外れているNo.5や温度(加熱温度)及び湿度が本開示から外れているNo.6や時間(加熱時間)が本開示から外れているNo.7は、いずれも溶着残りが確認された。 As shown in Table 3, No. 3 satisfies the conditions of the diffusion removal process of the present disclosure. No welding residue was observed in samples 1 to 4. On the other hand, No. 1 whose pressure is outside the scope of the present disclosure. No. 5 and No. 5 whose temperature (heating temperature) and humidity are outside the scope of the present disclosure. No. 6 and time (heating time) are outside the scope of this disclosure. No. 7, residual welding was confirmed in all cases.

また、表3に示すNo.1~4の拡散用板をそのままくりかえし使用して拡散工程を再度行った所、磁石と拡散用板との溶着は発生せず、かつ、拡散後に得られた磁石は寸法不良等なく拡散処理を行えたことを確認した。 Moreover, No. shown in Table 3. When the diffusion plates 1 to 4 were used repeatedly and the diffusion process was performed again, no welding occurred between the magnet and the diffusion plate, and the magnets obtained after diffusion did not undergo the diffusion process without dimensional defects. I confirmed that it worked.

本開示により得られたR-T-B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品等などに好適に利用することができる。 The RTB type sintered magnet obtained by the present disclosure can be used in various motors such as voice coil motors (VCM) of hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, etc. It can be suitably used for home appliances, etc.

Claims (5)

R-T-B系焼結磁石素材(Rは希土類元素の少なくとも1種であり、Nd、PrおよびCeからなる群から選択される少なくとも1種を必ず含む、TはFeまたはFeとCoである)を準備する工程と、
R1-M系合金粉末(R1は希土類元素の少なくとも1種であり、MはCu、Ga、Al、Zn、Fe、Co、Niからなる群から選択される少なくとも1種を必ず含む)からなる拡散源を準備する工程と、
前記R-T-B系焼結磁石素材の表面に前記拡散源を存在させて拡散用磁石素材を準備する工程と、
前記拡散用磁石素材を拡散用板上に設置する工程と、
前記拡散用板上に設置された前記拡散用磁石素材の温度を400℃以上1000℃以下に加熱する拡散工程と、
前記拡散工程後の拡散用板を処理容器内に配置し、処理容器内の温度を110℃以上160℃以下、圧力を150kPa以上650kPa以下、相対湿度を75%以上、にして2時間以上10時間以下に加熱する付着物除去工程と、
を含む、R-T-B系焼結磁石の製造方法。
RTB-based sintered magnet material (R is at least one rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, T is Fe or Fe and Co) ),
Diffusion made of R1-M alloy powder (R1 is at least one rare earth element, M always includes at least one selected from the group consisting of Cu, Ga, Al, Zn, Fe, Co, and Ni) a step of preparing a source;
preparing a diffusion magnet material by making the diffusion source exist on the surface of the RTB-based sintered magnet material;
a step of installing the diffusion magnet material on a diffusion plate;
a diffusion step of heating the temperature of the diffusion magnet material placed on the diffusion plate to 400°C or more and 1000°C or less;
The diffusion plate after the diffusion step is placed in a processing container, and the temperature in the processing container is set at 110°C or more and 160°C or less, the pressure is 150kPa or more and 650kPa or less, and the relative humidity is 75% or more for 2 hours or more and 10 hours. A deposit removal step of heating as follows:
A method for manufacturing an RTB-based sintered magnet, comprising:
前記拡散工程は、前記拡散源除去工程が為された拡散用板を用いる、請求項1に記載のR-T-B系焼結磁石の製造方法。 The method for manufacturing an RTB based sintered magnet according to claim 1, wherein the diffusion step uses a diffusion plate that has been subjected to the diffusion source removal step. 前記R1-M系合金粉末におけるR1は、Nd、Pr、Ce、Dy、Tbからなる群から選ばれる少なくとも一種である、請求項1または2に記載のR-T-B系焼結磁石の製造方法。 Manufacturing the RTB-based sintered magnet according to claim 1 or 2, wherein R1 in the R1-M-based alloy powder is at least one selected from the group consisting of Nd, Pr, Ce, Dy, and Tb. Method. 前記R1-M系合金粉末におけるMは、Cu、Ga、Zn、Fe、Coからなる群から選ばれる少なくとも一種である、請求項1から3のいずれかに記載のR-T-B系焼結磁石の製造方法。 The R-T-B based sinter according to any one of claims 1 to 3, wherein M in the R1-M based alloy powder is at least one selected from the group consisting of Cu, Ga, Zn, Fe, and Co. How to manufacture magnets. 前記R1-M系合金粉末におけるR1の含有量は、R1-M系合金粉末全体の60mass%以上98mass%以下であり、Mの含有量は、R1-M系合金粉末全体の2mass%以上40mass%以下である、請求項1から4のいずれかに記載のR-T-B系焼結磁石の製造方法。 The content of R1 in the R1-M alloy powder is from 60 mass% to 98 mass% of the entire R1-M alloy powder, and the content of M is from 2 mass% to 40 mass% of the entire R1-M alloy powder. The method for manufacturing an RTB-based sintered magnet according to any one of claims 1 to 4, which is as follows.
JP2020053407A 2020-03-24 2020-03-24 Manufacturing method of RTB based sintered magnet Active JP7396151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020053407A JP7396151B2 (en) 2020-03-24 2020-03-24 Manufacturing method of RTB based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020053407A JP7396151B2 (en) 2020-03-24 2020-03-24 Manufacturing method of RTB based sintered magnet

