JP7394828B2 - Micro LED emission inspection device, optical filter inspection device used in the device, and micro LED emission inspection method using the device incorporated in the manufacturing process - Google Patents

Micro LED emission inspection device, optical filter inspection device used in the device, and micro LED emission inspection method using the device incorporated in the manufacturing process Download PDF

Info

Publication number
JP7394828B2
JP7394828B2 JP2021503231A JP2021503231A JP7394828B2 JP 7394828 B2 JP7394828 B2 JP 7394828B2 JP 2021503231 A JP2021503231 A JP 2021503231A JP 2021503231 A JP2021503231 A JP 2021503231A JP 7394828 B2 JP7394828 B2 JP 7394828B2
Authority
JP
Japan
Prior art keywords
light
micro led
filter
image processing
processing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021503231A
Other languages
Japanese (ja)
Other versions
JPWO2020178680A1 (en
Inventor
茂 山本
佳彦 番場
雅宏 安田
俊之 濱野
譲 田畑
道久 得居
頡 顔
雅史 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orbotech Ltd
Original Assignee
Orbotech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orbotech Ltd filed Critical Orbotech Ltd
Publication of JPWO2020178680A1 publication Critical patent/JPWO2020178680A1/ja
Application granted granted Critical
Publication of JP7394828B2 publication Critical patent/JP7394828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Communication System (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、マイクロLEDを用いた表示デバイスの製造過程において、ウェハー上に生成された多数のLEDチップの検査を行うマイクロLED発光検査装置及びその装置に用いる光学フィルタの検査装置及び製造プロセスに組み込まれたその装置を用いるマイクロLED発光検査方法に関する。 The present invention is incorporated into a micro LED light emission inspection device that inspects a large number of LED chips produced on a wafer in the manufacturing process of display devices using micro LEDs, and an optical filter inspection device and manufacturing process used in the device. The present invention relates to a micro LED emission testing method using the device.

高解像度の平面表示装置においては、TFT液晶や有機LEDの技術を用いた表示装置が実用化されているが、これらの表示デバイスに加えて、近年では有機LED表示装置より更に発光効率の高い自発光表示装置として、固体半導体技術で作成された微少なLEDチップを回路基板上に並べることによって表示装置とした、マイクロLEDと呼称される表示デバイスが研究されている。 As for high-resolution flat display devices, display devices using TFT liquid crystal and organic LED technologies have been put into practical use. 2. Description of the Related Art As a light emitting display device, a display device called a micro LED, which is a display device by arranging minute LED chips created using solid-state semiconductor technology on a circuit board, is being researched.

このマイクロLED表示装置においては、基板上に搭載される隣接するLEDチップが異なるウェハーから切り出されたものであったり、同一ウェハー上であっても距離の離れた異なる位置から切り出されたものであるなど、プロセス条件の異なるチップが混在して搭載されるという特徴がある。 In this micro LED display device, adjacent LED chips mounted on the substrate are cut out from different wafers, or even on the same wafer, they are cut out from different positions separated by a distance. It is characterized by the fact that it is equipped with a mixture of chips with different process conditions.

TFT液晶や有機LED表示装置においては、スイッチトランジスタやカラーフィルターなど、輝度や発光波長という画素の表示品質を左右する要素が表示基板上に直接生成されるため、表示デバイス上の隣接する画素は温度や溶剤濃度などのプロセス条件がほぼ同一となり、輝度や発光色などの境界が目立ちにくい性質を持っていた。それと異なり、マイクロLED表示デバイスにおいては、上記に述べたように異なるプロセス条件において生成されたチップが隣接する画素として搭載される可能性があり、特に複数のチップをたとえば矩形のグループとして一括して搭載する方式においては、発光輝度や発光波長の異なるグループを隣接させた場合、そのグループ境界がムラとして視認される不具合が起こる。 In TFT liquid crystal and organic LED display devices, elements that affect the display quality of pixels, such as brightness and emission wavelength, such as switch transistors and color filters, are generated directly on the display substrate, so adjacent pixels on the display device are exposed to temperature fluctuations. The process conditions such as light and solvent concentration were almost the same, and boundaries in brightness and emission color were less noticeable. On the other hand, in micro-LED display devices, chips produced under different process conditions may be mounted as adjacent pixels as described above, and in particular, multiple chips may be mounted together as a rectangular group, for example. In the mounting method, when groups with different emission brightness or emission wavelength are placed adjacent to each other, a problem arises in that the boundaries between the groups are visually recognized as uneven.

このような不具合を回避するために、発光できる形に完成したチップについて発光輝度や発光波長を測定し、基準ごとに仕分けするビニングという手法が用いられ、特定の表示デバイスに搭載されるチップに異なるビンが混在しないようにするという工夫がなされている。 In order to avoid such problems, a method called binning is used in which the luminance and wavelength of emitted light are measured for chips that have been completed in a form that allows them to emit light, and the results are sorted based on criteria. Efforts have been made to prevent bottles from being mixed together.

従来、ビニングに使用される発光波長測定には、主に回折格子を用いた光スペクトロメータが用いられこれには、特許文献1、2がある。このうち、特許文献2は、CCDリニアセンサーも用いたスペクトロメータが用いられている。しかしながら、光スペクトロメータを用いるこれらの方式では波長測定速度は、例えば、1測定回数につき1mS程度かかるものと考えられている。 Conventionally, an optical spectrometer using a diffraction grating is mainly used to measure the emission wavelength used for binning, and there are Patent Documents 1 and 2 for this. Among these, Patent Document 2 uses a spectrometer that also uses a CCD linear sensor. However, in these methods using an optical spectrometer, the wavelength measurement speed is considered to be, for example, approximately 1 mS per measurement.

しかしながら、マイクロLED表示装置に搭載されるLEDチップの数は、解像度4Kの表示装置でピクセル数は3,860x2,140となりRGB各色800万個を超え、13.3インチの表示装置でドットピッチ0.077mmとなる。仮に、ドットピッチ0.1mm程度を満たすマイクロLEDは、6インチウェハ上には150万個余り形成可能である。これらのチップについて発光波長を上記のスペクトロメータによる測定方法で測定すると、1500秒という膨大な時間が必要となる問題点があった。さらに、解像度8Kであれば13.3インチの表示装置において、ドットピッチは0.038mmである。この場合には6インチウェハ上にはLEDチップが1000万個余り形成され、これらのチップについて発光波長を上記のスペクトロメータによる測定方法で測定すると、10000秒というさらに膨大な時間が必要となる。 However, the number of LED chips mounted on a micro LED display device is 3,860 x 2,140 pixels for a display device with a resolution of 4K, exceeding 8 million for each color of RGB, and the dot pitch is 0 for a 13.3-inch display device. It becomes .077mm. If the dot pitch is about 0.1 mm, more than 1.5 million micro LEDs can be formed on a 6-inch wafer. When the emission wavelength of these chips was measured using the above spectrometer measurement method, there was a problem in that an enormous amount of time, 1500 seconds, was required. Further, if the resolution is 8K, the dot pitch in a 13.3-inch display device is 0.038 mm. In this case, more than 10 million LED chips are formed on a 6-inch wafer, and if the emission wavelengths of these chips are measured using the above-mentioned measurement method using a spectrometer, an even longer time of 10,000 seconds is required.

さらに、マイクロLEDでは異なるプロセス条件において生成されたチップが隣接する画素として搭載される可能性があり、製造条件によって変動するばらつきをより抑え、製造ばらつき変動因子を迅速に把握する必要があるが、そのようなマイクロLED製造プロセスにおいて製造ばらつき変動因子を迅速に把握する手段及び方法は提供されていない。 Furthermore, in micro LEDs, there is a possibility that chips produced under different process conditions are mounted as adjacent pixels, so it is necessary to further suppress variations that vary depending on manufacturing conditions and quickly understand the factors that cause variations in manufacturing variations. No means or method has been provided for quickly understanding manufacturing variation variables in such a micro LED manufacturing process.

特開昭63-248141号公報Japanese Unexamined Patent Publication No. 63-248141

特開昭63-29758号公報Japanese Unexamined Patent Publication No. 63-29758

本発明は、係る課題に対応可能であり、ウェハ上にドットピッチ0.1mm以下で多数形成されたマイクロLEDを、従来技術による検査時間の10分の1以下の桁違いの測定時間を達成するマイクロLED発光検査装置を提供することを課題とする。 The present invention can address these issues, and achieves a measurement time of an order of magnitude less than 1/10 of the inspection time of conventional technology for micro-LEDs formed in large numbers on a wafer with a dot pitch of 0.1 mm or less. An object of the present invention is to provide a micro LED emission testing device.

本発明は、上記課題を解決する、より高速のマイクロLED発光検査装置を提供する。以下に説明する。 The present invention provides a faster micro LED emission testing device that solves the above problems. This will be explained below.

個別に分離されるべき100μm角以下の大きさの矩形領域内を占めるマイクロLEDがアレイ状に配列されて表面に形成された半導体サブストレートの上方に配置された、
前記マイクロLEDの発光のための給電機構と、
前記サブストレートに対向して光学レンズが配設されて前記発光の光強度を測定するためのイメージセンサを有する撮像装置と、
前記撮像装置の映像信号を受け入れるデジタル画像処理装置と、
前記マイクロLEDと前記光学レンズとの光路に配設される、所定の光波長帯域を有する光学フィルタと、
前記光学フィルタを支持し、制御信号の受信部を含むフィルタ駆動機構と、及び、
前記フィルタ駆動機構の制御信号の送信部及び、前記制御信号の生成のため及びシステムフロー開始とフロー制御をするための制御部を含む制御装置と、
を含むマイクロLED発光検査装置であって、
前記光学フィルターは、設計条件に相当する色波長を含む所定の光波長帯域でフィルタ透過光強度が単調増加又は単調減少する光学フィルターであり、かつ、
前記制御装置は、前記フィルタ駆動機構によって前記光学フィルターの有無を選択制御可能である制御装置であり、かつ、
前記デジタル画像処理装置は前記映像信号を受入れて生成された画像データフレームを格納するためのメモリを備え、
前記画像データフレーム上のピクセル毎の光強度ピクセルマップから所定のクライテリアに基づく前記発光の単位映像体を特定し、前記ピクセルマップへの単位映像体マッピングデータを生成するための単位映像体識別部と、
前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し前記マイクロLEDを前記ピクセルマップ上にマッピングするマイクロLEDマッピングデータを生成するためのマイクロLED識別部と、及び
マイクロLEDマップ上の光強度マップ上の光強度から所定の光エネルギ強度算出式によって前記マイクロLEDの光エネルギ強度を決定し、前記マイクロLEDの光エネルギ強度のうち少なくとも前記光学フィルター無の配置における前記光エネルギ強度値を前記メモリに格納可能であり、前記光学フィルター有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルター無の配置の前記光エネルギ強度値とによって、所定のマイクロLEDの発光波長算出式によって前記マイクロLEDの発光波長を決定するためのマイクロLED検査部とを、含む前記デジタル画像処理装置である、
ことを特徴とするマイクロLED発光検査装置が本発明で提供される。この構成では、デジタル画像処理装置によって自動的に測定対象の個々のマイクロLEDが撮像画像から発見、特定され画面フレーム画像から生成されたマイクロLEDの光強度が、一括で測定されるから従来のCCDラインセンサによる個別測定に比し、より高速にマイクロLEDの発光波長測定できるマイクロLED発光検査装置が提供される。測定には、検査対象のウェハを装着後光フィルタ無しの場合及び光ファルタ有りの場合の画像を信号処理が高速であるデジタル画像処理装置によって撮像画面単位で一気に取り込むことが可能であり、ウェハ全体でも光フィルタ無しの場合50秒程度、光フィルタ有りの場合も50秒程度、合計100秒程度で画像フレームデータの取得が可能である。このように、画像フレームデータの取得後の自動画像処理によってウェハ全体のマイクロLEDの発光波長測定を一括処理でより高速の検査が可能である。
Micro LEDs occupying rectangular areas of 100 μm square or less to be individually separated are arranged in an array and placed above a semiconductor substrate formed on the surface.
a power supply mechanism for light emission of the micro LED;
an imaging device having an image sensor with an optical lens disposed opposite to the substrate to measure the light intensity of the emitted light;
a digital image processing device that receives a video signal from the imaging device;
an optical filter having a predetermined optical wavelength band and disposed in an optical path between the micro LED and the optical lens;
a filter driving mechanism that supports the optical filter and includes a control signal receiving section; and
a control device including a transmitting section for a control signal of the filter driving mechanism; and a control section for generating the control signal and for starting and controlling the system flow;
A micro LED emission testing device comprising:
The optical filter is an optical filter in which the filter-transmitted light intensity monotonically increases or monotonically decreases in a predetermined optical wavelength band including a color wavelength corresponding to the design condition, and
The control device is a control device capable of selectively controlling the presence or absence of the optical filter by the filter drive mechanism, and
The digital image processing device includes a memory for receiving the video signal and storing an image data frame generated,
a unit image object identification unit for identifying the light emitting unit image object based on predetermined criteria from a light intensity pixel map for each pixel on the image data frame, and generating unit image object mapping data to the pixel map; ,
a micro LED identification unit for generating micro LED mapping data for identifying a plurality of micro LEDs arranged in the array form from the unit video object and mapping the micro LEDs onto the pixel map; The light energy intensity of the micro LED is determined by a predetermined light energy intensity calculation formula from the light intensity on the light intensity map, and at least the light energy intensity value in the arrangement without the optical filter is determined from the light energy intensity of the micro LED. can be stored in the memory, and the emission wavelength of a predetermined micro LED is calculated based on the light energy intensity value of the micro LED in the arrangement with the optical filter and the light energy intensity value in the arrangement without the optical filter. and a micro-LED inspection unit for determining the emission wavelength of the micro-LED according to a formula,
The present invention provides a micro LED emission testing device characterized by the following. In this configuration, the digital image processing device automatically discovers and identifies each micro-LED to be measured from the captured image, and the light intensity of the micro-LEDs generated from the screen frame image is measured all at once, unlike conventional CCD. A micro LED emission inspection device is provided that can measure the emission wavelength of micro LEDs more quickly than individual measurements using line sensors. For measurement, after mounting the wafer to be inspected, images without an optical filter and with an optical filter can be captured in one image screen at a time using a digital image processing device with high-speed signal processing. However, image frame data can be acquired in about 50 seconds without an optical filter and about 50 seconds with an optical filter, for a total of about 100 seconds. In this way, by automatic image processing after acquiring image frame data, it is possible to perform faster inspection by batch processing the measurement of the emission wavelength of the micro LEDs of the entire wafer.

さらに、追加の態様で本発明は、
前記所定のクライテリアは周囲に対しピーク光エネルギ強度値を呈するピクセルを前記単位映像体の中心部と特定し、隣接する前記単位映像体中心部間の中央を前記単位映像体の矩形境界とするマイクロLED発光検査装置を提供する。この構成によって、単位映像体に属するピクセルの認定をより簡便迅速に決定できる効果を提供する。
Furthermore, in an additional aspect, the invention provides:
The predetermined criteria include a micro-pixel that specifies a pixel exhibiting a peak light energy intensity value relative to the surroundings as the center of the unit image object, and a rectangular boundary of the unit image object that is the center between adjacent center areas of the unit image object. Provides an LED emission testing device. This configuration provides the effect that the recognition of pixels belonging to a unit image object can be determined more simply and quickly.

さらに、追加の態様で本発明は、
前記所定のクライテリアは周囲に対しピーク光エネルギ強度値を呈するピクセルを前記単位映像体の中心部と特定し、アレイ状に配列されたマイクロLEDの間隔設計値によって、前記単位映像体の矩形境界を決定するマイクロLED発光検査装置を提供する。この構成で、設計データを活用することによって、単位映像体に属するピクセルの認定をより簡便迅速に決定できる効果を提供する。
Furthermore, in an additional aspect, the invention provides:
The predetermined criteria specifies a pixel exhibiting a peak light energy intensity value relative to the surroundings as the center of the unit image object, and defines a rectangular boundary of the unit image object based on the design value of the spacing of the micro LEDs arranged in an array. A micro LED emission testing device is provided. With this configuration, by utilizing design data, it is possible to more easily and quickly determine the recognition of pixels belonging to a unit video object.

さらに、追加の態様で本発明は、
前記所定の光エネルギ強度算出式は、前記光強度ピクセルマップ上で前記マイクロLEDに含まれる前記ピクセルの段階的光強度の総和であるマイクロLED発光検査装置を提供する。この構成で、マイクロLEDに含まれるピクセルの段階的光強度の総和をとりマイクロLEDに関連するすべてのピクセルで観察される光強度を利用すると、一つ一つのピクセルの測定に伴う擾乱を平滑化できる利点が提供される。
Furthermore, in an additional aspect the invention provides:
The predetermined light energy intensity calculation formula provides a micro LED emission testing device in which the predetermined light energy intensity calculation formula is a sum of stepwise light intensities of the pixels included in the micro LEDs on the light intensity pixel map. With this configuration, by summing the stepwise light intensity of the pixels included in the micro-LED and using the light intensity observed in all pixels related to the micro-LED, the disturbance caused by the measurement of each pixel is smoothed out. Provides advantages that can be achieved.

さらに、追加の態様で本発明は、
前記光学フィルターは既知の光波長の光源によって、フィルタ特性がキャリブレーションされ、前記光学フィルター無の配置における前記光エネルギ強度値と前記光学フィルター有の配置における前記光エネルギ強度値との比と前記発光波長との関係に関して前記キャリブレーションをもとに作成されたルックアップテーブルが格納されているマイクロLED発光検査装置を提供する。この構成で関数で表現されない変数と探索値関係もサンプリング手法によって提供可能とする効果を与える。
Furthermore, in an additional aspect, the invention provides:
The filter characteristics of the optical filter are calibrated by a light source with a known wavelength, and the ratio of the light energy intensity value in the arrangement without the optical filter to the light energy intensity value in the arrangement with the optical filter and the light emission are calculated. A micro LED emission testing device is provided in which a look-up table created based on the calibration regarding the relationship with wavelength is stored. This configuration has the effect that relationships between variables and search values that are not expressed by functions can also be provided by the sampling method.

さらに、追加の態様で本発明は、
前記所定の前記マイクロLEDの発光波長算出式は、前記光エネルギ強度比測定値に対応する前記発光波長が前記ルックアップテーブルで参照され、中間値について按分補間を加算して前記発光波長が決定されるマイクロLED発光検査装置を提供する。この構成で、離散値以外の中間値に対しても発光波長が適当な精度で決定可能となる効果を与える。
Furthermore, in an additional aspect, the invention provides:
In the predetermined formula for calculating the emission wavelength of the micro LED, the emission wavelength corresponding to the light energy intensity ratio measurement value is referred to in the lookup table, and the emission wavelength is determined by adding proportional interpolation for the intermediate value. The present invention provides a micro LED emission testing device. This configuration provides the effect that the emission wavelength can be determined with appropriate accuracy even for intermediate values other than discrete values.

さらに、追加の態様で本発明は、
アレイ状に配列されることとなる検査対象のマイクロLEDアレイの設計条件と少なくとも所定の領域でほぼ同一数及び同一配置の反射体がアレイ状に表面に形成されたサブストレートと、
前記反射体の反射光のための光投射機構と、
前記光投射機構への光誘導機構と、
前記光投射光の既知の波長の光源と、
前記サブストレートに対向して光学レンズが配設されて前記発光の光強度を測定するためのイメージセンサを有する撮像装置と、
前記撮像装置の映像信号を受け入れるデジタル画像処理装置と、
前記反射体の反射光光路上に前記光学レンズと前記反射体との間に配設される、所定の光波長帯域を有するマイクロLED発光検査装置に用いる光学フィルタと、
前記光学フィルタを支持し、制御信号の受信部を含むフィルタ駆動機構と、及び
前記フィルタ駆動機構の制御信号の送信部及び、前記制御信号の生成のため及びシステムフロー開始とフロー制御をするための制御部を含む制御装置と、
を含むマイクロLED発光検査装置に用いる光学フィルタ検査装置であって、
前記光学フィルターは、設計条件に相当する色波長を含む所定の光波長帯域でフィルタ透過光強度が単調増加又は単調減少する光学フィルターであり、かつ
前記制御装置は、前記フィルタ駆動機構によって前記光学フィルターの有無を選択制御可能である制御装置であり、かつ
前記デジタル画像処理装置は前記映像信号を受入れて生成された画像データフレームを格納するためのメモリを備え、
前記反射体の前記反射光を前記マイクロLEDの前記発光とみなし、前記画像データフレーム上のピクセル毎の光強度ピクセルマップから所定のクライテリアに基づき前記発光の単位映像体を特定し、前記反射光の単位映像体をマイクロLEDの発光による単位映像体とみなし、前記ピクセルマップへの単位映像体マッピングデータを生成するための単位映像体識別部と、
前記単位映像体から複数の前記アレイ状に配列された前記反射体とみなされた前記マイクロLEDを特定し前記マイクロLEDを前記ピクセルマップ上にマッピングするマイクロLEDマッピングデータを生成するためのマイクロLED識別部と、及び
マイクロLEDマップ上の前記光強度マップ上の光強度から所定の光エネルギ強度算出式によって前記マイクロLEDの光エネルギ強度を決定し、前記マイクロLEDの光エネルギ強度のうち少なくとも前記光学フィルター無の配置における前記光エネルギ強度値を前記メモリに格納可能であり、前記光学フィルター有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルター無の配置の前記光エネルギ強度値とによって、所定の前記マイクロLEDの発光波長算出式によって前記反射光の光源とみなされた前記マイクロLEDの発光波長を決定するためのマイクロLED検査部とを、含む前記デジタル画像処理装置である、
ことを特徴とするマイクロLED発光検査装置に用いる光学フィルタ検査装置を提供する。この構成で、マイクロLEDと同じジオメトリ環境光学フィルタのキャリブレーションが可能となり、かつ未だ設計段階にあるときでも、マイクロLEDに模擬された検査対象光源として検査リハーサルも可能であるという効果を与える。
Furthermore, in an additional aspect, the invention provides:
A substrate on which reflectors are formed in an array in substantially the same number and in the same arrangement at least in a predetermined area as the design conditions of the micro LED array to be inspected to be arranged in an array;
a light projection mechanism for the reflected light of the reflector;
a light guiding mechanism to the light projection mechanism;
a light source with a known wavelength of the light projection light;
an imaging device having an image sensor with an optical lens disposed opposite to the substrate to measure the light intensity of the emitted light;
a digital image processing device that receives a video signal from the imaging device;
an optical filter used in a micro LED emission inspection device having a predetermined light wavelength band, disposed on the optical path of the reflected light of the reflector between the optical lens and the reflector;
a filter drive mechanism that supports the optical filter and includes a control signal receiver; a control signal transmitter of the filter drive mechanism; and a control signal transmitter for generating the control signal and for system flow initiation and flow control. a control device including a control unit;
An optical filter inspection device used for a micro LED emission inspection device comprising:
The optical filter is an optical filter in which the filter-transmitted light intensity monotonically increases or monotonically decreases in a predetermined optical wavelength band including a color wavelength corresponding to a design condition, and the control device controls the optical filter by the filter driving mechanism. a control device capable of selectively controlling the presence or absence of a digital image processing device, and the digital image processing device includes a memory for storing an image data frame generated by accepting the video signal,
The reflected light of the reflector is regarded as the light emission of the micro LED, and the unit image body of the light emission is specified based on predetermined criteria from the light intensity pixel map for each pixel on the image data frame, and the unit image of the light emission is a unit image object identification unit that regards the unit image object as a unit image object by light emission from a micro LED and generates unit image object mapping data to the pixel map;
micro-LED identification for generating micro-LED mapping data for identifying the plurality of micro-LEDs that are considered to be the reflectors arranged in the array form from the unit image object and mapping the micro-LEDs on the pixel map; and determining the light energy intensity of the micro LED from the light intensity on the light intensity map on the micro LED map using a predetermined light energy intensity calculation formula, and determining the light energy intensity of the micro LED from the light intensity on the light intensity map, and determining the light energy intensity of the micro LED from the light intensity on the light intensity map, and determining the light energy intensity of the micro LED from the light intensity on the light intensity map, The light energy intensity value of the micro-LED in the arrangement without the optical filter can be stored in the memory, and the light energy intensity value of the micro-LED in the arrangement with the optical filter and the light energy intensity value in the arrangement without the optical filter can be stored in the memory. , a micro-LED inspection unit for determining the emission wavelength of the micro-LED that is regarded as the light source of the reflected light according to a predetermined equation for calculating the emission wavelength of the micro-LED;
An optical filter inspection device for use in a micro LED emission inspection device is provided. With this configuration, it is possible to calibrate the environmental optical filter having the same geometry as the micro LED, and even when it is still in the design stage, it has the effect that it is possible to perform an inspection rehearsal as a light source to be inspected simulated by the micro LED.

さらに、追加の態様で本発明は、
前段に記載の反射体の反射光のための光投射機構は、前記反射体の反射光光路上に前記光学レンズと前記反射体との間に配設されたハーフミラーを含むマイクロLED発光検査装置に用いる光学フィルタ検査装置を提供する。この構成で、より省スペースの装置が提供されるという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
The light projection mechanism for the reflected light of the reflector described in the previous stage is a micro LED emission inspection device including a half mirror disposed between the optical lens and the reflector on the optical path of the reflected light of the reflector. Provides an optical filter inspection device used for. This configuration has the effect of providing a more space-saving device.

さらに、追加の態様で本発明は、
前記光誘導機構は光ファイバケーブルを含む前段までに記載のマイクロLED発光検査装置に用いる前段までに記載の光学フィルタ検査装置を提供する。この構成で、部品配置に自由度が得られ、光源の廃熱を考慮可能でもあり、より省スペースに貢献するという効果が得られる。
Furthermore, in an additional aspect the invention provides:
The light guide mechanism provides the optical filter inspection device described above for use in the micro LED emission inspection device described above, which includes an optical fiber cable. With this configuration, a degree of freedom is obtained in the arrangement of components, and waste heat from the light source can be taken into consideration, resulting in the effect of further contributing to space saving.

さらに、追加の態様で本発明は、
前記光学フィルターは前記光学フィルター無の配置における前記光エネルギ強度値と前記光学フィルター有の配置における前記光エネルギ強度値との比と前記発光波長との関係に関して前記キャリブレーションをもとにされたルックアップテーブルが作成される前段までに記載のマイクロLED発光検査装置に用いる光学フィルタ検査装置を提供する。この構成で、ルックアップテーブルによって一つの関数で表現されない目的値をサンプリング値によって決定できるという効果が得られる。さらに、追加の態様で本発明は、
前記所定の前記マイクロLEDの発光波長算出式は、前記光学フィルター無の配置における前記光エネルギ強度値と前記光学フィルター有の配置における前記光エネルギ強度値との比と前記発光波長との関係を前記キャリブレーションによって作成されたルックアップテーブルを前記デジタル画像処理装置内に含み、前記光エネルギ強度比測定値に対応する前記発光波長が前記ルックアップテーブルが参照され、中間値について按分補間を加算して前記発光波長が決定されるマイクロLED発光検査装置に用いる光学フィルタ検査装置を提供する。この構成で、サンプリング値から外れた変数値でも目的値が適切な精度で決定できるという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
The optical filter has a look based on the calibration regarding the relationship between the light emission wavelength and the ratio of the light energy intensity value in the arrangement without the optical filter and the light energy intensity value in the arrangement with the optical filter. An optical filter inspection device used in the micro LED emission inspection device described up to the stage before an up-table is created is provided. This configuration provides the effect that a target value that cannot be expressed by a single function using a lookup table can be determined using sampled values. Furthermore, in an additional aspect, the invention provides:
The predetermined formula for calculating the emission wavelength of the micro LED is based on the relationship between the light emission wavelength and the ratio of the light energy intensity value in the arrangement without the optical filter to the light energy intensity value in the arrangement with the optical filter. A look-up table created by calibration is included in the digital image processing device, and the look-up table is referenced to determine the emission wavelength corresponding to the light energy intensity ratio measurement value, and proportional interpolation is added for intermediate values. An optical filter inspection device for use in a micro LED emission inspection device in which the emission wavelength is determined is provided. With this configuration, it is possible to obtain the effect that the target value can be determined with appropriate accuracy even if the variable value deviates from the sampling value.

さらに、追加の態様で本発明は、
前段までに記載のマイクロLED発光検査装置に用いる光学フィルタ検査装置を含むマイクロLED発光検査装置を提供する。この構成で、前段までに記載のマイクロLED発光検査装置に用いる光学フィルタ検査装置は、前段までに記載のマイクロLED発光検査装置と一体運用が可能であるという装置の配置省スペースの効果と装置の製造管理スケジューリングに便宜であるという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
A micro LED emission inspection device is provided that includes an optical filter inspection device used in the micro LED emission inspection device described above. With this configuration, the optical filter inspection device used in the micro LED emission inspection device described up to the previous section can be operated integrally with the micro LED emission inspection device described up to the previous section, which has the effect of saving space in the device arrangement and the ability to The advantage is that it is convenient for manufacturing management and scheduling.

さらに、追加の態様で本発明は、
前記デジタル画像処理装置は、永続的ストレッジへの接続インターフェースをさらに含み、前記フィルタ特性及び前記ルックアップテーブルはマスターデータとして永続的ストレッジから受入れ可能であり、前記デジタル画像処理装置内の前記メモリに格納されるマイクロLED発光検査装置を提供する。この構成で、ルックアップテーブルが外部から提供可能となり、複数の機器でも共用可能となるという効果も得られる。
Furthermore, in an additional aspect the invention provides:
The digital image processing device further includes a connection interface to persistent storage, the filter characteristics and the lookup table being receivable as master data from the persistent storage and stored in the memory within the digital image processing device. The present invention provides a micro LED luminescence testing device. With this configuration, the lookup table can be provided from the outside and can also be shared by multiple devices.

さらに、追加の態様で本発明は、
前記デジタル画像処理装置は、前記撮像装置の光学的視野内に前記フィルタ特性のキャリブレーションのための既知の発光波長の光を参照光として配設可能であるマイクロLED発光検査装置を提供する。この構成で、二つの測定の相対比値のみならず参照光を基準とする測定が可能になり、より検査環境条件から生ずる擾乱を回避可能とするという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
The digital image processing device provides a micro LED emission inspection device in which light with a known emission wavelength for calibrating the filter characteristics can be placed as a reference light within the optical field of the imaging device. With this configuration, it is possible to perform measurements based on not only the relative ratio value of two measurements but also the reference light, and it is possible to achieve the effect that disturbances caused by inspection environmental conditions can be avoided.

さらに、追加の態様で本発明は、
前記マイクロLED発光検査装置は、前記参照発光体の光強度モニタリングのための光センサをさらに備え、前記画像処理装置は、前記光センサの信号出力を受入れ、前記光センサの光強度モニタ値によって正規化された前記参照発光体の段階的光強度を用い前記キャリブレーションを補正可能に構成された前記画像処理装置であるマイクロLED発光検査装置を提供する。この構成で、二つの測定の相対比値のならず、より絶対的な測定が可能になり、輝度の把握も可能となるという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
The micro LED luminescence inspection device further includes a light sensor for monitoring the light intensity of the reference light emitter, and the image processing device receives the signal output of the light sensor and performs normalization according to the light intensity monitor value of the light sensor. The present invention provides a micro LED light emission inspection device that is the image processing device configured to be able to correct the calibration using the stepwise light intensity of the reference light emitter that has been quantized. With this configuration, it is possible to perform a more absolute measurement instead of a relative ratio value between two measurements, and it is possible to obtain an effect that it is also possible to grasp the luminance.

さらに、追加の態様で本発明は、
前記マイクロLED発光検査装置の前記制御装置は、前記フィルタ駆動機構で生成されるステータス信号の受信部をさらに含み、前記制御装置の前記制御部は前記フィルタ駆動機構に対して前記フィルタ無の選択を指示する制御信号を生成し、これを前記フィルタ駆動機構に送信可能であり、かつ前記制御装置は前記画像処理装置に対して前記光学フィルター無の配置における前記光エネルギ強度値の測定開始を指示する制御信号を生成し、これを制御信号送信部を介し前記画像処理装置へ送信可能であり、
前記制御装置の前記制御部は、前記ステータス信号を前記フィルタ駆動機構から受信後又は検査開始の指示を受け入れると、引き続いて前記画像処理装置へ前記光学フィルター無の配置における前記光エネルギ強度値の測定開始を指示する制御信号を生成し、これを制御信号送信部を介し前記画像処理装置へ送信し、前記画像処理装置は、マイクロLEDマッピングデータ上で異常値を示すマイクロLEDをマイクロLED不良品と識別し、マイクロLED製品から除外するための不良品フラグデータを保持するマイクロLED不良品判定部を有するマイクロLED発光検査装置を提供する。この構成で、マイクロLEDのウェハ上の相対的な評価によって異常値を早期に画像データフレームからの一括処理時に判定可能であるし、特にウェハ境界域の把握に便宜であり、画像データフレームからの一括処理に有用であるという効果も得られる。
Furthermore, in an additional aspect the invention provides:
The control device of the micro LED emission inspection device further includes a reception unit for a status signal generated by the filter drive mechanism, and the control unit of the control device instructs the filter drive mechanism to select the filter-free state. The control device can generate a control signal to instruct the filter drive mechanism, and the control device instructs the image processing device to start measuring the light energy intensity value in the arrangement without the optical filter. It is possible to generate a control signal and transmit it to the image processing device via a control signal transmitter,
After receiving the status signal from the filter drive mechanism or accepting an instruction to start an inspection, the control unit of the control device subsequently causes the image processing device to measure the light energy intensity value in the arrangement without the optical filter. A control signal instructing the start is generated and transmitted to the image processing device via the control signal transmission unit, and the image processing device determines that the micro LED showing an abnormal value on the micro LED mapping data is a defective micro LED. Provided is a micro LED light emission inspection device having a micro LED defective product determination section that holds defective product flag data for identifying and excluding micro LED products. With this configuration, abnormal values can be determined early during batch processing from image data frames by relative evaluation of micro LEDs on the wafer, and it is particularly convenient for understanding wafer boundary areas, and It also has the effect of being useful for batch processing.

さらに、追加の態様で本発明は、
前記マイクロLED発光検査装置の前記デジタル画像処理装置は、前記マイクロLEDの配列設計データ入力のための外部接続路及びデータ入力部を含み、前記外部接続路を介して前記データ入力部から前記アレイ状に配列されたマイクロLEDの配列設計データを受入れ、前記デジタル画像処理装置内の前記メモリへ、前記アレイ状に配列されたマイクロLEDの配列設計データが格納され、前記マイクロLED不良品データと前記マイクロLEDの配列設計データとを照合し、正常マイクロLEDの配列の端部を認識しこれをもって前記マイクロLEDマップを更新するマイクロLEDマップ境界判定部を含むマイクロLED発光検査装置を提供する。この構成で、マイクロLED不良品データがマイクロLEDの配列設計データに有機的に結合され、より検査効率、検査品質の向上に寄与するという効果が得られる。
Furthermore, in an additional aspect the invention provides:
The digital image processing device of the micro LED emission inspection device includes an external connection path and a data input section for inputting array design data of the micro LEDs, and the data input section is configured to input the array design data from the data input section via the external connection path. The array design data of the micro LEDs arranged in the array is accepted, and the array design data of the micro LEDs arranged in the array is stored in the memory in the digital image processing device. A micro LED light emission inspection device is provided, which includes a micro LED map boundary determination unit that compares LED array design data, recognizes the end of a normal micro LED array, and updates the micro LED map based on this. With this configuration, the micro-LED defective product data is organically combined with the micro-LED array design data, and the effect of contributing to further improvement of inspection efficiency and inspection quality can be obtained.

さらに、追加の態様で本発明は、
所定の光エネルギ強度特性及び所定の前記発光波長特性によって定められた所定の範疇に前記マイクロLEDを割り当てることを特徴とするマイクロLED発光検査装置を提供する。画像データフレームの一つ一つのデータを有効に活用できるという本発明に係るマイクロLED発光検査装置の本領が発揮される。
Furthermore, in an additional aspect the invention provides:
The present invention provides a micro LED emission testing device characterized in that the micro LED is assigned to a predetermined category defined by a predetermined light energy intensity characteristic and a predetermined emission wavelength characteristic. The true power of the micro LED emission inspection device according to the present invention is demonstrated in that it can effectively utilize each piece of data in the image data frame.

さらに、追加の態様で本発明は、
本発明に係るマイクロLED発光検査装置は、前記光路の光軸に対する前記光学フィルタの傾斜を制御するための傾斜角制御信号の受信部を含むフィルタ光軸傾斜角駆動機構をさらに備え、前記所定の光波長帯域を有する光学フィルタは、所定の波長範囲の中心値よりも長い波長をフィルター透過率の半値として作成された誘電体薄膜光学フィルターを用い、前記光軸方向に対して前記光学フィルターの前記傾斜角を前記所定の波長範囲の中心値にフィルター透過率の半値を調整可能と構成されることを特徴とするマイクロLED発光検査装置を提供する。この構成で、誘電体薄膜光学フィルターの傾斜を自動運転可能に構成され、フィルターを所望の透過光特性をもたせて使用できるという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
The micro LED emission inspection device according to the present invention further includes a filter optical axis tilt angle drive mechanism including a receiver for a tilt angle control signal for controlling the tilt of the optical filter with respect to the optical axis of the optical path, and An optical filter having an optical wavelength band uses a dielectric thin film optical filter created with a wavelength longer than the center value of a predetermined wavelength range as half the value of the filter transmittance. The present invention provides a micro LED emission testing device characterized in that the half value of the filter transmittance can be adjusted by adjusting the tilt angle to the center value of the predetermined wavelength range. With this configuration, the inclination of the dielectric thin film optical filter can be automatically operated, and the filter can be used with desired transmitted light characteristics.

さらに、追加の態様で本発明は、
本発明に係るマイクロLED発光検査装置の制御装置の制御部はフィルタ駆動機構に対して所定の波長範囲の中心値よりも長い波長をフィルター透過率の半値として作成された薄膜光学フィルターの選択を指示する制御信号を生成し、前記フィルタ駆動機構及び前記フィルタ光軸傾斜角駆動機構と前記制御装置とは第1の通信ネットワークを介して双方向通信可能に構成され、
前記制御装置と前記画像処理装置との間とは第2の通信ネットワークを介して双方向通信可能に構成され、
前記制御装置は前記画像処理装置から第2の通信ネットワークを介して所定の前記単位映像体の前記光強度を取得可能に構成され、かつ前記制御装置の制御部は前記傾斜角制御信号を生成可能であり前記第1の通信ネットワークを介してこれを前記フィルタ光軸傾斜角駆動機構へ送信可能に構成されており、前記光軸方向に対して前記光学フィルターの前記傾斜角が前記所定の波長範囲の中心値にフィルター透過率の半値との差異が所定のしきい値内に収まるように前記傾斜角が構成されることを特徴とする前段に記載のマイクロLED発光検査装置を提供する。この構成は、より詳細に自動運転の手段を構成しており所望の精度で光フィルタをチューニング可能であり、検査精度の向上に貢献するという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
The control unit of the control device of the micro LED emission testing device according to the present invention instructs the filter drive mechanism to select a thin film optical filter created by setting the wavelength longer than the center value of a predetermined wavelength range to half the filter transmittance. the filter drive mechanism, the filter optical axis tilt angle drive mechanism, and the control device are configured to be able to communicate bidirectionally via a first communication network;
Bidirectional communication is possible between the control device and the image processing device via a second communication network,
The control device is configured to be able to obtain the light intensity of the predetermined unit image object from the image processing device via a second communication network, and the control unit of the control device is capable of generating the tilt angle control signal. and is configured to be able to transmit this to the filter optical axis inclination angle driving mechanism via the first communication network, and the inclination angle of the optical filter with respect to the optical axis direction is within the predetermined wavelength range. The present invention provides the micro LED emission inspection device described in the preceding paragraph, wherein the tilt angle is configured such that the difference between the center value of the filter transmittance and the half value of the filter transmittance falls within a predetermined threshold value. This configuration constitutes a means for automatic operation in more detail, and the optical filter can be tuned with desired accuracy, contributing to an improvement in inspection accuracy.

さらに、追加の態様で本発明は、
前記光強度ピクセルマップは、隣接するピクセル間は移動平均によって前記段階的光強度の平滑処理がなされるマイクロLED発光検査装置を提供する。この構成で、ピクセル間に現出される検査時の様々な擾乱、ノイズの影響を緩和するという効果が得られる。
Furthermore, in an additional aspect the invention provides:
The light intensity pixel map provides a micro LED emission inspection apparatus in which the stepwise light intensity is smoothed by moving average between adjacent pixels. This configuration has the effect of alleviating the effects of various disturbances and noises that appear between pixels during inspection.

さらに、追加の態様で本発明は、
前記マイクロLED上に重畳された前記マイクロLEDの発光波長は、隣接するマイクロLED間について移動平均によって前記光波長の平滑処理がなされるマイクロLED発光検査装置を提供する。この構成で、マイクロLED間に現出される検査時の様々な擾乱、ノイズの影響を緩和可能であるという効果が得られる。
Furthermore, in an additional aspect the invention provides:
The light emission wavelength of the micro LED superimposed on the micro LED is smoothed by a moving average between adjacent micro LEDs, thereby providing a micro LED emission testing device. With this configuration, it is possible to reduce the effects of various disturbances and noises that appear between the micro LEDs during inspection.

さらに、追加の態様で本発明は、
本発明に係るマイクロLED発光検査装置は、光路の光軸に対する前記イメージセンサ傾斜角を制御するためのイメージセンサ傾斜角制御信号の受信部を含むイメージセンサ傾斜角駆動機構及び合焦のためのアクチュエータを前記撮像部はさらに備え、かつ前記制御装置と前記画像処理装置とは各々の通信部を介して通信可能に構成され、かつ前記制御装置の制御部は前記イメージセンサ傾斜角制御信号を生成可能であり前記通信部を介してこれを前記イメージセンサ傾斜角駆動機構へ送信可能に構成されており、
前記制御装置は前記通信部を介して前記画像処理装置から取得された前記光強度ピクセルマップにおいて、所定のコントラストで前記光強度ピクセルマップの光強度を調整し、調整後の段階的光強度によって合焦するように前記イメージセンサ光軸傾斜角駆動機構及び前記アクチュエータを駆動することを特徴とするマイクロLED発光検査装置を提供する。
Furthermore, in an additional aspect, the invention provides:
The micro LED emission inspection device according to the present invention includes an image sensor tilt angle drive mechanism including a receiver for an image sensor tilt angle control signal for controlling the image sensor tilt angle with respect to the optical axis of an optical path, and an actuator for focusing. The imaging unit further includes, and the control device and the image processing device are configured to be able to communicate via respective communication units, and the control unit of the control device is capable of generating the image sensor tilt angle control signal. and is configured to be able to transmit this to the image sensor tilt angle drive mechanism via the communication unit,
The control device adjusts the light intensity of the light intensity pixel map at a predetermined contrast in the light intensity pixel map acquired from the image processing device via the communication unit, and combines the light intensity according to the adjusted stepwise light intensity. The present invention provides a micro LED emission testing device characterized in that the image sensor optical axis inclination angle drive mechanism and the actuator are driven to focus the image sensor.

この構成で、合焦のためのアクチュエータによって焦点を合わせるのみならず、イメージセンサ傾斜によっても焦点の精度をより精度よく調整可能となるという効果が得られる。With this configuration, it is possible to achieve the effect that the accuracy of the focus can be adjusted not only by the focusing actuator but also by tilting the image sensor with higher precision.

さらに、追加の態様で本発明は、
本発明に係るマイクロLED発光検査装置の画像処理装置は、映像表示装置をさらに備え、複数のマイクロLEDの前記光強度特性と前記発光波長の二次元マップを生成し、前記映像表示装置に表示することを特徴とするマイクロLED発光検査装置を提供する。この構成で、マイクロLEDの光特性で重要なパラメータを選び、強度光強度特性と前記発光波長の二次元マップを視認可能とする。実施形態によっては顕微鏡での視認に代えて、又はこれと合わせてウェハと重畳表示させられるという効果も得られる。
Furthermore, in an additional aspect, the invention provides:
The image processing device of the micro LED emission inspection device according to the present invention further includes an image display device, and generates a two-dimensional map of the light intensity characteristics and the emission wavelengths of a plurality of micro LEDs, and displays the generated two-dimensional map on the image display device. Provided is a micro LED emission testing device characterized by the following. With this configuration, important parameters in the optical characteristics of the micro LED are selected, and a two-dimensional map of the intensity light intensity characteristics and the emission wavelength can be visually recognized. Depending on the embodiment, the effect of superimposing the display on the wafer in place of or in conjunction with visual confirmation using a microscope can also be obtained.

さらに、追加の態様で本発明は、
本発明に係るマイクロLED発光検査装置は、さらに、前記制御部は、当該マイクロLED発光検査装置の制御のためのCPU及びメモリを備え、かつ前記フィルタ駆動機構と前記制御装置との間は伝送路を介して通信可能と構成され、かつ前記制御装置と前記画像処理装置との間は通信路を介して双方向通信可能と構成され、
前記制御部の処理の開始とともに前記給電機構によってマイクロLEDを点灯するマイクロLED点灯ステップと、及び
引続き前記光フィルタが前記光路に存在しないステータスを選択する信号を前記制御部が生成し、さらに前記伝送路を介して前記信号を前記フィルタ駆動機構へ送信した後に、前記制御部は直ちに最初の撮像の開始指示通知待ちとなる最初のフィルタ移動指示ステップと、を実行するモジュールを前記制御部は含み、
前記フィルタ駆動機構は前記フィルタ駆動機構と前記制御装置の間の伝送路を介して前記光フィルタが前記光路に存在しないステータスを選択する信号を受入れ、前記光学フィルタを光路から外す最初のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構は含み、
前記制御部は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、前記制御部は前記第1の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記発光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにマイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し対応する前記マイクロLEDを前記ピクセルマップ上にマッピングし前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルター無の配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリに格納するフィルタ無し光強度を測定するステップと、を実行するモジュールを前記画像処理装置は含み、
前記第2のフィルタ移動指示待ちとなっている前記制御部は、第2のフィルタ移動指示を受け入れると、当該指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ当該信号を送信し、後に第2の撮像開始指示待ちとなる第2のフィルタ移動指示ステップを実行するモジュールを前記制御部はさらに含み、
前記フィルタ駆動機構は前記伝送路を介して前記光学フィルタを光路に配設する信号を前記制御部から受入れ、前記光学フィルタを光路に配設する第2のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構はさらに含み、
前記制御部は、前記第2のフィルタ移動指示ステップの最終処理である第2の撮像開始指示待ちで前記第2の撮像の開始指示通知を受け入れると、前記第2の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第2の撮像の開始指示信号を送信する、第2の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第2の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第2の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記発光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにマイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し対応する前記マイクロLEDを前記ピクセルマップ上にマッピングし前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルター有りの配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記マイクロLEDの前記光学フィルター有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルター無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルター有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルター無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
これに引き続き、前記マイクロLED検査部において、所定の前記マイクロLEDの発光波長算出式によって前記マイクロLEDの発光波長を決定する発光波長計算ステップと、及び
前記マイクロLED検査データ出力のための外部接続路及びデータ出力部を含み、前記発光波長データを前記デジタル画像処理装置内の前記メモリを介して、前記データ出力部から外部接続路に出力するマイクロLED発光波長データ出力ステップと、を実行するモジュールを前記画像処理装置はさらに含むマイクロLED発光検査装置を提供する。この構成で、マイクロLED発光検査装置の自動又は半自動の検査制御を実現可能となり、より高速に検査を実行できるという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
In the micro LED emission testing device according to the present invention, the control unit further includes a CPU and a memory for controlling the micro LED emission testing device, and a transmission line is provided between the filter drive mechanism and the control device. The control device and the image processing device are configured to be able to communicate via a communication path, and the control device and the image processing device are configured to be able to communicate bidirectionally via a communication path.
a micro-LED lighting step of lighting the micro-LED by the power supply mechanism at the start of the processing of the control section, and subsequently, the control section generates a signal to select a status in which the optical filter is not present in the optical path, and further the transmission The control unit includes a module that executes an initial filter movement instruction step in which the control unit immediately waits for notification of a first imaging start instruction after transmitting the signal to the filter drive mechanism via a path,
The filter driving mechanism receives a signal for selecting a status in which the optical filter is not present in the optical path via a transmission path between the filter driving mechanism and the control device, and a first filter movement step of removing the optical filter from the optical path is performed. The filter drive mechanism includes a module that performs
When the control unit accepts the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit executes the first imaging start instruction. After generating a signal and transmitting the first imaging start instruction signal to the image processing device via the communication path, immediately execute a first imaging start instruction step of waiting for a second filter movement instruction. The control unit further includes a module that
When the image processing device receives the first imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and receives the video signal on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the pixel map, and storing this in the memory in the image processing device;
Subsequently, the unit image object identifying section identifies the light emitting unit image object from the light intensity pixel map based on the predetermined criteria, further generates unit image object mapping data to the pixel map, and is stored in the memory in the image processing device, and a micro-LED identification section identifies a plurality of micro-LEDs arranged in the array from the unit image object and places the corresponding micro-LEDs on the pixel map. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. determining the intensity and storing the light energy intensity value for the optically filterless arrangement of the micro-LEDs in the memory in the image processing device; processing equipment includes;
When the control unit, which is waiting for the second filter movement instruction, receives the second filter movement instruction, it generates a signal for arranging the optical filter on the optical path based on the instruction, and moves the optical filter through the transmission path. The control unit further includes a module that transmits the signal to the filter drive mechanism and executes a second filter movement instruction step that will later wait for a second imaging start instruction,
The filter drive mechanism receives a signal from the control unit to arrange the optical filter in the optical path via the transmission path, and moves the module to execute a second filter movement step to arrange the optical filter in the optical path. The drive mechanism further includes;
When the control unit receives the second imaging start instruction notification while waiting for the second imaging start instruction, which is the final process of the second filter movement instruction step, the control unit generates the second imaging start instruction signal. The control unit further includes a module that executes a second imaging start instruction step of transmitting a second imaging start instruction signal to the image processing device via the communication path,
When the image processing device receives the second imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and inputs the image data measured at each pixel into a pixel map on the image data frame. a second imaging step of generating the light intensity pixel map on which graded light intensities are superimposed and storing it in the memory in the image processing device;
Subsequently, the unit image object identifying section identifies the light emitting unit image object from the light intensity pixel map based on the predetermined criteria, further generates unit image object mapping data to the pixel map, and is stored in the memory in the image processing device, and a micro-LED identification section identifies a plurality of micro-LEDs arranged in the array from the unit image object and places the corresponding micro-LEDs on the pixel map. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. determining the intensity and measuring the filtered light intensity to be stored in the memory in the image processing device as the light energy intensity value in the optically filtered arrangement of the micro LED;
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device. The light energy intensity value of the micro LED in the arrangement is read from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter and the light energy intensity value of the micro LED in the arrangement without the optical filter are read. calculating the ratio of the unfiltered light intensity to the filtered light intensity by;
Subsequently, in the micro LED inspection section, a light emission wavelength calculation step of determining the light emission wavelength of the micro LED according to a predetermined light emission wavelength calculation formula of the micro LED, and an external connection path for outputting the micro LED test data. and a data output section, and a module that executes a micro LED emission wavelength data output step of outputting the emission wavelength data from the data output section to an external connection path via the memory in the digital image processing device. The image processing device further provides a micro LED emission testing device. With this configuration, it is possible to realize automatic or semi-automatic inspection control of the micro LED emission inspection device, and it is possible to achieve the effect that inspection can be executed at higher speed.

さらに、追加の態様で本発明は、
本発明に係るマイクロLED発光検査装置の光源は、光波長の可変機構を備える既知の光波長の波長光源であり、前記マイクロLED発光検査装置は、さらに前記制御部に当該マイクロLED発光検査装置の制御のためのCPU及びメモリを備え、かつ前記フィルタ駆動機構と前記制御装置との間で伝送路を介して通信可能と構成され、かつ前記制御装置と前記画像処理装置との間で通信路を介して双方向通信可能と構成され、かつ
前記制御部が処理の開始とともに前記可変機構によって前記光源の光波長の設定値を初期値に更新する、光波長初期化ステップと、
前記可変機構によって前記光源の光波長を更新し、前記給電機構によって更新後の前記既知の光波長の波長光源を点灯するキャリブレーション光源点灯ステップと、及び
引続き前記光フィルタが前記光路に存在しないステータスを選択する信号を前記制御部が生成し、さらに前記伝送路を介して前記信号を前記フィルタ駆動機構へ送信した後に、前記制御部は直ちに最初の撮像の開始指示通知待ちとなる最初のフィルタ移動指示ステップと、を実行するモジュールを前記制御部は含み、
前記フィルタ駆動機構は前記フィルタ駆動機構と前記制御装置の間の伝送路を介して前記光フィルタが前記光路に存在しないステータスを選択する信号を受入れ、前記光学フィルタを光路から外す最初のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構は含み、
前記制御部は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、前記制御部は前記第1の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記キャリブレーション光源光をマイクロLEDの発光とみなし、前記キャリブレーション光源光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにキャリブレーション光源マッピングを前記マイクロLEDマッピングとみなし、前記マイクロLED識別部において、前記単位映像体から前記キャリブレーション光源マッピングとみなされた前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの発光とみなされたキャリブレーション光源の前記光学フィルター無の配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタなし光強度を測定するステップと、を実行するモジュールを前記画像処理装置は含み、
前記第2のフィルタ移動指示待ちとなっている前記制御部は、第2のフィルタ移動指示を受け入れると、当該指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ当該信号を送信し、後に第2の撮像開始指示待ちとなる第2のフィルタ移動指示ステップを実行するモジュールを前記制御部はさらに含み、
これに引き続き、第2の撮像の開始指示通知待ちとなっている前記制御部は、第2の撮像の開始指示を受け入れると、前記開始指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ送信し、後に他の処理待ちとなる第2のフィルタ移動指示ステップと、
前記フィルタ駆動機構は前記伝送路を介して前記光学フィルタを光路に配設する信号を前記制御部から受入れ、前記光学フィルタを光路に配設する第2のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構はさらに含み、
前記制御部は、前記第2のフィルタ移動指示ステップの最終処理である第2の撮像開始指示待ちで前記第2の撮像の開始指示通知を受け入れると、前記第2の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第2の撮像の開始指示信号を送信する、第2の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第2の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第2の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記キャリブレーション光源光をマイクロLEDの発光とみなし、前記キャリブレーション光源光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに、前記マイクロLED識別部において、前記単位映像体から前記キャリブレーション光源マッピングとみなされた前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの発光とみなされたキャリブレーション光源の前記光学フィルター有りの配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記キャリブレーション光源としての前記マイクロLEDの前記光学フィルター有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルター無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルター有の配置における前記キャリブレーション光源の前記光エネルギ強度値と、前記光学フィルター無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
引き続き、前記マイクロLED検査部において、前記既知の光源波長と前記光強度の比を前記メモリに格納するステップと、
前記光源の光波長の設定値を所定の増分値で更新する光源波長更新ステップと、
前記更新後の前記光源の光波長が所定の境界値を超えるか否かをチェックし、NOの場合には、キャリブレーション光源点灯ステップへ戻り、YESの場合には、ルックアップテーブル作成ステップへ進む、繰り返し判定ステップと、及び、
前記繰り返しで前記メモリに格納された複数の前記波長と前記光強度の比の組からルックアップテーブルを作成し、これを前記メモリに格納するルックアップテーブル作成ステップと、を実行するモジュールを含むマイクロLED発光検査装置を提供する。この構成で、ルックアップテーブルの自動又は半自動の作成が可能であり、ルックアップテーブル更新頻度を高めより正確な検査が可能であるいう効果や製造ラインに本装置が組み込まれた場合にルックアップテーブルの保守によるラインのダウンタイムをより短くすることが可能であるいう効果が得られる。
Furthermore, in an additional aspect, the invention provides:
The light source of the micro LED emission testing device according to the present invention is a light source with a known wavelength of light that is equipped with a light wavelength variable mechanism, and the micro LED emission testing device further has a control unit that controls the micro LED emission testing device. The filter drive mechanism includes a CPU and a memory for control, and is configured to be able to communicate between the filter drive mechanism and the control device via a transmission path, and a communication path is provided between the control device and the image processing device. an optical wavelength initialization step, in which the control unit is configured to enable bidirectional communication via the light source, and the control unit updates a set value of the optical wavelength of the light source to an initial value by the variable mechanism at the start of processing;
a calibration light source lighting step of updating the light wavelength of the light source by the variable mechanism and lighting the wavelength light source of the updated known light wavelength by the power feeding mechanism; and a subsequent status in which the optical filter is not present in the optical path. After the control unit generates a signal for selecting the first filter and further transmits the signal to the filter drive mechanism via the transmission path, the control unit immediately waits for notification of an instruction to start the first imaging. The control unit includes a module that executes the instruction step;
The filter driving mechanism receives a signal for selecting a status in which the optical filter is not present in the optical path via a transmission path between the filter driving mechanism and the control device, and a first filter movement step of removing the optical filter from the optical path is performed. The filter drive mechanism includes a module that performs
When the control unit accepts the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit executes the first imaging start instruction. After generating a signal and transmitting the first imaging start instruction signal to the image processing device via the communication path, immediately execute a first imaging start instruction step of waiting for a second filter movement instruction. The control unit further includes a module for
When the image processing device receives the first imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and receives the video signal on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the pixel map, and storing this in the memory in the image processing device;
Subsequently, in the unit image object identification section, the calibration light source light is regarded as light emission from a micro LED from the light intensity pixel map, and the unit image object of the calibration light source light is identified based on the predetermined criteria; Further, unit image object mapping data to the pixel map is generated and stored in the memory in the image processing device, furthermore, the calibration light source mapping is regarded as the micro LED mapping, and the micro LED identification unit generates the The micro LED mapping data, which is regarded as the calibration light source mapping, is generated from the unit image object, and stored in the memory, and the predetermined light energy is calculated from the light intensity on the light intensity map on the micro LED map. The light energy intensity of the micro LED is determined by the intensity calculation formula, and the light energy intensity value in the arrangement without the optical filter of the calibration light source, which is considered to be light emission from the micro LED, is stored in the memory in the image processing device. The image processing device includes a module that performs the steps of: measuring unfiltered light intensity stored in the image processing apparatus;
When the control unit, which is waiting for the second filter movement instruction, receives the second filter movement instruction, it generates a signal for arranging the optical filter on the optical path based on the instruction, and moves the optical filter through the transmission path. The control unit further includes a module that transmits the signal to the filter drive mechanism and executes a second filter movement instruction step that will later wait for a second imaging start instruction,
Subsequently, upon receiving the second imaging start instruction, the control unit, which is waiting for notification of a second imaging start instruction, generates a signal for arranging the optical filter in the optical path based on the start instruction. a second filter movement instruction step, which is transmitted to the filter drive mechanism via the transmission path and is later placed on standby for other processing;
The filter drive mechanism receives a signal from the control unit to arrange the optical filter in the optical path via the transmission path, and moves the module to execute a second filter movement step to arrange the optical filter in the optical path. The drive mechanism further includes;
When the control unit receives the second imaging start instruction notification while waiting for the second imaging start instruction, which is the final process of the second filter movement instruction step, the control unit generates the second imaging start instruction signal. The control unit further includes a module that executes a second imaging start instruction step of transmitting a second imaging start instruction signal to the image processing device via the communication path,
When the image processing device receives the second imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and inputs the image data measured at each pixel into a pixel map on the image data frame. a second imaging step of generating the light intensity pixel map on which graded light intensities are superimposed and storing it in the memory in the image processing device;
Subsequently, in the unit image object identification section, the calibration light source light is regarded as light emission from a micro LED from the light intensity pixel map, and the unit image object of the calibration light source light is identified based on the predetermined criteria; Further, unit image object mapping data to the pixel map is generated and stored in the memory in the image processing device, and further, in the micro LED identification section, the unit image object is regarded as the calibration light source mapping data. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. determining the intensity and measuring the filtered light intensity to be stored in the memory in the image processing device as the light energy intensity value in the optical filtered arrangement of the calibration light source that is considered to be the light emission of the micro LED; and,
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED as the calibration light source in the arrangement with the optical filter is read out from the memory in the image processing device, and the light energy intensity value is read out from the memory in the image processing device, and the light energy intensity value is read out from the memory in the image processing device. The light energy intensity value in the arrangement without the optical filter is read from the memory in the image processing device, and the light energy intensity value of the calibration light source in the arrangement with the optical filter and the arrangement without the optical filter are read out from the memory in the image processing device. calculating a ratio of unfiltered light intensity to filtered light intensity according to the light energy intensity value of
Subsequently, in the micro LED inspection section, storing the ratio of the known light source wavelength and the light intensity in the memory;
a light source wavelength updating step of updating a set value of the light wavelength of the light source by a predetermined increment value;
Check whether the light wavelength of the light source after the update exceeds a predetermined boundary value, and if NO, return to the calibration light source lighting step; if YES, proceed to the lookup table creation step. , an iterative determination step, and
a look-up table creation step of creating a look-up table from a plurality of sets of ratios of the wavelengths and the light intensity stored in the memory in the repetition, and storing the look-up table in the memory; Provides an LED emission testing device. With this configuration, it is possible to automatically or semi-automatically create a lookup table, which has the effect of increasing the lookup table update frequency and enabling more accurate inspection. The effect is that line downtime due to maintenance can be further shortened.

さらに、追加の態様で本発明は、
本発明に係るマイクロLED発光検査装置に用いる光学フィルタのための光学フィルタ検査装置は、さらに前記制御部に当該光学フィルタ検査装置の制御のためのCPU及びメモリを備え、かつ前記フィルタ駆動機構と前記制御装置との間で伝送路を介して通信可能と構成され、かつ前記制御装置と前記画像処理装置との間で通信路を介して双方向通信可能と構成され、かつ
前記制御部が処理の開始とともに前記可変機構によって前記光源の光波長の設定値を初期値に更新する、光波長初期化ステップと、
前記可変機構によって前記光源の光波長を更新し、前記給電機構によって更新後の前記既知の光波長の波長光源を点灯するキャリブレーション光源点灯ステップと、及び
引続き前記光フィルタが前記光路に存在しないステータスを選択する信号を前記制御部が生成し、さらに前記伝送路を介して前記信号を前記フィルタ駆動機構へ送信した後に、前記制御部は直ちに最初の撮像の開始指示通知待ちとなる最初のフィルタ移動指示ステップと、を実行するモジュールを前記制御部は含み、
前記フィルタ駆動機構は前記フィルタ駆動機構と前記制御装置の間の伝送路を介して前記光フィルタが前記光路に存在しないステータスを選択する信号を受入れ、前記光学フィルタを光路から外す最初のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構は含み、
前記制御部は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、前記制御部は前記第1の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記キャリブレーション光源の反射光をマイクロLEDの発光とみなし、前記反射光の単位映像体(反射光体という、本段落で以下同様)を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに反射光体マッピングを前記マイクロLEDマッピングとみなし、前記マイクロLED識別部において、前記単位映像体から前記反射光体マッピングとみなされた前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの発光とみなされた反射光の前記光学フィルター無の配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ無し光強度を測定するステップと、を実行するモジュールを前記画像処理装置は含み、
前記第2のフィルタ移動指示待ちとなっている前記制御部は、第2のフィルタ移動指示を受け入れると、当該指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ当該信号を送信し、後に第2の撮像開始指示待ちとなる第2のフィルタ移動指示ステップを実行するモジュールを前記制御部はさらに含み、
これに引き続き、第2の撮像の開始指示通知待ちとなっている前記制御部は、第2の撮像の開始指示を受け入れると、前記開始指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ送信し、後に他の処理待ちとなる第2のフィルタ移動指示ステップと、
前記フィルタ駆動機構は前記伝送路を介して前記光学フィルタを光路に配設する信号を前記制御部から受入れ、前記光学フィルタを光路に配設する第2のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構はさらに含み、
前記画像処理装置は、前記通信路を介して前記第2の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第2の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記キャリブレーション光源の反射光をマイクロLEDの発光とみなし、前記反射光の単位映像体(反射光体という、本段落で以下同様)を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに反射光体マッピングを前記マイクロLEDマッピングとみなし、前記マイクロLED識別部において、前記単位映像体から前記反射光体マッピングとみなされた前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの発光とみなされた反射光の前記光学フィルター有りの配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記キャリブレーション光源の反射光としての前記マイクロLEDの前記光学フィルター有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルター無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルター有の配置における前記キャリブレーション光源の前記光エネルギ強度値と、前記光学フィルター無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
引き続き、前記マイクロLED検査部において、前記既知の光源波長と前記光強度の比を前記メモリに格納するステップと、
前記光源の光波長の設定値を所定の増分値で更新する光源波長更新ステップと、
前記更新後の前記光源の光波長が所定の境界値を超えるか否かをチェックし、NOの場合には、キャリブレーション光源点灯ステップへ戻り、YESの場合には、ルックアップテーブル作成ステップへ進む、繰り返し判定ステップと、及び、
前記繰り返しで前記メモリに格納された複数の前記波長と前記光強度の比の組からルックアップテーブルを作成し、これを前記メモリに格納するルックアップテーブル作成ステップと、を実行するモジュールを含む光学フィルタ検査装置を提供する。この構成で、マイクロLEDアレイを模したサブストレートを用いる場合にも、主要な構成モジュールはマイクロLEDアレイのサブストレートを検査を同様の動作で処理可能であり、より本番に近いキャリブレーションやリハーサルが可能であるという効果が得られる。
Furthermore, in an additional aspect the invention provides:
The optical filter inspection device for an optical filter used in a micro LED emission inspection device according to the present invention further includes a CPU and a memory for controlling the optical filter inspection device in the control section, and the filter driving mechanism and the optical filter inspection device. The control unit is configured to be able to communicate with a control device via a transmission path, and the control device and the image processing device are configured to be able to communicate bidirectionally via a communication path, and the control unit performs processing. an optical wavelength initialization step of updating a set value of the optical wavelength of the light source to an initial value by the variable mechanism upon start;
a calibration light source lighting step of updating the light wavelength of the light source by the variable mechanism and lighting the wavelength light source of the updated known light wavelength by the power feeding mechanism; and a subsequent status in which the optical filter is not present in the optical path. After the control unit generates a signal for selecting the first filter and further transmits the signal to the filter drive mechanism via the transmission path, the control unit immediately waits for notification of an instruction to start the first imaging. The control unit includes a module that executes the instruction step;
The filter driving mechanism receives a signal for selecting a status in which the optical filter is not present in the optical path via a transmission path between the filter driving mechanism and the control device, and a first filter movement step of removing the optical filter from the optical path is performed. The filter drive mechanism includes a module that performs
When the control unit accepts the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit executes the first imaging start instruction. After generating a signal and transmitting the first imaging start instruction signal to the image processing device via the communication path, immediately execute a first imaging start instruction step of waiting for a second filter movement instruction. The control unit further includes a module for
When the image processing device receives the first imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and receives the video signal on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the pixel map, and storing this in the memory in the image processing device;
Subsequently, in the unit image object identification section, the reflected light of the calibration light source is regarded as the light emission of the micro LED from the light intensity pixel map, and the unit image object (referred to as a reflective light object, hereinafter referred to as a reflection light object) of the reflected light is similar) based on the predetermined criteria, further generate unit image object mapping data to the pixel map, store this in the memory in the image processing device, and further perform reflective light object mapping on the micro LED. The micro-LED identification unit generates the micro-LED mapping data, which is considered as the reflective light object mapping, from the unit image object and stores it in the memory, and The light energy intensity of the micro LED is determined from the light intensity on the intensity map using the predetermined light energy intensity calculation formula, and the light energy of the reflected light considered to be emitted by the micro LED in the arrangement without the optical filter is determined. The image processing device includes a module for measuring an unfiltered light intensity to be stored in the memory in the image processing device as an intensity value;
When the control unit, which is waiting for the second filter movement instruction, receives the second filter movement instruction, it generates a signal for arranging the optical filter on the optical path based on the instruction, and moves the optical filter through the transmission path. The control unit further includes a module that transmits the signal to the filter drive mechanism and executes a second filter movement instruction step that will later wait for a second imaging start instruction,
Subsequently, upon receiving the second imaging start instruction, the control unit, which is waiting for notification of a second imaging start instruction, generates a signal for arranging the optical filter in the optical path based on the start instruction. a second filter movement instruction step, which is transmitted to the filter drive mechanism via the transmission path and is later placed on standby for other processing;
The filter drive mechanism receives a signal from the control unit to arrange the optical filter in the optical path via the transmission path, and moves the module to execute a second filter movement step to arrange the optical filter in the optical path. The drive mechanism further includes;
When the image processing device receives the second imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and inputs the image data measured at each pixel into a pixel map on the image data frame. a second imaging step of generating the light intensity pixel map on which graded light intensities are superimposed and storing it in the memory in the image processing device;
Subsequently, in the unit image object identification section, the reflected light of the calibration light source is regarded as the light emission of the micro LED from the light intensity pixel map, and the unit image object (referred to as a reflective light object, hereinafter referred to as a reflection light object) of the reflected light is similar) based on the predetermined criteria, further generate unit image object mapping data to the pixel map, store this in the memory in the image processing device, and further perform reflective light object mapping on the micro LED. The micro-LED identification unit generates the micro-LED mapping data, which is considered as the reflective light object mapping, from the unit image object and stores it in the memory, and The light energy intensity of the micro LED is determined from the light intensity on the intensity map using the predetermined light energy intensity calculation formula, and the light energy of the reflected light considered to be emitted by the micro LED in the arrangement with the optical filter is determined. measuring a filtered light intensity to be stored in the memory in the image processing device as an intensity value;
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED in the arrangement with the optical filter as the reflected light of the calibration light source is read out from the memory in the image processing device, and The light energy intensity value in the arrangement without the optical filter corresponding to the LED is read from the memory in the image processing device, and the light energy intensity value of the calibration light source in the arrangement with the optical filter and the optical filter are read out. calculating a ratio of unfiltered light intensity to filtered light intensity according to the light energy intensity value of the empty configuration;
Subsequently, in the micro LED inspection section, storing the ratio of the known light source wavelength and the light intensity in the memory;
a light source wavelength updating step of updating a set value of the light wavelength of the light source by a predetermined increment value;
Check whether the light wavelength of the light source after the update exceeds a predetermined boundary value, and if NO, return to the calibration light source lighting step; if YES, proceed to the lookup table creation step. , an iterative determination step, and
creating a look-up table from a plurality of sets of ratios of the wavelengths and the light intensity stored in the memory in the repetition, and storing the look-up table in the memory; A filter inspection device is provided. With this configuration, even when using a substrate that imitates a micro LED array, the main component module can process the inspection of the micro LED array substrate in the same way, allowing for calibration and rehearsal closer to actual production. The effect is that it is possible.

さらに、追加の態様で本発明は、
前段までに記載のマイクロLED発光検査装置は、さらに、前記制御部は、当該マイクロLED発光検査装置の制御のためのCPU及びメモリを備え、かつ前記フィルタ駆動機構と前記制御装置との間は伝送路を介して通信可能と構成され、かつ前記制御装置と前記画像処理装置との間は通信路を介して双方向通信可能と構成され、
前記制御部の処理の開始とともに前記給電機構によってマイクロLEDを点灯するマイクロLED点灯ステップと、及び
引続き前記光フィルタが前記光路に存在しないステータスを選択する信号を前記制御部が生成し、さらに前記伝送路を介して前記信号を前記フィルタ駆動機構へ送信した後に、前記制御部は直ちに最初の撮像の開始指示通知待ちとなる最初のフィルタ移動指示ステップと、を実行するモジュールを前記制御部は含み、
前記フィルタ駆動機構は前記フィルタ駆動機構と前記制御装置の間の伝送路を介して前記光フィルタが前記光路に存在しないステータスを選択する信号を受入れ、前記光学フィルタを光路から外す最初のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構は含み、
前記制御部は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、前記制御部は前記第1の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記発光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにマイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し対応する前記マイクロLEDを前記ピクセルマップ上にマッピングし前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルター無の配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリに格納するフィルタなし光強度を測定するステップと、を実行するモジュールを前記画像処理装置は含み、
前記第2のフィルタ移動指示待ちとなっている前記制御部は、第2のフィルタ移動指示を受け入れると、当該指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ当該信号を送信し、後に第2の撮像開始指示待ちとなる第2のフィルタ移動指示ステップを実行するモジュールを前記制御部はさらに含み、
前記フィルタ駆動機構は前記伝送路を介して前記光学フィルタを光路に配設する信号を前記制御部から受入れ、前記光学フィルタを光路に配設する第2のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構はさらに含み、
前記制御部は、前記第2のフィルタ移動指示ステップの最終処理である第2の撮像開始指示待ちで前記第2の撮像の開始指示通知を受け入れると、前記第2の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第2の撮像の開始指示信号を送信した後に、第2の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第2の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第2の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記発光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにマイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し対応する前記マイクロLEDを前記ピクセルマップ上にマッピングし前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルター有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記マイクロLEDの前記光学フィルター有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルター無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルター有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルター無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
引き続き、前記マイクロLED検査部において、前記ルックアップテーブルの参照によって前記マイクロLEDの発光波長を決定するルックアップテーブル参照方式の発光波長決定ステップと、及び
前記マイクロLEDの配列設計データ出力のための外部接続路及びデータ出力部を含み、前記発光波長データを前記デジタル画像処理装置内の前記メモリを介して、前記データ出力部から外部接続路に前記発光波長データを出力するマイクロLED発光波長データ出力ステップと、を実行するモジュールを含むマイクロLED発光検査装置を提供する。この構成で、ルックアップテーブル参照方式の発光波長決定が自動運転又は本自動運転で実行でき、より高速の処理が実現され、また、外部機器へ光波長データを出力するのでより製造ラインと一体の運用が可能であるという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
In the micro LED emission testing device described in the preceding paragraphs, the control unit further includes a CPU and a memory for controlling the micro LED emission testing device, and there is no transmission between the filter drive mechanism and the control device. configured to be able to communicate via a communication path, and configured to enable bidirectional communication between the control device and the image processing device via the communication path;
a micro-LED lighting step of lighting the micro-LED by the power supply mechanism at the start of the processing of the control section, and subsequently, the control section generates a signal to select a status in which the optical filter is not present in the optical path, and further the transmission The control unit includes a module that executes an initial filter movement instruction step in which the control unit immediately waits for notification of a first imaging start instruction after transmitting the signal to the filter drive mechanism via a path,
The filter driving mechanism receives a signal for selecting a status in which the optical filter is not present in the optical path via a transmission path between the filter driving mechanism and the control device, and a first filter movement step of removing the optical filter from the optical path is performed. The filter drive mechanism includes a module that performs
When the control unit accepts the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit executes the first imaging start instruction. After generating a signal and transmitting the first imaging start instruction signal to the image processing device via the communication path, immediately execute a first imaging start instruction step of waiting for a second filter movement instruction. The control unit further includes a module for
When the image processing device receives the first imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and receives the video signal on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the pixel map, and storing this in the memory in the image processing device;
Subsequently, the unit image object identifying section identifies the light emitting unit image object from the light intensity pixel map based on the predetermined criteria, further generates unit image object mapping data to the pixel map, and is stored in the memory in the image processing device, and a micro-LED identification section identifies a plurality of micro-LEDs arranged in the array from the unit image object and places the corresponding micro-LEDs on the pixel map. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. determining an intensity and storing the light energy intensity value in the optical filter-free arrangement of the micro-LED in the memory in the image processing device; processing equipment includes;
When the control unit, which is waiting for the second filter movement instruction, receives the second filter movement instruction, it generates a signal for arranging the optical filter on the optical path based on the instruction, and moves the optical filter through the transmission path. The control unit further includes a module that transmits the signal to the filter drive mechanism and executes a second filter movement instruction step that will later wait for a second imaging start instruction,
The filter drive mechanism receives a signal from the control unit to arrange the optical filter in the optical path via the transmission path, and moves the module to execute a second filter movement step to arrange the optical filter in the optical path. The drive mechanism further includes;
When the control unit receives the second imaging start instruction notification while waiting for the second imaging start instruction, which is the final process of the second filter movement instruction step, the control unit generates the second imaging start instruction signal. The control unit further includes a module that executes a second imaging start instruction step after transmitting the second imaging start instruction signal to the image processing device via the communication path,
When the image processing device receives the second imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and inputs the image data measured at each pixel into a pixel map on the image data frame. a second imaging step of generating the light intensity pixel map on which graded light intensities are superimposed and storing it in the memory in the image processing device;
Subsequently, the unit image object identifying section identifies the light emitting unit image object from the light intensity pixel map based on the predetermined criteria, further generates unit image object mapping data to the pixel map, and is stored in the memory in the image processing device, and a micro-LED identification section identifies a plurality of micro-LEDs arranged in the array from the unit image object and places the corresponding micro-LEDs on the pixel map. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. determining the intensity and storing the light energy intensity value for the optically filtered arrangement of the micro-LEDs in the memory in the image processing device;
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device. The light energy intensity value of the micro LED in the arrangement is read from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter and the light energy intensity value of the micro LED in the arrangement without the optical filter are read. calculating the ratio of the unfiltered light intensity to the filtered light intensity by;
Subsequently, in the micro LED inspection section, a step of determining the light emission wavelength of the micro LED by referring to the look-up table is performed, and a step of determining the light emission wavelength of the micro LED by referring to the look-up table is performed. A micro LED emission wavelength data output step including a connection path and a data output section, and outputting the emission wavelength data from the data output section to an external connection path via the memory in the digital image processing device. Provided is a micro LED emission testing device including a module that performs the following. With this configuration, the emission wavelength determination using the look-up table reference method can be executed in automatic operation or main automatic operation, realizing faster processing.In addition, since the optical wavelength data is output to external equipment, it can be more easily integrated into the production line. The effect of being operable can be obtained.