Publications (2)

Publication Number Publication Date
JP2021153147A JP2021153147A (en) 2021-09-30
JP7396151B2 true JP7396151B2 (en) 2023-12-12

Family

ID=77886720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020053407A Active JP7396151B2 (en) 2020-03-24 2020-03-24 Manufacturing method of RTB based sintered magnet

Country Status (1)

Country Link
JP (1) JP7396151B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144064A (en) 2004-11-18 2006-06-08 Neomax Co Ltd Method for cleaning holder for sintering rare-earth sintering magnet, and method for manufacturing rare-earth sintering magnet
JP2006265602A (en) 2005-03-23 2006-10-05 Tdk Corp Cleaning method for fixture for sintering rare earth magnet and method for producing rare earth magnet
WO2013061836A1 (en) 2011-10-27 2013-05-02 インターメタリックス株式会社 METHOD FOR PRODUCING NdFeB SINTERED MAGNET
WO2016133071A1 (en) 2015-02-18 2016-08-25 日立金属株式会社 Method for producing r-t-b system sintered magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144064A (en) 2004-11-18 2006-06-08 Neomax Co Ltd Method for cleaning holder for sintering rare-earth sintering magnet, and method for manufacturing rare-earth sintering magnet
JP2006265602A (en) 2005-03-23 2006-10-05 Tdk Corp Cleaning method for fixture for sintering rare earth magnet and method for producing rare earth magnet
WO2013061836A1 (en) 2011-10-27 2013-05-02 インターメタリックス株式会社 METHOD FOR PRODUCING NdFeB SINTERED MAGNET
WO2016133071A1 (en) 2015-02-18 2016-08-25 日立金属株式会社 Method for producing r-t-b system sintered magnet

Also Published As

Publication number Publication date
JP2021153147A (en) 2021-09-30

Similar Documents

Publication Publication Date Title
RU2704989C2 (en) Sintered r-fe-b magnet and method for production thereof
TWI413135B (en) A rare earth permanent magnet material and method for the preparation thereof
WO2016133071A1 (en) Method for producing r-t-b system sintered magnet
JP6521391B2 (en) Method of manufacturing RTB based sintered magnet
JP2011014668A (en) Method for preparing rare earth magnet, and rare earth magnet
EP3940723A1 (en) R-t-b-based permanent magnet material, preparation method therefor and use thereof
WO2014034854A1 (en) Production method for rare earth permanent magnet
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP6939339B2 (en) Manufacturing method of RTB-based sintered magnet
JP6946905B2 (en) Diffusion source
JP7396151B2 (en) Manufacturing method of RTB based sintered magnet
JP2021150547A (en) Method for manufacturing r-t-b based sintered magnet
JP6946904B2 (en) Diffusion source
JP2012142400A (en) METHOD OF MANUFACTURING ANTICORROSIVE R-Fe-B-BASED SINTERED MAGNET
JP2019062152A (en) Diffusion source
KR20220064920A (en) Method for manufacturing rare earth sintered magnet
JP7228096B2 (en) Method for producing RTB based sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP2020107888A (en) Method for manufacturing r-t-b based sintered magnet
JP2020161789A (en) R-t-b based sintered magnet
JP7380369B2 (en) Manufacturing method of RTB sintered magnet and alloy for diffusion
JP2020120101A (en) Method for manufacturing r-t-b based sintered magnet
JP6939338B2 (en) Manufacturing method of RTB-based sintered magnet
JP2019062156A (en) Method for manufacturing r-t-b based sintered magnet
JP7439609B2 (en) Manufacturing method of RTB based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7396151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150