さらに、追加の態様で本発明は、
マイクロLED発光検査装置の光源は、前記光源の光波長の可変機構を備える既知の光波長の波長光源であり、前記マイクロLED発光検査装置は、さらに前記制御部にCPU及びメモリを備え、
前記制御部が処理の開始とともに前記可変機構によって前記光源の光波長の設定値を前記帯域幅の中心波長に更新する、光波長の中心波長設定ステップと、
前記可変機構によって前記光源の光波長を前記中心波長へ更新し、前記給電機構によって前記光波長の波長光源を点灯する中心波長光源点灯ステップと、及び
引続き前記光フィルタが前記光路に存在しないステータスを選択する信号を前記制御部が生成し、さらに前記伝送路を介して前記信号を前記フィルタ駆動機構へ送信した後に、前記制御部は直ちに最初の撮像の開始指示通知待ちとなる最初のフィルタ移動指示ステップと、を実行するモジュールを前記制御部は含み、
前記フィルタ駆動機構は前記フィルタ駆動機構と前記制御装置の間の伝送路を介して前記光フィルタが前記光路に存在しないステータスを選択する信号を受入れ、前記光学フィルタを光路から外す最初のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構は含み、
前記制御部は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、前記制御部は前記第1の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記キャリブレーション光源光をマイクロLEDの発光とみなし、前記キャリブレーション光源光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに前記キャリブレーション光源マッピングを前記マイクロLEDマッピングとみなし、前記マイクロLED識別部において、前記単位映像体から前記キャリブレーション光源マッピングとみなされた前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、マイクロLEDとみなされた前記キャリブレーション光源発光体の前記光学フィルター無の配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ無し光強度を測定するステップと、を実行するモジュールを前記画像処理装置は含み、
前記第2のフィルタ移動指示待ちとなっている前記制御部は、第2のフィルタ移動指示を受け入れると、当該指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ当該信号を送信し、後に後続の撮像開始指示待ちとなる第2のフィルタ移動指示ステップを実行するモジュールを前記制御部はさらに含み、
前記フィルタ駆動機構は前記伝送路を介して前記光学フィルタを光路に配設する信号を前記制御部から受入れ、前記光学フィルタを光路に配設する第2のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構はさらに含み、
前記制御部は、後続の撮像開始指示待ちで前記後続の撮像の開始指示通知を受け入れると、前記後続の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記後続の撮像の開始指示信号を送信した後に、後続の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記後続の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する後続の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記キャリブレーション光源光をマイクロLEDの発光とみなし、前記キャリブレーション光源光の単位映像体を所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの前記単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに前記マイクロLED識別部において、マイクロLEDの発光とみなされた前記キャリブレーション光源光を前記単位映像体からマイクロLEDとして特定し前記ピクセルマップ上にマッピングする前記マイクロLEDマッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDとみなされた前記キャリブレーション光源発光体のの前記光エネルギ強度を決定し、前記キャリブレーション光源の前記光学フィルター有りの配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記マイクロLEDの前記光学フィルター有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルター無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルター有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルター無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
光強度の比が所定の判定幅内で0.5の近傍か否かを所定の判定条件によって判定し、
前記判定条件がNOであれば、前記フィルタ光軸傾斜角駆動機構のためにフィルタの角の変動ステップを駆動する信号を生成し、当該信号を前記フィルタ光軸傾斜角駆動機構へ送信し、フィルタ角の変動ステップを実行するモジュールへ制御を分岐し、その後、前記後続の撮像の開始指示通知を前記制御部へ前記通信部を介し前記制御装置へ送信し、前記制御部の後続の撮像ステップを実行するモジュールへ制御を戻し、以降の処理をループさせ、
前記前記判定条件がYESであれば、フィルタ角を前記メモリに格納する、フィルタ角を記録するステップへ分岐しループ処理を終了する、適正フィルタ角判定ステップと、を実行するモジュールを前記画像処理装置は含み、
ここで、前記フィルタ光軸傾斜角駆動機構は、所定の幅で前記フィルタ角を変動させる前記フィルタ角の変動ステップを実行するモジュールを含むマイクロLED発光検査装置を提供する。この構成で、フィルタ光軸傾斜角駆動機構の自動運転によって、より精密なフィルタ角の変動制御が可能となり、より精度の高い、より短時間のフィルタ透過波長の把握及び調整が可能であるという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
The light source of the micro LED emission testing device is a wavelength light source of a known light wavelength that is equipped with a mechanism for varying the light wavelength of the light source, and the micro LED emission testing device further includes a CPU and a memory in the control unit,
a step of setting a center wavelength of the light wavelength, in which the control unit updates the set value of the light wavelength of the light source to the center wavelength of the bandwidth by the variable mechanism at the start of processing;
a center wavelength light source lighting step of updating the light wavelength of the light source to the center wavelength by the variable mechanism and lighting the light source with the wavelength of the light wavelength by the power supply mechanism; After the control section generates a signal to be selected and further transmits the signal to the filter drive mechanism via the transmission path, the control section immediately waits for notification of a first imaging start instruction. The control unit includes a module that executes the steps;
The filter driving mechanism receives a signal for selecting a status in which the optical filter is not present in the optical path via a transmission path between the filter driving mechanism and the control device, and a first filter movement step of removing the optical filter from the optical path is performed. The filter drive mechanism includes a module that performs
When the control unit accepts the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit executes the first imaging start instruction. After generating a signal and transmitting the first imaging start instruction signal to the image processing device via the communication path, immediately execute a first imaging start instruction step of waiting for a second filter movement instruction. The control unit further includes a module for
When the image processing device receives the first imaging start instruction signal via the communication path, it accepts the video signal from the imaging device and processes the pixels on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the map, and storing this in the memory in the image processing device;
Subsequently, in the unit image object identification section, the calibration light source light is regarded as light emission from a micro LED from the light intensity pixel map, and the unit image object of the calibration light source light is identified based on the predetermined criteria; Further, generating unit image object mapping data to the pixel map and storing it in the memory in the image processing device, further regarding the calibration light source mapping as the micro LED mapping, and in the micro LED identification unit, The micro LED mapping data, which is regarded as the calibration light source mapping, is generated from the unit image object, and stored in the memory, and the predetermined light is calculated from the light intensity on the light intensity map on the micro LED map. The light energy intensity of the micro LED is determined by an energy intensity calculation formula, and the light energy intensity value of the calibration light source light emitter, which is considered to be a micro LED, in the arrangement without the optical filter is set as the light energy intensity value in the image processing device. The image processing device includes a module that performs the steps of: measuring unfiltered light intensity to be stored in memory;
When the control unit, which is waiting for the second filter movement instruction, receives the second filter movement instruction, it generates a signal for arranging the optical filter on the optical path based on the instruction, and moves the optical filter through the transmission path. The control unit further includes a module that executes a second filter movement instruction step that transmits the signal to the filter drive mechanism and waits for a subsequent imaging start instruction,
The filter drive mechanism receives a signal from the control unit to arrange the optical filter in the optical path via the transmission path, and moves the module to execute a second filter movement step to arrange the optical filter in the optical path. The drive mechanism further includes;
When the control unit receives the subsequent imaging start instruction notification while waiting for the subsequent imaging start instruction, the control unit generates the subsequent imaging start instruction signal and transmits the subsequent imaging to the image processing device via the communication path. The control unit further includes a module that executes a subsequent imaging start instruction step after transmitting the imaging start instruction signal,
When the image processing device receives the instruction signal to start the subsequent imaging via the communication path, the image processing device receives the video signal from the imaging device and converts the step measured at each pixel into a pixel map on the image data frame. a subsequent imaging step of generating the light intensity pixel map on which the target light intensity is superimposed and storing it in the memory in the image processing device;
Subsequently, the unit image object identification section regards the calibration light source light as light emission from a micro LED from the light intensity pixel map, identifies the unit image object of the calibration light source light based on predetermined criteria, and further The unit image object mapping data to the pixel map is generated and stored in the memory in the image processing device, and the micro LED identification unit further calculates the calibration light source light that is regarded as light emission from the micro LED. is identified as a micro LED from the unit image object and mapped onto the pixel map to generate the micro LED mapping data, which is stored in the memory in the image processing device, and the light intensity on the micro LED map is The light energy intensity of the calibration light source light emitter, which is regarded as the micro LED, is determined from the light intensity on the map using the predetermined light energy intensity calculation formula, and measuring a filtered light intensity to be stored in the memory in the image processing device as the light energy intensity value;
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device. The light energy intensity value of the micro LED in the arrangement is read from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter and the light energy intensity value of the micro LED in the arrangement without the optical filter are read. calculating the ratio of the unfiltered light intensity to the filtered light intensity by;
Determining whether the light intensity ratio is close to 0.5 within a predetermined determination width according to a predetermined determination condition,
If the judgment condition is NO, generate a signal for driving the filter angle variation step for the filter optical axis tilt angle drive mechanism, send the signal to the filter optical axis tilt angle drive mechanism, and drive the filter. Branching the control to a module that executes the step of changing the angle, and then transmitting a notification of an instruction to start the subsequent imaging to the control unit via the communication unit to the control device, and executing the subsequent imaging step of the control unit. Return control to the executing module, loop the subsequent processing,
If the judgment condition is YES, the image processing apparatus includes a module that executes the steps of storing the filter angle in the memory, branching to the step of recording the filter angle and terminating the loop process, and determining the appropriate filter angle. includes,
Here, the filter optical axis inclination angle driving mechanism provides a micro LED emission inspection apparatus including a module that executes a filter angle varying step of varying the filter angle by a predetermined width. With this configuration, the automatic operation of the filter optical axis inclination angle drive mechanism enables more precise filter angle fluctuation control, and has the effect of enabling more accurate grasping and adjustment of the filter transmission wavelength in a shorter time. is obtained.

さらに、追加の態様で本発明は、
製造プロセス管理コンピュータとの通信路及び製造データ入力部をさらに備え、前記通信路を介して前記製造プロセス管理コンピュータから製造条件を含む製造指示を受入れる製造指示受入れステップを実行するモジュールをさらに含むマイクロLED発光検査装置を提供する。この構成で、製造プロセス管理コンピュータによって製造プロセス上流との一体運用が可能となるという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
The micro LED further includes a communication path with a manufacturing process management computer and a manufacturing data input unit, and further includes a module that executes a manufacturing instruction receiving step of accepting manufacturing instructions including manufacturing conditions from the manufacturing process management computer via the communication path. Provides a luminescence inspection device. With this configuration, an effect can be obtained in that the manufacturing process management computer enables integrated operation with the upstream manufacturing process.

さらに、追加の態様で本発明は、
製造プロセス管理コンピュータへの通信路及び製造データ出力部をさらに備え、前記通信路を介して前記製造プロセス管理コンピュータへ前記キャリブレーションのデータその他の進捗データを含む製造プロセスデータを出力する製造データ出力ステップを実行するモジュールをさらに含むマイクロLED発光検査装置を提供する。この構成で製造プロセス管理コンピュータによって製造プロセス下流との一体運用が可能となるという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
A manufacturing data output step, further comprising a communication path to a manufacturing process management computer and a manufacturing data output unit, and outputting manufacturing process data including the calibration data and other progress data to the manufacturing process management computer via the communication path. Provided is a micro LED emission testing device further comprising a module for performing. This configuration has the effect that the manufacturing process management computer enables integrated operation with downstream manufacturing processes.

さらに、追加の態様で、
本発明に係るマイクロLED発光検査装置は、さらに、制御装置が当該マイクロLED発光検査装置の制御のためのCPU及びメモリを備え、かつ前記フィルタ駆動機構と前記制御装置との間は伝送路を介して通信可能と構成され、かつ前記制御装置と前記画像処理装置との間は通信路を介して双方向通信可能と構成され、かつ前記制御装置の前記制御部は以下の、
前記給電機構によってマイクロLEDを点灯するマイクロLED点灯ステップを実行するモジュールと、
前記光フィルタが前記光路に存在しないステータスを選択する信号を生成し、さらに前記伝送路を介して、前記光フィルタが前記光路に存在しないステータスを選択するように前記フィルタ駆動機構を駆動する最初のフィルタ移動ステップを実行するモジュールと、
最初の撮像の開始指示通知を受け入れ、前記第1の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールと、
第2のフィルタ移動指示を受け入れ、当該指示に基づき所定の前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介して、前記光学フィルタを光路に配設するように前記フィルタ駆動機構を駆動する第2のフィルタ移動ステップを実行するモジュールと、及び
第2の撮像の開始指示通知を受け入れると、前記第2の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第2の撮像の開始指示信号を送信する、第2の撮像の開始指示ステップを実行するモジュールを前記制御部は含み、
前記画像処理装置は、前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記所定のクライテリアに基づく前記発光の単位映像体を特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにマイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し対応する前記マイクロLEDを前記ピクセルマップ上にマッピングし前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルター無の配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリに格納するフィルタなし光強度を測定するステップと、
前記通信路を介して前記第2の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第2の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記単位映像体識別部において、前記光強度ピクセルマップから前記所定のクライテリアに基づく前記発光の単位映像体を特定し、さらに前記ピクセルマップへの前記単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに前記マイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列された前記マイクロLEDを特定し前記ピクセルマップ上にマッピングする前記マイクロLEDマッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルター有りの配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記マイクロLEDの前記光学フィルター有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルター無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルター有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルター無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
これに引き続き、前記マイクロLED検査部において、所定の前記マイクロLEDの発光波長算出式によって前記マイクロLEDの発光波長を決定する発光波長計算ステップと、及び
前記マイクロLEDの配列製品データ出力のための外部接続路及びデータ出力部を含み、前記発光波長データを前記デジタル画像処理装置内の前記メモリを介して、前記データ出力部から外部接続路に前記発光波長データを出力するマイクロLED発光波長データ出力ステップと、を実行するモジュールを前記画像処理装置は含むマイクロLED発光検査装置を提供する。この構成で、制御のためのCPU及びメモリを備え、ソフトウェアによって本発明の構成が実現できるという効果が得られる。ソフトウェアはCPU及びメモリで稼働されるオペレーティングシステム上で稼働するアプリケーションソフトウェアでもよいし、ソフトウェアはメモリ上で稼働するオペレーティングシステムに組み込まれ、オペレーティングシステムがCPU制御されるシステムソフトウェアでもよいし、ソフトウェアはハードウェアのROMに組み込まれるファームウェアでもよいし、ハードウェアに組み込まれるASICに構成されたロジックコントロールされるものでもよく、これらによって、より柔軟できめ細かい自動運転が実現可能となったり、バージョンアップ保守も可能となる効果がある。
Furthermore, in an additional aspect,
In the micro LED emission testing device according to the present invention, the control device further includes a CPU and a memory for controlling the micro LED emission testing device, and a transmission path is provided between the filter drive mechanism and the control device. The control device and the image processing device are configured to be able to communicate with each other via a communication path, and the control unit of the control device includes the following:
a module that executes a micro LED lighting step of lighting the micro LED by the power feeding mechanism;
generating a signal for selecting a status in which the optical filter does not exist in the optical path, and further driving the filter driving mechanism via the transmission path so that the optical filter selects a status in which the optical filter does not exist in the optical path; a module that performs a filter movement step;
Immediately after accepting the first imaging start instruction notification, generating the first imaging start instruction signal, and transmitting the first imaging start instruction signal to the image processing device via the communication path, a module that executes a first imaging start instruction step of waiting for a filter movement instruction of step 2;
Accepts a second filter movement instruction, generates a signal for arranging a predetermined optical filter on the optical path based on the instruction, and drives the filter via the transmission path so as to arrange the optical filter on the optical path. a module that executes a second filter movement step that drives a mechanism; and upon receiving a second imaging start instruction notification, generates a second imaging start instruction signal and transmits the image via the communication path; The control unit includes a module that executes a second imaging start instruction step of transmitting a second imaging start instruction signal to the processing device,
When the image processing device receives the first imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and receives the video signal on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the pixel map, and storing this in the memory in the image processing device;
Subsequently, the unit image object identification section identifies the light emitting unit image object based on the predetermined criteria from the light intensity pixel map, further generates unit image object mapping data to the pixel map, and is stored in the memory in the image processing device, and a micro-LED identification section identifies a plurality of micro-LEDs arranged in the array from the unit image object and places the corresponding micro-LEDs on the pixel map. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. measuring unfiltered light intensity to determine the intensity and storing the light energy intensity value in the optical filterless arrangement of the micro-LED in the memory in the image processing device;
When the second imaging start instruction signal is received via the communication channel, the video signal is accepted from the imaging device, and the stepwise light intensity measured at each pixel is superimposed on a pixel map on the image data frame. a second imaging step of generating the light intensity pixel map and storing it in the memory in the image processing device;
Subsequently, the unit image object identification section identifies the unit image object of the light emission based on the predetermined criteria from the light intensity pixel map, and further specifies the unit image object to the pixel map. Image object mapping data is generated and stored in the memory in the image processing device, and the micro LED identifying section identifies the plurality of micro LEDs arranged in the array from the unit image object. Generate the micro LED mapping data to be mapped onto the pixel map, store it in the memory in the image processing device, and calculate the predetermined light energy from the light intensity on the light intensity map on the micro LED map. The light energy intensity of the micro LED is determined by an intensity calculation formula, and the filtered light intensity is stored in the memory in the image processing device as the light energy intensity value in the arrangement of the micro LED with the optical filter. the step of
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device. The light energy intensity value in the arrangement is read from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter and the light energy intensity value in the arrangement without the optical filter are determined. calculating the ratio of the unfiltered light intensity to the filtered light intensity by;
Subsequently, in the micro LED inspection section, a light emission wavelength calculation step of determining the light emission wavelength of the micro LED using a predetermined light emission wavelength calculation formula of the micro LED, and an external device for outputting array product data of the micro LED. A micro LED emission wavelength data output step that includes a connection path and a data output section, and outputs the emission wavelength data from the data output section to an external connection path via the memory in the digital image processing device. The image processing device includes a module for executing the following steps. With this configuration, a CPU and memory for control are provided, and the configuration of the present invention can be realized by software. The software may be application software that runs on an operating system that runs on the CPU and memory, the software may be system software that is embedded in an operating system that runs on memory and the operating system is controlled by the CPU, or the software may be system software that runs on the operating system that runs on the memory. It may be firmware built into the ROM of the software, or it may be logic controlled by an ASIC built into the hardware.These enable more flexible and fine-grained automatic operation, and version upgrade maintenance is also possible. This has the effect of

さらに、追加の態様で、
本発明に係るマイクロLED発光検査装置の前記画像処理装置は、製造条件データ出力部をさらに備え、前記サブストレート全体映像、1又は複数の前記単位映像体マッピングデータ及びこれに対応する前記光強度特性及び前記発光波長特性及び前記範疇のうち少なくとも一つを含む前記マイクロLEDマッピングデータ又はマイクロLEDの前記光強度特性の少なくともいずれか1つから所定のデータを所定のデータ形式に変換し製造条件データとして生成及び出力することを特徴とする本発明に係るマイクロLED発光検査装置を含むマイクロLED製造装置を提供する。この構成で、より密接な製造プロセスとの連携が可能となるという効果が得られる。
Furthermore, in an additional aspect,
The image processing device of the micro LED emission inspection device according to the present invention further includes a manufacturing condition data output unit, and includes the entire substrate image, one or more of the unit image body mapping data, and the light intensity characteristics corresponding thereto. and converting predetermined data into a predetermined data format from at least one of the micro LED mapping data or the light intensity characteristics of the micro LED including at least one of the emission wavelength characteristics and the above categories, and converting the predetermined data into a predetermined data format as manufacturing condition data. Provided is a micro LED manufacturing apparatus including the micro LED emission testing apparatus according to the present invention, which generates and outputs. This configuration has the effect of enabling closer cooperation with the manufacturing process.

さらに、追加の態様で、
本発明に係るマイクロLED発光検査装置の画像処理装置は、前記発光波長の二次元マップをさらに出力することを特徴とする前段に記載の本発明に係るマイクロLED発光検査装置を含むマイクロLED製造装置を提供する。この構成で、 という効果が得られる。
Furthermore, in an additional aspect,
The image processing device of the micro LED emission testing device according to the present invention further outputs a two-dimensional map of the emission wavelength. I will provide a. With this configuration, the following effects can be obtained.

さらに、追加の態様で、
本発明に係るマイクロLED発光検査装置に用いる光学フィルタ検査装置の構成要素であるサブストレートに配列される多数の反射体は、クロムを主成分とする金属膜から成るとよい。この構成で、耐久性で実績のある光沢のよい反射体が構成され、より検査品質が高まり、貴金属膜に比してより経済的であるという効果が得られる。
Furthermore, in an additional aspect,
The large number of reflectors arranged on the substrate, which are components of the optical filter inspection device used in the micro LED emission inspection device according to the present invention, are preferably made of a metal film containing chromium as a main component. With this configuration, a reflector with good gloss that has a proven track record of durability is constructed, and the inspection quality is further improved, and the effects of being more economical than precious metal films can be obtained.

さらに、追加の態様で本発明は、
全自動化された製造プロセスに組み込まれたマイクロLED発光検査方法は、本発明に係るマイクロLED発光検査装置を用い、以下の段階、
アライメントマーク情報を含むサブストーレートのジオメオリ情報、マイクロLEDのジオメトリ情報及びマイクロLEDアレイのジオメトリ情報を受け入れる製品情報取得段階と、引き続き実行される、
1又は複数の前記ジオメトリ情報から前記サブストレート上で局所的な製品品質のばらつき及び/又は異常を認識及び管理するための製造管理区域を設定する製造管理区域設定段階と、引き続き実行される、
ネットワーク手段によって接続された製造ライン制御コンピュータに検査受け入れ可能状態を前記ネットワーク手段を介して通知する検査受け入れ可能通知段階と、引き続き実行される、
前記製造ライン制御コンピュータからマイクロLEDウェハ製造情報を受信する製造情報受け入れ段階と、引き続き実行される、
検査ベッド上に前記ウェハを搭載するウェハ搭載段階と、引き続き実行される、
画像処理装置によって前記サブストレートの全体像を撮像し、前記サブストレートに前記製造管理区域をマッピングする製造管理区域マッピング段階と、
画像処理装置によって前記サブストレート上に配設された前記マイクロLEDを前記画像処理装置内に生成された画像フレーム上にマッピングするマイクロLEDマッピング段階と、引き続き実行される、
前記画像処理装置によって、マイクロLEDチップを点灯し発光強度と発光波長を測定するマイクロLED特性測定段階と、引き続き実行される、
前記画像処理装置によって、前記マイクロLED特性を元に所定の分類条件によって前記発光強度と前記発光波長のマトリックスで分類された異常分類を含むカテゴリ情報を前記マイクロLEDマップ情報に付し、全マイクロLEDチップを分類仕分けするマイクロLED仕分け段階と、引き続き実行される、
前記画像処理装置によって、前記カテゴリ情報の付された前記マイクロLEDを前記製造管理区域マップにオーバーレイし、前記製造管理区域に関しマイクロLED製造プロセス状態を認識する製造プロセス状態判定段階と、引き続き実行される、
前記画像処理装置によって、前記ネットワーク手段を介して前記製造ライン制御コンピュータへ前記仕分け情報と前記製造プロセス状態を送信する検査結果送信段階と、引き続き実行される、
検査終了状態を前記ネットワーク手段を介して前記製造ライン制御コンピュータへ検査終了通知を送信する検査終了通知段階と、
を含む、全自動化された製造プロセスに組み込まれたマイクロLED発光検査装置の使用方法を提供する。この構成で、製造条件によって変動するばらつきをより抑え、製造ばらつき変動因子の迅速なフィードバックをタイムリーに製造プロセスへ提供する効果を提供するという効果が得られる。
Furthermore, in an additional aspect, the invention provides:
The micro LED emission testing method incorporated into the fully automated manufacturing process uses the micro LED emission testing device according to the present invention and includes the following steps:
a product information acquisition step that receives substrate geometry information including alignment mark information, micro LED geometry information and micro LED array geometry information;
a manufacturing control area setting step of setting a manufacturing control area for recognizing and managing local product quality variations and/or abnormalities on the substrate from one or more of the geometry information;
an inspection acceptance notification step of notifying the production line control computer connected by the network means of the inspection acceptance status via the network means, and subsequently executed;
a manufacturing information receiving step of receiving micro LED wafer manufacturing information from the manufacturing line control computer;
a wafer loading step of loading the wafer on a test bed;
a manufacturing control area mapping step of capturing an overall image of the substrate using an image processing device and mapping the manufacturing control area to the substrate;
a micro-LED mapping step of mapping the micro-LEDs disposed on the substrate by an image processing device onto an image frame generated within the image processing device;
A micro LED characteristic measuring step of lighting the micro LED chip and measuring the emission intensity and emission wavelength by the image processing device;
The image processing device adds category information including abnormality classification classified by a matrix of the emission intensity and the emission wavelength according to predetermined classification conditions based on the micro LED characteristics to the micro LED map information, and A micro-LED sorting stage for sorting and sorting the chips, and a subsequent stage of sorting the chips.
A manufacturing process state determination step of overlaying the micro LED with the category information attached on the manufacturing control area map by the image processing device and recognizing the micro LED manufacturing process state with respect to the manufacturing control area is subsequently executed. ,
an inspection result transmitting step of transmitting the sorting information and the manufacturing process status by the image processing device to the manufacturing line control computer via the network means;
an inspection completion notification step of transmitting an inspection completion notification to the production line control computer via the network means;
Provided is a method of using a micro LED emission testing device incorporated into a fully automated manufacturing process, including: With this configuration, it is possible to further suppress variations that vary depending on manufacturing conditions, and to provide the effect of providing prompt feedback of manufacturing variation variation factors to the manufacturing process in a timely manner.

以上に示されるように本発明は、より高速のマイクロLED発光検査装置を提供し、マイクロLED製造プロセスと一体化される場合には、製造管理水準をより高めることを可能とする。 As shown above, the present invention provides a faster micro LED emission testing device, and when integrated with the micro LED manufacturing process, enables a higher level of manufacturing control.

図1は、本発明の一実施形態に係るマイクロLED発光検査装置1の物理構成図である。FIG. 1 is a physical configuration diagram of a micro LED emission testing device 1 according to an embodiment of the present invention.

図2は、本発明の一実施形態に係るマイクロLED発光検査装置1の機能構成図である。FIG. 2 is a functional configuration diagram of the micro LED emission testing device 1 according to an embodiment of the present invention.

図3は、本発明の一実施形態に係るマイクロLED発光検査装置1の概観模式図である。FIG. 3 is a schematic diagram of a micro LED emission testing device 1 according to an embodiment of the present invention.

図4は、本発明の一実施形態に係るマイクロLED発光検査装置の光強度比の決定を説明するためのグラフである。FIG. 4 is a graph for explaining determination of the light intensity ratio of the micro LED emission inspection device according to an embodiment of the present invention.

図5は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例における機能構成図である。FIG. 5 is a functional configuration diagram of a modified example of the micro LED emission inspection device 1 according to an embodiment of the present invention.

図6は、本発明の一実施形態に係るマイクロLED発光検査装置1の制御システムフローチャートを説明する模式フローチャート図である。FIG. 6 is a schematic flowchart illustrating a control system flowchart of the micro LED emission testing device 1 according to an embodiment of the present invention.

図7は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例における物理構成図である。FIG. 7 is a physical configuration diagram of a modified example of the micro LED emission inspection device 1 according to an embodiment of the present invention.

図8は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例におけるマイクロLED発光検査検査時のルックアップテーブル参照方式による光波長決定の場合の制御システムフローチャートを説明するフローチャート模式図である。FIG. 8 is a schematic flowchart illustrating a control system flowchart in the case of optical wavelength determination using a look-up table reference method during micro-LED luminescence inspection in a modified example of the micro-LED luminescence inspection apparatus 1 according to an embodiment of the present invention. It is a diagram.

図9は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例における物理構成図である。FIG. 9 is a physical configuration diagram of a modified example of the micro LED emission testing device 1 according to an embodiment of the present invention.

図10は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例におけるマイクロLED発光検査検査時のルックアップテーブル作成のためキャリブレーション時の制御システムフローチャートを説明するフローチャート模式図である。FIG. 10 is a flowchart schematic diagram illustrating a control system flowchart at the time of calibration for creating a lookup table during micro LED emission inspection in a modified example of the micro LED emission inspection apparatus 1 according to an embodiment of the present invention. be.

図11は、本発明の他の態様である、マイクロLED発光検査装置1に用いる光学フィルタ検査装置の一実施形態に係る光学フィルタ検査装置101の物理構成図である。FIG. 11 is a physical configuration diagram of an optical filter inspection device 101 according to an embodiment of the optical filter inspection device used in the micro LED emission inspection device 1, which is another aspect of the present invention.

図12は、本発明の他の態様である、マイクロLED発光検査装置1に用いる光学フィルタ検査装置の一実施形態に係る光学フィルタ検査装置101の機能構成図である。FIG. 12 is a functional configuration diagram of an optical filter inspection device 101 according to an embodiment of the optical filter inspection device used in the micro LED emission inspection device 1, which is another aspect of the present invention.

図13は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例における制御システムフローチャートを説明するフローチャート模式図である。FIG. 13 is a schematic flowchart diagram illustrating a control system flowchart in a modified example of the micro LED emission testing device 1 according to an embodiment of the present invention.

図14は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例における参照発光体を含む物理構成図である。FIG. 14 is a physical configuration diagram including a reference light emitting body in a modified example of the micro LED emission testing device 1 according to an embodiment of the present invention.

図15は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例における光センサを含む物理構成図である。FIG. 15 is a physical configuration diagram including an optical sensor in a modified example of the micro LED emission testing device 1 according to an embodiment of the present invention.

図16は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例におけるデジタル画像処理装置に不良品判定部を含む機能構成図である。FIG. 16 is a functional configuration diagram including a defective product determination unit in a digital image processing device in a modified example of the micro LED emission inspection device 1 according to an embodiment of the present invention.

図17は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例におけるデジタル画像処理装置にデータ入力部を含む機能構成図である。FIG. 17 is a functional configuration diagram including a data input unit in a digital image processing device in a modified example of the micro LED emission inspection device 1 according to an embodiment of the present invention.

図18は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例における画面表示装置を含む物理構成図である。FIG. 18 is a physical configuration diagram including a screen display device in a modified example of the micro LED emission testing device 1 according to an embodiment of the present invention.

図19は、本発明の一実施形態に係るマイクロLED発光検査装置1の変形実施例における発光波長と光フィルタ有無による光強度比の二次元マップの範疇を示すグラフ図である。FIG. 19 is a graph diagram showing the categories of a two-dimensional map of the light intensity ratio depending on the emission wavelength and the presence or absence of an optical filter in a modified example of the micro LED emission inspection device 1 according to an embodiment of the present invention.

図20は、本発明の2実施形態に係るマイクロLED発光検査装置500の一態様の物理構成図である。FIG. 20 is a physical configuration diagram of one aspect of a micro LED emission testing device 500 according to two embodiments of the present invention.

図21は、本発明の第2実施形態に係るマイクロLED発光検査装置500の一態様の機能構成図である。FIG. 21 is a functional configuration diagram of one aspect of a micro LED emission testing device 500 according to the second embodiment of the present invention.

図22は、本発明の第2実施形態に係るマイクロLED発光検査装置500の一態様における制御システムフローチャートを説明するフローチャート模式図である。FIG. 22 is a flowchart schematic diagram illustrating a control system flowchart in one aspect of the micro LED emission inspection apparatus 500 according to the second embodiment of the present invention.

図23は、本発明の第1実施形態に係る発光波長検査装置の変形実施態様である発光波長検査装置600を示す正面概略図である。FIG. 23 is a schematic front view showing an emission wavelength inspection device 600 which is a modified embodiment of the emission wavelength inspection device according to the first embodiment of the present invention.

図24は、同装置におけるフィルターが光路に挿入された場合を示す説明のための発光波長検査装置600を示す正面概略図である。FIG. 24 is a front schematic diagram showing an explanatory emission wavelength inspection device 600 in which a filter in the device is inserted into an optical path.

図25は、同装置における色フィルター50の透過率特性を示すグラフ図である。FIG. 25 is a graph showing the transmittance characteristics of the color filter 50 in the same device.

図26は、本発明の第2実施形態の変形実施形態である発光波長検査装置700の正面模式図である。FIG. 26 is a schematic front view of an emission wavelength testing device 700 that is a modified embodiment of the second embodiment of the present invention.

図27は、同装置における色フィルター56の透過率特性の傾斜角の変化の影響を示すためのグラフ図である。FIG. 27 is a graph diagram showing the influence of changes in the inclination angle on the transmittance characteristics of the color filter 56 in the same device.

図28は、同装置を用いるマイクロLED発光検査のフローチャートである。FIG. 28 is a flowchart of a micro LED emission test using the same device.

図29は、本発明の第1実施形態の変形実施形態である発光波長検査装置800の斜視模式図である。FIG. 29 is a schematic perspective view of an emission wavelength testing device 800 that is a modified embodiment of the first embodiment of the present invention.

〈第1実施形態〉
本発明に係るマイクロLED発光検査装置1の一実施形態は以下である。図1に示される物理構成ブロック図に示されるように、マイクロLED発光検査装置1は、給電機構10、光学レンズ20、撮像装置30、デジタル画像処理装置40、光学フィルタ50、フィルタ駆動機構60、及び制御装置70等の物理構造を部分に含むマイクロLED発光検査装置である。
<First embodiment>
An embodiment of the micro LED emission testing device 1 according to the present invention is as follows. As shown in the physical configuration block diagram shown in FIG. 1, the micro LED emission inspection device 1 includes a power feeding mechanism 10, an optical lens 20, an imaging device 30, a digital image processing device 40, an optical filter 50, a filter drive mechanism 60, This is a micro LED emission testing device that includes a physical structure such as a control device 70 and the like.

より詳細には、マイクロLED発光検査装置1の一実施形態は。図2に掲げる機能構成図に示されているように、検査対象のウェハとして、個別に分離されるべき100μm角以下の大きさの矩形領域内を占めるマイクロLED2がアレイ状に配列されて表面に形成された半導体サブストレート3が装着可能であり、給電機構10によって点灯されたマイクロLED2の光は、光学フィルタ50、光学レンズ20を通る光路を介してイメージセンサ31を有する撮像装置30へ導かれる配置構成となっている。例えば赤色を含むように所定の光波長帯域を有する光学フィルタ50は、マイクロLED2と前記光学レンズ20との光路21に配設され、光学フィルタ50によって選択透過された所定の光波長帯域の光がイメージセンサ31を介し、撮像装置30において映像信号を生成させる構成となっている。前記デジタル画像処理装置40はメモリ41を備え、前記映像信号を映像信号線18を介して撮像装置30から受入れ、映像信号から画像データフレーム42を生成し、これをメモリ41へ格納するように構成されている。半導体サブストレート3全体に形成されているマイクロLED2の占める領域は、複数の画像データフレーム42によって分割格納されてもよい。 More specifically, one embodiment of the micro LED emission testing device 1 is as follows. As shown in the functional configuration diagram in Figure 2, micro LEDs 2 occupying rectangular areas of 100 μm square or less, which should be separated individually, are arranged in an array on the surface of the wafer to be inspected. The formed semiconductor substrate 3 can be attached, and the light of the micro LED 2 turned on by the power supply mechanism 10 is guided to an imaging device 30 having an image sensor 31 via an optical path passing through an optical filter 50 and an optical lens 20. It has a layout configuration. For example, an optical filter 50 having a predetermined wavelength band including red color is disposed in the optical path 21 between the micro LED 2 and the optical lens 20, and the light in the predetermined wavelength band selectively transmitted by the optical filter 50 is The configuration is such that a video signal is generated in the imaging device 30 via the image sensor 31. The digital image processing device 40 includes a memory 41 and is configured to receive the video signal from the imaging device 30 via the video signal line 18, generate an image data frame 42 from the video signal, and store this in the memory 41. has been done. The area occupied by the micro LEDs 2 formed on the entire semiconductor substrate 3 may be divided into a plurality of image data frames 42 and stored.

前期光学フィルタ50は、フィルタ駆動機構60によって支持されており、フィルタ駆動機構60は制御装置70からの制御信号を制御信号線88を経由し受け入れるための受信部62を備える。前記制御装置70は、フィルタ駆動機構60によって光学フィルター50の有無を選択制御可能に構成されている、制御装置70フィルタ駆動機構60の制御信号の生成のための制御部71を含み、当該制御部71は、システムフロー開始とフロー制御可能に構成され、制御部71は、フィルタ駆動機構60の前記制御信号を送信するための送信部72を備え、制御信号をフィルタ駆動機構60に備わる制御信号のフィルタ駆動機構受信部62に送信可能に構成されている。 The first optical filter 50 is supported by a filter drive mechanism 60, and the filter drive mechanism 60 includes a receiving section 62 for receiving a control signal from a control device 70 via a control signal line 88. The control device 70 includes a control section 71 for generating a control signal for the filter drive mechanism 60, which is configured to be able to selectively control the presence or absence of the optical filter 50 by the filter drive mechanism 60. 71 is configured to be able to start the system flow and control the flow, and the control unit 71 includes a transmitting unit 72 for transmitting the control signal of the filter drive mechanism 60, and transmits the control signal to the control signal provided in the filter drive mechanism 60. It is configured to be able to transmit to the filter drive mechanism receiving section 62.

デジタル画像処理装置40において、映像信号から生成されたデジタル光強度は、画像データフレーム42上のピクセル毎に段階的光強度を持ち、複数の画像データフレーム42は束ねられメモリ41上に保持されてもよいが、半導体サブストレート3全体が撮像された画像データフレーム42上に貼られた直交座標系で各々x番目、y番目のピクセル毎の光強度関数をI(x,y)として、光強度ピクセルマップI(x,y)45として記録されるようにデジタル画像処理装置40は構成されている。光強度ピクセルマップI(x,y)45の隣接するピクセル間は移動平均によって前記段階的光強度の平滑処理がなされてもよい。デジタル画像処理装置40には、単位映像体識別部81が構成されており、画像データフレーム42上のピクセル毎の光強度ピクセルマップ45から所定のクライテリアに基づきデジタル画像処理装置40の画面フレーム内に現出される発光体の単位映像体80が特定され、前記ピクセルマップ43への単位映像体マッピングデータ46を生成するように単位映像体識別部81において単位映像体80が特定されるようにデジタル画像処理装置40は構成されている。画像データフレーム42上座標系でi番目、j番目の単位映像体80は単位映像体マッピングデータ46座標システムで座標(I,J)の単位映像体80として特定される。 In the digital image processing device 40, the digital light intensity generated from the video signal has a stepwise light intensity for each pixel on the image data frame 42, and the plurality of image data frames 42 are bundled and held on the memory 41. However, the light intensity can be expressed as I(x, y), which is the light intensity function for each x-th and y-th pixel in the orthogonal coordinate system pasted on the image data frame 42 in which the entire semiconductor substrate 3 is imaged. The digital image processing device 40 is configured to record as a pixel map I(x,y) 45. The stepwise smoothing process of the light intensity may be performed between adjacent pixels of the light intensity pixel map I(x,y) 45 by a moving average. The digital image processing device 40 is configured with a unit image object identification unit 81, and the unit image object identification unit 81 is configured to detect light intensity within the screen frame of the digital image processing device 40 based on predetermined criteria from the light intensity pixel map 45 for each pixel on the image data frame 42. The unit image object 80 of the light emitting body to be exposed is identified, and the unit image object 80 is digitally identified in the unit image object identification section 81 so as to generate the unit image object mapping data 46 to the pixel map 43. The image processing device 40 is configured. The i-th and j-th unit image objects 80 in the coordinate system on the image data frame 42 are specified as unit image objects 80 at coordinates (I, J) in the coordinate system of the unit image object mapping data 46.

デジタル画像処理装置40には、マイクロLED識別部90が構成されており、半導体サブストレート3上にアレイ状に配列された個々のマイクロLED2は、単位映像体80を手がかりに特定される。半導体サブストレート3上に相対的に例えば格子状に配列配置されているマイクロLED2は、所定のクライテリア例えば、画像フレーム42上で周囲に対しピーク値の光エネルギ強度値を呈するピクセルを単位映像体80の中心部と特定し、隣接する二つの単位映像体80の中心部間の中央をその二つの間に存在する単位映像体80の矩形境界(図3では符号Bで示す)と仮定し、単位映像体80の形態を判定する所定のクライテリアによって、画像データフレーム42上の座標系で、各々の単位映像体80を例えばx1~x3番目、y1~y3番目の9個のピクセルに対応するものと、
{I(x1,y1),I(x1,y2),I(x1,y3),I(x2,y1),I(x2,y2),I(x2,y3),I(x3,y1),I(x3,y2),I(x3,y3)}のピクセル要素を構成要素として持つものと単位映像体識別部81において判定される。半導体サブストレート3上に相対的に例えば格子状に(I,J)マトリックスに配列配置されているマイクロLED2(I,J)に対応させて前記ピクセルマップ43上にマッピングするマイクロLEDマッピング44のデータを生成するようにマイクロLED識別部90は構成されている。結局、(I,J)番目のマイクロLED2は、単位映像体80(I,J)に対応し、ピクセル値(I(x1,y1),I(x1,y2),I(x1,y3),I(x2,y1),I(x2,y2),I(x2,y3),I(x3,y1),I(x3,y2),I(x3,y3)から構成される。
The digital image processing device 40 includes a micro LED identification section 90, and the individual micro LEDs 2 arranged in an array on the semiconductor substrate 3 are identified using the unit image body 80 as a clue. The micro-LEDs 2 arranged relatively on the semiconductor substrate 3, for example, in a lattice pattern, are arranged according to a predetermined criterion, for example, a pixel exhibiting a peak light energy intensity value with respect to the surroundings on the image frame 42, as a unit image object 80. Assuming that the center between the centers of two adjacent unit image bodies 80 is the rectangular boundary (indicated by symbol B in FIG. 3) of the unit image body 80 existing between the two, According to predetermined criteria for determining the form of the image object 80, each unit image object 80 is assumed to correspond to nine pixels, for example, x1 to x3 and y1 to y3, in the coordinate system on the image data frame 42. ,
{I (x1, y1), I (x1, y2), I (x1, y3), I (x2, y1), I (x2, y2), I (x2, y3), I (x3, y1), I(x3, y2), I(x3, y3)} is determined by the unit image object identification unit 81 to have pixel elements of } as constituent elements. Data of the micro LED mapping 44 that is mapped onto the pixel map 43 in correspondence with the micro LEDs 2 (I, J) that are arranged relatively on the semiconductor substrate 3 in, for example, a lattice-like (I, J) matrix. The micro LED identification unit 90 is configured to generate . In the end, the (I, J)th micro LED 2 corresponds to the unit image object 80 (I, J), and has pixel values (I (x1, y1), I (x1, y2), I (x1, y3), It is composed of I(x2, y1), I(x2, y2), I(x2, y3), I(x3, y1), I(x3, y2), I(x3, y3).

デジタル画像処理装置40には、個々のマイクロLED2の光強度を算出する演算ロジックとして所定の光エネルギ強度算出式が動作するように構成されており、例えば、光強度ピクセルマップ45上で単位映像体80に対応するマイクロLED2に対応する画像フレーム42上のピクセルの段階的光強度の総和、上記の例では,
Σ{(x1,y1),I(x1,y2),I(x1,y3),I(x2,y1),I(x2,y2),I(x2,y3),I(x3,y1),I(x3,y2),I(x3,y3)}
を光強度として採用してもよい。このように決定された単位映像体80に対応する各々のマイクロLED2の光エネルギ強度は、制御装置70からの制御信号を受け入れてフィルタ駆動機構60によって光学フィルター50無の配置において測定された光エネルギ強度値として、メモリ41に格納されるようにデジタル画像処理装置40は構成されている。
The digital image processing device 40 is configured to operate a predetermined light energy intensity calculation formula as an arithmetic logic for calculating the light intensity of each micro LED 2. The sum of the graded light intensities of the pixels on the image frame 42 corresponding to the micro LEDs 2 corresponding to 80, in the above example,
Σ{(x1, y1), I (x1, y2), I (x1, y3), I (x2, y1), I (x2, y2), I (x2, y3), I (x3, y1), I(x3, y2), I(x3, y3)}
may be adopted as the light intensity. The light energy intensity of each micro LED 2 corresponding to the unit image body 80 determined in this way is determined by the light energy measured by the filter drive mechanism 60 in the arrangement without the optical filter 50 upon receiving the control signal from the control device 70. The digital image processing device 40 is configured to store the intensity values in the memory 41.

同様に、単位映像体80に対応する各々のマイクロLED2の光エネルギ強度は、フィルタ駆動機構60によって光学フィルター50有りの配置に変更された後においても測定され、同一の単位映像体80に対応するマイクロLED2のの光エネルギ強度値は、光学フィルター50有の配置における前記マイクロLED2の前記光エネルギ強度値としても測定されるようにデジタル画像処理装置40は構成されている。 Similarly, the light energy intensity of each micro LED 2 corresponding to the unit image object 80 is measured even after the arrangement is changed to the one with the optical filter 50 by the filter drive mechanism 60, and the light energy intensity of each micro LED 2 corresponding to the unit image object 80 is measured even after the arrangement is changed to the one with the optical filter 50 by the filter drive mechanism 60. The digital image processing device 40 is configured such that the light energy intensity value of the micro LED 2 is also measured as the light energy intensity value of the micro LED 2 in the arrangement with the optical filter 50.

デジタル画像処理装置40には、マイクロLED検査部100が構成されており、マイクロLED検査部100に構成されるモジュールは演算ロジックとして所定のマイクロLED2の発光波長算出式が動作するように構成され、例えば、予め構成されメモリ41上に保持されたルックアップテーブル109において、引数を指定すればこれによって当該ルックアップテーブル109を検索し、引数に対応する目的データ値であるマイクロLED2の発光波長を参照可能にルックアップテーブル109が構成されている。前記引数は、例えば、前記光学フィルター50無の配置における前記光エネルギ強度値と前記光学フィルター50有の配置における前記光エネルギ強度値との関係を表現されたものであれば、例えば、一実施形態では、光学フィルター50有り/無しの光エネルギ強度値比であってもよく、その場合には、ルックアップテーブル109は光学フィルター50無の配置における前記光エネルギ強度値と前記光学フィルター50有の配置における前記光エネルギ強度値との比と、発光波長との関係を配列データとして作成されたものであるとよい。 The digital image processing device 40 includes a micro LED inspection section 100, and the modules included in the micro LED inspection section 100 are configured to operate a predetermined emission wavelength calculation formula of the micro LED 2 as an arithmetic logic. For example, if an argument is specified in the lookup table 109 configured in advance and held in the memory 41, the lookup table 109 is searched and the emission wavelength of the micro LED 2, which is the target data value corresponding to the argument, is referenced. Possibly a lookup table 109 is configured. For example, if the argument expresses the relationship between the light energy intensity value in the arrangement without the optical filter 50 and the light energy intensity value in the arrangement with the optical filter 50, then, for example, in one embodiment, In this case, the ratio of the light energy intensity values with/without the optical filter 50 may be used. In that case, the lookup table 109 may be the ratio of the light energy intensity values in the arrangement without the optical filter 50 and the arrangement with the optical filter 50 in the lookup table 109. Preferably, the relationship between the ratio of the light energy intensity value and the emission wavelength is created as array data.

ルックアップテーブル109は、既知の光波長の光源によって、フィルタ特性がキャリブレーションされた光学フィルターを用いて、前記光学フィルター無の配置における前記光エネルギ強度値と前記光学フィルター有の配置における前記光エネルギ強度値との比と前記発光波長との関係に関して前記キャリブレーションをもとに作成されたルックアップテーブル109が好適である。 The lookup table 109 uses an optical filter whose filter characteristics have been calibrated using a light source with a known wavelength, and calculates the light energy intensity value in the arrangement without the optical filter and the light energy in the arrangement with the optical filter. A lookup table 109 created based on the calibration regarding the relationship between the ratio of the intensity value and the emission wavelength is suitable.

さらに、追加の変形実施形態では、マイクロLED2の発光波長算出式は、光エネルギ強度比測定値に対応する発光波長が参照されたときに中間値については、その中間値を跨ぐ直近の二つの引数が与える二つの参照波長を按分補間によって調整し発光波長が決定されるようにルックアップテーブル109が構成されていてもよい。按分による補完は線形補完でも、二次回帰線による近似補完でも、適当な直線又はカーブにフィットするものであればよい。 Furthermore, in an additional variant embodiment, when the emission wavelength calculation formula of the micro LED 2 is referred to, when the emission wavelength corresponding to the light energy intensity ratio measurement value is referred to, for an intermediate value, the two most recent arguments that straddle the intermediate value are used. The lookup table 109 may be configured so that the emission wavelength is determined by adjusting the two reference wavelengths provided by proportional interpolation. The apportionment-based interpolation may be linear interpolation or approximate interpolation using a quadratic regression line, as long as it fits an appropriate straight line or curve.

[第1実施形態の作用効果]
以上の構成の一実施形態に係る本発明の作用効果を図3に示される本発明の一実施形態の概観模式図を参照しながら説明する。
[Operations and effects of the first embodiment]
The effects of the present invention according to one embodiment of the above configuration will be explained with reference to the schematic overview diagram of one embodiment of the present invention shown in FIG.

図3に示されるマイクロLED発光検査装置1のステージ4上に搭載固定された半導体サブストレート3上には、マイクロLED2がアレイ状に形成されている(以下、本実施形態でマイクロLEDアレイ2ともいう)。マイクロLED2はマイクロLED製造行程中にマイクロLEDが発光可能な段階まで製造が進展した後に、マイクロLEDの光強度、発光波長等のLEDとしての性能を測定するために実施する。 Micro LEDs 2 are formed in an array on a semiconductor substrate 3 mounted and fixed on a stage 4 of a micro LED emission inspection apparatus 1 shown in FIG. say). Micro LED 2 is carried out in order to measure the performance of the micro LED as an LED, such as the light intensity and emission wavelength, after the manufacturing progresses to the stage where the micro LED can emit light during the micro LED manufacturing process.

マイクロLED2が使用される表示装置製品(図示しない)においては、表示装置の画面パネルが半導体サブストレート3よりも大きな場合が多々あること、LEDの利用効率が勘案されて半導体サブストレート3上のマイクロLEDチップは一旦半導体サブストレート3から個々に切り出され、その後、表示装置製本の組み立て時に接合される。このような表示装置に組み込まれるマイクロLED2であれば、そのマイクロLED2は、一旦から切り出された後に隣接するマイクロLEDチップは、別の半導体サブストレート3から切り出されたものであったり、同一半導体サブストレート3から切り出されたものであっても隣接しない離隔した部位から切り出されたものであるなど、製造プロセス条件の異なるチップが混在して表示装置(図示しない)製品に組立てられることとなる。 In display device products (not shown) in which micro LEDs 2 are used, the screen panel of the display device is often larger than the semiconductor substrate 3, and the utilization efficiency of the LEDs is taken into consideration. The LED chips are once individually cut out from the semiconductor substrate 3, and then joined together when assembling the display device. If the micro LED 2 is to be incorporated into such a display device, the micro LED chips 2 that are adjacent to each other after being cut out may be cut out from another semiconductor substrate 3 or may be cut out from the same semiconductor substrate 3. Chips with different manufacturing process conditions, such as chips cut from the straight 3 but chips cut from non-adjacent separated parts, are mixed together and assembled into a display device (not shown) product.

本実施形態のマイクロLED発光検査装置1は、個別に分離されるべきマイクロLED2がアレイ状に配列されて表面に形成されて半導体サブストレート3上に製造されたマイクロLED2について、所定の性能範囲に収まるものを表示装置に組み上げる際、隣接配置することを可能とするため、マイクロLED2の光強度、発光波長等のLEDとしての性能を測定する。この場合において、本実施形態のマイクロLED発光検査装置1はデジタル画像処理装置40によって高速にマイクロLED2の光強度、発光波長等のLEDとしての性能を測定することを可能とする。以下、詳細に説明する。 The micro LED emission inspection device 1 of this embodiment is capable of controlling micro LEDs 2 manufactured on a semiconductor substrate 3 in which micro LEDs 2 to be individually separated are arranged in an array and formed on the surface within a predetermined performance range. When assembling the micro LEDs 2 into a display device, the performance of the micro LEDs 2 as LEDs such as light intensity and emission wavelength is measured so that they can be placed adjacent to each other. In this case, the micro LED emission testing device 1 of this embodiment allows the digital image processing device 40 to quickly measure the performance of the micro LED 2 as an LED, such as its light intensity and emission wavelength. This will be explained in detail below.

図3に示されるマイクロLED発光検査装置1はステージ4上に搭載固定された半導体サブストレート3上のマイクロLED2は、給電機構10によって発光させられると、その発光は撮像装置30に配設されているイメージセンサ31において映像信号を生成し、制御ラインを介して、デジタル画像処理装置40に取り込まれる。この場合において、撮像装置30とマイクロLED2との間の光路上に配設可能である光学フィルタ50をRGBの各色別の透過光の映像信号を選択配信するものを選択することによって、各色別のマイクロLED2の光強度、発光波長等のLEDとしての性能を測定することを可能とする。例えば、赤色の発光性能を測定するとき、光学フィルタ50は、設計条件に相当する波長630nmを中心に、波長範囲610nmから650nmまでを測定できるように設計されている色波長610nmから650nmの光波長帯域の透過フィルタである。一実施例の透過フィルタは基板となるガラス材料に光吸収材を混ぜる色吸収型フィルタである。 In the micro LED light emission inspection device 1 shown in FIG. A video signal is generated in the image sensor 31 located in the image sensor 31, and is input to the digital image processing device 40 via a control line. In this case, by selecting an optical filter 50 that can be disposed on the optical path between the imaging device 30 and the micro LED 2 to selectively distribute video signals of transmitted light for each color of RGB, It is possible to measure the performance of the micro LED 2 as an LED, such as its light intensity and emission wavelength. For example, when measuring red light emission performance, the optical filter 50 is designed to be able to measure a wavelength range of 610 nm to 650 nm, centering on a wavelength of 630 nm corresponding to the design conditions. It is a band transmission filter. The transmission filter of one embodiment is a color absorption type filter in which a light absorbing material is mixed into a glass material serving as a substrate.

光学フィルタ50はフィルタ駆動機構60によって、光路に出し入れ可能でり、最初の光強度、発光波長測定では、制御装置70の制御部71からの制御信号によって、フィルタ駆動機構60が制御されて光学フィルタ50無しの状態でマイクロLED2の発光を測定する。 The optical filter 50 can be moved in and out of the optical path by a filter drive mechanism 60, and in the first measurement of light intensity and emission wavelength, the filter drive mechanism 60 is controlled by a control signal from the control section 71 of the control device 70, and the optical filter 50 is moved in and out of the optical path. The light emission of the micro LED 2 is measured without the micro LED 2.

図3に示されるマイクロLED発光検査装置1のマイクロLED2の光強度測定、及び発光波長測定は、以下に記載の通りである。 The light intensity measurement and emission wavelength measurement of the micro LED 2 of the micro LED emission inspection device 1 shown in FIG. 3 are as described below.

映像信号がデジタル画像処理装置40に取り込まれると、デジタル画像処理装置40は画像データフレーム42単位に、所謂画面単位に画像データフレーム42の光強度を二次元画面データフレーム配列に対応させる部位に応じ、画面のピクセル毎に光強度値はデジタル画像処理装置40に備えられたメモリ機構41に格納される。画面の二次元マップに応ずるものとして、これを全体として光強度値を表示する目的に適するマップデータとしての光強度ピクセルマップ45、画像データフレーム42上での座標系を表すものとしては単にピクセルマップ43と本明細書で呼称する。 When the video signal is taken into the digital image processing device 40, the digital image processing device 40 adjusts the light intensity of the image data frame 42 in units of image data frames 42, so-called screen units, according to the parts that correspond to the two-dimensional screen data frame array. , the light intensity value for each pixel of the screen is stored in a memory mechanism 41 provided in the digital image processing device 40 . A light intensity pixel map 45 corresponds to a two-dimensional map of the screen and is used as map data suitable for displaying light intensity values as a whole, and a pixel map simply represents a coordinate system on the image data frame 42. 43 herein.

光強度ピクセルマップ45は映像信号がデジタル画像処理装置40に取り込まれるとビデオ映像レコーダにように自動的に生成される。 Light intensity pixel map 45 is automatically generated when a video signal is captured by digital image processing device 40, such as in a video video recorder.

一方、デジタル画像処理装置40に取り込まれた光強度ピクセルマップ45は、そのままでは半導体サブストレート3上の個々のマイクロLED2とは対応づけられてはいない。ウェハ上にドットピッチ0.1mm以下で多数形成されるマイクロLED2は、例えば、6インチの半導体サブストレート3上には150万個余り形成されており、150万個のマイクロLED2を瞬時に特定する必要がある。勿論、必ずしも二次元画面データフレーム配列の1ピクセルが1マイクロLEDに対応しているわけでなく、1つのマイクロLED2に対して複数のピクセルが対応させるのがよい。 On the other hand, the light intensity pixel map 45 taken into the digital image processing device 40 is not directly associated with the individual micro LEDs 2 on the semiconductor substrate 3. For example, more than 1.5 million micro LEDs 2 are formed on a wafer with a dot pitch of 0.1 mm or less on a 6-inch semiconductor substrate 3, and 1.5 million micro LEDs 2 can be instantly identified. There is a need. Of course, one pixel of the two-dimensional screen data frame array does not necessarily correspond to one micro LED, but it is preferable that one micro LED 2 corresponds to a plurality of pixels.

一実施形態に係るマイクロLED発光検査装置1では、画像データフレーム42上に、ほぼ同一の形態の発光体が画像上で認識可能であろうという予測に基づき、マイクロLEDの映像単位体81という概念上のオブジェクトを導入する。このような概念は、特に、ウェハ上にドットピッチ0.1mm以下で同一の繰り返し単位で形成されたマイクロLEDの多数、同時計測に好適である。 In the micro LED luminescence inspection device 1 according to one embodiment, the concept of a micro LED image unit 81 is based on the prediction that light emitters of almost the same shape will be recognizable on the image data frame 42. Introduce the above object. Such a concept is particularly suitable for simultaneous measurement of a large number of micro LEDs formed on a wafer in the same repeating unit with a dot pitch of 0.1 mm or less.

マイクロLED発光検査装置1ではこのマイクロLEDの映像単位体81は、所定のクライテリアに基づき光強度ピクセルマップ45の光強度及び各ピクセルのジオメトリ情報から特定されるものとされる。例えば、一実施形態では以下のように特定される。所定のクライテリアは周囲に対しピーク光エネルギ強度値を呈するピクセルを単位映像体80の一つ一つの中心部と特定し、ある単位映像体80を選んだとき、その隣接する単位映像体80のそれぞれの中心部間の中央を隣接する単位映像体80との矩形境界とする。マイクロLED発光検査装置外から提供される設計情報によればその間隔は例えば、ドットピッチ0.1mmに対応するはずのものであり、公差を勘案してもよい。このような所定のクライテリアに基づく単位映像体80の特定手段によって、高速にマイクロLEDの映像単位体81が特定され、着目されたマイクロLEDの占有すべき領域が、より素早く特定されるという効果を与える。このように、マイクロLEDの映像単位体81概念の導入と、画面フレーム情報から映像単位体81の特定に適する所定のクライテリアは、特に150万個以上の測定対象を一括で処理する必要のある、100μm角以下の大きさの矩形領域内を占めるマイクロLED2がアレイ状に配列されて表面に形成された半導体サブストレート単位の検査に用いるに好適なマイクロLED発光検査装置の提供に貢献する。 In the micro LED emission testing device 1, the micro LED image unit 81 is specified from the light intensity of the light intensity pixel map 45 and the geometry information of each pixel based on predetermined criteria. For example, in one embodiment, it is specified as follows. The predetermined criteria specifies that a pixel exhibiting a peak light energy intensity value relative to the surroundings is the center of each unit image object 80, and when a certain unit image object 80 is selected, each of its adjacent unit image objects 80 Let the center between the center portions be the rectangular boundary with the adjacent unit video object 80. According to design information provided from outside the micro LED emission testing device, the spacing should correspond to a dot pitch of 0.1 mm, for example, and tolerances may be taken into account. By specifying the unit image object 80 based on such predetermined criteria, the image unit 81 of the micro LED can be specified at high speed, and the area to be occupied by the focused micro LED can be specified more quickly. give. In this way, the introduction of the concept of the micro-LED video unit 81 and the predetermined criteria suitable for identifying the video unit 81 from screen frame information are particularly important when it is necessary to process 1.5 million or more measurement objects at once. The present invention contributes to the provision of a micro LED light emission inspection device suitable for use in inspecting a semiconductor substrate unit formed on the surface of which micro LEDs 2 occupying a rectangular area having a size of 100 μm or less are arranged in an array.

上記のように、画像データフレーム42内で発光体の一つ一つの単位映像体80が特定され、全体として画像データフレーム42内で観察されるべきすべてのマイクロLED2が画像データフレーム42内のピクセルに対応付けされるとき、マイクロLED2へのピクセルマップ43、すなわちマイクロLEDマップ44が生成されたと本発明概念は定義する。このような概念によって本来は一つ一つの個性がある半導体サブストレート3上の個々のマイクロLED2をマイクロLEDマップ44として包括概念化し、一括処理に適する扱いを施すのを容易とする効果を与えるし、個々のマイクロLED2に対応するピクセル値をメモリ41に格納するとき、より効率的なメモリ消費手段が提供可能とされる。 As mentioned above, each unit image body 80 of the light emitters is identified within the image data frame 42, and all micro-LEDs 2 to be observed within the image data frame 42 as a whole are identified by pixels within the image data frame 42. The inventive concept defines that a pixel map 43 to the micro LED 2, ie a micro LED map 44, is generated. With this concept, the individual micro LEDs 2 on the semiconductor substrate 3, which originally have individual characteristics, can be comprehensively conceptualized as the micro LED map 44, and this has the effect of making it easier to handle them in a way that is suitable for batch processing. , a more efficient means of memory consumption can be provided when storing pixel values corresponding to individual micro-LEDs 2 in memory 41.

本発明に係るマイクロLED発光検査装置1の一実施形態は、上記特定された矩形領域に対応する光強度ピクセルマップ45上のピクセルは当該マイクロLEDに属するものとして、そのピクセルが提供する光強度を元に当該マイクロLEDが発する光エネルギ強度を所定の光エネルギ強度算出式によって算出することを特徴とする。例えば、より詳細には、所定の光エネルギ強度算出式は、前記光強度ピクセルマップ45上で特定の一つのマイクロLEDに含まれるピクセルの段階的光強度の総和である。ここで段階的強度とは、所定のコントラスによって、光強度がデジタル的に階段状の値として評価された光強度数値のことであり、その階段状は線形的な階段状であってもよいし、ベータ関数的に部分が急勾配であってもよく、領域内の観察点は必ずしも等しく貢献評価されなくても、例えば、中心部の数値が重み付けされてもよいが、このようにマイクロLEDに含まれるピクセルの段階的光強度の総和をとりマイクロLEDに関連するすべてのピクセルで観察される光強度を利用すると、一つ一つのピクセルの測定に伴う擾乱を平滑化できる利点があり、さらにこの評価手段は、仮に隣のマイクロLEDからの発光が混在するものとしても、当該マイクロLEDからの発光が隣のマイクロLEDのものとみなされることの相殺効果も提供し、全体としてより正確な一つ一つのマイクロLEDの発光性能の評価に役立つという優れた効果を与える。 One embodiment of the micro LED emission inspection device 1 according to the present invention assumes that the pixels on the light intensity pixel map 45 corresponding to the specified rectangular area belong to the micro LED, and calculates the light intensity provided by that pixel. It is characterized in that the light energy intensity emitted by the micro LED is originally calculated using a predetermined light energy intensity calculation formula. For example, in more detail, the predetermined light energy intensity calculation formula is the sum of stepwise light intensities of pixels included in one specific micro-LED on the light intensity pixel map 45. Here, the graded intensity refers to a light intensity value in which the light intensity is digitally evaluated as a step-like value using a predetermined contrast, and the step-like shape may be a linear step-like value or , the part may be steep in terms of the beta function, and the observation points within the region may not necessarily contribute equally, for example, the values in the center may be weighted, but in this way the micro-LED Using the light intensity observed in all pixels related to the micro-LED by summing the graded light intensities of the included pixels has the advantage of smoothing out the disturbances associated with the measurement of each pixel. The evaluation means also provides a counterbalancing effect in that even if light emitted from neighboring micro LEDs is mixed, the light emitted from the concerned micro LED is regarded as that of the neighboring micro LED, and is more accurate overall. This provides an excellent effect of being useful for evaluating the light emitting performance of one micro LED.

マイクロLEDの発光性能が上記のように、各ピクセルマップ43が与える光強度の関数によって提供されるとしても、直接的には、マイクロLEDの発光波長を決定することにはならない。そこで従来は、スペクトロメータが個々のマイクロLEDの発光波長測定に用いられていた。スペクトロメータを用いる従来の発行波長測定方式では、仮にリニアセンサが用いられるとしても、なお、10000秒という膨大な時間が必要となる場合があることは、本願明細書の背景技術に記載したとおりである。 Even if the light emitting performance of the micro LED is provided as a function of the light intensity provided by each pixel map 43 as described above, it does not directly determine the light emission wavelength of the micro LED. Therefore, conventionally, a spectrometer has been used to measure the emission wavelength of each micro LED. As described in the background art section of the specification of this application, in the conventional emission wavelength measurement method using a spectrometer, even if a linear sensor is used, an enormous time of 10,000 seconds may be required. be.

本発明に係るマイクロLED発光検査装置1の一実施形態は、光学フィルター50を設計条件に相当する色波長を含む所定の光波長帯域でフィルタ透過光強度が単調増加又は単調減少する光学フィルターとされるように特徴づけられている。所定の光波長帯域でフィルタ透過光強度が単調増加又は単調減少する光学フィルタの例は、図3の光学フィルタ50に隣接するグラフを表現する光学フィルタ50である。このグラフの横軸は光波長であり、縦軸は光フィルタ50無しの場合、光フィルタ50有りの場合の光強度の比である。このような光フィルタ50によって、マイクロLEDの発光波長の決定にスペクトロメータを不要とし、各ピクセルマップ43が与える光強度の光フィルタ50無しの場合、光フィルタ50有りの場合(以下で、「光フィルタ有り/光フィルタ無し」、又は「光フィルタ有り/無し」、と記載する)の二通りの光強度の測定のみによって、マイクロLEDの発光波長の決定を可能とする。これによって、光フィルタ有り/無し配置の切り替えに時間を要するとしても、例えば、150万個の測定対象の光フィルタ無し/有りの測定はデジタル画像処理装置によって一括処理も可能とし、150万個の1パスのラインセンサ又はCCDセンサによるデジタル画像処理装置メモリへの映像信号取り込みは高々50秒もあれば十分であるから、150万個の二回の一括データ処理自体は100秒もあれば可能で有り、上記程度の光強度評価は瞬時に完了し得て、ここで仮に光フィルタ無し/有り配置の切り替えに30秒要するとしても、結局、150万個処理には150秒もかからない。したがって、従来技術では1500秒は要するところを桁違いの高速処理を実現可能とする顕著な効果を本発明のマイクロLED発光検査装置1は提供する。 In one embodiment of the micro LED emission inspection device 1 according to the present invention, the optical filter 50 is an optical filter in which the intensity of filter-transmitted light monotonically increases or decreases in a predetermined light wavelength band including a color wavelength corresponding to a design condition. It is characterized as follows. An example of an optical filter in which the filter-transmitted light intensity monotonically increases or decreases in a predetermined optical wavelength band is the optical filter 50 that expresses the graph adjacent to the optical filter 50 in FIG. 3 . The horizontal axis of this graph is the light wavelength, and the vertical axis is the ratio of the light intensity without the optical filter 50 and with the optical filter 50. Such an optical filter 50 makes it unnecessary to use a spectrometer to determine the emission wavelength of the micro LED, and the light intensity given by each pixel map 43 is determined by the light intensity without the optical filter 50 and with the optical filter 50 (hereinafter referred to as "light intensity"). It is possible to determine the emission wavelength of the micro LED only by measuring the light intensity in two ways (described as "with filter/no optical filter" or "with/without optical filter"). As a result, even if it takes time to switch between the arrangement with and without an optical filter, for example, the measurement of 1.5 million measurement objects without or with an optical filter can be processed all at once by a digital image processing device, Since it takes at most 50 seconds to capture video signals into the memory of a digital image processing device using a one-pass line sensor or CCD sensor, it is possible to process 1.5 million pieces of data twice in 100 seconds. Yes, the above-mentioned light intensity evaluation can be completed instantaneously, and even if it takes 30 seconds to switch between the arrangement without and with the optical filter, in the end it will take less than 150 seconds to process 1.5 million pieces. Therefore, the micro LED emission testing device 1 of the present invention provides the remarkable effect of making it possible to realize processing at an order of magnitude faster than the conventional technology, which takes 1500 seconds.

以下、設計条件に相当する色波長を含む所定の光波長帯域でフィルタ透過光強度が単調増加又は単調減少する光学フィルター50を用いる手段は、光フィルタ50無し/光フィルタ50有りの二通りの光強度の測定のみによって、マイクロLEDの発光波長の決定することを説明する。 Hereinafter, means for using the optical filter 50 in which the filter transmitted light intensity monotonically increases or monotonically decreases in a predetermined light wavelength band including the color wavelength corresponding to the design condition will be described in two ways: without the optical filter 50/with the optical filter 50. Determination of the emission wavelength of the micro LED only by measuring the intensity will be explained.

図4には、先の例とは異なり、フィルタ透過光強度が単調増加する光学フィルター50を用いる場合を示す。図4に示される605nmから655nmにかけての所定の光波長帯域でフィルタ透過光強度が図4に示されるカーブで光波長帯域で655nmで透明状態の光強度比1.0,そして605nmで遮光状態の光強度比0のように示されるカーブで単調増加する特性を持つ光フィルタ50の場合において、光フィルタ有り/光フィルタ無しの二通りの光強度比の測定が図4に示される通り0.83のとき、図4に示されるカーブで縦軸0.83に対応するのは波長640nmが中央波長値であることがわかる。したがって、光フィルタ50無し/光フィルタ50有りの二通りの光強度の測定のみによって当該マイクロLED2の発光波長は640nmと決定できた。そして、このように決定された発光波長は、隣接するマイクロLED間について移動平均によって前記光波長の平滑処理がなされてもよい。平滑処理によってノイズの影響が緩和される利点がある。 Unlike the previous example, FIG. 4 shows a case where an optical filter 50 is used in which the intensity of light transmitted through the filter increases monotonically. The light intensity ratio transmitted by the filter in the predetermined light wavelength band from 605 nm to 655 nm shown in FIG. 4 is as shown in the curve shown in FIG. In the case of an optical filter 50 that has a characteristic that monotonically increases with a curve shown as a light intensity ratio of 0, the measurement of the light intensity ratio in two ways with and without an optical filter is 0.83 as shown in FIG. It can be seen that in the curve shown in FIG. 4, the wavelength 640 nm corresponding to the vertical axis 0.83 is the central wavelength value. Therefore, the emission wavelength of the micro LED 2 could be determined to be 640 nm only by measuring the light intensity in two ways: without the optical filter 50 and with the optical filter 50. The light emission wavelength determined in this manner may be smoothed by a moving average between adjacent micro LEDs. Smoothing processing has the advantage of alleviating the effects of noise.

このように、予め様々な発光波長を用いて、光フィルタ有り/光フィルタ無しの二通りの光強度の測定比を図4に示されるような単調増加するカーブで発光波長と関連づけられていれば、光フィルタ有り/光フィルタ無しの二通りの光強度の測定比から当該関連付けによって、発光波長は一意に決定可能とされることを本発明者は創案した。ここで、図4は単調増加するカーブで発光波長と関連づけられているが、単調増加でなく、単調減少するカーブで、発光波長と光フィルタ有り/光フィルタ無しの二通りの光強度の測定比とが関連づけられていてもよい。 In this way, by using various emission wavelengths in advance, if the measurement ratio of the two types of light intensity with an optical filter and without an optical filter is related to the emission wavelength by a monotonically increasing curve as shown in Fig. 4. The inventor of the present invention has devised that the emission wavelength can be uniquely determined by the association from the measurement ratio of the two light intensities with and without an optical filter. Here, although FIG. 4 shows a monotonically increasing curve that is associated with the emission wavelength, it is not a monotonically increasing curve, but a monotonically decreasing curve that shows the measurement ratio of the emission wavelength and the two types of light intensity with and without an optical filter. may be associated.

上記のように構成された本発明に係るマイクロLED発光検査装置1は、変形実施形態の機能構成図5に示されるように、制御装置70は、さらにマイクロLED発光検査装置1の構成要素を制御するための制御フロー管理に使用されるCPU86、メモリ87を備える。制御部71は送信部72と伝送路88を介してフィルタ駆動装置へ制御信号を送信可能である。制御装置70とデジタル画像処理装置との間には通信路89が備わり、送信部72を介して双方向通信可能に構成されている。このようにデジタル画像処理装置40及びフィルタ駆動装置60と一体制御可能に構成された制御装置70によって、マイクロLED発光検査装置1の自動運転を可能とするように構成される。一実施形態の構成と動作を制御フローのフローチャートS0を構成要素を跨って描かれた模式図6を参照しながら説明する。
<マイクロLED点灯ステップS1>
マイクロLED発光検査装置1の制御装置70の制御部71の処理の開始とともに、制御は、マイクロLED点灯ステップに移り、給電機構30によってマイクロLEDが点灯されるように制御部71は構成されている。マイクロLED点灯ステップが制御部71の処理の開始とともに実行されると、制御は引き続いて、制御部71内に構成されているフィルタ移動指示ステップの構成モジュールが起動される。
<第1のフィルタ移動指示ステップS2>
引続き最初のフィルタ移動指示ステップへ制御が渡され、このステップでは光フィルタ50が光路21に存在しないステータスを選択する信号が制御部71によって生成される。さらに伝送路88を介して信号はフィルタ駆動機構60へ送信され、その後制御部71は直ちに最初の撮像の開始指示通知待ちとなるようにモジュール構成され、このまま、当該モジュール処理は、最初の撮像の開始指示通知待ち状態に遷移する。
<第1のフィルタ移動ステップS3>
フィルタ駆動機構60はフィルタ駆動機構60と制御装置70の間の伝送路88を介して光フィルタ50が光路21に存在しないステータスを選択するための信号を受入れると、光学フィルタ50を光路21から外す最初のフィルタ移動ステップを実行するように構成されている。
<第1の撮像の開始指示ステップS4>
制御装置70の制御部71は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、直ちに制御部71は第1の撮像の開始指示信号を生成する。最初の撮像の開始指示通知は、例えば、最初のフィルタ移動ステップ終了後にフィルタ駆動機構60がそのステータス信号を送信し、それを制御部71が受信するように構成されてもよいが、その他、所定の時間が経過すれば最初の撮像の開始指示通知を生成するように、制御部71内でタイマーを駆動するように構成されていてもよい。この場合には、所定の時間経過後にタイマーイベントが生成され最初の撮像の開始指示通知が制御部71に通知される。制御部71に制御が戻ると、制御部71は通信路89を介してデジタル画像処理装置40へ第1の撮像の開始指示信号を送信した後に、第2のフィルタ移動指示待ちとなるように構成されている。第1の撮像の開始指示ステップを起動するモジュールの実行後、当該モジュールの処理は第2のフィルタ移動指示待ち状態へ遷移する。
<第1の撮像ステップS5>
デジタル画像処理装置は、通信路89を介して第1の撮像の開始指示信号を制御部71から受信すると、撮像装置30から映像信号を受け入れ、デジタル画像処理装置40内に格納される画像データフレーム42上のピクセルマップ43へ各ピクセルで測定された段階的光強度が重畳された光強度ピクセルマップを生成し、これをデジタル画像処理装置内の前記メモリに格納するようにモジュール構成されており、当該モジュールの動作後には、引き続いて単位映像体識別部81の処理に制御が渡る。
<フィルタ無し光強度測定ステップS6>
引き続き、単位映像体識別部81において、光強度ピクセルマップから発光の単位映像体80を所定のクライテリアに基づき特定し、さらにピクセルマップ43への単位映像体マッピングデータを生成し、これをデジタル画像処理装置40内のメモリ41に格納するように、デジタル画像処理装置40はモジュール構成されている。単位映像体識別部81のモジュール処理に引き続いて、さらにマイクロLED識別部90において、単位映像体80から複数のアレイ状に配列されたマイクロLED2を特定し対応するマイクロLED2をピクセルマップ43上にマッピングしマイクロLEDマッピングデータ44を生成し、これをメモリ41に格納するようにデジタル画像処理装置40はモジュール構成されている。続いてマイクロLEDマップ上の光強度マップ上の光強度から所定の光エネルギ強度算出式によってマイクロLEDの光エネルギ強度を決定し、マイクロLEDの光学フィルター無の配置における前記光エネルギ強度値をデジタル画像処理装置40内のメモリ41に格納するようにデジタル画像処理装置40はモジュール構成されている。フィルタ無し光強度を測定するモジュールが実行されると、引き続き、制御装置70は、フィルタ無し光強度を測定する処理を実行制御されるように構成されている。
<第2のフィルタ移動指示ステップS7>
第2のフィルタ移動指示待ちとなっていた制御部71は、第2のフィルタ移動指示を受け入れると、当該指示に基づき光学フィルタ50を光路21に配設する信号を生成し、伝送路88を介しフィルタ駆動機構60へ当該信号を送信するようにモジュール構成されている。当該モジュール実行後には、当該モジュールは第2の撮像開始指示待ちとなるようにモジュール構成されており、制御部は、そのまま待ち状態となる。
<第2のフィルタ移動ステップS8>
フィルタ駆動機構60は伝送路88を介して光学フィルタ50を光路21に配設する信号を制御部71から受入れ、光学フィルタ50を光路21に配設するようにフィルタ駆動機構60はモジュール構成されている。
<第2の撮像の開始指示ステップS9>
制御部71は、第2のフィルタ移動指示ステップの最終処理である第2の撮像開始指示待ち状態で第2の撮像の開始指示通知を受け入れると第2の撮像の開始指示信号を生成し、通信路89を介してデジタル画像処理装置40へ第2の撮像の開始指示信号を送信するようにモジュール構成されている。第2の撮像の開始指示通知について、例えば、第2のフィルタ移動ステップ終了後にフィルタ駆動機構60がそのステータス信号を送信し、それを制御部71が受信するように構成されてもよいし、その他、所定の時間が経過すれば第2の撮像の開始指示通知を生成するように、制御部71内でタイマーを駆動するように構成されていてもよい。当該モジュールが動作後に、制御部71の処理はアイドルとなり、次のタスク待ちとなる。
<第2の撮像ステップS10>
デジタル画像処理装置40は、通信路89を介して第2の撮像の開始指示信号を受信すると、撮像装置30から映像信号を受け入れ、画像データフレーム42上のピクセルマップ43へ各ピクセルで測定された段階的光強度が重畳された光強度ピクセルマップを生成し、これをデジタル画像処理装置40内のメモリ41に格納するようにモジュール構成されており、このモジュール動作後には単位映像体識別部81での処理に制御を渡す。
<フィルタ有り光強度の測定ステップS11>
デジタル画像処理装置40内では、これに引き続き、単位映像体識別部81において、光強度ピクセルマップから発光の単位映像体80を所定のクライテリアに基づき特定し、さらにピクセルマップ43への単位映像体マッピングデータを生成し、これをデジタル画像処理装置40内のメモリ41に格納し、さらにマイクロLED識別部90において、単位映像体80から複数の前記アレイ状に配列されたマイクロLEDを特定し対応するマイクロLEDを前記ピクセルマップ43上にマッピングし前記マイクロLEDマッピングデータ44を生成し、これを前記メモリに格納するようにデジタル画像処理装置40はモジュール構成されている。このモジュール処理の後に、マイクロLEDマップ上の光強度マップ上の光強度から所定の光エネルギ強度算出式によってマイクロLEDの光エネルギ強度を決定し、マイクロLEDの光学フィルター50有りの配置における光エネルギ強度値としてデジタル画像処理装置40内のメモリ41に格納するように、デジタル画像処理装置40はモジュール構成されている。当該モジュール処理後に、制御は、デジタル画像処理装置40内でマイクロLED検査部での処理に渡される。
<フィルタ無し光強度とフィルタ有り光強度の比計算ステップS12>
これに引き続き、マイクロLED検査部において、マイクロLEDの光学フィルター有りの配置における光エネルギ強度値をデジタル画像処理装置40内のメモリ41から読み出し、当該マイクロLEDに対応する光学フィルター50無しの配置における光エネルギ強度値をデジタル画像処理装置40内のメモリ41から読み出し、光学フィルター50有の配置における前記マイクロLEDの光エネルギ強度値と、光学フィルター50無の配置の光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するようにデジタル画像処理装置40はモジュール構成されている。
<発光波長計算ステップS13>
これに引き続き、前記マイクロLED検査部において、所定の前記マイクロLEDの発光波長算出式によって前記マイクロLEDの発光波長を決定するようにデジタル画像処理装置40はモジュール構成されている。
<発光波長データ出力ステップS14>
以上の処理を終え、マイクロLED発光波長データが得られた後に、マイクロLED検査データ出力可能であるように構成され、外部接続路及びデータ出力部を備えたデジタル画像処理装置40から発光波長データはデジタル画像処理装置40内のメモリ41を介して、データ出力部120から外部接続路に出力するようにデジタル画像処理装置40はモジュール構成されている。外部接続路は、コンピュータへの直接の伝送路を介するのでもよいし、通信部110を介してLAN接続によるネットワーク75を介して接続されたコンピュータ200へ接続された永続的ストレージ76へ格納されている外部へ出力されてもよい。永続的ストレージ76へ格納された後、複数の発光波長とフィルタ無し光強度とフィルタ有り光強度の比との関係は、例えば、ルックアップテーブル109(図5には図示しない)に構成されてもよい。
In the micro LED emission testing device 1 according to the present invention configured as described above, as shown in the functional configuration diagram 5 of the modified embodiment, the control device 70 further controls the components of the micro LED emission testing device 1. It includes a CPU 86 and a memory 87 used for control flow management. The control section 71 can transmit a control signal to the filter driving device via the transmitting section 72 and the transmission line 88. A communication path 89 is provided between the control device 70 and the digital image processing device, and is configured to enable two-way communication via the transmitter 72. In this way, the control device 70 configured to be able to integrally control the digital image processing device 40 and the filter drive device 60 is configured to enable automatic operation of the micro LED emission inspection device 1. The configuration and operation of one embodiment will be described with reference to a schematic diagram 6 in which a flowchart S0 of a control flow is drawn across the constituent elements.
<Micro LED lighting step S1>
When the process of the control unit 71 of the control device 70 of the micro LED emission inspection device 1 starts, the control moves to a micro LED lighting step, and the control unit 71 is configured so that the micro LED is lit by the power supply mechanism 30. . When the micro LED lighting step is executed at the same time as the processing of the control unit 71 is started, the control continues to activate the constituent module of the filter movement instruction step configured in the control unit 71.
<First filter movement instruction step S2>
Subsequently, control is passed to the first filter movement instruction step, and in this step, the control unit 71 generates a signal that selects a status in which the optical filter 50 is not present in the optical path 21. Furthermore, the signal is transmitted to the filter drive mechanism 60 via the transmission path 88, and the module is configured such that the control unit 71 immediately waits for notification of an instruction to start the first imaging. Transition to the start instruction notification wait state.
<First filter movement step S3>
When the filter drive mechanism 60 receives a signal for selecting a status in which the optical filter 50 is not present in the optical path 21 via the transmission line 88 between the filter drive mechanism 60 and the control device 70, it removes the optical filter 50 from the optical path 21. The filter is configured to perform an initial filter movement step.
<First imaging start instruction step S4>
When the control unit 71 of the control device 70 receives the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit 71 immediately executes the first imaging start instruction notification. Generates an imaging start instruction signal. The first imaging start instruction notification may be configured such that, for example, the filter drive mechanism 60 transmits a status signal after the first filter movement step is completed, and the control unit 71 receives the status signal. The control unit 71 may be configured to drive a timer so as to generate a notification for instructing the start of the first imaging when the time period elapses. In this case, a timer event is generated after a predetermined period of time has elapsed, and the control unit 71 is notified of an instruction to start the first imaging. When control returns to the control unit 71, the control unit 71 is configured to transmit a first imaging start instruction signal to the digital image processing device 40 via the communication path 89, and then wait for a second filter movement instruction. has been done. After executing the module that starts the first imaging start instruction step, the processing of the module transitions to a state of waiting for a second filter movement instruction.
<First imaging step S5>
When the digital image processing device receives the first imaging start instruction signal from the control unit 71 via the communication path 89, the digital image processing device receives the video signal from the imaging device 30, and the image data frame is stored in the digital image processing device 40. The module is configured to generate a light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on a pixel map 43 on 42, and to store this in the memory in the digital image processing device; After the operation of the module, control is subsequently transferred to the processing of the unit image object identification section 81.
<No filter light intensity measurement step S6>
Subsequently, the unit image object identifying section 81 identifies the emitting unit image object 80 from the light intensity pixel map based on predetermined criteria, further generates unit image object mapping data to the pixel map 43, and performs digital image processing. The digital image processing device 40 is configured in modules such that it is stored in a memory 41 within the device 40. Following the module processing of the unit image object identification section 81, the micro LED identification section 90 further identifies the micro LEDs 2 arranged in a plurality of arrays from the unit image object 80 and maps the corresponding micro LEDs 2 on the pixel map 43. The digital image processing device 40 is configured as a module so as to generate micro LED mapping data 44 and store it in the memory 41. Next, the light energy intensity of the micro LED is determined from the light intensity on the light intensity map on the micro LED map using a predetermined light energy intensity calculation formula, and the light energy intensity value of the micro LED in the arrangement without an optical filter is converted into a digital image. The digital image processing device 40 is configured in modules such that the data is stored in a memory 41 within the processing device 40. When the module for measuring the unfiltered light intensity is executed, the control device 70 is configured to be subsequently controlled to execute a process for measuring the unfiltered light intensity.
<Second filter movement instruction step S7>
Upon accepting the second filter movement instruction, the control unit 71 that has been waiting for the second filter movement instruction generates a signal for arranging the optical filter 50 in the optical path 21 based on the instruction, and sends the optical filter 50 through the transmission path 88. The module is configured to transmit the signal to the filter drive mechanism 60. After the module is executed, the module is configured to wait for a second imaging start instruction, and the control unit remains in a waiting state.
<Second filter movement step S8>
The filter drive mechanism 60 receives a signal from the control unit 71 to arrange the optical filter 50 on the optical path 21 via the transmission path 88, and is configured as a module so that the optical filter 50 is arranged on the optical path 21. There is.
<Second imaging start instruction step S9>
When the control unit 71 receives a second imaging start instruction notification while waiting for a second imaging start instruction, which is the final process of the second filter movement instruction step, the control unit 71 generates a second imaging start instruction signal and initiates communication. The module is configured to transmit a second imaging start instruction signal to the digital image processing device 40 via the path 89. Regarding the second imaging start instruction notification, for example, the filter driving mechanism 60 may be configured to transmit a status signal after the second filter movement step is completed, and the control unit 71 may receive the status signal, or the control unit 71 may be configured to receive the status signal. The control unit 71 may be configured to drive a timer so as to generate a second imaging start instruction notification when a predetermined time has elapsed. After the module operates, the processing of the control unit 71 becomes idle and waits for the next task.
<Second imaging step S10>
Upon receiving the second imaging start instruction signal via the communication path 89, the digital image processing device 40 accepts the video signal from the imaging device 30, and stores the measured data at each pixel in a pixel map 43 on the image data frame 42. The module is configured to generate a light intensity pixel map on which graded light intensities are superimposed and store it in the memory 41 in the digital image processing device 40. After the operation of this module, the unit image object identification section 81 generates a light intensity pixel map. Transfer control to the process.
<Measurement step S11 of light intensity with filter>
In the digital image processing device 40, subsequently, a unit image object identifying section 81 identifies a light emitting unit image object 80 from the light intensity pixel map based on predetermined criteria, and further maps the unit image object to the pixel map 43. The data is generated and stored in the memory 41 in the digital image processing device 40, and the micro-LED identification section 90 identifies the plurality of micro-LEDs arranged in the array form from the unit video object 80 and identifies the corresponding micro-LEDs. The digital image processing device 40 is configured as a module to map LEDs onto the pixel map 43 to generate the micro LED mapping data 44 and store it in the memory. After this module processing, the light energy intensity of the micro LED is determined from the light intensity on the light intensity map on the micro LED map using a predetermined light energy intensity calculation formula, and the light energy intensity of the micro LED in the arrangement with the optical filter 50 is determined. The digital image processing device 40 has a modular configuration so that the values are stored in a memory 41 within the digital image processing device 40. After processing the module, control is passed within the digital image processing device 40 to processing at the micro LED inspection section.
<Ratio calculation step S12 of light intensity without filter and light intensity with filter>
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory 41 in the digital image processing device 40, and the light energy intensity value in the arrangement without the optical filter 50 corresponding to the micro LED is read out from the memory 41 in the digital image processing device 40. The energy intensity value is read out from the memory 41 in the digital image processing device 40, and the light energy intensity value of the micro LED in the arrangement with the optical filter 50 and the light energy intensity value in the arrangement without the optical filter 50 are used to calculate the unfiltered light. Digital image processing device 40 is modularly configured to calculate the ratio of intensity to filtered light intensity.
<Emission wavelength calculation step S13>
Subsequently, in the micro LED inspection section, the digital image processing device 40 is configured as a module so that the emission wavelength of the micro LED is determined by a predetermined equation for calculating the emission wavelength of the micro LED.
<Emission wavelength data output step S14>
After the above processing is completed and the micro LED emission wavelength data is obtained, the emission wavelength data is output from the digital image processing device 40, which is configured to be able to output the micro LED inspection data and is equipped with an external connection path and a data output section. The digital image processing device 40 is configured as a module so that data is output from the data output unit 120 to an external connection path via the memory 41 within the digital image processing device 40. The external connection path may be via a direct transmission path to the computer, or may be stored in a permanent storage 76 connected to the computer 200 connected via a network 75 via a LAN connection via the communication unit 110. It may also be output to an external location. After being stored in persistent storage 76, the relationship between the plurality of emission wavelengths and the ratio of unfiltered light intensity to filtered light intensity may be configured, for example, in a lookup table 109 (not shown in FIG. 5). good.

本発明に係るマイクロLED発光検査装置1の一実施形態は、光フィルタ有り/光フィルタ無しの光強度と発光波長との関連付けを既知の光波長の光源(図示しない)によって、フィルタ特性がキャリブレーションされ、前記光学フィルター無の配置における前記光エネルギ強度値と前記光学フィルター有の配置における光エネルギ強度値の比と前記発光波長との関係に関してキャリブレーションをもとに作成された発光波長のルックアップテーブル109によって実現する。一実施例では、ルックアップテーブル109には図4ではカーブ上の黒丸点で示されている(光波長,光エネルギ強度値比)が格納されている。このようにして、本発明に係るマイクロLED発光検査装置1の一実施形態は、光フィルタ有り/光フィルタ無しの二通りの光強度の測定比を図4に示されるような単調増加するカーブ上の離散点で発光波長と離散的に関連づけ、光フィルタ有り/光フィルタ無しの二通りの光強度の測定値によって、発光波長は一意に決定可能とされ、光フィルタ無し/光フィルタ有りの二通りの光強度の測定のみによって、マイクロLEDの発光波長の決定を可能とし、例えば、150万個の測定対象の光フィルタ無し/有りの測定はデジタル画像処理装置によって一括処理も可能とする有利な効果を発揮する。ルックアップテーブル109には離散点(図4のカーブ上の黒丸参照)が格納されているから、例えば、光強度の測定比に最も近傍の強度の比に対応する発光波長を観察対象のマイクロLED発光波長としてもよい。 In one embodiment of the micro LED emission inspection device 1 according to the present invention, the filter characteristics are calibrated by using a light source (not shown) with a known light wavelength to correlate the light intensity with/without an optical filter and the emission wavelength. and lookup of the emission wavelength created based on calibration regarding the relationship between the ratio of the light energy intensity value in the arrangement without the optical filter to the light energy intensity value in the arrangement with the optical filter and the emission wavelength. This is realized by table 109. In one embodiment, the lookup table 109 stores (light wavelength, light energy intensity value ratio), which are indicated by black dots on the curve in FIG. In this way, one embodiment of the micro LED emission testing device 1 according to the present invention can measure the light intensity measurement ratio of the two methods, with/without an optical filter, on a monotonically increasing curve as shown in FIG. The emission wavelength can be uniquely determined by measuring the light intensity in two ways: with an optical filter and without an optical filter. The advantageous effect is that it is possible to determine the emission wavelength of a micro-LED only by measuring the light intensity of the micro-LED, and for example, the measurement of 1.5 million measurement objects without or with an optical filter can be processed all at once by a digital image processing device. demonstrate. Since the lookup table 109 stores discrete points (see black circles on the curve in FIG. 4), for example, the emission wavelength corresponding to the intensity ratio closest to the measured ratio of light intensity can be determined from the micro LED to be observed. It may also be the emission wavelength.

本発明に係るマイクロLED発光検査装置1の一実施形態では、ルックアップテーブル109の登録値の中間値(図4のカーブ上の隣接する黒丸間の変域域とその間の値域の関係を参照のこと)が観察測定された場合、マイクロLEDの発光波長算出式は、光エネルギ強度比測定値を跨ぐ近傍の光エネルギ強度比登録値に対応する発光波長がルックアップテーブル109で参照され、光エネルギ強度比測定値の中間値について光エネルギ強度比測定値を跨ぐ二点の登録値を基礎に按分補間を加算して発光波長が決定されてもよい。この構成では、光エネルギ強度比測定値が登録されていなくても所望の推定精度で光エネルギ強度比測定値に対応する発光波長を可能とする効果を与える。この補完は、線形補完でも二次曲線補完でもカーブ形状と登録値の間隔の関係から好適に決定されてよい。 In one embodiment of the micro LED emission testing device 1 according to the present invention, the intermediate value of the registered values in the lookup table 109 (refer to the relationship between the domain range between adjacent black circles on the curve in FIG. 4 and the value range therebetween) ) is observed and measured, the micro LED emission wavelength calculation formula is based on the look-up table 109 for the emission wavelength corresponding to the registered value of the light energy intensity ratio that straddles the measured value of the light energy intensity ratio, and calculates the light energy. The emission wavelength may be determined by adding proportional interpolation based on the registered values of two points that straddle the optical energy intensity ratio measurement value for the intermediate value of the intensity ratio measurement value. This configuration has the effect of enabling the emission wavelength corresponding to the measured light energy intensity ratio to be determined with desired estimation accuracy even if the measured value of the light energy intensity ratio is not registered. This interpolation, whether linear interpolation or quadratic curve interpolation, may be suitably determined based on the relationship between the curve shape and the interval between the registered values.

さらに、変形実施形態では、ルックアップテーブル109は、図7の変形実施形態の物理構成図に示されるように、デジタル画像処理装置40から永続的ストレッジ74又は76又は79への接続インターフェースを介してフィルタ特性及びルックアップテーブル109をマスターデータとして永続的ストレッジから受入れてもよい。接続インターフェースはUSB74でもよい、このばあいには、USB対応メモリデバイス74に記録されたルックアップテーブル109がデジタル画像処理装置40のメモリに読み込まれる。永続的ストレッジはLANに接続されたサーバに接続されたデバイス76でもよく、この場合接続インターフェースは、有線LAN接続インターフェース75でも無線LAN接続インターフェース(図示しない)でもよく、この場合には、ネットワークに接続された他のデバイス76に保管されたルックアップテーブル109がデジタル画像処理装置40のメモリに読み込まれる。ルックアップテーブル109の保管元はネットワークに接続されたクラウドコンピューティングサービス77が提供するサーバデバイス78に接続された永続的ストレッジデバイス79に保管されているものでもよい。このように構成することで、複数のマイクロLED発光検査装置1を使用する場合に効率的な運用を可能とする利点が得られるし、キャリブレーションとプロダクションシステムでの利用を分離できる利点もある。さらに、バックアップサイトからのルックアップテーブル109の復旧も容易であり、可用性の向上に繋がる利点もある。 Additionally, in an alternative embodiment, the lookup table 109 is configured via a connection interface from the digital image processing device 40 to the persistent storage 74 or 76 or 79, as shown in the physical block diagram of the alternative embodiment in FIG. Filter characteristics and lookup tables 109 may be accepted as master data from persistent storage. The connection interface may be a USB 74; in this case, the lookup table 109 recorded on the USB compatible memory device 74 is read into the memory of the digital image processing device 40. The persistent storage may be a device 76 connected to a server connected to a LAN, in which case the connection interface may be a wired LAN connection interface 75 or a wireless LAN connection interface (not shown), in which case the device 76 is connected to a network. The lookup table 109 stored in the other device 76 that has been loaded is read into the memory of the digital image processing device 40 . The lookup table 109 may be stored in a persistent storage device 79 connected to a server device 78 provided by a cloud computing service 77 connected to a network. With this configuration, there is an advantage that efficient operation is possible when using a plurality of micro LED emission inspection devices 1, and there is also an advantage that calibration and use in a production system can be separated. Furthermore, it is easy to restore the lookup table 109 from the backup site, which has the advantage of improving availability.

本発明に係るマイクロLED発光検査装置1の一実施形態における、ルックアップテーブル109への参照の仕組みをマイクロLED発光検査装置1の検査実施時の制御フローを説明するフローチャートS100を構成要素を跨って描かれたフローチャート模式図8を用い説明する。図8は、図6の発光波長計算ステップS13がルックアップテーブル参照方式の発光波長決定ステップS15で代替された制御フローである。図8に示されるルックアップテーブル109への参照の実施形態では、前段落で記載のように、永続的ストレッジ74又は76又は79への接続インターフェースを介してルックアップテーブル109をマスターデータとして永続的ストレッジから受入れてもよいし、接続インターフェースはUSB74でもよく、USB対応メモリデバイス74に記録されたルックアップテーブル109がデジタル画像処理装置40のメモリ41に読み込まれてもよい。図8の制御フローで代替されたルックアップテーブル参照方式の発光波長決定ステップS15を以下に説明する。
<ルックアップテーブル参照方式の発光波長決定ステップS15>
フィルタ無し光強度とフィルタ有り光強度の比計算ステップS12の実行後、実行処理フロー制御は、マイクロLED検査部100へ渡される。デジタルデジタル画像処理装置40は、マイクロLED検査部100において、ルックアップテーブル109のメモリ41への参照によってマイクロLEDの発光波長を決定するようにモジュール構成されており、当該モジュール実行後、処理の制御は、発光データ出力ステップへ渡される。
この他のステップ処理は、段落0046記載のステップ処理と同一であるから本段落からは段落0046を参照するとおりとの記載に止め、重複の記載は省略する。
A flowchart S100 illustrating a control flow when performing an inspection of the micro LED emission inspection apparatus 1 in an embodiment of the micro LED emission inspection apparatus 1 for referring to the lookup table 109 in an embodiment of the micro LED emission inspection apparatus 1 according to the present invention is explained below. This will be explained using the drawn flowchart schematic diagram 8. FIG. 8 is a control flow in which the emission wavelength calculation step S13 of FIG. 6 is replaced with an emission wavelength determination step S15 using a look-up table reference method. In the embodiment of reference to lookup table 109 shown in FIG. The lookup table 109 may be accepted from storage, or the connection interface may be a USB 74, and the lookup table 109 recorded in the USB compatible memory device 74 may be read into the memory 41 of the digital image processing device 40. The emission wavelength determination step S15 using the look-up table reference method, which is replaced by the control flow in FIG. 8, will be described below.
<Emission wavelength determination step S15 using look-up table reference method>
After executing step S12 of calculating the ratio of the light intensity without a filter to the light intensity with a filter, execution processing flow control is passed to the micro LED inspection section 100. The digital image processing device 40 is configured as a module in which the micro LED inspection unit 100 determines the emission wavelength of the micro LED by referring to the memory 41 of the lookup table 109, and after executing the module, controls the processing. is passed to the light emission data output step.
Since the other step processing is the same as the step processing described in paragraph 0046, from this paragraph onwards, the description will be limited to referring to paragraph 0046, and the duplicate description will be omitted.

本発明に係るマイクロLED発光検査装置1の変形実施形態では、さらに光波長の可変機構を有する光源を備える。図9に示されるように、制御装置70は、マイクロLED発光検査装置1の構成要素を制御するための制御フロー管理に使用されるCPU86、メモリ87を備え、制御部71は送信部72と伝送路88を介してフィルタ駆動装置へ制御信号を送信可能に、制御装置70とデジタル画像処理装置との間には通信路89が備わり、送信部72を介して双方向通信可能に構成され、このようにデジタル画像処理装置40及びフィルタ駆動装置60と一体制御可能に構成された制御装置70によって、マイクロLED発光検査装置1の自動運転を可能とするように構成されているのに加え、さらにマイクロLED発光検査装置1は光源として、光波長の可変機構116を備え、制御部71と送信部72を介して通信可能である既知の光波長の波長光源106を参照光6を照射するために備える。光波長の可変機構を有する光源を備える目的は、所望の光波長を選択可能とし、ルックアップテーブルの作成をする場合に、所望のサンプリング間隔の発光波長を選択し、フィルタ無し光強度とフィルタ有り光強度の比が発光波長の関数として急峻に変化するときも適宜所望サンプリング間隔でルックアップテーブルの作成の離散値を選択可能とし、あるいは、適当な等分でサンプリング間隔を選択可能にすることにあり、既知の光波長の波長光源とするのは、キャリブレーションのためである。
上記のように構成された本発明に係るマイクロLED発光検査装置1は、図9に示されるように、制御装置70は、マイクロLED発光検査装置1の構成要素を制御するための制御フロー管理に使用されるCPU86、メモリ87を備え、制御部71は送信部72と伝送路88を介してフィルタ駆動装置へ制御信号を送信可能に、制御装置70とデジタル画像処理装置との間には通信路89が備わり、送信部72を介して双方向通信可能に構成され、このようにデジタル画像処理装置40及びフィルタ駆動装置60と一体制御可能に構成された制御装置70によって、マイクロLED発光検査装置1の自動運転を可能とするように構成される。一実施形態の構成と動作を制御フローのフローチャートS200を構成要素を跨って描かれた模式図10を参照しながら説明する。
<光波長初期化ステップS21>
制御装置70の制御部71の処理の開始とともに、制御は、光波長初期化ステップに渡り、可変機構116によって光源106の光波長の設定値を初期値に更新するように送信部72と伝送路88を介して可変機構116へ制御信号を送信可能に、制御部71はモジュール構成されている。送信後、制御はキャリブレーション光源点灯ステップへ移る。
<キャリブレーション光源点灯ステップS22>
マイクロLED発光検査装置1は、キャリブレーション光源106が遠隔点灯されるようにモジュール構成されている。キャリブレーション光源点灯ステップが実行されると制御は続いて、制御部71内に構成されているフィルタ移動指示ステップの構成モジュールが起動される。この後のフィルタ駆動機構60への制御及び動作は、段落0046に記載されている制御及び動作と同様である。
<第1のフィルタ移動指示ステップS23>
引続き最初のフィルタ移動指示ステップへ制御が渡され、このステップでは光フィルタ50が光路21に存在しないステータスを選択する信号が制御部71によって生成される。さらに伝送路88を介して信号はフィルタ駆動機構60へ送信され、その後制御部71は直ちに最初の撮像の開始指示通知待ちとなるようにモジュール構成され、このまま、当該モジュール処理は直ちに最初の撮像の開始指示通知待ち状態に遷移する。
<第1のフィルタ移動ステップS24>
フィルタ駆動機構60はフィルタ駆動機構60と制御装置70の間の伝送路88を介して光フィルタ50が光路21に存在しないステータスを選択するための信号を受入れると直ちに、光学フィルタ50を光路21から外す最初のフィルタ移動ステップを実行するように構成されている。
<第1の撮像の開始指示ステップS25>
制御装置70の制御部71は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、直ちに制御部71は第1の撮像の開始指示信号を生成する。最初の撮像の開始指示通知は、例えば、最初のフィルタ移動ステップ終了後にフィルタ駆動機構60がそのステータス信号を送信し、それを制御部71が受信するように構成されてもよいが、その他、所定の時間が経過すれば最初の撮像の開始指示通知を生成するように、制御部71内でタイマーを駆動するように構成されていてもよい。この場合には、所定の時間経過後にタイマーイベントが生成され最初の撮像の開始指示通知が制御部71に通知される。制御部71に制御が戻ると、制御部71は通信路89を介してデジタル画像処理装置40へ第1の撮像の開始指示信号を送信した後に、第2のフィルタ移動指示待ちとなるように構成されている。第1の撮像の開始指示ステップを起動するモジュールの実行後、当該モジュールの処理は第2のフィルタ移動指示待ち状態へ遷移する。
<第1の撮像ステップS26>
デジタル画像処理装置は、通信路89を介して第1の撮像の開始指示信号を制御部71から受信すると、撮像装置30から映像信号を受け入れ、デジタル画像処理装置40内に格納される画像データフレーム42上のピクセルマップ43へ各ピクセルで測定された段階的光強度が重畳された光強度ピクセルマップを生成し、これをデジタル画像処理装置内の前記メモリに格納するようにモジュール構成されており、当該モジュールの動作後には、引き続いて単位映像体識別部81の処理に制御が渡る。
<フィルタ無し光強度測定ステップS27>
引き続き、単位映像体識別部81において、光強度ピクセルマップからキャリブレーション光源光をマイクロLEDの発光とみなし、前記キャリブレーション光源光の単位映像体80を所定のクライテリアに基づき特定し、さらにピクセルマップ43への単位映像体マッピングデータを生成し、これをデジタル画像処理装置40内のメモリ41に格納するように、デジタル画像処理装置40はモジュール構成されている。単位映像体識別部81のモジュール処理に引き続いて、キャリブレーション光源マッピングをマイクロLEDマッピングとみなし、マイクロLED識別部90において、単位映像体80から前記キャリブレーション光源マッピングとみなされたマイクロLEDをピクセルマップ43上にマッピングしマイクロLEDマッピングデータ44を生成し、これをメモリ41に格納するようにデジタル画像処理装置40はモジュール構成されている。続いてマイクロLEDマップ上の光強度マップ上の光強度から所定の光エネルギ強度算出式によってマイクロLEDの光エネルギ強度を決定し、マイクロLEDの発光とみなされたキャリブレーション光源の光学フィルター無の配置における前記光エネルギ強度値をデジタル画像処理装置40内のメモリ41に格納するようにデジタル画像処理装置40はモジュール構成されている。フィルタ無し光強度を測定するモジュールが実行されると、引き続き、制御装置70は、フィルタ無し光強度を測定する処理を実行制御されるように構成されている。
<第2のフィルタ移動指示ステップS28>
第2のフィルタ移動指示待ちとなっていた制御部71は、第2のフィルタ移動指示を受け入れると、当該指示に基づき光学フィルタ50を光路21に配設する信号を生成し、伝送路88を介しフィルタ駆動機構60へ当該信号を送信するようにモジュール構成されている。当該モジュール実行後には、当該モジュールは第2の撮像開始指示待ちとなるようにモジュール構成されており、制御部待ち状態となる。
<第2のフィルタ移動ステップS29>
フィルタ駆動機構60は伝送路88を介して光学フィルタ50を光路21に配設する信号を制御部71から受入れ、光学フィルタ50を光路21に配設するようにフィルタ駆動機構60はモジュール構成されている。
<第2の撮像の開始指示ステップS30>
制御部71は、第2のフィルタ移動指示ステップの最終処理である第2の撮像開始指示待ち状態で第2の撮像の開始指示通知を受け入れると第2の撮像の開始指示信号を生成し、通信路89を介してデジタル画像処理装置40へ第2の撮像の開始指示信号を送信するようにモジュール構成されている。第2の撮像の開始指示通知について、例えば、第2のフィルタ移動ステップ終了後にフィルタ駆動機構60がそのステータス信号を送信し、それを制御部71が受信するように構成されてもよいし、その他、所定の時間が経過すれば第2の撮像の開始指示通知を生成するように、制御部71内でタイマーを駆動するように構成されていてもよい。当該モジュールが動作後に、制御部71の処理はアイドルとなり、次のタスク待ちとなる。
<第2の撮像ステップS31>
デジタル画像処理装置40は、通信路89を介して第2の撮像の開始指示信号を受信すると、撮像装置30から映像信号を受け入れ、画像データフレーム42上のピクセルマップ43へ各ピクセルで測定された段階的光強度が重畳された光強度ピクセルマップを生成し、これをデジタル画像処理装置40内のメモリ41に格納するようにモジュール構成されており、このモジュール動作後には単位映像体識別部81での処理に制御を渡す。
<フィルタ有り光強度の測定ステップS32>
デジタル画像処理装置40内では、これに引き続き、単位映像体識別部81において、光強度ピクセルマップからキャリブレーション光源光をマイクロLEDの発光とみなし、キャリブレーション光源光の単位映像体80を所定のクライテリアに基づき特定し、さらにピクセルマップ43への単位映像体マッピングデータを生成し、これをデジタル画像処理装置40内のメモリ41に格納し、さらにマイクロLED識別部90において、単位映像体からキャリブレーション光源マッピングとみなされたマイクロLEDマッピングデータ44を生成し、これをメモリ41に格納するようにデジタル画像処理装置40はモジュール構成されている。このモジュール処理の後に、マイクロLEDマップ上の光強度マップ上の光強度から所定の光エネルギ強度算出式によってマイクロLEDの光エネルギ強度を決定し、マイクロLEDの発光とみなされたキャリブレーション光源の光学フィルター50有りの配置における光エネルギ強度値としてデジタル画像処理装置40内のメモリ41に格納するように、デジタル画像処理装置40はモジュール構成されている。当該モジュール処理後に、制御は、デジタル画像処理装置40内でマイクロLED検査部での処理に渡される。
<フィルタ無し光強度とフィルタ有り光強度の比計算ステップS33>
これに引き続き、マイクロLED検査部において、キャリブレーション光源としてのマイクロLEDの光学フィルター有りの配置における光エネルギ強度値をデジタル画像処理装置40内のメモリ41から読み出し、光学フィルター50有の配置におけるキャリブレーション光源の前記光エネルギ強度値と、光学フィルター50無の配置の光エネルギ強度値とによって、、フィルタ無し光強度とフィルタ有り光強度の比を計算するようにデジタル画像処理装置40はモジュール構成されている。このモジュールが実行されると処理は、発光波長計算ステップへ渡る。
<発光波長計算ステップS34>
これに引き続き、マイクロLED検査部100において、所定の前記マイクロLEDの発光波長算出式によってマイクロLEDの発光波長を決定するようにデジタル画像処理装置40はモジュール構成されている。このモジュールが実行されると処理は、光源波長及び光強度比記録ステップへ渡る。
<光源波長及び光強度比記録ステップS35>
これに引き続き、マイクロLED検査部100において、既知の光源波長と光強度の比をメモリ41に格納するようにデジタル画像処理装置40はモジュール構成されている。このモジュールが実行されると処理は、光源波長更新ステップへ進む。
<光源波長更新ステップS36>
これに引き続き、マイクロLED検査部100において、源の光波長の設定値を所定の増分値で更新するようにデジタル画像処理装置40はモジュール構成されている。このモジュールが実行されると処理は、ルックアップテーブル完了条件を判定する、判定ステップへ進む。
<完了判定ステップS37>
更新後の前記光源の光波長が所定の境界値を超えるか否かをチェックし分岐するするようにデジタル画像処理装置40はモジュール構成されている。このモジュールが実行されると処理は越えるときルックアップテーブル作成ステップへ進み、超えないとき波長初期化ステップ
へ分岐し更新後の光波長で初期化する。
<ルックアップテーブル作成ステップS38>
これに引き続き、マイクロLED検査部100において、メモリ37に格納された複数の波長と光強度の比の組からルックアップテーブル109を作成し、これをメモリ41に格納するようにデジタル画像処理装置40はモジュール構成されている。このモジュールが実行されるとルックアップテーブル109が完成し処理は終了する。
A modified embodiment of the micro LED emission testing device 1 according to the present invention further includes a light source having a light wavelength variable mechanism. As shown in FIG. 9, the control device 70 includes a CPU 86 and a memory 87 used for control flow management to control the components of the micro LED emission inspection device 1, and the control section 71 communicates with the transmission section 72. A communication path 89 is provided between the control device 70 and the digital image processing device so that a control signal can be transmitted to the filter driving device via the path 88, and the communication path 89 is configured to enable bidirectional communication via the transmitter 72. In addition to being configured to enable automatic operation of the micro LED emission inspection device 1 by the control device 70 configured to be integrally controllable with the digital image processing device 40 and the filter drive device 60, The LED emission testing device 1 is equipped with a light wavelength variable mechanism 116 as a light source, and is equipped with a wavelength light source 106 of a known light wavelength that can communicate via the control unit 71 and the transmitter 72 in order to irradiate the reference light 6. . The purpose of having a light source with a variable light wavelength mechanism is to enable the selection of a desired light wavelength, and when creating a look-up table, select the light emission wavelength at the desired sampling interval, and compare the light intensity without a filter and the light intensity with a filter. Even when the ratio of light intensities changes sharply as a function of the emission wavelength, it is possible to select discrete values for creating a look-up table at an appropriate sampling interval, or it is possible to select a sampling interval at an appropriate equal division. The purpose of using a light source with a known wavelength is for calibration.
In the micro LED emission testing device 1 according to the present invention configured as described above, as shown in FIG. A communication path is provided between the control device 70 and the digital image processing device so that the control section 71 can transmit control signals to the filter driving device via the transmission section 72 and a transmission path 88. 89 and is configured to be capable of two-way communication via the transmitter 72, and thus configured to be able to integrally control the digital image processing device 40 and the filter drive device 60, the micro LED emission inspection device 1 The vehicle is configured to enable autonomous driving. The configuration and operation of one embodiment will be described with reference to a flowchart S200 of a control flow with reference to a schematic diagram 10 drawn across constituent elements.
<Optical wavelength initialization step S21>
When the control section 71 of the control device 70 starts processing, the control proceeds to an optical wavelength initialization step, in which the transmitting section 72 and the transmission path are changed so that the variable mechanism 116 updates the optical wavelength setting value of the light source 106 to the initial value. The control unit 71 is configured as a module so as to be able to transmit a control signal to the variable mechanism 116 via the variable mechanism 88 . After transmission, control moves to a calibration light source lighting step.
<Calibration light source lighting step S22>
The micro LED emission testing device 1 is configured as a module so that the calibration light source 106 can be turned on remotely. When the calibration light source lighting step is executed, the control continues, and the component module of the filter movement instruction step configured in the control unit 71 is activated. The subsequent control and operation of the filter drive mechanism 60 is similar to the control and operation described in paragraph 0046.
<First filter movement instruction step S23>
Subsequently, control is passed to the first filter movement instruction step, and in this step, the control unit 71 generates a signal that selects a status in which the optical filter 50 is not present in the optical path 21. Furthermore, the signal is transmitted to the filter drive mechanism 60 via the transmission path 88, and the control unit 71 is configured as a module to immediately wait for notification of an instruction to start the first imaging, and as it is, the module processing immediately starts the first imaging. Transition to the start instruction notification wait state.
<First filter movement step S24>
The filter driving mechanism 60 removes the optical filter 50 from the optical path 21 as soon as it receives a signal for selecting a status in which the optical filter 50 is not present in the optical path 21 via the transmission line 88 between the filter driving mechanism 60 and the control device 70 . The filter is configured to perform an initial filter movement step to remove the filter.
<First imaging start instruction step S25>
When the control unit 71 of the control device 70 receives the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit 71 immediately executes the first imaging start instruction notification. Generates an imaging start instruction signal. The first imaging start instruction notification may be configured such that, for example, the filter drive mechanism 60 transmits a status signal after the first filter movement step is completed, and the control unit 71 receives the status signal. The control unit 71 may be configured to drive a timer so as to generate a notification for instructing the start of the first imaging when the time period elapses. In this case, a timer event is generated after a predetermined period of time has elapsed, and the control unit 71 is notified of an instruction to start the first imaging. When control returns to the control unit 71, the control unit 71 is configured to transmit a first imaging start instruction signal to the digital image processing device 40 via the communication path 89, and then wait for a second filter movement instruction. has been done. After executing the module that starts the first imaging start instruction step, the processing of the module transitions to a state of waiting for a second filter movement instruction.
<First imaging step S26>
When the digital image processing device receives the first imaging start instruction signal from the control unit 71 via the communication path 89, the digital image processing device receives the video signal from the imaging device 30, and the image data frame is stored in the digital image processing device 40. The module is configured to generate a light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on a pixel map 43 on 42, and to store this in the memory in the digital image processing device; After the operation of the module, control is subsequently transferred to the processing of the unit image object identification section 81.
<No-filter light intensity measurement step S27>
Subsequently, the unit image object identifying section 81 regards the calibration light source light as light emission from a micro LED from the light intensity pixel map, identifies the unit image object 80 of the calibration light source light based on predetermined criteria, and further identifies the unit image object 80 of the calibration light source light based on predetermined criteria. The digital image processing device 40 is configured as a module so as to generate unit image object mapping data for the image data and store it in a memory 41 within the digital image processing device 40. Following the module processing of the unit image object identification section 81, the calibration light source mapping is regarded as micro LED mapping, and the micro LED identification section 90 converts the micro LEDs from the unit image object 80, which are regarded as the calibration light source mapping, into a pixel map. The digital image processing device 40 is configured as a module so as to generate micro LED mapping data 44 by mapping on the micro LED mapping data 43 and store this in the memory 41. Next, the light energy intensity of the micro LED is determined from the light intensity on the light intensity map on the micro LED map using a predetermined light energy intensity calculation formula, and the calibration light source that is considered to emit light from the micro LED is arranged without an optical filter. The digital image processing device 40 is configured in a module such that the light energy intensity value at is stored in a memory 41 within the digital image processing device 40. When the module for measuring the unfiltered light intensity is executed, the control device 70 is configured to be subsequently controlled to execute a process for measuring the unfiltered light intensity.
<Second filter movement instruction step S28>
Upon accepting the second filter movement instruction, the control unit 71 that has been waiting for the second filter movement instruction generates a signal for arranging the optical filter 50 in the optical path 21 based on the instruction, and sends the optical filter 50 through the transmission path 88. The module is configured to transmit the signal to the filter drive mechanism 60. After the module is executed, the module is configured to wait for the second imaging start instruction, and enters a state of waiting for the control unit.
<Second filter movement step S29>
The filter drive mechanism 60 receives a signal from the control unit 71 to arrange the optical filter 50 on the optical path 21 via the transmission path 88, and is configured as a module so that the optical filter 50 is arranged on the optical path 21. There is.
<Second imaging start instruction step S30>
When the control unit 71 receives a second imaging start instruction notification while waiting for a second imaging start instruction, which is the final process of the second filter movement instruction step, the control unit 71 generates a second imaging start instruction signal and initiates communication. The module is configured to transmit a second imaging start instruction signal to the digital image processing device 40 via the path 89. Regarding the second imaging start instruction notification, for example, the filter driving mechanism 60 may be configured to transmit a status signal after the second filter movement step is completed, and the control unit 71 may receive the status signal, or the control unit 71 may be configured to receive the status signal. The control unit 71 may be configured to drive a timer so as to generate a second imaging start instruction notification when a predetermined time has elapsed. After the module operates, the processing of the control unit 71 becomes idle and waits for the next task.
<Second imaging step S31>
Upon receiving the second imaging start instruction signal via the communication path 89, the digital image processing device 40 accepts the video signal from the imaging device 30, and stores the measured data at each pixel in a pixel map 43 on the image data frame 42. The module is configured to generate a light intensity pixel map on which graded light intensities are superimposed and store it in the memory 41 in the digital image processing device 40. After the operation of this module, the unit image object identification section 81 generates a light intensity pixel map. Transfer control to the process.
<Measurement step S32 of light intensity with filter>
Subsequently, in the digital image processing device 40, a unit image object identification section 81 regards the calibration light source light as light emission from a micro LED from the light intensity pixel map, and selects the unit image object 80 of the calibration light source light according to predetermined criteria. Further, the unit image object mapping data to the pixel map 43 is generated, and this is stored in the memory 41 in the digital image processing device 40. Furthermore, in the micro LED identification section 90, the calibration light source is identified from the unit image object. The digital image processing device 40 is configured in a module so as to generate micro LED mapping data 44 that is considered as mapping and store it in the memory 41. After this module processing, the light energy intensity of the micro LED is determined from the light intensity on the light intensity map on the micro LED map using a predetermined light energy intensity calculation formula, and the optical The digital image processing device 40 is configured as a module so that the light energy intensity value in the arrangement with the filter 50 is stored in the memory 41 within the digital image processing device 40. After processing the module, control is passed within the digital image processing device 40 to processing at the micro LED inspection section.
<Ratio calculation step S33 of light intensity without filter and light intensity with filter>
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED as a calibration light source in the arrangement with the optical filter is read out from the memory 41 in the digital image processing device 40, and the calibration in the arrangement with the optical filter 50 is performed. The digital image processing device 40 is configured as a module to calculate the ratio of the unfiltered light intensity to the filtered light intensity based on the light energy intensity value of the light source and the light energy intensity value of the arrangement without the optical filter 50. There is. When this module is executed, the process proceeds to the emission wavelength calculation step.
<Emission wavelength calculation step S34>
Subsequently, in the micro LED inspection section 100, the digital image processing device 40 is configured as a module so that the emission wavelength of the micro LED is determined by a predetermined formula for calculating the emission wavelength of the micro LED. Once this module is executed, the process moves to the step of recording the light source wavelength and light intensity ratio.
<Light source wavelength and light intensity ratio recording step S35>
Subsequently, in the micro LED inspection section 100, the digital image processing device 40 is configured as a module so that the known ratio of light source wavelength and light intensity is stored in the memory 41. Once this module is executed, the process proceeds to a light source wavelength update step.
<Light source wavelength update step S36>
Subsequently, the digital image processing device 40 is configured as a module so that the set value of the light wavelength of the source is updated by a predetermined increment value in the micro LED inspection section 100. Once this module is executed, processing proceeds to a determining step in which a lookup table completion condition is determined.
<Completion determination step S37>
The digital image processing device 40 is configured as a module so as to check whether the updated light wavelength of the light source exceeds a predetermined boundary value and branch the process. When this module is executed, the process proceeds to the lookup table creation step when the number is exceeded, and branches to the wavelength initialization step when the number is not exceeded, and is initialized with the updated optical wavelength.
<Lookup table creation step S38>
Subsequently, the micro-LED inspection section 100 creates a look-up table 109 from a plurality of pairs of wavelengths and light intensity ratios stored in the memory 37, and the digital image processing device 4 is made up of modules. When this module is executed, the lookup table 109 is completed and the process ends.

以上の処理を終え、マイクロLED発光波長決定用のルックアップテーブルが得られた後に、好ましくはルックアップテーブル出力可能であるように構成され外部接続路及びデータ出力部を備えたデジタル画像処理装置40から発光波長データはデジタル画像処理装置40内のメモリ41を介して、データ出力部120から外部接続路に出力するようにデジタル画像処理装置40はモジュール構成されのがよい。外部接続路は、コンピュータへの直接の伝送路を介するのでもよいし、通信部110を介してLAN接続によるネットワーク75を介して接続されたコンピュータ200へ接続された永続的ストレージ76へ格納されている外部へ出力されてもよい。永続的ストレージ76へ格納された後、複数のデジタル画像処理装置40へ配布されるように構成されてもよい。 After the above processing is completed and a lookup table for determining the micro LED emission wavelength is obtained, a digital image processing device 40 preferably configured to be able to output the lookup table and equipped with an external connection path and a data output section The digital image processing device 40 is preferably configured as a module so that the emission wavelength data is output from the data output section 120 to an external connection path via the memory 41 within the digital image processing device 40. The external connection path may be via a direct transmission path to the computer, or may be stored in a permanent storage 76 connected to the computer 200 connected via a network 75 via a LAN connection via the communication unit 110. It may also be output to an external location. After being stored in persistent storage 76, it may be configured to be distributed to multiple digital image processing devices 40.

<他の態様:マイクロLED発光検査装置1に用いる光学フィルタ検査装置101の実施形態>
本発明は、他の態様でマイクロLED発光検査装置1に用いる光学フィルタ検査装置を提供する。この態様では、光フィルタ50の特性のキャリブレーションのために個別に分離されるべき100μm角以下の大きさの矩形領域内を占めるマイクロLED2がアレイ状に配列されて表面に形成された半導体サブストレート3の代わりに、アレイ状に配列されることとなる検査対象のマイクロLEDの設計条件と少なくとも所定の領域でほぼ同一数の反射体102(以下で反射体アレイ102ともいう)が表面に形成されたサブストレート103がマイクロLED発光検査装置1の半導体サブストレート3に相当する位置に装着され、反射体102の反射光のための光投射機構104と、光投射機構への光誘導機構105と、光投射光の既知の波長の波長可変光源106と、を備えることを特徴とする。その他の構成はマイクロLED発光検査装置1の一実施形態と同様であり、同じ符号は同一の構成であることを示す。
<Other aspects: Embodiment of optical filter inspection device 101 used in micro LED emission inspection device 1>
The present invention provides an optical filter inspection device used in the micro LED emission inspection device 1 in another aspect. In this embodiment, a semiconductor substrate is formed on the surface of which micro LEDs 2 are arranged in an array, occupying a rectangular area of 100 μm square or less, which should be separated individually for calibrating the characteristics of the optical filter 50. 3, approximately the same number of reflectors 102 (hereinafter also referred to as reflector array 102) are formed on the surface in at least a predetermined area as the design conditions of the micro-LEDs to be inspected, which are arranged in an array. A substrate 103 is mounted at a position corresponding to the semiconductor substrate 3 of the micro LED emission inspection device 1, and a light projection mechanism 104 for the reflected light of the reflector 102, a light guiding mechanism 105 to the light projection mechanism, It is characterized by comprising a wavelength tunable light source 106 of a known wavelength of the light projected. The other configurations are the same as those of the embodiment of the micro LED emission inspection device 1, and the same reference numerals indicate the same configurations.

以下、マイクロLED発光検査装置1に用いる光学フィルタ検査装置101の物理構成図11を参照しながら、マイクロLED発光検査装置1に用いる光学フィルタ検査装置101の一実施形態を詳細に説明する。図5に示される物理構成ブロック図に示されるように、マイクロLED発光検査装置1に用いる光学フィルタ検査装置101は光投射機構104、光誘導機構105、波長可変光源106、光学レンズ20、撮像装置30、デジタル画像処理装置140、光学フィルタ50、フィルタ駆動機構60、及び制御装置170等の物理構造を部分に含むマイクロLED発光検査装置1に用いる光学フィルタ検査装置101である。ここで、マイクロLED発光検査装置1と同じ構成は同じ番号を付し、重複の説明は省略する場合がある。 Hereinafter, one embodiment of the optical filter inspection device 101 used in the micro LED emission inspection device 1 will be described in detail with reference to the physical configuration diagram 11 of the optical filter inspection device 101 used in the micro LED emission inspection device 1. As shown in the physical configuration block diagram shown in FIG. 5, the optical filter inspection device 101 used in the micro LED emission inspection device 1 includes a light projection mechanism 104, a light guide mechanism 105, a variable wavelength light source 106, an optical lens 20, and an imaging device. 30, an optical filter inspection device 101 used in the micro LED emission inspection device 1, which includes physical structures such as a digital image processing device 140, an optical filter 50, a filter drive mechanism 60, and a control device 170. Here, the same components as the micro LED emission testing device 1 are given the same numbers, and duplicate explanations may be omitted.

より詳細には、マイクロLED発光検査装置1に用いる光学フィルタ検査装置101の一実施形態は以下である。図12に示されている機能構成図のように、マイクロLED発光検査装置1に用いる光学フィルタ検査装置101には、検査対象のウェハとして、アレイ状に配列されることとなる検査対象のマイクロLEDの設計条件と少なくとも所定の領域でほぼ同一数の反射体102(以下で反射体アレイ102ともいう)が表面に形成されたサブストレート103が装着されている。波長可変光源106の発光は所定の波長に調整されており、光誘導機構105を介して中継された光路を経て、光投射機構104によって照らされた反射体102の反射光は、再び光投射機構104を透過し、光学フィルタ50、光学レンズ20を通じる光路を介してイメージセンサ31を有する撮像装置30へ導かれる配置構成となっている。所定の光波長帯域を有する光学フィルタ50は、反射体102と光学レンズ20との反射光光路121に配設され、光学フィルタ50によって選択透過された所定の光波長帯域の光がイメージセンサ31を介し、撮像装置30において映像信号を生成させる構成となっている。デジタル画像処理装置140はメモリ41を備え、映像信号を撮像装置30から受入れ、映像信号から画像データフレーム42を生成し、これをメモリ41へ格納するように構成されている。図には示されていないが複数の画像フレーム42によってサブストレート103全体に形成されている反射体102の占める領域がカバーされている。 More specifically, one embodiment of the optical filter inspection device 101 used in the micro LED emission inspection device 1 is as follows. As shown in the functional configuration diagram shown in FIG. 12, the optical filter inspection device 101 used in the micro LED emission inspection device 1 includes micro LEDs to be inspected that are arranged in an array as a wafer to be inspected. A substrate 103 having substantially the same number of reflectors 102 (hereinafter also referred to as a reflector array 102) formed on its surface in at least a predetermined area as the design condition is mounted. The light emitted from the wavelength tunable light source 106 is adjusted to a predetermined wavelength, and the reflected light from the reflector 102 illuminated by the light projection mechanism 104 passes through the optical path relayed through the light guide mechanism 105 and returns to the light projection mechanism. 104 and is guided to an imaging device 30 having an image sensor 31 via an optical path passing through an optical filter 50 and an optical lens 20. The optical filter 50 having a predetermined wavelength band is disposed in the reflected light optical path 121 between the reflector 102 and the optical lens 20, and the light having the predetermined wavelength band selectively transmitted by the optical filter 50 passes through the image sensor 31. The configuration is such that the image capturing device 30 generates a video signal via the image capturing device 30. The digital image processing device 140 includes a memory 41 and is configured to receive a video signal from the imaging device 30, generate an image data frame 42 from the video signal, and store this in the memory 41. Although not shown in the figure, the area occupied by the reflector 102 formed on the entire substrate 103 is covered by the plurality of image frames 42 .

前期光学フィルタ50は、フィルタ駆動機構60によって支持されており、フィルタ駆動機構60は制御装置170からの制御信号を受け入れるための受信部62を備える。前記制御装置170は、フィルタ駆動機構60によって光学フィルター50の有無を選択制御可能に構成されている、制御装置170フィルタ駆動機構60の制御信号の生成のための制御部171を含み、当該制御部171は、システムフロー開始とフロー制御可能に構成され、制御部171は、フィルタ駆動機構60の前記制御信号を送信するための送信部172を備え、制御信号をフィルタ駆動機構60に備わる制御信号のフィルタ駆動機構受信部62に送信可能に構成されている。 The first optical filter 50 is supported by a filter drive mechanism 60, and the filter drive mechanism 60 includes a receiving section 62 for receiving a control signal from the control device 170. The control device 170 includes a control section 171 for generating a control signal for the filter drive mechanism 60, which is configured to be able to selectively control the presence or absence of the optical filter 50 by the filter drive mechanism 60. 171 is configured to be able to start a system flow and control the flow, and the control unit 171 includes a transmitter 172 for transmitting the control signal of the filter drive mechanism 60, and transmits the control signal to the control signal provided in the filter drive mechanism 60. It is configured to be able to transmit to the filter drive mechanism receiving section 62.

デジタル画像処理装置140において、映像信号から生成されたデジタル光強度は、画像データフレーム42上のピクセル毎に段階的光強度を持ち、複数の画像データフレーム42は束ねられメモリ41上に保持されて半導体サブストレート3全体にわたる画像データフレーム上にピクセル毎の光強度が光強度ピクセルマップ45として構成されている。 In the digital image processing device 140, the digital light intensity generated from the video signal has a stepwise light intensity for each pixel on the image data frame 42, and the plurality of image data frames 42 are bundled and held on the memory 41. The light intensity for each pixel is arranged as a light intensity pixel map 45 on the image data frame over the entire semiconductor substrate 3 .

デジタル画像処理装置140には、単位映像体識別部81が構成されており、前記画像データフレーム42上のピクセル毎の光強度ピクセルマップ45から所定のクライテリアに基づきデジタル画像処理装置40の画面フレーム内に現出される発光体の単位映像体80が特定され、前記ピクセルマップ43への単位映像体マッピングデータ46を生成するように構成されている。 The digital image processing device 140 includes a unit image object identification unit 81, which identifies the image within the screen frame of the digital image processing device 40 based on predetermined criteria from the light intensity pixel map 45 for each pixel on the image data frame 42. A unit image object 80 of a light emitting body appearing in is identified, and unit image object mapping data 46 to the pixel map 43 is generated.

デジタル画像処理装置140には、マイクロLED識別部90が構成されており、反射体102の反射光を前記マイクロLED2の発光とみなしサブストレート103上にアレイ状に配列された反射体102は、マイクロLED発光検査装置1におけるマイクロLED2の場合と同様に単位映像体80を手がかりに特定される。サブストレート103上に相対的に配列配置されている反射体102は、例えば、画像フレーム42上で周囲に対しピーク値の光エネルギ強度値を呈するピクセルを単位映像体80の中心部と特定し、隣接する二つの単位映像体80の中心部間の中央をその二つの単位映像体80の矩形境界と仮定し、単位映像体80の形態を判定する所定のクライテリアによって複数のアレイ状に配列された反射体102とみなされたマイクロLED2を特定しマイクロLED2に対応させて前記ピクセルマップ43上にマッピングするマイクロLEDマッピング48のデータを生成するようにマイクロLED識別部90は構成されているのは、マイクロLED発光検査装置1におけるのと同様である。 The digital image processing device 140 includes a micro LED identification unit 90, which regards the light reflected by the reflector 102 as the light emitted from the micro LED 2, and recognizes the reflector 102 arranged in an array on the substrate 103. As in the case of the micro LED 2 in the LED emission testing device 1, it is identified using the unit image body 80 as a clue. The reflectors 102 relatively arranged on the substrate 103 identify, for example, a pixel exhibiting a peak light energy intensity value relative to the surroundings on the image frame 42 as the center of the unit image object 80; Assuming that the center between the centers of two adjacent unit image bodies 80 is the rectangular boundary of the two unit image bodies 80, the unit image bodies 80 are arranged in a plurality of arrays according to predetermined criteria for determining the form of the unit image bodies 80. The micro LED identification unit 90 is configured to generate data for micro LED mapping 48 that identifies the micro LED 2 that is considered to be the reflector 102 and maps it on the pixel map 43 in correspondence with the micro LED 2. This is the same as in the micro LED emission testing device 1.

デジタル画像処理装置140には、演算ロジックとして所定の光エネルギ強度算出式が動作するように構成されており、例えば、光強度ピクセルマップ45上で単位映像体80に対応する反射体102とみなされたマイクロLED2に含まれる画像フレーム42上のピクセルの段階的光強度の総和を光強度として採用してもよい。このように決定された単位映像体80に対応する各々のマイクロLED2の光エネルギ強度は、制御装置70からの制御信号を受け入れてフィルタ駆動機構60によって光学フィルター無の配置において測定された光エネルギ強度値として、メモリ41に格納されるようにデジタル画像処理装置140は構成されている。 The digital image processing device 140 is configured to operate a predetermined light energy intensity calculation formula as arithmetic logic. The sum of stepwise light intensities of pixels on the image frame 42 included in the micro LEDs 2 may be adopted as the light intensity. The light energy intensity of each micro LED 2 corresponding to the unit image body 80 determined in this way is the light energy intensity measured by the filter drive mechanism 60 in an arrangement without an optical filter upon receiving a control signal from the control device 70. The digital image processing device 140 is configured to store the value in the memory 41 as a value.

同様に、単位映像体80に対応する反射体102とみなされた各々のマイクロLED2の光エネルギ強度は、フィルタ駆動機構60によって光学フィルター50有りの配置において測定され、単位映像体80に対応するこの光エネルギ強度値は、前記光学フィルター50有の配置における反射体102とみなされたマイクロLED2の前記光エネルギ強度値として、メモリ41に格納され、保持されるようにデジタル画像処理装置140は構成されている。 Similarly, the light energy intensity of each micro LED 2 regarded as a reflector 102 corresponding to the unit image object 80 is measured by the filter drive mechanism 60 in the arrangement with the optical filter 50, The digital image processing device 140 is configured such that the light energy intensity value is stored and held in the memory 41 as the light energy intensity value of the micro LED 2 regarded as the reflector 102 in the arrangement with the optical filter 50. ing.

デジタル画像処理装置140には、マイクロLED検査部100が構成されており、ここには演算ロジックとして反射体102とみなされたマイクロLEDの所定の発光波長算出式が動作するように構成され、例えば、予め構成されメモリ41上にルックアップテーブル109が構成されており、引数を指定すればこれによって当該ルックアップテーブル109を検索し、引数に対応する目的データ値であるマイクロLED2の発光波長として参照可能にルックアップテーブル109が構成されている。前記引数は、例えば、前記光学フィルター無の配置における前記光エネルギ強度値と前記光学フィルター有の配置における前記光エネルギ強度値との比であってもよく、ルックアップテーブル109は光学フィルター50無の配置における前記光エネルギ強度値と前記光学フィルター50有の配置における前記光エネルギ強度値との比と、発光波長との関係を配列データとして作成されたものであるとよい。ルックアップテーブル109は、所定の光波長を提供する波長可変光源106によって、フィルタ特性がキャリブレーションされた光学フィルター50を用いて、前記光学フィルター有りの配置における前記光エネルギ強度値と前記光学フィルター無しの配置における前記光エネルギ強度値との比と発光波長との関係に関してキャリブレーションをもとに作成されたルックアップテーブル109でもよい。 The digital image processing device 140 includes a micro LED inspection unit 100, which is configured to operate a predetermined emission wavelength calculation formula of the micro LED regarded as the reflector 102 as an arithmetic logic, for example. A lookup table 109 is configured in advance and configured on the memory 41, and if an argument is specified, the lookup table 109 is searched and referenced as the emission wavelength of the micro LED 2, which is the target data value corresponding to the argument. Possibly a lookup table 109 is configured. The argument may be, for example, a ratio between the light energy intensity value in the arrangement without the optical filter and the light energy intensity value in the arrangement with the optical filter, and the lookup table 109 may be a ratio between the light energy intensity value in the arrangement without the optical filter 50 and the light energy intensity value in the arrangement with the optical filter. It is preferable that the relationship between the ratio of the light energy intensity value in the arrangement to the light energy intensity value in the arrangement with the optical filter 50 and the emission wavelength is created as array data. The lookup table 109 uses the optical filter 50 whose filter characteristics have been calibrated by the wavelength tunable light source 106 that provides a predetermined light wavelength to calculate the light energy intensity value in the arrangement with the optical filter and the value without the optical filter. The lookup table 109 may be created based on calibration regarding the relationship between the ratio of the light energy intensity value and the emission wavelength in the arrangement.

さらに、デジタル画像処理装置140の変形実施形態では、マイクロLED2の発光波長算出式は、光エネルギ強度比測定値に対応する発光波長が参照され、中間値については、その中間値を跨ぐ直近の二つの引数が与える二つの参照波長を按分補間によって調整し発光波長が決定されるようにルックアップテーブル109が構成されていてもよい。 Furthermore, in the modified embodiment of the digital image processing device 140, the emission wavelength calculation formula of the micro LED 2 refers to the emission wavelength corresponding to the measured value of the light energy intensity ratio, and for the intermediate value, the nearest two that straddle the intermediate value are referred to. The lookup table 109 may be configured such that the emission wavelength is determined by adjusting two reference wavelengths given by two arguments by proportional interpolation.

このように構成されたマイクロLED発光検査装置1に用いる光学フィルタ検査装置101の一実施形態でルックアップテーブル109が構成される仕組みに関し、制御フローのフローチャートS300を構成要素を跨って描かれた模式図13を参照しながら説明する。マイクロLED発光検査装置1に用いる光学フィルタ検査装置101は光源として、光波長の可変機構116を備え、制御部71と送信部72を介して通信可能である既知の光波長の可変波長光源106を反射体102へ照射するために備える。ここに構成されたマイクロLED発光検査装置1に用いる光学フィルタ検査装置101は、図12に示されるように、制御装置170は、光学フィルタ検査装置101の構成要素を制御するための制御フロー管理に使用されるCPU86、メモリ87を備え、制御部171は送信部172と伝送路88を介してフィルタ駆動装置及び光波長の可変機構116へ制御信号を送信可能に、制御装置70とデジタル画像処理装置140との間には通信路89が備わり、送信部72を介して双方向通信可能に構成され、このようにデジタル画像処理装置140及びフィルタ駆動装置60と一体制御可能に構成された制御装置170によって、光学フィルタ検査装置101の自動運転を可能とするように構成される。自動運転によって、マイクロLEDをモデルとする多数の反射体の光源を用い、一括処理によって光学フィルタ検査をする仕組みを以下に詳説する。
<光波長初期化ステップS321>
制御装置170の制御部171の処理の開始とともに、制御は、光波長初期化ステップに渡り、可変機構116によって光源106の光波長の設定値を初期値に更新するように送信部172と伝送路88を介して可変機構116へ制御信号を送信可能に、制御部171はモジュール構成されている。送信後、制御はキャリブレーション光源点灯ステップへ移る。
<キャリブレーション光源点灯ステップS322>
光学フィルタ検査装置101は、キャリブレーション光源106が遠隔点灯されるようにモジュール構成されている。キャリブレーション光源点灯ステップが実行されると制御は続いて、制御部171内に構成されているフィルタ移動指示ステップの構成モジュールが起動される。当該モジュールが実行された後、処理は第1のフィルタ移動指示ステップへ進む。
<第1のフィルタ移動指示ステップS323>
引続き最初のフィルタ移動指示ステップへ制御が渡され、このステップでは光フィルタ50が光路21に存在しないステータスを選択する信号が制御部171によって生成される。さらに伝送路88を介して信号はフィルタ駆動機構60へ送信され、その後制御部171は直ちに最初の撮像の開始指示通知待ちとなるようにモジュール構成され、このまま、当該モジュール処理は直ちに最初の撮像の開始指示通知待ち状態に遷移する。
<第1のフィルタ移動ステップS324>
フィルタ駆動機構60はフィルタ駆動機構60と制御装置170の間の伝送路88を介して光フィルタ50が光路21に存在しないステータスを選択するための信号を受入れると直ちに、光学フィルタ50を光路21から外す最初のフィルタ移動ステップを実行するように構成されている。
<第1の撮像の開始指示ステップS325>
制御装置170の制御部171は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、直ちに制御部171は第1の撮像の開始指示信号を生成する。最初の撮像の開始指示通知は、例えば、最初のフィルタ移動ステップ終了後にフィルタ駆動機構60がそのステータス信号を送信し、それを制御部171が受信するように構成されてもよいが、その他、所定の時間が経過すれば最初の撮像の開始指示通知を生成するように、制御部171内でタイマーを駆動するように構成されていてもよい。この場合には、所定の時間経過後にタイマーイベントが生成され最初の撮像の開始指示通知が制御部171に通知される。制御部171に制御が戻ると、制御部171は通信路89を介して画像処理装置140へ第1の撮像の開始指示信号を送信した後に、第2のフィルタ移動指示待ちとなるように構成されている。第1の撮像の開始指示ステップを起動するモジュールの実行後、当該モジュールの処理は第2のフィルタ移動指示待ち状態へ遷移する。
<第1の撮像ステップS326>
デジタル画像処理装置は、通信路89を介して第1の撮像の開始指示信号を制御部171から受信すると、撮像装置30から映像信号を受け入れ、デジタル画像処理装置140内に格納される画像データフレーム42上のピクセルマップへ各ピクセルで測定された段階的光強度が重畳された光強度ピクセルマップを生成し、これをデジタル画像処理装置140内のメモリ41に格納するようにモジュール構成されており、当該モジュールの動作後には、引き続いて単位映像体識別部81の処理に制御が渡る。
<フィルタ無し光強度測定ステップS327>
引き続き、単位映像体識別部81において、光強度ピクセルマップから前記キャリブレーション光源の反射光をマイクロLEDの発光とみなし、前記キャリブレーション光源の反射光の単位映像体80を所定のクライテリアに基づき特定し、さらにピクセルマップへの単位映像体マッピングデータを生成し、これをデジタル画像処理装置140内のメモリ41に格納するように、デジタル画像処理装置140はモジュール構成されている。単位映像体識別部81のモジュール処理に引き続いて、反射体マッピングをマイクロLEDマッピングデータ4444とみなし、マイクロLED識別部90において、単位映像体80から前記反射体マッピングとみなされたマイクロLEDをピクセルマップ上にマッピングしマイクロLEDマッピングデータ44を生成し、これをメモリ41に格納するようにデジタル画像処理装置140はモジュール構成されている。続いてマイクロLEDマップ44上の光強度マップ45上の光強度から所定の光エネルギ強度算出式によってマイクロLED2の光エネルギ強度を決定し、マイクロLEDの発光とみなされた反射体102の反射光の光学フィルター無の配置における前記光エネルギ強度値をデジタル画像処理装置140内のメモリ41に格納するようにデジタル画像処理装置140はモジュール構成されている。フィルタ無し光強度を測定するモジュールが実行されると、引き続き、制御装置170は、フィルタ有り光強度を測定する処理を実行制御されるように構成されている。
<第2のフィルタ移動指示ステップS328>
第2のフィルタ移動指示待ちとなっていた制御部171は、第2のフィルタ移動指示を受け入れると、当該指示に基づき光学フィルタ50を光路21に配設する信号を生成し、伝送路88を介しフィルタ駆動機構60へ当該信号を送信するようにモジュール構成されている。当該モジュール実行後には、当該モジュールは第2の撮像開始指示待ちとなるようにモジュール構成されており、当該モジュールは制御部待ち状態となる。
<第2のフィルタ移動ステップS329>
フィルタ駆動機構60は伝送路88を介して光学フィルタ50を光路21に配設する信号を制御部171から受入れ、光学フィルタ50を光路21に配設するようにフィルタ駆動機構60はモジュール構成されている。
<第2の撮像の開始指示ステップS330>
制御部171は、第2のフィルタ移動指示ステップの最終処理である第2の撮像開始指示待ち状態で第2の撮像の開始指示通知を受け入れると第2の撮像の開始指示信号を生成し、通信路89を介してデジタル画像処理装置140へ第2の撮像の開始指示信号を送信するようにモジュール構成されている。第2の撮像の開始指示通知について、例えば、第2のフィルタ移動ステップ終了後にフィルタ駆動機構60がそのステータス信号を送信し、それを制御部171が受信するように構成されてもよいし、その他、所定の時間が経過すれば第2の撮像の開始指示通知を生成するように、制御部171内でタイマーを駆動するように構成されていてもよい。当該モジュールが動作後に、制御部171の処理はアイドルとなり、次のタスク待ちとなる。
<第2の撮像ステップS331>
デジタル画像処理装置140は、通信路89を介して第2の撮像の開始指示信号を受信すると、撮像装置30から映像信号を受け入れ、画像データフレーム42上のピクセルマップへ各ピクセルで測定された段階的光強度が重畳された光強度ピクセルマップを生成し、これをデジタル画像処理装置140内のメモリ41に格納するようにモジュール構成されており、このモジュール動作後には単位映像体識別部81での処理に進むようにデジタル画像処理装置140は構成されている。
<フィルタ有り光強度の測定ステップS332>
デジタル画像処理装置40内では、これに引き続き、単位映像体識別部81において、光強度ピクセルマップからキャリブレーション光源の反射光をマイクロLEDの発光とみなし、キャリブレーション光源光の単位映像体80を所定のクライテリアに基づき特定し、さらにピクセルマップへの単位映像体マッピングデータを生成し、これをデジタル画像処理装置140内のメモリ41に格納し、さらにマイクロLED識別部90において、単位映像体80から反射体マッピングとみなされたマイクロLEDマッピングデータ44を生成し、これをメモリ41に格納するようにデジタル画像処理装置140はモジュール構成されている。このモジュール処理の後に、マイクロLEDマップ上の光強度マップ上の光強度から所定の光エネルギ強度算出式によってマイクロLEDの光エネルギ強度を決定し、マイクロLEDの発光とみなされたキャリブレーション光源反射光の光学フィルター50有りの配置における光エネルギ強度値としてデジタル画像処理装置140内のメモリ41に格納するように、デジタル画像処理装置140はモジュール構成されている。当該モジュール処理後に、制御は、デジタル画像処理装置140内でマイクロLED検査部での処理に渡される。
<フィルタ無し光強度とフィルタ有り光強度の比計算ステップS333>
これに引き続き、マイクロLED検査部において、キャリブレーション光源としてのマイクロLEDの光学フィルター有りの配置における光エネルギ強度値をデジタル画像処理装置140内のメモリ41から読み出し、光学フィルター50有の配置におけるキャリブレーション光源反射光の前記光エネルギ強度値と、光学フィルター50無の配置の光エネルギ強度値とによって、、フィルタ無し光強度とフィルタ有り光強度の比を計算するようにデジタル画像処理装置140はモジュール構成されている。このモジュールが実行されると処理は、発光波長計算ステップへ渡る。
<発光波長計算ステップS334>
これに引き続き、マイクロLED検査部100において、所定の前記マイクロLEDの発光波長算出式によってマイクロLEDの発光波長を決定するようにデジタル画像処理装置40はモジュール構成されている。このモジュールが実行されると処理は、光源波長及び光強度比記録ステップへ渡る。
<光源波長及び光強度比記録ステップS335>
これに引き続き、マイクロLED検査部100において、既知の光源波長と光強度の比をメモリ41に格納するようにデジタル画像処理装置140はモジュール構成されている。このモジュールが実行されると処理は、光源波長更新ステップへ進む。
<光源波長更新ステップS336>
これに引き続き、マイクロLED検査部100において、光源の光波長の設定値を所定の増分値で更新するようにデジタル画像処理装置140はモジュール構成されている。このモジュールが実行されると処理は、ルックアップテーブル完了条件を判定する、判定ステップへ進む。
<完了判定ステップS337>
更新後の前記光源の光波長が所定の境界値を超えるか否かをチェックし分岐するするようにデジタル画像処理装置140はモジュール構成されている。このモジュールが実行されると処理は越えるときルックアップテーブル作成ステップへ進み、超えないとき波長初期化ステップ
へ分岐し更新後の光波長で初期化する。
<ルックアップテーブル作成ステップS338>
これに引き続き、マイクロLED検査部100において、メモリ41に格納された複数の波長と光強度の比の組からルックアップテーブル109を作成し、これをメモリ41に格納するようにデジタル画像処理装置140はモジュール構成されている。このモジュールが実行されるとルックアップテーブル109が完成し処理は終了する。そして、上記の通り、マイクロLEDと同一のジオメトリで配設されている反射体が多数存在してもルックアップテーブル109を自動生成可能なマイクロLED発光検査装置1に用いる光学フィルタの検査装置101が提供される。
Regarding the structure in which the lookup table 109 is configured in an embodiment of the optical filter inspection device 101 used in the micro LED emission inspection device 1 configured as described above, a flowchart S300 of the control flow is schematically drawn across the constituent elements. This will be explained with reference to FIG. The optical filter inspection device 101 used in the micro LED emission inspection device 1 uses a variable wavelength light source 106 with a known optical wavelength, which is equipped with a variable wavelength mechanism 116 and can communicate via the control section 71 and the transmission section 72, as a light source. Prepared for irradiating the reflector 102. In the optical filter inspection device 101 used in the micro LED emission inspection device 1 configured here, as shown in FIG. The control unit 171 is equipped with a CPU 86 and a memory 87 to be used, and the control unit 171 is capable of transmitting control signals to the filter driving device and the optical wavelength variable mechanism 116 via the transmission unit 172 and the transmission line 88. A communication path 89 is provided between the control device 140 and the control device 170, which is configured to enable two-way communication via the transmitter 72, and is configured to be able to integrally control the digital image processing device 140 and the filter drive device 60. Accordingly, the optical filter inspection apparatus 101 is configured to enable automatic operation. A mechanism for inspecting optical filters through batch processing using a large number of reflector light sources modeled on micro-LEDs through automatic operation will be described in detail below.
<Optical wavelength initialization step S321>
At the start of processing by the control unit 171 of the control device 170, the control proceeds to an optical wavelength initialization step, in which the transmitting unit 172 and the transmission path are changed so that the variable mechanism 116 updates the set value of the optical wavelength of the light source 106 to the initial value. The control unit 171 is configured as a module so as to be able to transmit a control signal to the variable mechanism 116 via the variable mechanism 88 . After transmission, control moves to a calibration light source lighting step.
<Calibration light source lighting step S322>
The optical filter inspection device 101 is configured as a module so that the calibration light source 106 can be turned on remotely. When the calibration light source lighting step is executed, the control continues, and a component module of the filter movement instruction step configured in the control unit 171 is activated. After the module is executed, the process proceeds to the first filter movement instruction step.
<First filter movement instruction step S323>
Subsequently, control is passed to the first filter movement instruction step, and in this step, the control unit 171 generates a signal that selects a status in which the optical filter 50 is not present in the optical path 21. Furthermore, the signal is transmitted to the filter drive mechanism 60 via the transmission path 88, and the module is configured such that the control unit 171 immediately waits for notification of an instruction to start the first imaging. Transition to the start instruction notification wait state.
<First filter movement step S324>
The filter driving mechanism 60 removes the optical filter 50 from the optical path 21 as soon as it receives a signal for selecting a status in which the optical filter 50 is not present in the optical path 21 via the transmission path 88 between the filter driving mechanism 60 and the control device 170. The filter is configured to perform an initial filter movement step to remove the filter.
<First imaging start instruction step S325>
When the control unit 171 of the control device 170 receives the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit 171 immediately executes the first imaging start instruction notification. Generates an imaging start instruction signal. The first imaging start instruction notification may be configured such that, for example, the filter drive mechanism 60 transmits its status signal after the first filter movement step is completed, and the control unit 171 receives the status signal. The control unit 171 may be configured to drive a timer so as to generate a notification for instructing the start of the first imaging when the time period elapses. In this case, a timer event is generated after a predetermined period of time has elapsed, and the control unit 171 is notified of an instruction to start the first imaging. When control returns to the control unit 171, the control unit 171 is configured to transmit a first imaging start instruction signal to the image processing device 140 via the communication path 89, and then wait for a second filter movement instruction. ing. After executing the module that starts the first imaging start instruction step, the processing of the module transitions to a state of waiting for a second filter movement instruction.
<First imaging step S326>
When the digital image processing device receives a first imaging start instruction signal from the control unit 171 via the communication path 89, the digital image processing device accepts the video signal from the imaging device 30, and the image data frame is stored in the digital image processing device 140. The module is configured to generate a light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the pixel map on 42, and store this in the memory 41 in the digital image processing device 140, After the operation of the module, control is subsequently transferred to the processing of the unit image object identification section 81.
<No-filter light intensity measurement step S327>
Subsequently, in the unit image object identification section 81, the reflected light of the calibration light source is regarded as the light emission of the micro LED from the light intensity pixel map, and the unit image object 80 of the reflected light of the calibration light source is identified based on predetermined criteria. The digital image processing device 140 is configured as a module to further generate unit image object mapping data to a pixel map and store this in a memory 41 within the digital image processing device 140. Following the module processing of the unit image object identification section 81, the reflector mapping is regarded as micro LED mapping data 4444, and the micro LED identification section 90 converts the micro LEDs considered as the reflector mapping from the unit image object 80 into a pixel map. The digital image processing device 140 is configured as a module to generate micro LED mapping data 44 and store it in the memory 41. Next, the light energy intensity of the micro LED 2 is determined from the light intensity on the light intensity map 45 on the micro LED map 44 using a predetermined light energy intensity calculation formula, and the light reflected from the reflector 102, which is considered to be light emitted from the micro LED, is calculated. The digital image processing device 140 is configured in a module such that the light energy intensity value in the arrangement without an optical filter is stored in a memory 41 within the digital image processing device 140. When the module for measuring the unfiltered light intensity is executed, the control device 170 is configured to be subsequently controlled to execute the process for measuring the filtered light intensity.
<Second filter movement instruction step S328>
Upon receiving the second filter movement instruction, the control unit 171 that has been waiting for the second filter movement instruction generates a signal for arranging the optical filter 50 in the optical path 21 based on the instruction, and sends the optical filter 50 to the optical path 21 via the transmission path 88. The module is configured to transmit the signal to the filter drive mechanism 60. After the module is executed, the module is configured to wait for the second imaging start instruction, and the module is in a state of waiting for the control unit.
<Second filter movement step S329>
The filter driving mechanism 60 is configured as a module so that the filter driving mechanism 60 receives a signal from the control unit 171 to arrange the optical filter 50 on the optical path 21 via the transmission path 88, and arranges the optical filter 50 on the optical path 21. There is.
<Second imaging start instruction step S330>
When the control unit 171 receives the second imaging start instruction notification while waiting for the second imaging start instruction, which is the final process of the second filter movement instruction step, the control unit 171 generates a second imaging start instruction signal and initiates communication. The module is configured to transmit a second imaging start instruction signal to the digital image processing device 140 via the path 89. Regarding the second imaging start instruction notification, for example, the filter drive mechanism 60 may be configured to transmit the status signal after the second filter movement step is completed, and the control unit 171 may receive the status signal, or the control unit 171 may be configured to receive the status signal. The control unit 171 may be configured to drive a timer so as to generate a second imaging start instruction notification when a predetermined time has elapsed. After the module operates, the processing of the control unit 171 becomes idle and waits for the next task.
<Second imaging step S331>
Upon receiving the second imaging start instruction signal via the communication path 89, the digital image processing device 140 accepts the video signal from the imaging device 30 and converts the measured stage of each pixel into a pixel map on the image data frame 42. The module is configured to generate a light intensity pixel map on which the target light intensity is superimposed and store it in the memory 41 in the digital image processing device 140. After the operation of this module, the unit image object identification unit 81 Digital image processing device 140 is configured to proceed with processing.
<Measurement step S332 of light intensity with filter>
Subsequently, in the digital image processing device 40, a unit image object identifying section 81 regards the reflected light of the calibration light source as the light emission of the micro LED from the light intensity pixel map, and specifies the unit image object 80 of the calibration light source light. The unit image object mapping data is generated into a pixel map, and this is stored in the memory 41 in the digital image processing device 140. Furthermore, in the micro LED identification section 90, the reflection from the unit image object 80 is identified. The digital image processing device 140 is configured in a module so as to generate micro LED mapping data 44 regarded as body mapping and store it in the memory 41. After this module processing, the light energy intensity of the micro LED is determined from the light intensity on the light intensity map on the micro LED map using a predetermined light energy intensity calculation formula, and the calibration light source reflected light that is regarded as the light emission of the micro LED is calculated. The digital image processing device 140 is configured in a module such that the light energy intensity value in the arrangement with the optical filter 50 is stored in the memory 41 within the digital image processing device 140. After processing the module, control is passed within the digital image processing device 140 to processing at the micro LED inspection section.
<Ratio calculation step S333 of light intensity without filter and light intensity with filter>
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED as a calibration light source in the arrangement with the optical filter is read out from the memory 41 in the digital image processing device 140, and the calibration in the arrangement with the optical filter 50 is performed. The digital image processing device 140 has a module configuration so as to calculate the ratio of the light intensity without a filter to the light intensity with a filter based on the light energy intensity value of the light reflected from the light source and the light energy intensity value without the optical filter 50. has been done. When this module is executed, the process proceeds to the emission wavelength calculation step.
<Emission wavelength calculation step S334>
Subsequently, in the micro LED inspection section 100, the digital image processing device 40 is configured as a module so that the emission wavelength of the micro LED is determined by a predetermined formula for calculating the emission wavelength of the micro LED. Once this module is executed, the process moves to the step of recording the light source wavelength and light intensity ratio.
<Light source wavelength and light intensity ratio recording step S335>
Subsequently, in the micro LED inspection section 100, the digital image processing device 140 is configured as a module so as to store the known light source wavelength and light intensity ratio in the memory 41. Once this module is executed, the process proceeds to a light source wavelength update step.
<Light source wavelength update step S336>
Subsequently, the digital image processing device 140 is configured as a module so that the set value of the light wavelength of the light source is updated by a predetermined increment value in the micro LED inspection section 100. Once this module is executed, processing proceeds to a determining step in which a lookup table completion condition is determined.
<Completion determination step S337>
The digital image processing device 140 is configured as a module so as to check whether the updated light wavelength of the light source exceeds a predetermined boundary value and branch out. When this module is executed, the process proceeds to the lookup table creation step when the number is exceeded, and branches to the wavelength initialization step when the number is not exceeded, and is initialized with the updated optical wavelength.
<Lookup table creation step S338>
Subsequently, the micro-LED inspection section 100 creates a look-up table 109 from a plurality of pairs of wavelengths and light intensity ratios stored in the memory 41, and the digital image processing device 140 causes the look-up table 109 to be stored in the memory 41. is made up of modules. When this module is executed, the lookup table 109 is completed and the process ends. As described above, the optical filter inspection device 101 used in the micro LED emission inspection device 1 is capable of automatically generating the look-up table 109 even if there are many reflectors arranged with the same geometry as the micro LEDs. provided.

以上の一実施形態及びその変形形態に記載されたマイクロLED発光検査装置1に用いる光学フィルタの検査装置101は、ここに記載されたいずれの実施形態及びその変形形態のいずれもマイクロLED発光検査装置1と親和性の高いキャリブレーション操作がマイクロLED発光検査装置1による検査と一体に実施できる利点があるので、光学フィルタ検査装置101は、マイクロLED発光検査装置1に組み込むとよい。このような一体化によって、部品の重複配置を避けることができ、より低コストの装置配置が可能となるし、必要に応じ、随時キャリブレーションを実施可能であり、ルックアップテーブル109の作成更新も比較的頻繁に行うことが可能であり、かつ、マイクロLED2測定と同一の環境でのキャリブレーションを実施可能とし、検査精度の向上が期待できる利点がある。 The optical filter inspection device 101 used in the micro LED emission inspection device 1 described in the above embodiment and its variations is the same as the micro LED emission inspection device 101 in any of the embodiments and variations thereof described herein. The optical filter inspection device 101 is preferably incorporated into the micro LED emission inspection device 1 because the calibration operation that is highly compatible with the micro LED emission inspection device 1 can be performed integrally with the inspection by the micro LED emission inspection device 1. This kind of integration makes it possible to avoid redundant placement of parts, which enables lower-cost equipment placement, allows for calibration at any time as needed, and also allows for the creation and updating of the look-up table 109. This method has the advantage that it can be performed relatively frequently, and that calibration can be performed in the same environment as the micro LED 2 measurement, so that an improvement in inspection accuracy can be expected.

加えて、マイクロLED発光検査装置1に用いる光学フィルタ検査装置101の一態様では、光フィルタ50の特性のキャリブレーションのために個別に分離されるべき100μm角以下の大きさの矩形領域内を占めるマイクロLED2がアレイ状に配列されて表面に形成された半導体サブストレート3の代わりに、アレイ状に配列されることとなる検査対象のマイクロLEDの設計条件と少なくとも所定の領域でほぼ同一数の反射体102(以下で反射体アレイ102ともいう)が表面に形成されたサブストレート103がマイクロLED発光検査装置1の半導体サブストレート3に相当する位置に装着され、アレイ状に配列された物同士の様々な光度干渉もほぼ同様の条件でキャリブレーションできるという利点が提供され、さらに、精度の高い測定が期待できる。
マイクロLED2測定と同一の環境でのキャリブレーションを実施可能とし、検査精度の向上が期待できる利点がある。
In addition, in one embodiment of the optical filter inspection device 101 used in the micro LED emission inspection device 1, the optical filter 50 occupies a rectangular area with a size of 100 μm square or less that should be separated individually for calibrating the characteristics of the optical filter 50. Instead of a semiconductor substrate 3 on which micro LEDs 2 are arranged in an array, the number of reflections is approximately the same in at least a predetermined area as the design condition of the micro LED to be inspected, which is arranged in an array. A substrate 103 having a reflector array 102 (hereinafter also referred to as a reflector array 102) formed on its surface is attached to a position corresponding to the semiconductor substrate 3 of the micro LED emission inspection device 1, and the objects arranged in an array are connected to each other. This provides the advantage that various luminosity interferences can be calibrated under substantially similar conditions, and furthermore, highly accurate measurements can be expected.
This has the advantage that calibration can be performed in the same environment as the micro LED 2 measurement, and improvement in inspection accuracy can be expected.

反射体102は、好ましく金属膜なら成り、クロムを主成分とする金属からなる反射体であるとよい。 The reflector 102 is preferably made of a metal film, and is preferably made of a metal whose main component is chromium.

光投射機構104は、反射体102の反射光光路上に光学レンズ20と反射体102との間にハーフミラーを配設するとよい。投射光光路と反射体102の反射光光路とをオーバラップできるため、よりコンパクトな装置構成が実現可能とされる効果がある。光誘導機構105には、光ファイバーを用いるとよい。波長可変光源106の配置の自由度が増し、よりコンパクトな装置構成が実現可能となる効果がある。 In the light projection mechanism 104, a half mirror may be disposed between the optical lens 20 and the reflector 102 on the optical path of the reflected light of the reflector 102. Since the projection light optical path and the reflected light optical path of the reflector 102 can be overlapped, there is an effect that a more compact device configuration can be realized. It is preferable to use an optical fiber for the light guide mechanism 105. This has the effect of increasing the degree of freedom in arranging the wavelength tunable light source 106 and making it possible to realize a more compact device configuration.

<マイクロLED発光検査装置1の他の実施形態>
上記の実施態様で、フィルタの移動制御は、制御装置70によって行なったが、必ずしも制御装置70によらずとも、制御装置70から独立した制御によって実行されてもよく、また、制御装置70とデジタル画像処理装置40は、一体に構成された制御装置47であってもよいが、上記のように制御に連携が取れるのが好ましい。
<Other embodiments of micro LED emission inspection device 1>
In the embodiments described above, the movement control of the filter is performed by the control device 70, but it does not necessarily have to be performed by the control device 70, but may be performed by control independent from the control device 70. The image processing device 40 may be an integrated control device 47, but it is preferable that the control device 47 can be linked as described above.

マイクロLED発光検査装置1のキャリブレーションに関し、さらなる変形実施形態で、マイクロLED発光検査装置1は、図14の物理構成図に示されるように参照発光体6を光学レンズ20の視野内に入るように配置し、フィルタ特性のキャリブレーションのための既知の発光波長の光を参照光として配設可能であればよい。この実施形態では、デジタル画像処理装置40は参照発光体が提供する光強度によってキャリブレーション可能となり、マイクロLED発光検査装置9で閉じた形でフィルタをフィルタ駆動機構60から取り外さなくても随時フィルタ特性のキャリブレーション可能という利点がある。 Regarding the calibration of the micro LED emission testing device 1, in a further modified embodiment, the micro LED emission testing device 1 is configured to calibrate the reference light emitter 6 so as to be within the field of view of the optical lens 20, as shown in the physical configuration diagram of FIG. It is sufficient if it is possible to arrange the light having a known emission wavelength as a reference light for calibrating the filter characteristics. In this embodiment, the digital image processing device 40 can be calibrated by the light intensity provided by the reference light emitter, and the filter characteristics can be adjusted at any time without removing the filter from the filter drive mechanism 60 in the closed state of the micro LED emission testing device 9. It has the advantage that it can be calibrated.

マイクロLED発光検査装置1に用いる光学フィルタ検査装置101のキャリブレーションは、さらなる変形実施形態では、光学フィルタ検査装置101は、図14と同様に参照発光体6を光学レンズ20の視野内に入るように配置し、フィルタ特性のキャリブレーションのための既知の発光波長の光を参照光として配設可能であればよい。この実施形態では、デジタル画像処理装置40は参照発光体が提供する光強度によってキャリブレーション可能となり、光学フィルタ検査装置101で閉じた形でフィルタをフィルタ駆動機構60から取り外さなくても随時フィルタ特性のキャリブレーション可能という利点がある。
同様に、追加のマイクロLED発光検査装置1の変形実施態様では、図15の物理構成図に示されるようにマイクロLED発光検査装置1のデジタル画像処理装置40は、参照発光体の光強度モニタリングのための光センサ7をさらに備え、デジタル画像処理装置40は、光センサの信号出力を受入れ、光センサ7の光強度モニタ値によって正規化された参照発光体の段階的光強度を用いキャリブレーションを補正可能とされている。この構成では、複数のマイクロLED発光検査装置1の測定の統一的な運用を可能とし、あるいは、正規化によって輝度の測定等絶対的な測定基準を導入可能となる利点がある。
In a further modified embodiment, the optical filter inspection device 101 used in the micro LED emission inspection device 1 is calibrated so that the reference light emitter 6 falls within the field of view of the optical lens 20, as in FIG. It is only necessary that light having a known emission wavelength for calibrating filter characteristics can be provided as a reference light. In this embodiment, the digital image processing device 40 can be calibrated by the light intensity provided by the reference light emitter, and the filter characteristics can be adjusted at any time without removing the filter from the filter drive mechanism 60 in the closed state of the optical filter inspection device 101. It has the advantage of being calibratable.
Similarly, in a variant embodiment of the additional micro-LED luminescence testing device 1, the digital image processing device 40 of the micro-LED luminescence testing device 1, as shown in the physical block diagram of FIG. The digital image processing device 40 further includes a light sensor 7 for receiving the signal output of the light sensor and performs calibration using the stepped light intensity of the reference light emitter normalized by the light intensity monitor value of the light sensor 7. It is said that it can be corrected. This configuration has the advantage that measurements of a plurality of micro LED emission inspection devices 1 can be performed in a unified manner, or that absolute measurement standards such as brightness measurement can be introduced through normalization.

さらに、追加のマイクロLED発光検査装置1に用いる光学フィルタ検査装置101の変形実施態様では、図15と同様に光学フィルタ検査装置101のデジタル画像処理装置40は、参照発光体の光強度モニタリングのための光センサ7をさらに備え、デジタル画像処理装置40は、光センサの信号出力を受入れ、光センサ7の光強度モニタ値によって正規化された参照発光体の段階的光強度を用いキャリブレーションを補正可能とされている。この構成では、複数の光学フィルタ検査装置101の測定の統一的な運用を可能とし、あるいは、正規化によって輝度の測定等絶対的な測定基準を導入可能となる利点がある。 Furthermore, in a variant embodiment of the optical filter testing device 101 used in the additional micro-LED luminescence testing device 1, the digital image processing device 40 of the optical filter testing device 101, similar to FIG. The digital image processing device 40 further includes a light sensor 7 , and the digital image processing device 40 receives the signal output of the light sensor and corrects the calibration using the stepwise light intensity of the reference light emitter normalized by the light intensity monitor value of the light sensor 7 . It is considered possible. This configuration has the advantage that measurements of a plurality of optical filter inspection apparatuses 101 can be performed in a unified manner, or that absolute measurement standards such as brightness measurement can be introduced through normalization.

さらなるマイクロLED発光検査装置1の変形実施形態では、図16の物理構成図に示されるように、制御装置70は、フィルタ駆動機構60で生成されるステータス信号の受信部73をさらに含むように構成されている。制御装置70は、フィルタ駆動機構60で生成される光学フィルタ50の配置変更の進行状態をモニタリング可能とされるステータス信号を受信部73を介して受信し、好適なタイミングでフィルタ駆動機構60に対して光学フィルタ50無しの選択を指示する制御信号を生成可能に構成され、これをフィルタ駆動機構60に送信可能に構成されている。一方、制御装置70は、デジタル画像処理装置40に対して光学フィルター50無の配置における光エネルギ強度値の測定開始を指示する制御信号を生成可能に構成され、これを制御信号送信部72を介し前記デジタル画像処理装置へ送信可能に構成されている。さらに、デジタル画像処理装置40は、マイクロLEDマッピングデータ44上で異常値を示すマイクロLED2をマイクロLED2不良品と識別し、マイクロLED2製品から除外するための不良品フラグデータを保持するマイクロLED不良品判定部1300が構成されている。上記のように構成されたマイクロLED発光検査装置1の作用効果は以下である。制御装置70の制御部71は、ステータス信号をフィルタ駆動機構60から受信後又は検査開始の指示を受け入れると、引き続いてデジタル画像処理装置40へ光学フィルター50無しの配置における光エネルギ強度値の測定開始を指示する制御信号を生成し、これを制御信号送信部72を介しデジタル画像処理装置40へ送信する。光学フィルター50無しの配置における光エネルギ強度値の測定開始を指示する制御信号を受け入れるとデジタル画像処理装置40は、画像データ信号を受け入れ、デジタル画像処理装置40は上記同様に、マイクロLEDマッピングデータ44を生成する。デジタル画像処理装置40は、さらに、マイクロLEDマッピングデータ44上で異常値を示すマイクロLEDをマイクロLED不良品と識別し、マイクロLEDマッピングデータ44上でマイクロLED製品から除外するようにフラグを立てこのフラグデータを識別し保管する。異常判定は、所定の下限光度値以下を示すマイクロLED又は所定の上限光度以上を示すマイクロLEDの上限及下限値をしきい値とする判定上限がよい。これらの上限光度、下限光度は一群のマイクロLEDの光度の段階的位置づけから決定されてもよく、相対的な評価によって異常値を判定することが、画像データフレーム42からの一括処理によって実現できるところに本発明の有利な効果が見出される。 In a further modified embodiment of the micro LED emission testing device 1, as shown in the physical configuration diagram of FIG. has been done. The control device 70 receives a status signal, which is generated by the filter drive mechanism 60 and is capable of monitoring the progress state of the arrangement change of the optical filter 50, through the reception unit 73, and sends the status signal to the filter drive mechanism 60 at a suitable timing. The optical filter 50 is configured to be able to generate a control signal instructing the selection of the optical filter 50, and is configured to be able to transmit this to the filter drive mechanism 60. On the other hand, the control device 70 is configured to be able to generate a control signal that instructs the digital image processing device 40 to start measuring the light energy intensity value in the arrangement without the optical filter 50, and transmits the control signal via the control signal transmitting section 72. The information is configured to be capable of being transmitted to the digital image processing device. Further, the digital image processing device 40 identifies the micro LED 2 that shows an abnormal value on the micro LED mapping data 44 as a defective micro LED 2, and stores defective product flag data for excluding it from the micro LED 2 products. A determination unit 1300 is configured. The effects of the micro LED emission testing device 1 configured as described above are as follows. After receiving the status signal from the filter drive mechanism 60 or accepting an instruction to start an inspection, the control unit 71 of the control device 70 subsequently instructs the digital image processing device 40 to start measuring the light energy intensity value in the arrangement without the optical filter 50. A control signal for instructing is generated and transmitted to the digital image processing device 40 via the control signal transmitter 72. When the digital image processing device 40 receives the control signal instructing the start of measurement of the light energy intensity value in the arrangement without the optical filter 50, the digital image processing device 40 receives the image data signal, and similarly, the digital image processing device 40 receives the micro LED mapping data 44. generate. The digital image processing device 40 further identifies the micro LED showing an abnormal value on the micro LED mapping data 44 as a micro LED defective product, and sets a flag on the micro LED mapping data 44 to exclude it from the micro LED products. Identify and store flag data. For abnormality determination, it is preferable that the upper limit of the determination is made using the upper and lower limits of the micro-LED that exhibits a luminous intensity equal to or less than a predetermined lower limit luminous intensity value or the upper and lower limits of a micro-LED that exhibits a luminous intensity that is equal to or greater than a predetermined upper limit luminous intensity value. These upper limit luminous intensity and lower luminous intensity may be determined from the stepwise positioning of the luminous intensity of a group of micro-LEDs, and determining abnormal values through relative evaluation can be realized by batch processing from the image data frame 42. The advantageous effects of the present invention are found in

前記マイクロLED発光検査装置1のさらなる変形実施態様では、図17の物理構成図に示されるように前記デジタル画像処理装置は、前記マイクロLEDの配列設計データ入力のための外部接続路及びデータ入力部140を含み、前記外部接続路を介して前記データ入力部から前記アレイ状に配列されたマイクロLEDの配列設計データを受入れ可能であり、前記デジタル画像処理装置内の前記メモリへ、前記アレイ状に配列されたマイクロLEDの配列設計データが格納され、前記マイクロLED不良品データと前記マイクロLEDの配列設計データとを照合し、正常マイクロLEDのアレイ状の配列の端部を認識しこれをもって製品に適合なマイクロLEDマップ範囲を更新可能であるマイクロLEDマップ境界判定部130は、その後の処理の正確性の向上に有利な効果を発揮する。 In a further modified embodiment of the micro LED emission inspection device 1, as shown in the physical configuration diagram of FIG. 17, the digital image processing device includes an external connection path and a data input section for inputting array design data of the micro LEDs. 140, capable of accepting array design data of the micro LEDs arranged in the array from the data input section via the external connection path, and transmitting the array design data of the micro LEDs arranged in the array to the memory in the digital image processing device. The array design data of the arrayed micro LEDs is stored, and the defective micro LED data is compared with the micro LED array design data, and the end of the array of normal micro LEDs is recognized and used as a product. The micro LED map boundary determination unit 130 that is capable of updating the suitable micro LED map range has an advantageous effect on improving the accuracy of subsequent processing.

さらに、追加のマイクロLED発光検査装置1の変形実施態様では、マイクロLED発光検査装置1のデジタル画像処理装置40は、図18に示されているように映像表示装置92をさらに備え、図19の範疇グラフに示されるように複数のマイクロLEDの光強度特性と発光波長の二次元マップ93を生成し、前記映像表示装置92に表示するように構成されている。光強度特性と発光波長の二次元マップは、マイクロLEDを多次元分析にするに適する手段であり、これによってより詳細にマイクロLEDの発光特性を把握可能となる。 Furthermore, in a variant embodiment of the additional micro LED emission testing device 1, the digital image processing device 40 of the micro LED emission testing device 1 further comprises a video display device 92 as shown in FIG. As shown in the category graph, a two-dimensional map 93 of light intensity characteristics and emission wavelengths of a plurality of micro LEDs is generated and displayed on the video display device 92. A two-dimensional map of light intensity characteristics and emission wavelength is a suitable means for multidimensional analysis of micro-LEDs, and this makes it possible to understand the emission characteristics of micro-LEDs in more detail.

[第2実施形態]
図20には、本発明に係るマイクロLED発光検査装置500の第2の実施形態の物理構成図を示す。マイクロLED発光検査装置500はフィルタ光軸傾斜角駆動機構65をさらに備える。フィルタ光軸傾斜角駆動機構65は、光路21の光軸に対する前記光学フィルタの傾斜を制御するための傾斜角制御信号の受信部を含む。所定の光波長帯域を有する光学フィルタ51は、所定の波長範囲の中心値よりも長い波長をフィルター透過率の半値として作成された誘電体薄膜光学フィルター51である。フィルタ光軸傾斜角駆動機構65は、光軸方向に対して光学フィルターの傾斜角を調整可能とするように構成されている。
[Second embodiment]
FIG. 20 shows a physical configuration diagram of a second embodiment of a micro LED emission testing device 500 according to the present invention. The micro LED emission testing device 500 further includes a filter optical axis tilt angle drive mechanism 65. The filter optical axis inclination angle driving mechanism 65 includes a receiving section for receiving an inclination angle control signal for controlling the inclination of the optical filter with respect to the optical axis of the optical path 21. The optical filter 51 having a predetermined optical wavelength band is a dielectric thin film optical filter 51 created by setting the wavelength longer than the center value of the predetermined wavelength range to half the value of the filter transmittance. The filter optical axis inclination angle drive mechanism 65 is configured to be able to adjust the inclination angle of the optical filter with respect to the optical axis direction.

さらに、第2の実施形態の変形実施形態では、マイクロLED発光検査装置500の制御装置70の制御部71はフィルタ駆動機構60に対して所定の光透過波長帯域の中心値よりも長い波長をフィルター透過率の半値として作成された薄膜光学フィルターの選択を指示する制御信号を生成可能に構成されている。波長可変光源106は波長可変機構116を介し、フィルタ駆動機構60及びフィルタ光軸傾斜角駆動機構65は受信部を介して制御装置70と第1の通信ネットワーク501を経由して双方向通信可能に構成されている。制御装置70とデジタル画像処理装置40との間とは第2の通信ネットワーク502を介して双方向通信可能に構成されている。制御装置70はデジタル画像処理装置40から第2の通信ネットワーク502を介して所定の単位映像体80の光強度を取得可能に構成されている。制御装置70の制御部71は傾斜角制御信号を生成可能であり、第1の通信ネットワーク501を介してこれをフィルタ光軸傾斜角駆動機構65へ送信可能に構成されている。光軸方向に対して誘電体薄膜光学フィルタ51の前記傾斜角が前記所定の波長範囲の中心値にフィルター透過率の半値との差異が所定のしきい値内に収まるように傾斜角が構成可能である。このように構成されたマイクロLED発光検査装置500の機能構成図を図16に示す。 Furthermore, in a modified embodiment of the second embodiment, the control unit 71 of the control device 70 of the micro LED emission inspection device 500 causes the filter drive mechanism 60 to filter out wavelengths longer than the center value of a predetermined light transmission wavelength band. It is configured to be able to generate a control signal that instructs selection of a thin film optical filter created as a half-value transmittance. The variable wavelength light source 106 is capable of two-way communication via the variable wavelength mechanism 116, and the filter drive mechanism 60 and filter optical axis tilt angle drive mechanism 65 are capable of bidirectional communication via the receiver and the control device 70 via the first communication network 501. It is configured. Bidirectional communication is possible between the control device 70 and the digital image processing device 40 via a second communication network 502. The control device 70 is configured to be able to obtain the light intensity of a predetermined unit image object 80 from the digital image processing device 40 via the second communication network 502. The control unit 71 of the control device 70 is configured to be able to generate a tilt angle control signal and to transmit this to the filter optical axis tilt angle drive mechanism 65 via the first communication network 501. The tilt angle of the dielectric thin film optical filter 51 with respect to the optical axis direction can be configured such that the difference between the center value of the predetermined wavelength range and the half value of the filter transmittance is within a predetermined threshold value. It is. FIG. 16 shows a functional configuration diagram of the micro LED emission testing device 500 configured in this manner.

誘電体薄膜光学フィルターは、光路に対して角度を傾けることで遮断波長が変化することが知られている。その波長変化は、光路に垂直な状態を0°として、角度が増加すると遮断波長は短くなる方向へ移動する。この性質を利用し、上記構成のマイクロLED発光検査装置500おいて、フィルタ光軸傾斜角駆動機構65によって、膜光学フィルターを傾けると、薄膜光学フィルターの急峻な波長透過特性を利用してフィルターの特性のばらつきを補正するために、フィルターを光路に対して適宜傾けることによってフィルターの半減値を制御し、目的の波長計測範囲の中間に半値設定が可能となり、精度が高く直線性の良い波長計測を可能とする有利な効果が提供される。後に掲げる図27は、フィルタ光軸傾斜角を光軸に直角から20°傾けると半値が右方向へ移動する例を示す。傾き角を直角から20°の間に設定すれば、半値を与える波長も按分されて移動するという傾き角と半値を与える波長は連続的な関係にある。したがって、傾き角を制御すれば、630nmから650nmの範囲でフィルタ半値波長の制御が可能である。 It is known that the cutoff wavelength of a dielectric thin film optical filter changes by tilting the optical path with respect to the optical path. Regarding the wavelength change, the state perpendicular to the optical path is 0°, and as the angle increases, the cutoff wavelength moves in the direction of becoming shorter. Taking advantage of this property, when the film optical filter is tilted by the filter optical axis tilt angle drive mechanism 65 in the micro LED emission inspection apparatus 500 having the above configuration, the steep wavelength transmission characteristic of the thin film optical filter is used to tilt the filter. In order to compensate for variations in characteristics, the half value of the filter can be controlled by tilting the filter appropriately with respect to the optical path, making it possible to set the half value in the middle of the desired wavelength measurement range, allowing wavelength measurement with high accuracy and good linearity. Advantageous effects are provided that allow for. FIG. 27, which will be described later, shows an example in which the half value moves to the right when the filter optical axis inclination angle is tilted by 20 degrees from the right angle to the optical axis. If the tilt angle is set between the right angle and 20 degrees, the wavelength that gives the half value is also moved proportionately; the tilt angle and the wavelength that gives the half value are in a continuous relationship. Therefore, by controlling the tilt angle, it is possible to control the filter half-value wavelength in the range of 630 nm to 650 nm.

図20に示されたマイクロLED発光検査装置500の動作を制御フローのフローチャートS500を構成要素を跨って描かれたフローチャートS500の模式図22を参照しながら説明する。
<光波長の中心波長設定ステップS521>
制御装置70の制御部71の処理の開始とともに、制御は、光波長の中心波長設定ステップ
に渡り、波長可変機構116によって波長可変光源106の光波長の設定値を光波長の中心波長に更新するように通信部74と第1の通信ネットワーク501を介して波長可変機構116へ制御信号を送信可能に、制御部71はモジュール構成されている。送信後、制御はキャリブレーション光源点灯ステップへ移る。
<中心波長光源点灯ステップS522>
マイクロLED発光検査装置500は波長可変光源106が遠隔点灯されるようにモジュール構成されている。中心波長光源点灯点灯ステップが実行されると制御は続いて、制御部71内に構成されているフィルタ移動指示ステップの構成モジュールが起動される。
<第1のフィルタ移動指示ステップS523>
引続き最初のフィルタ移動指示ステップへ制御が渡され、このステップでは光フィルタ50が光路21に存在しないステータスを選択する信号が制御部71によって生成される。さらに伝送路88を介して信号はフィルタ駆動機構60へ送信され、その後制御部71は直ちに最初の撮像の開始指示通知待ちとなるようにモジュール構成され、このまま、当該モジュール処理は直ちに最初の撮像の開始指示通知待ち状態に遷移する。
<第1のフィルタ移動ステップS524>
フィルタ駆動機構60はフィルタ駆動機構60と制御装置70の間の第1の通信ネットワーク501を介して光フィルタ50が光路21に存在しないステータスを選択するための信号を受入れると直ちに、光学フィルタ50を光路21から外す最初のフィルタ移動ステップを実行するように構成されている。
<第1の撮像の開始指示ステップS525>
制御装置70の制御部71は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、直ちに制御部71は第1の撮像の開始指示信号を生成する。最初の撮像の開始指示通知は、例えば、最初のフィルタ移動ステップ終了後にフィルタ駆動機構60がそのステータス信号を送信し、それを制御部71が受信するように構成されてもよいが、その他、所定の時間が経過すれば最初の撮像の開始指示通知を生成するように、制御部71内でタイマーを駆動するように構成されていてもよい。この場合には、所定の時間経過後にタイマーイベントが生成され最初の撮像の開始指示通知が制御部71に通知される。制御部71に制御が戻ると、制御部71は第2の通信ネットワーク502を介してデジタル画像処理装置40へ第1の撮像の開始指示信号を送信した後に、第2のフィルタ移動指示待ちとなるように構成されている。第1の撮像の開始指示ステップを起動するモジュールの実行後、当該モジュールの処理は第2のフィルタ移動指示待ち状態へ遷移する。
<第1の撮像ステップS526>
デジタル画像処理装置は、第2の通信ネットワーク502を介して第1の撮像の開始指示信号を制御部71から受信すると、撮像装置30から映像信号を受け入れ、デジタル画像処理装置40内に格納される画像データフレーム42上のピクセルマップへ各ピクセルで測定された段階的光強度が重畳された光強度ピクセルマップを生成し、これをデジタル画像処理装置内の前記メモリに格納するようにモジュール構成されており、当該モジュールの動作後には、引き続いて単位映像体識別部81の処理に制御が渡る。
<フィルタ無し光強度測定ステップS527>
引き続き、単位映像体識別部81において、光強度ピクセルマップからキャリブレーション光源光をマイクロLEDの発光とみなし、前記キャリブレーション光源光の単位映像体80を所定のクライテリアに基づき特定し、さらにピクセルマップへの単位映像体マッピングデータを生成し、これをデジタル画像処理装置40内のメモリ41に格納するように、デジタル画像処理装置40はモジュール構成されている。単位映像体識別部81のモジュール処理に引き続いて、キャリブレーション光源マッピングをマイクロLEDマッピングとみなし、マイクロLED識別部90において、単位映像体80から前記キャリブレーション光源マッピングとみなされたマイクロLEDをピクセルマップ上にマッピングしマイクロLEDマッピングデータ44を生成し、これをメモリ41に格納するようにデジタル画像処理装置40はモジュール構成されている。続いてマイクロLEDマップ上の光強度マップ上の光強度から所定の光エネルギ強度算出式によってマイクロLEDの光エネルギ強度を決定し、マイクロLEDの発光とみなされたキャリブレーション光源の光学フィルター無の配置における前記光エネルギ強度値をデジタル画像処理装置40内のメモリ41に格納するようにデジタル画像処理装置40はモジュール構成されている。フィルタ無し光強度を測定するモジュールが実行されると、引き続き、制御装置70は、フィルタ無し光強度を測定する処理を実行制御されるように構成されている。
<第2のフィルタ移動指示ステップS528>
第2のフィルタ移動指示待ちとなっていた制御部71は、第2のフィルタ移動指示を受け入れると、当該指示に基づき所定の波長範囲の中心値よりも長い波長をフィルター透過率の半値として作成された薄膜光学フィルターの選択を指示するように薄膜光学フィルタ51を光路21に配設する信号を生成し、第1の通信ネットワーク501を介しフィルタ駆動機構60へ当該信号を送信するようにモジュール構成されている。当該モジュール実行後には、当該モジュールは第2の撮像開始指示待ちとなるようにモジュール構成されており、制御部待ち状態となる。
<第2のフィルタ移動ステップS529>
フィルタ駆動機構60は第1の通信ネットワーク501を介して光学フィルタ50を光路21に配設する信号を制御部71から受入れ、薄膜光学フィルタ51を光路21に配設するようにフィルタ駆動機構60はモジュール構成されている。
<後続の撮像の開始指示ステップS530>
制御部71は、第2のフィルタ移動指示ステップの最終処理である第2の撮像開始指示待ち状態で後続の撮像の開始指示通知を受け入れると後続の撮像の開始指示信号を生成し、第2の通信ネットワーク502を介してデジタル画像処理装置40へ後続の撮像の開始指示信号を送信するようにモジュール構成されている。最初の後続の撮像の開始指示通知について、例えば、第2のフィルタ移動ステップ終了後にフィルタ駆動機構60がそのステータス信号を送信し、それを制御部71が受信するように構成されてもよいし、その他、所定の時間が経過すれば第2番目の撮像の開始指示通知を生成するように、制御部71内でタイマーを駆動するように構成されていてもよく、繰り返し撮像のループに入れば、フィルタ角の変動ステップから撮像の開始指示通知を受け取る。当該モジュールが動作後に、本モジュール処理はアイドルとなり、次の撮像の開始指示通知待ちとなる。
<後続の撮像ステップS531>
デジタル画像処理装置40は、第2の通信ネットワーク502を介して後続の撮像の開始指示信号を受信すると、撮像装置30から映像信号を受け入れ、画像データフレーム42上のピクセルマップへ各ピクセルで測定された段階的光強度が重畳された光強度ピクセルマップを生成し、これをデジタル画像処理装置40内のメモリ41に格納するようにモジュール構成されており、このモジュール動作後には単位映像体識別部81での処理に制御を渡す。
<フィルタ有り光強度の測定ステップS532>
デジタル画像処理装置40内では、これに引き続き、単位映像体識別部81において、光強度ピクセルマップからキャリブレーション光源光をマイクロLEDの発光とみなし、キャリブレーション光源光の単位映像体80を所定のクライテリアに基づき特定し、さらにピクセルマップへの単位映像体マッピングデータを生成し、これをデジタル画像処理装置40内のメモリ41に格納し、さらにマイクロLED識別部90において、単位映像体からキャリブレーション光源マッピングとみなされたマイクロLEDマッピングデータ44を生成し、これをメモリ41に格納するようにデジタル画像処理装置40はモジュール構成されている。このモジュール処理の後に、マイクロLEDマップ上の光強度マップ上の光強度から所定の光エネルギ強度算出式によってマイクロLEDの光エネルギ強度を決定し、マイクロLEDの発光とみなされたキャリブレーション光源の薄膜光学フィルタ51有りの配置における光エネルギ強度値としてデジタル画像処理装置40内のメモリ41に格納するように、デジタル画像処理装置40はモジュール構成されている。当該モジュール処理後に、制御は、デジタル画像処理装置40内でマイクロLED検査部での処理に渡される。
<フィルタ無し光強度とフィルタ有り光強度の比計算ステップS33>
これに引き続き、マイクロLED検査部において、キャリブレーション光源としてのマイクロLEDの光学フィルター有りの配置における光エネルギ強度値をデジタル画像処理装置40内のメモリ41から読み出し、薄膜光学フィルタ51有の配置におけるキャリブレーション光源の前記光エネルギ強度値と、光学フィルター無の配置の光エネルギ強度値とによって、、フィルタ無し光強度とフィルタ有り光強度の比を計算するようにデジタル画像処理装置40はモジュール構成されている。このモジュールが実行されると処理は、発光波長計算ステップへ渡る。
<適正フィルタ角判定ステップ S534>
これに引き続き、マイクロLED検査部100において、光強度の比が所定の判定幅内で0.5の近傍か否かを所定の判定条件によって判定するようにデジタル画像処理装置40はモジュール構成されている。光強度の比が所定の判定幅内で0.5の近傍でないとき、フィルタ角の指示ステップへ制御は分岐する。光強度の比が所定の判定幅内で0.5の近傍であるとき、フィルタ角を記録するステップへ制御は分岐する。
<フィルタ角の指示ステップ S535>
フィルタ角について、所定の変動幅、例えば1°単位に増加させる指示を第2の通信ネットワーク502を介して制御装置70の通信部74を介してフィルタ光軸傾斜角駆動機構65へ通知するようにデジタル画像処理装置40及び制御装置70は構成されている。このモジュールが実行されると処理は、フィルタ角の変動ステップへ渡る。
<フィルタ角の変動ステップ S536>
フィルタ光軸傾斜角駆動機構65のためにフィルタの角の変動ステップを駆動する信号を生成し、前記フィルタ光軸傾斜角駆動機構65を駆動する。角度の変更完了後、後続の撮像の開始指示通知信号を生成し、デジタル画像処理装置40へ送信する。このモジュールが実行されると処理は、デジタル画像処理装置40の後続の撮像ステップへ進む。以後、撮像処理以降が繰り返される。
<フィルタ角を記録するステップ S537>
これに引き続き、マイクロLED検査部100において、フィルタ角を前記メモリ41に格納し、処理は終了する。
以上の構成と処理によって、所望のフィルタ性能を有するための光軸方向に対して薄膜光学フィルタ51の傾斜角が所定の波長範囲の中心値にフィルター透過率の半値との差異が所定のしきい値内に収まる構成となる所望の傾斜角として取得され、保存され、再利用可能となる。フィルタ光軸傾斜角駆動機構65は、例えば、ステップモータによるダイレクト駆動によるマイクロステップ制御構成であってもよいし、減速歯車機構を介してステップモータのステップ制御構成であってもよいが、変動幅は、1°程度の角度分解能で制御されるのが好ましい。
The operation of the micro LED emission testing device 500 shown in FIG. 20 will be described with reference to a schematic diagram 22 of a flowchart S500 of the control flow drawn across the constituent elements.
<Optical wavelength center wavelength setting step S521>
As soon as the process of the control unit 71 of the control device 70 starts, the control proceeds to a step of setting the center wavelength of the light wavelength, in which the wavelength variable mechanism 116 updates the set value of the light wavelength of the wavelength tunable light source 106 to the center wavelength of the light wavelength. The control section 71 is configured as a module so that it can transmit a control signal to the wavelength variable mechanism 116 via the communication section 74 and the first communication network 501. After transmission, control moves to a calibration light source lighting step.
<Center wavelength light source lighting step S522>
The micro LED emission testing device 500 is configured as a module so that the wavelength tunable light source 106 can be turned on remotely. When the center wavelength light source lighting step is executed, the control continues, and the module constituting the filter movement instruction step configured in the control unit 71 is activated.
<First filter movement instruction step S523>
Subsequently, control is passed to the first filter movement instruction step, and in this step, the control unit 71 generates a signal that selects a status in which the optical filter 50 is not present in the optical path 21. Furthermore, the signal is transmitted to the filter drive mechanism 60 via the transmission path 88, and the control unit 71 is configured as a module to immediately wait for notification of an instruction to start the first imaging, and as it is, the module processing immediately starts the first imaging. Transition to the start instruction notification wait state.
<First filter movement step S524>
As soon as the filter drive mechanism 60 receives a signal for selecting a status in which the optical filter 50 is not present in the optical path 21 via the first communication network 501 between the filter drive mechanism 60 and the control device 70, the filter drive mechanism 60 operates the optical filter 50. It is configured to perform an initial filter movement step out of the optical path 21.
<First imaging start instruction step S525>
When the control unit 71 of the control device 70 receives the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit 71 immediately executes the first imaging start instruction notification. Generates an imaging start instruction signal. The first imaging start instruction notification may be configured such that, for example, the filter drive mechanism 60 transmits a status signal after the first filter movement step is completed, and the control unit 71 receives the status signal. The control unit 71 may be configured to drive a timer so as to generate a notification for instructing the start of the first imaging when the time period elapses. In this case, a timer event is generated after a predetermined period of time has elapsed, and the control unit 71 is notified of an instruction to start the first imaging. When control returns to the control unit 71, the control unit 71 transmits a first imaging start instruction signal to the digital image processing device 40 via the second communication network 502, and then waits for a second filter movement instruction. It is configured as follows. After executing the module that starts the first imaging start instruction step, the processing of the module transitions to a state of waiting for a second filter movement instruction.
<First imaging step S526>
When the digital image processing device receives the first imaging start instruction signal from the control unit 71 via the second communication network 502, the digital image processing device accepts the video signal from the imaging device 30 and stores it in the digital image processing device 40. The module is configured to generate a light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on a pixel map on the image data frame 42, and to store this in the memory in the digital image processing device. After the operation of this module, control is subsequently transferred to the processing of the unit image object identification section 81.
<No-filter light intensity measurement step S527>
Subsequently, the unit image object identifying section 81 regards the calibration light source light as light emission from a micro LED from the light intensity pixel map, identifies the unit image object 80 of the calibration light source light based on predetermined criteria, and further converts it into the pixel map. The digital image processing device 40 is configured as a module so as to generate unit image object mapping data of 1 and store it in a memory 41 within the digital image processing device 40. Following the module processing of the unit image object identification section 81, the calibration light source mapping is regarded as micro LED mapping, and the micro LED identification section 90 converts the micro LEDs from the unit image object 80, which are regarded as the calibration light source mapping, into a pixel map. The digital image processing device 40 is configured as a module to generate micro LED mapping data 44 and store it in the memory 41. Next, the light energy intensity of the micro LED is determined from the light intensity on the light intensity map on the micro LED map using a predetermined light energy intensity calculation formula, and the calibration light source that is considered to emit light from the micro LED is arranged without an optical filter. The digital image processing device 40 is configured in a module such that the light energy intensity value at is stored in a memory 41 within the digital image processing device 40. When the module for measuring the unfiltered light intensity is executed, the control device 70 is configured to be subsequently controlled to execute a process for measuring the unfiltered light intensity.
<Second filter movement instruction step S528>
Upon accepting the second filter movement instruction, the control unit 71, which has been waiting for the second filter movement instruction, creates a wavelength longer than the center value of the predetermined wavelength range as half the value of the filter transmittance based on the instruction. The module is configured to generate a signal for arranging the thin film optical filter 51 in the optical path 21 so as to instruct the selection of a thin film optical filter, and to transmit the signal to the filter driving mechanism 60 via the first communication network 501. ing. After the module is executed, the module is configured to wait for the second imaging start instruction, and enters a state of waiting for the control unit.
<Second filter movement step S529>
The filter drive mechanism 60 receives a signal from the control unit 71 to arrange the optical filter 50 on the optical path 21 via the first communication network 501, and the filter drive mechanism 60 receives a signal from the control unit 71 to arrange the thin film optical filter 51 on the optical path 21. It is composed of modules.
<Subsequent imaging start instruction step S530>
When the control unit 71 receives a subsequent imaging start instruction notification while waiting for a second imaging start instruction, which is the final process of the second filter movement instruction step, the control unit 71 generates a subsequent imaging start instruction signal, and generates a second imaging start instruction signal. The module is configured to transmit a subsequent imaging start instruction signal to the digital image processing device 40 via the communication network 502 . Regarding the first subsequent imaging start instruction notification, for example, the filter driving mechanism 60 may be configured to transmit its status signal after the second filter movement step is completed, and the control unit 71 may receive the status signal. In addition, the control unit 71 may be configured to drive a timer so as to generate a second imaging start instruction notification when a predetermined time has elapsed. An imaging start instruction notification is received from the filter angle variation step. After the module operates, the module processing becomes idle and waits for notification of an instruction to start the next imaging.
<Subsequent imaging step S531>
Upon receiving an instruction signal to start a subsequent imaging via the second communication network 502, the digital image processing device 40 accepts the video signal from the imaging device 30 and adds the measured data at each pixel to a pixel map on the image data frame 42. The module is configured to generate a light intensity pixel map on which the graded light intensities are superimposed and store it in the memory 41 in the digital image processing device 40. After operation of this module, the unit image object identification unit 81 Transfer control to processing in .
<Filtered light intensity measurement step S532>
Subsequently, in the digital image processing device 40, a unit image object identification section 81 regards the calibration light source light as light emission from a micro LED from the light intensity pixel map, and selects the unit image object 80 of the calibration light source light according to predetermined criteria. , further generate unit image object mapping data to a pixel map, store this in the memory 41 in the digital image processing device 40, and further perform calibration light source mapping from the unit image object in the micro LED identification section 90. The digital image processing device 40 is configured in a module so as to generate micro LED mapping data 44 that is considered to be 1, and store it in the memory 41. After this module processing, the light energy intensity of the micro LED is determined from the light intensity on the light intensity map on the micro LED map using a predetermined light energy intensity calculation formula, and the thin film of the calibration light source that is considered to be the light emission of the micro LED is determined. The digital image processing device 40 is configured as a module so that the light energy intensity value in the arrangement with the optical filter 51 is stored in the memory 41 within the digital image processing device 40. After processing the module, control is passed within the digital image processing device 40 to processing at the micro LED inspection section.
<Ratio calculation step S33 of light intensity without filter and light intensity with filter>
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED as a calibration light source in the arrangement with the optical filter is read out from the memory 41 in the digital image processing device 40, and the light energy intensity value in the arrangement with the thin film optical filter 51 is read out from the memory 41 in the digital image processing device 40. The digital image processing device 40 is configured as a module to calculate the ratio of the unfiltered light intensity to the filtered light intensity based on the light energy intensity value of the optical filter and the light energy intensity value of the arrangement without the optical filter. There is. When this module is executed, the process proceeds to the emission wavelength calculation step.
<Appropriate filter angle determination step S534>
Subsequently, in the micro LED inspection section 100, the digital image processing device 40 is configured as a module to determine whether the light intensity ratio is close to 0.5 within a predetermined judgment width based on a predetermined judgment condition. There is. When the ratio of light intensities is not in the vicinity of 0.5 within a predetermined judgment range, control branches to a step of specifying a filter angle. When the ratio of light intensities is close to 0.5 within a predetermined decision range, control branches to the step of recording the filter angle.
<Filter angle instruction step S535>
An instruction to increase the filter angle by a predetermined variation range, for example, by 1°, is sent to the filter optical axis tilt angle drive mechanism 65 via the communication unit 74 of the control device 70 via the second communication network 502. A digital image processing device 40 and a control device 70 are configured. Once this module is executed, the process moves to the step of varying the filter angle.
<Filter angle variation step S536>
A signal for driving the filter angle variation step is generated for the filter optical axis tilt angle driving mechanism 65, and the filter optical axis tilt angle driving mechanism 65 is driven. After completing the angle change, a subsequent imaging start instruction notification signal is generated and transmitted to the digital image processing device 40. Once this module is executed, processing proceeds to the subsequent imaging step of the digital image processing device 40. Thereafter, the imaging process and subsequent steps are repeated.
<Step of recording filter angle S537>
Subsequently, the micro LED inspection section 100 stores the filter angle in the memory 41, and the process ends.
With the above configuration and processing, the inclination angle of the thin film optical filter 51 with respect to the optical axis direction in order to have the desired filter performance is set so that the difference between the half value of the filter transmittance and the center value of the predetermined wavelength range is a predetermined threshold. The desired angle of inclination resulting in a configuration that falls within the value is obtained, stored, and can be reused. The filter optical axis inclination angle drive mechanism 65 may have, for example, a microstep control configuration by direct drive by a step motor, or a step control configuration of a step motor via a reduction gear mechanism, but the variation range may be is preferably controlled with an angular resolution of about 1°.

次に、図23は、本発明の第1実施形態に係る発光波長検査装置の変形実施態様である発光波長検査装置600を示す正面概略図である。同図において、発光体である検査対象基板3は、水平可動に構成されたステージ上に搭載されて電源装置10からの電流供給を受け、表面のチップを光らせる。この検査対象基板3の表面の状態は、レンズ20を通してカメラ30にて撮像される。撮像された画像情報は、一体に構成された画像処理及び制御装置47(以下で単に制御装置47という)に入力される。制御装置47は、フィルター駆動装置60を制御している。色フィルター50はフィルターホルダー56に固定され、フィルター駆動装置60はフィルターホルダー56及び色フィルター50を光路21内と光路21外とを移動させる。
図23は、本装置におけるフィルター位置が光路外にあることを示している。
図24は、本装置におけるフィルターが光路に挿入された場合を示している。
図25は、色フィルター50の透過率特性を示す。フィルター50は、波長630ナノメートルを中心に、波長範囲610ナノメートルから650ナノメートルまでを測定できるように設計されている。たとえば、測定対象物をフィルターなしで測定したときの照度測定値を100とし、色フィルター50を挿入したときの照度測定値が74であった場合には、比が0.74となり、図25のフィルター特性から、測定した発光体の波長は620ナノメートルであったと計算された。
Next, FIG. 23 is a schematic front view showing an emission wavelength inspection apparatus 600 which is a modified embodiment of the emission wavelength inspection apparatus according to the first embodiment of the present invention. In the figure, a substrate to be inspected 3, which is a light emitter, is mounted on a horizontally movable stage and receives current from a power supply device 10, causing chips on the surface to shine. The state of the surface of the substrate 3 to be inspected is imaged by a camera 30 through a lens 20. The captured image information is input to an integrated image processing and control device 47 (hereinafter simply referred to as control device 47). The control device 47 controls the filter drive device 60. The color filter 50 is fixed to a filter holder 56, and the filter driving device 60 moves the filter holder 56 and the color filter 50 within and outside the optical path 21.
FIG. 23 shows that the filter position in this device is outside the optical path.
FIG. 24 shows the case where the filter in this device is inserted into the optical path.
FIG. 25 shows the transmittance characteristics of the color filter 50. The filter 50 is designed to be able to measure a wavelength range of 610 nanometers to 650 nanometers, with a wavelength of 630 nanometers as the center. For example, if the illuminance measurement value when measuring the object to be measured without a filter is 100, and the illuminance measurement value when the color filter 50 is inserted is 74, the ratio will be 0.74, and as shown in FIG. From the filter properties, the measured wavelength of the emitter was calculated to be 620 nanometers.

次に、図26は、本発明の第2実施形態の変形実施形態である発光波長検査装置700の正面模式図である。本実施形態で使用する色フィルターは、誘電体薄膜光学フィルター56である。誘電体薄膜光学フィルター56は、フィルタ光軸傾斜角駆動機構65によって、光路21の光軸に対して傾斜角を持たせることができる構成となっている。傾きはマイクロステップ駆動のステップモータMによって制御可能である。ここで、誘電体薄膜光学フィルター56は光路に対して角度を傾けることで遮断波長が変化することが知られている。その波長変化は、光路に垂直な状態を0°として、角度が増加すると遮断波長は短くなる方向へ移動する。図27は光フィルター56の特性を示す。光フィルター56は、透過率が650ナノメートル近辺で半値になるように設計されている。このフィルターは、約20°傾けることによって、630ナノメートルで半値となるショートパス光学フィルターとして使用することができる。もし光フィルター56の特性として、透過率が半値になる波長が正確に650ナノメートルではなく、たとえば660ナノメートル付近であったとしても、傾き角度をさらに増加させることによって、半値の波長を正確に630ナノメートルに調整することができる。また逆に、半値の波長が短く出来上がって640ナノメートル付近になったとしても、傾き角度を少なく調整することによって、同様に630ナノメートルが半値となるフィルターとして使用することができる。以上のように、本実施形態においては、透過率が高く、また透過率の変化が半値付近で急峻である誘電体薄膜光学フィルターを採用することができ、また、製造が難しく半値を正確に制御することができない誘電体薄膜光学フィルターであっても、半値設定の許容幅を大きくすることができるので、フィルター製造が容易に行うことができる。 Next, FIG. 26 is a schematic front view of an emission wavelength testing device 700 that is a modified embodiment of the second embodiment of the present invention. The color filter used in this embodiment is a dielectric thin film optical filter 56. The dielectric thin film optical filter 56 is configured to have an inclination angle with respect to the optical axis of the optical path 21 by a filter optical axis inclination angle drive mechanism 65. The inclination can be controlled by a step motor M driven by microsteps. Here, it is known that the cutoff wavelength of the dielectric thin film optical filter 56 changes by tilting the angle with respect to the optical path. Regarding the wavelength change, the state perpendicular to the optical path is 0°, and as the angle increases, the cutoff wavelength moves in the direction of becoming shorter. FIG. 27 shows the characteristics of the optical filter 56. The optical filter 56 is designed so that the transmittance becomes half value near 650 nanometers. This filter can be used as a short-pass optical filter with a half value at 630 nanometers by tilting it by about 20 degrees. Even if, due to the characteristics of the optical filter 56, the wavelength at which the transmittance reaches half value is not exactly 650 nanometers, but is around 660 nanometers, for example, by further increasing the inclination angle, the wavelength at half value can be set accurately. It can be adjusted to 630 nanometers. Conversely, even if the half-value wavelength is short and becomes around 640 nanometers, by adjusting the inclination angle to a small value, it can be used as a filter whose half-value is 630 nanometers. As described above, in this embodiment, it is possible to employ a dielectric thin film optical filter that has high transmittance and a steep change in transmittance near half value, and is difficult to manufacture and can accurately control half value. Even in the case of a dielectric thin film optical filter that cannot be used, the permissible width of the half-value setting can be increased, so that the filter can be manufactured easily.

図29には、本発明に係るマイクロLED発光検査装置1の変形態様であるマイクロLED発光検査装置800の模式斜視図を示す。マイクロLED発光検査装置800は、波長可変光源106、制御装置70、デジタル画像処理装置40配置に特徴がある。本発明に係るマイクロLED発光検査装置は、デジタル画像処理装置40を要するため、従来の発光検査装置に比して装置の所要延べ床面積が大きくなる。電子機器は冷却の必要のためなるべく熱が籠らない配設が好ましい。マイクロLED発光検査装置800は、上方で光フィルタを高い剛性で左右からピラー支持し、ピラーを跨るビーム艦橋から垂下される回転式の光フィルタホルダー56に支持される4つの選択フィルタのうち、一つが光フィルタ50モードに対応する構成となっているが、ピラー12は花崗岩から成るベース部材14において、中央線から偏りピラー12が2本鉛直方向に向かい配置され、その偏りの反対側側面に沿って、ピラー12を跨るビーム状のブリッジ13と平行にほぼビーム幅と同じ幅長に、大容量の画像データフレームを格納するデジタル画像処理装置40がベース部材14の下方に配設されている。一方、制御装置70は、デジタル画像処理装置40から空隙をおいてベース部材14において中央線からピラー12に偏った側のベース部材14の下方に配設されている。可変波長光源106は、制御装置70とデジタル画像処理装置40に挟まれる位置に、ベース部材14の下方の長手方向側面に面して光を出力する光ファイバを突出させるように配設されている.LED点灯用電源は、可変波長光源106の光ファイバの突出面と反対側のベース部材14下方でない側方コーナーに長手方向をほぼベース部材側面平行に面して配設されている。この構成によって、排熱に配慮しつつ主要部材をベース部材14下方に配設させデジタル画像処理装置40をベース部材14下方に収容し、省スペースを実現する効果を得ている。 FIG. 29 shows a schematic perspective view of a micro LED emission testing device 800, which is a modification of the micro LED emission testing device 1 according to the present invention. The micro LED emission testing device 800 is characterized by the arrangement of the variable wavelength light source 106, the control device 70, and the digital image processing device 40. Since the micro LED luminescence testing device according to the present invention requires the digital image processing device 40, the required total floor area of the device is larger than that of the conventional luminescence testing device. Since electronic equipment requires cooling, it is preferable to arrange it so that it does not trap as much heat as possible. The micro LED emission inspection device 800 supports pillars with high rigidity from the left and right to support optical filters above, and one of four selection filters supported by a rotary optical filter holder 56 suspended from a beam bridge that straddles the pillars. However, the pillars 12 are arranged in a base member 14 made of granite, with two biased pillars 12 facing vertically from the center line, and along the side surface on the opposite side of the bias. A digital image processing device 40 for storing a large capacity image data frame is disposed below the base member 14, parallel to the beam-shaped bridge 13 spanning the pillars 12 and having a width substantially equal to the beam width. On the other hand, the control device 70 is disposed below the base member 14 on the side of the base member 14 that is biased toward the pillar 12 from the center line with a gap from the digital image processing device 40 . The variable wavelength light source 106 is disposed between the control device 70 and the digital image processing device 40 so that an optical fiber that outputs light projects from the lower longitudinal side surface of the base member 14. .. The LED lighting power source is disposed at a side corner of the base member 14 opposite to the protruding surface of the optical fiber of the variable wavelength light source 106 and not below the base member 14 so that its longitudinal direction faces substantially parallel to the side surface of the base member. With this configuration, the main components are disposed below the base member 14 and the digital image processing device 40 is housed below the base member 14 while taking exhaust heat into consideration, thereby achieving the effect of realizing space saving.

さらに、追加のマイクロLED発光検査装置1の変形実施態様では、図7に示されているマイクロLED発光検査装置1の画像処理装置40は通信部(図7には図示されていない)を備え、リモートサーバ97又はUSBメモリ74は、マイクロLED発光検査装置1から製造条件を受信又は格納可能であり、マイクロLED発光検査装置1の画像処理装置40は、製造条件データ出力部をさらに備えるように構成され、マイクロLED半導体サブストレート3の全体映像、1又は複数の単位映像体マッピングデータ46及びこれに対応する光強度特性及び発光波長特性及びこれらの範疇のうち少なくとも一つを含むマイクロLEDマッピングデータ44又はマイクロLEDの光強度特性の少なくともいずれか1つから所定のデータを所定のデータ形式に変換し製造条件データとして生成及び出力可能に構成されている。あるいは、他の変形実施態様では、画像処理装置は、発光波長と光フィルタ有無の場合の光強度比の二次元マップをさらに出力出力可能に構成されている。このように構成されたマイクロLED発光検査装置は、リモートサーバ97から製造プロセス管理サーバへリアルタイムで情報連携可能に構成されるから又はUSBメモリ74は製造プロセス管理サーバへ適時情報連携可能に構成されるから、製造プロセスの異常を早期に認識可能であるという効果を得られる。 Furthermore, in a variant embodiment of the additional micro LED emission testing device 1, the image processing device 40 of the micro LED emission testing device 1 shown in FIG. 7 is provided with a communication unit (not shown in FIG. 7), The remote server 97 or the USB memory 74 can receive or store manufacturing conditions from the micro LED emission testing device 1, and the image processing device 40 of the micro LED emission testing device 1 is configured to further include a manufacturing condition data output unit. Micro LED mapping data 44 that includes an entire image of the micro LED semiconductor substrate 3, one or more unit image object mapping data 46, corresponding light intensity characteristics and emission wavelength characteristics, and at least one of these categories. Alternatively, it is configured to be able to convert predetermined data from at least one of the light intensity characteristics of the micro-LED into a predetermined data format, and generate and output it as manufacturing condition data. Alternatively, in another modified embodiment, the image processing device is configured to be able to further output a two-dimensional map of the light intensity ratio between the emission wavelength and the presence or absence of the optical filter. The micro LED emission inspection device configured in this way is configured to be able to link information in real time from the remote server 97 to the manufacturing process management server, or the USB memory 74 is configured to be able to link information to the manufacturing process management server in a timely manner. As a result, abnormalities in the manufacturing process can be recognized at an early stage.

マイクロLEDディスプレイ製造プロセスの代表的なものは、以下である。
0)製造工程開始
1)ウェハー上にマイクロLEDチップを生成する段階
2)点灯検査で各チップの照度と発光波長の測定をする段階
3)ダイシングと仕分け段階
4)ディスプレイ基板上にチップを搭載する段階
5)ディスプレイ点灯検査段階
6)製造工程終了
図5に示される変形実施態様で、本発明に係るマイクロLED発光検査装置1は、デジタル画像処理装置40は、通信部110を備えるように構成されており、マイクロLED発光検査装置1は、例えば、製造プロセス管理コンピュータ97との通信路を備えるように構成され、及び製造データ入力可能に構成され、製造指示を受入れる製造指示受入れステップを実行するモジュールが構成されている。 又、追加のマイクロLED発光検査装置1の図5に示されているマイクロLED発光検査装置1の画像処理装置40は通信部110及びデータ出力部120を備え、マイクロLED発光検査装置1は、製造プロセス管理コンピュータ(例えば、サーバ200、91がこれらに該当する場合もあるし、図示されないネットワーク接続サーバがこれらに該当する場合もある)への通信路及び製造データ出力部をさらに備えるように構成され、通信路を介して製造プロセス管理コンピュータへキャリブレーションのデータその他の検査進捗データを含む製造プロセスデータを出力する製造データ出力ステップを実行するモジュールが構成されている。これらの構成によって、マイクロLEDへの点灯検査において、適時に製品に求められる検査水準、検査条件を把握できるし、検査に際してフォーカスすべき事項の連携が可能である。例えば、ディスプレイ基板上に必要とされるチップの二次元マップ範疇毎の必要量、過不足状況、製品不具合情報の共有が随時可能となり、場合によっては、製造ばらつき変動因子を迅速に把握して検査水準、二次元マップ範疇の変更もダイナミックに可能となるなど、ディスプレイ製造コスト及び品質作りに貢献するマイクロLED発光検査装置が提供される。
A typical micro LED display manufacturing process is as follows.
0) Start of the manufacturing process 1) Step of producing micro LED chips on the wafer 2) Step of measuring the illuminance and emission wavelength of each chip during lighting inspection 3) Dicing and sorting step 4) Mounting the chips on the display substrate Step 5) Display lighting inspection Step 6) End of manufacturing process In the modified embodiment shown in FIG. The micro LED emission inspection device 1 is configured to include, for example, a communication path with the manufacturing process management computer 97, and is configured to be able to input manufacturing data, and includes a module that executes a manufacturing instruction acceptance step of accepting manufacturing instructions. is configured. Further, the image processing device 40 of the additional micro LED emission inspection apparatus 1 shown in FIG. 5 includes a communication section 110 and a data output section 120, and the micro LED emission inspection apparatus 1 It is further configured to include a communication path to a process management computer (for example, the servers 200 and 91 may correspond to these, or a network connection server not shown may correspond to these) and a manufacturing data output unit. , a module is configured to execute a manufacturing data output step of outputting manufacturing process data including calibration data and other inspection progress data to the manufacturing process management computer via a communication path. With these configurations, it is possible to grasp the inspection level and inspection conditions required for the product in a timely manner during the lighting inspection of the micro LED, and it is possible to coordinate the items to be focused on during the inspection. For example, it is now possible to share information on the required amount of chips required for each two-dimensional map category on display substrates, surplus/deficiency status, and product defects at any time, and in some cases, it is possible to quickly identify and inspect manufacturing variation variables A micro LED emission inspection device is provided that contributes to display manufacturing costs and quality improvement, such as by being able to dynamically change levels and two-dimensional map categories.

さらに、他の態様で本発明は、全自動化された製造プロセスに組み込まれたマイクロLED発光検査方法を提供する。図28に示される方法のフローチャートS1000図を参照しつつ説明する。全自動化された製造プロセスに組み込まれたマイクロLED発光検査方法は、上記実施態様のマイクロLED発光検査装置を用い、以下の段階を含む。
0)検査開始
1)製品情報取得段階S1001
この段階では、アライメントマーク情報を含むサブストーレートのジオメオリ情報、マイクロLEDのジオメトリ情報及びマイクロLEDアレイのジオメトリ情報等製品の共通情報を受け入れ、個々の製造品検査の準備をする段階である。
2)製造管理区域設定段階S1002
この段階では、1又は複数の前記ジオメトリ情報からマイクロLEDが形成された半導体サブストレート上で局所的な製品品質のばらつき及び/又は異常を認識及び管理するための製造管理区域を設定する。製造管理区域は幾何学的なジオメトリーから設定されてもよいし、過去の検査状況から管理すべき区域を設定してもよいし、前製造段階での温度、風向き等の様々な製造情報、製造指示情報から設定されてもよい。
3)検査受け入れ可能通知段階S1003
この段階では、製造ライン制御コンピュータに検査受け入れ可能状態をネットワーク手段を介して製造ライン制御コンピュータに通知する。これによって、全自動化された製造プロセスに組み込み可能とされる。
4)製造情報受け入れ段階S1004
この段階では、製造ライン制御コンピュータからマイクロLEDウェハ製造情報を受信する。製造情報には、サブストレートジオメトリ情報、位置決めのためのマーク(タグ)を含む。
5)サブストレート搭載段階S1005
この段階では、検査ベッド上にサブストレートを搭載し、真空吸引等の手段によって検査ベッドに固定する。サブストレートを搭載するときに、製造ロットや製造を特定する情報を付加して検査ベッド上にサブストレートを搭載する。
6)製造管理区域マッピング段階S1006
この段階では、上記実施態様のマイクロLED発光検査装置に使用方法に加えて、本方法の特徴である、画像処理装置によってサブストレートの全体像を撮像し、前記サブストレートに製造管理区域をマッピングする、追加のマッピングレイヤーを本方法は提供する。マッピングには、製造管理区域区割り情報、サブストレートジオメトリ情報、位置決めのためのマーク(タグ)が利用される。
7)マイクロLEDマッピング段階S1007
この段階では、実施形態1と同様の検査が行われる。画像処理装置によってサブストレート上に配設されたマイクロLEDを画像処理装置内に生成された画像フレーム上にマッピングする。
8)マイクロLED特性測定段階1008
この段階では、実施形態1と同様の検査が行われる。画像処理装置によって、マイクロLEDチップを点灯し発光強度と発光波長を測定する。
9)マイクロLED仕分け段階S1009
この段階では、画像処理装置によって、検査されたマイクロLED特性を元に所定の分類条件によって発光強度と前記発光波長のマトリックスで分類された異常分類を含む範疇情報をマイクロLEDマップ情報に付し全マイクロLEDチップを分類仕分けする
10)製造プロセス状態判定段階S1010
この段階では、画像処理装置によって、検査結果範疇情報の付されたマイクロLEDを製造管理区域マップにオーバーレイし、製造管理区域に紐づけられたマイクロLED製造プロセス状態を認識する。
11)検査結果送信段階S1011
この段階では、画像処理装置によって、前記ネットワーク手段を介して製造ライン制御コンピュータへ検査結果を踏まえた仕分け情報と製造管理区域毎の製造プロセス状態を送信する。
12)検査終了通知段階S1012
この段階では、製造ライン制御コンピュータへ検査終了通知を送信する。
13)検査終了
以上の方法によって、製造条件によって変動するばらつきをより抑え、製造ばらつき変動因子の迅速なフィードバックをタイムリーに製造プロセスへ提供する効果を提供する。
Furthermore, in another aspect, the present invention provides a micro LED emission testing method that is integrated into a fully automated manufacturing process. The method will be described with reference to a flowchart S1000 of the method shown in FIG. A micro LED emission testing method incorporated into a fully automated manufacturing process uses the micro LED emission testing device of the above embodiment and includes the following steps.
0) Start of inspection 1) Product information acquisition stage S1001
At this stage, common product information such as substrate geometry information including alignment mark information, micro LED geometry information, and micro LED array geometry information is accepted, and preparations are made for inspection of each manufactured product.
2) Manufacturing control area setting step S1002
In this step, a manufacturing control area for recognizing and managing local product quality variations and/or abnormalities on the semiconductor substrate on which the micro LEDs are formed is set based on one or more of the geometry information. The manufacturing control area may be set based on geometry, the area to be controlled may be set based on past inspection conditions, or various manufacturing information such as temperature and wind direction at the pre-manufacturing stage, manufacturing It may also be set from instruction information.
3) Test acceptance notification step S1003
At this stage, the production line control computer is notified of the test acceptance status via the network means. This allows for integration into fully automated manufacturing processes.
4) Manufacturing information acceptance step S1004
At this stage, micro LED wafer manufacturing information is received from the manufacturing line control computer. The manufacturing information includes substrate geometry information and marks (tags) for positioning.
5) Substrate loading stage S1005
At this stage, the substrate is mounted on the examination bed and fixed to the examination bed by means such as vacuum suction. When loading the substrate, information identifying the production lot and production is added and the substrate is loaded onto the inspection bed.
6) Manufacturing control area mapping step S1006
At this stage, in addition to the method of using the micro LED emission inspection apparatus of the embodiment described above, the present method is characterized in that the entire image of the substrate is imaged by an image processing device, and a manufacturing control area is mapped on the substrate. , the method provides an additional mapping layer. Mapping uses manufacturing control area division information, substrate geometry information, and positioning marks (tags).
7) Micro LED mapping step S1007
At this stage, the same inspection as in the first embodiment is performed. Micro LEDs disposed on the substrate by an image processing device are mapped onto an image frame generated within the image processing device.
8) Micro LED characteristic measurement step 1008
At this stage, the same inspection as in the first embodiment is performed. An image processing device lights up the micro LED chip and measures the emission intensity and wavelength.
9) Micro LED sorting stage S1009
At this stage, the image processing device attaches category information including abnormality classification classified by a matrix of emission intensity and emission wavelength according to predetermined classification conditions based on the inspected microLED characteristics to the microLED map information. 10) Manufacturing process status determination step S1010 to classify and sort micro LED chips
At this stage, the image processing device overlays the micro-LED with inspection result category information on the manufacturing control area map, and recognizes the micro-LED manufacturing process state linked to the manufacturing control area.
11) Test result sending step S1011
At this stage, the image processing device transmits sorting information based on the inspection results and the manufacturing process status for each manufacturing control area to the manufacturing line control computer via the network means.
12) Inspection completion notification step S1012
At this stage, an inspection completion notification is sent to the production line control computer.
13) Inspection completion The above method provides the effect of further suppressing variations that vary depending on manufacturing conditions and providing prompt feedback of manufacturing variation variation factors to the manufacturing process in a timely manner.

以上、本発明に係る実施の形態を説明したが、本発明は係る実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。本発明が、ここに記載された実施形態に描かれ、実施形態は、かなり詳細に記載されているが、出願人は、この記載によって添付する特許請求の範囲をいかようにも制限、限定する意図はない。追加の利点や修正は、当業者に理解され、一つの実施形態に記載された要素は、他の実施形態にも採用可能である。したがって、発明は、広い面で、特定の詳細事項に限定されず、各々の機器と実施例が示され、記載されている。したがって、出願人の一般的発明概念の精神とスコープから乖離せず、これらの詳細に記載された事項から離れることもあり得る。 Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and can be implemented with various modifications without departing from the spirit of the present invention. Although the invention is illustrated in the embodiments described herein, and the embodiments have been described in considerable detail, Applicants do not intend to limit or limit the scope of the appended claims in any way by this description. There is no intention. Additional advantages and modifications will be apparent to those skilled in the art, and elements described in one embodiment may be employed in other embodiments. Accordingly, the invention in its broadest aspects is not limited to specific details, but with each instrument and embodiment shown and described. Accordingly, departures may be made from these details without departing from the spirit and scope of applicant's general inventive concept.

本発明は、マイクロLEDを用いた表示デバイスの製造過程において、ウェハー上に生成された多数のLEDチップの検査を行うマイクロLED発光検査装置を用いマイクロLEDを製造する半導体製造業に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used in the semiconductor manufacturing industry that manufactures micro LEDs using a micro LED emission inspection apparatus that inspects a large number of LED chips produced on a wafer during the manufacturing process of display devices using micro LEDs. .

1 マイクロLED発光検査装置
2 マイクロLED
3 半導体サブストレート
10 給電機構
15 顕微鏡
18 映像信号線
20 光学レンズ
21 光路
30 撮像装置
31 イメージセンサ
40 デジタル画像処理装置
41 メモリ
42 画像データフレーム
43 ピクセルマップ
44 マイクロLEDマッピング(マイクロLEDマッピングデータ)
45 光強度ピクセルマップ
46 単位映像体マッピング(単位映像体マッピングデータ)
47 機構制御・デジタル画像処理一体型制御装置
50 光学フィルタ
51 薄膜光学フィルタ
56 他の薄膜光学フィルタ
60 フィルタ駆動機構(フィルタ駆動装置)
62 フィルタ駆動機構受信部
65 フィルタ傾斜角変動制御機構
70 制御装置
71 制御部
72 送信部
76 ネットワーク接続ストレージ
80 単位映像体
81 単位映像体識別部
88 制御装置とフィルタ駆動機構間の制御信号線
90 マイクロLED識別部
92 画面表示装置
93 二次元マップ
97 リモート接続サーバ
100 マイクロLED検査部
101 マイクロLED発光検査装置に用いる光学フィルタ検査装置
110 通信部
120 データ出力部
130 マイクロLEDマップ境界判定部
140 データ入力部
500 マイクロLED発光検査装置
600 チップ発光検査装置
700 チップ発光検査装置
A ピッチ
B 単位映像体境界線
M ステップモータ
S0 制御フローチャート
S100 制御フローチャート
S200 制御フローチャート
S300 制御フローチャート
S500 制御フローチャート
S1000 マイクロLED発光検査方法フローチャート
1 Micro LED emission inspection device 2 Micro LED
3 Semiconductor substrate 10 Power feeding mechanism 15 Microscope 18 Video signal line 20 Optical lens 21 Optical path 30 Imaging device 31 Image sensor 40 Digital image processing device 41 Memory 42 Image data frame 43 Pixel map 44 Micro LED mapping (Micro LED mapping data)
45 Light intensity pixel map 46 Unit image object mapping (unit image object mapping data)
47 Mechanism control/digital image processing integrated control device 50 Optical filter 51 Thin film optical filter 56 Other thin film optical filter 60 Filter drive mechanism (filter drive device)
62 Filter drive mechanism receiving section 65 Filter inclination angle variation control mechanism 70 Control device 71 Control section 72 Transmission section 76 Network connection storage 80 Unit video object 81 Unit video object identification section 88 Control signal line between control device and filter drive mechanism 90 Micro LED identification section 92 Screen display device 93 Two-dimensional map 97 Remote connection server 100 Micro LED inspection section 101 Optical filter inspection device 110 used for micro LED emission inspection device Communication section 120 Data output section 130 Micro LED map boundary determination section 140 Data input section 500 Micro LED emission inspection device 600 Chip emission inspection device 700 Chip emission inspection device A Pitch B Unit image object boundary line M Step motor S0 Control flowchart S100 Control flowchart S200 Control flowchart S300 Control flowchart S500 Control flowchart S1000 Micro LED emission inspection method flowchart

Claims (36)

個別に分離されるべき100μm角以下の大きさの矩形領域内を占めるマイクロLEDがアレイ状に配列されて表面に形成された半導体サブストレートが装着可能であり、
前記マイクロLEDの発光のための給電機構と、
前記サブストレートに対向して光学レンズが配設されて前記発光の光強度を測定するためのイメージセンサを有する撮像装置と、
前記撮像装置の映像信号を受け入れるデジタル画像処理装置と、
前記マイクロLEDと前記光学レンズとの光路に配設される、所定の光波長帯域を有する光学フィルタと、
前記光学フィルタを支持し、制御信号の受信部を含むフィルタ駆動機構と、及び、
前記フィルタ駆動機構の制御信号の送信部及び、前記制御信号の生成のため及びシステムフロー開始とフロー制御をするための制御部を含む制御装置と、
を含むマイクロLED発光検査装置であって、
前記光学フィルタは、設計条件に相当する色波長を含む所定の光波長帯域でフィルタ透過光強度が単調増加又は単調減少する光学フィルタであり、かつ
前記制御装置は、前記フィルタ駆動機構によって前記光学フィルタの有無を選択制御可能である制御装置であり、かつ
前記デジタル画像処理装置は前記映像信号を受入れて生成された画像データフレームを格納するためのメモリを備え、
前記画像データフレーム上のピクセル毎の光強度ピクセルマップから所定のクライテリアに基づく前記発光の単位映像体を特定し、前記ピクセルマップへの単位映像体マッピングデータを生成するための単位映像体識別部と、
前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し前記マイクロLEDを前記ピクセルマップ上にマッピングするマイクロLEDマッピングデータを生成するためのマイクロLED識別部と、及び
マイクロLEDマップ上の光強度マップ上の光強度から所定の光エネルギ強度算出式によって前記マイクロLEDの光エネルギ強度を決定し、前記マイクロLEDの光エネルギ強度のうち少なくとも前記光学フィルタ無の配置における前記光エネルギ強度値を前記メモリに格納可能であり、前記光学フィルタ有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルタ無の配置の前記光エネルギ強度値とによって、所定のマイクロLEDの発光波長算出式によって前記マイクロLEDの発光波長を決定するためのマイクロLED検査部とを、含む前記デジタル画像処理装置である、
ことを特徴とするマイクロLED発光検査装置。
A semiconductor substrate formed on the surface of which micro LEDs occupying rectangular areas having a size of 100 μm square or less and are arranged in an array to be individually separated can be attached,
a power supply mechanism for light emission of the micro LED;
an imaging device having an image sensor with an optical lens disposed opposite to the substrate to measure the light intensity of the emitted light;
a digital image processing device that receives a video signal from the imaging device;
an optical filter having a predetermined optical wavelength band and disposed in an optical path between the micro LED and the optical lens;
a filter driving mechanism that supports the optical filter and includes a control signal receiving section, and
a control device including a transmitting section for a control signal of the filter driving mechanism; and a control section for generating the control signal and for starting and controlling the system flow;
A micro LED emission testing device comprising:
The optical filter is an optical filter in which the filter-transmitted light intensity monotonically increases or decreases in a predetermined optical wavelength band including a color wavelength corresponding to a design condition, and the control device controls the optical filter by the filter driving mechanism. a control device capable of selectively controlling the presence or absence of a digital image processing device, and the digital image processing device includes a memory for storing an image data frame generated by accepting the video signal,
a unit image object identification unit for identifying the light emitting unit image object based on predetermined criteria from a light intensity pixel map for each pixel on the image data frame, and generating unit image object mapping data to the pixel map; ,
a micro LED identification unit for generating micro LED mapping data for identifying a plurality of micro LEDs arranged in the array form from the unit video object and mapping the micro LEDs onto the pixel map; The light energy intensity of the micro LED is determined by a predetermined light energy intensity calculation formula from the light intensity on the light intensity map of can be stored in the memory, and the emission wavelength of a predetermined micro LED is calculated based on the light energy intensity value of the micro LED in the arrangement with the optical filter and the light energy intensity value in the arrangement without the optical filter. and a micro-LED inspection unit for determining the emission wavelength of the micro-LED according to a formula,
A micro LED luminescence inspection device characterized by the following.
前記所定のクライテリアは周囲に対しピーク光エネルギ強度値を呈するピクセルを前記単位映像体の中心部と特定し、隣接する前記単位映像体中心部間の中央を前記単位映像体の矩形境界とする請求項1記載のマイクロLED発光検査装置。 The predetermined criteria is that a pixel exhibiting a peak light energy intensity value relative to the surroundings is specified as the center of the unit image object, and a center between adjacent centers of the unit image object is a rectangular boundary of the unit image object. Item 1. Micro LED luminescence inspection device according to item 1. 前記所定のクライテリアは周囲に対しピーク光エネルギ強度値を呈するピクセルを前記単位映像体の中心部と特定し、アレイ状に配列されたマイクロLEDの間隔設計値によって、前記単位映像体の矩形境界を決定する請求項1又は2記載のマイクロLED発光検査装置。 The predetermined criteria specifies a pixel that exhibits a peak light energy intensity value relative to the surroundings as the center of the unit image object, and defines a rectangular boundary of the unit image object based on the design value of the spacing of the micro LEDs arranged in an array. The micro LED luminescence inspection device according to claim 1 or 2, wherein the micro LED luminescence inspection device determines. 前記所定の光エネルギ強度算出式は、前記光強度ピクセルマップ上で前記マイクロLEDに含まれる前記ピクセルの段階的光強度の総和である請求項1記載のマイクロLED発光検査装置。 2. The micro LED light emission inspection device according to claim 1, wherein the predetermined light energy intensity calculation formula is a sum of stepwise light intensities of the pixels included in the micro LEDs on the light intensity pixel map. 前記光学フィルタは既知の光波長の光源によって、フィルタ特性がキャリブレーションされ、前記光学フィルタ無の配置における前記光エネルギ強度値と前記光学フィルタ有の配置における前記光エネルギ強度値との比と前記発光波長との関係に関して前記キ
ャリブレーションをもとに作成されたルックアップテーブルが格納されている請求項1記載のマイクロLED発光検査装置。
The filter characteristics of the optical filter are calibrated by a light source with a known optical wavelength, and the ratio of the light energy intensity value in the arrangement without the optical filter to the light energy intensity value in the arrangement with the optical filter and the light emission are determined. 2. The micro LED emission testing device according to claim 1, wherein a look-up table created based on the calibration regarding the relationship with wavelength is stored.
前記所定の前記マイクロLEDの発光波長算出式は、前記光エネルギ強度比測定値に対応する前記発光波長が前記ルックアップテーブルで参照され、中間値について按分補間を加算して前記発光波長が決定される請求項5記載のマイクロLED発光検査装置。 The formula for calculating the emission wavelength of the predetermined micro LED is such that the emission wavelength corresponding to the light energy intensity ratio measurement value is referred to in the lookup table, and the emission wavelength is determined by adding proportional interpolation for the intermediate value. The micro LED emission testing device according to claim 5. アレイ状に配列されることとなる検査対象のマイクロLEDアレイの設計条件と少なくとも所定の領域でほぼ同一数及び同一配置の反射体がアレイ状に表面に形成されたサブストレートと、
前記反射体の反射光のための光投射機構と、
前記光投射機構への光誘導機構と、
前記光投射光の既知の波長の光源と、
前記サブストレートに対向して光学レンズが配設されて前記マイクロLEDの発光の光強度を測定するためのイメージセンサを有する撮像装置と、
前記撮像装置の映像信号を受け入れるデジタル画像処理装置と、
前記反射体の反射光光路上に前記光学レンズと前記反射体との間に配設される、所定の光波長帯域を有するマイクロLED発光検査装置に用いる光学フィルタと、
前記光学フィルタを支持し、制御信号の受信部を含むフィルタ駆動機構と、及び
前記フィルタ駆動機構の制御信号の送信部及び、前記制御信号の生成のため及びシステムフロー開始とフロー制御をするための制御部を含む制御装置と、
を含むマイクロLED発光検査装置に用いる光学フィルタ検査装置であって、
前記光学フィルタは、設計条件に相当する色波長を含む所定の光波長帯域でフィルタ透過光強度が単調増加又は単調減少する光学フィルタであり、かつ
前記制御装置は、前記フィルタ駆動機構によって前記光学フィルタの有無を選択制御可能である制御装置であり、かつ
前記デジタル画像処理装置は前記映像信号を受入れて生成された画像データフレームを格納するためのメモリを備え、
前記反射体の前記反射光を前記マイクロLEDの前記発光とみなし、前記画像データフレーム上のピクセル毎の光強度ピクセルマップから所定のクライテリアに基づき前記発光の単位映像体を特定し、前記反射光の単位映像体をマイクロLEDの発光による単位映像体とみなし、前記ピクセルマップへの単位映像体マッピングデータを生成するための単位映像体識別部と、
前記単位映像体から複数の前記アレイ状に配列された前記反射体とみなされた前記マイクロLEDを特定し前記マイクロLEDを前記ピクセルマップ上にマッピングするマイクロLEDマッピングデータを生成するためのマイクロLED識別部と、及び
マイクロLEDマップ上の前記光強度マップ上の光強度から所定の光エネルギ強度算出式によって前記マイクロLEDの光エネルギ強度を決定し、前記マイクロLEDの光エネルギ強度のうち少なくとも前記光学フィルタ無の配置における前記光エネルギ強度値を前記メモリに格納可能であり、前記光学フィルタ有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルタ無の配置の前記光エネルギ強度値とによって、所定の前記マイクロLEDの発光波長算出式によって前記反射光の光源とみなされた前記マイクロLEDの発光波長を決定するためのマイクロLED検査部とを、含む前記デジタル画像処理装置である、
ことを特徴とするマイクロLED発光検査装置に用いる光学フィルタ検査装置。
A substrate on which reflectors are formed in an array in substantially the same number and in the same arrangement at least in a predetermined area as the design conditions of the micro LED array to be inspected to be arranged in an array;
a light projection mechanism for the reflected light of the reflector;
a light guiding mechanism to the light projection mechanism;
a light source with a known wavelength of the light projection light;
an imaging device having an image sensor with an optical lens disposed opposite to the substrate to measure the light intensity of the light emitted from the micro LED ;
a digital image processing device that receives a video signal from the imaging device;
an optical filter used in a micro LED emission inspection device having a predetermined light wavelength band, disposed on the optical path of the reflected light of the reflector between the optical lens and the reflector;
a filter drive mechanism that supports the optical filter and includes a control signal receiver; a control signal transmitter of the filter drive mechanism; and a control signal transmitter for generating the control signal and for system flow initiation and flow control. a control device including a control unit;
An optical filter inspection device used for a micro LED emission inspection device comprising:
The optical filter is an optical filter in which the filter-transmitted light intensity monotonically increases or decreases in a predetermined optical wavelength band including a color wavelength corresponding to a design condition, and the control device controls the optical filter by the filter driving mechanism. a control device capable of selectively controlling the presence or absence of a digital image processing device, and the digital image processing device includes a memory for storing an image data frame generated by accepting the video signal,
The reflected light of the reflector is regarded as the light emission of the micro LED, and the unit image body of the light emission is specified based on predetermined criteria from the light intensity pixel map for each pixel on the image data frame, and the unit image of the light emission is a unit image object identification unit that regards the unit image object as a unit image object by light emission from a micro LED and generates unit image object mapping data to the pixel map;
micro-LED identification for generating micro-LED mapping data for identifying the plurality of micro-LEDs that are considered to be the reflectors arranged in the array form from the unit image object and mapping the micro-LEDs on the pixel map; and determining the light energy intensity of the micro LED from the light intensity on the light intensity map on the micro LED map using a predetermined light energy intensity calculation formula, and determining the light energy intensity of the micro LED from the light intensity on the light intensity map, and determining the light energy intensity of the micro LED from the light intensity on the light intensity map, The light energy intensity value of the micro-LED in the arrangement without the optical filter can be stored in the memory, and the light energy intensity value of the micro-LED in the arrangement with the optical filter and the light energy intensity value in the arrangement without the optical filter can be stored in the memory. , a micro-LED inspection unit for determining the emission wavelength of the micro-LED that is regarded as the light source of the reflected light according to a predetermined equation for calculating the emission wavelength of the micro-LED;
An optical filter inspection device used in a micro LED emission inspection device, characterized in that:
前記反射体の反射光のための光投射機構は、前記反射体の反射光光路上に前記光学レンズと前記反射体との間に配設されたハーフミラーを含む請求項7記載の光学フィルタ検査装置。 8. The optical filter inspection according to claim 7, wherein the light projection mechanism for the reflected light of the reflector includes a half mirror disposed between the optical lens and the reflector on the optical path of the reflected light of the reflector. Device. 前記光誘導機構は光ファイバケーブルを含む請求項7又は8記載のマイクロLED発光検査装置に用いる光学フィルタ検査装置。 The optical filter inspection device for use in a micro LED emission inspection device according to claim 7 or 8, wherein the light guide mechanism includes an optical fiber cable. 前記光学フィルタは既知の光波長の光源によって、フィルタ特性がキャリブレーションされ、前記光学フィルタは前記光学フィルタ無の配置における前記光エネルギ強度値と前記光学フィルタ有の配置における前記光エネルギ強度値との比と前記発光波長との関係に関して前記キャリブレーションをもとにされたルックアップテーブルが作成される請求項7又は8記載のマイクロLED発光検査装置に用いる光学フィルタ検査装置。 The filter characteristics of the optical filter are calibrated by a light source with a known optical wavelength, and the optical filter is configured to calibrate the optical energy intensity value between the optical energy intensity value in the arrangement without the optical filter and the optical energy intensity value in the arrangement with the optical filter. 9. The optical filter inspection device for use in a micro LED emission inspection device according to claim 7 or 8, wherein a look-up table is created based on the calibration regarding the relationship between the ratio and the emission wavelength. 前記所定の前記マイクロLEDの発光波長算出式は、前記光学フィルタ無の配置における前記光エネルギ強度値と前記光学フィルタ有の配置における前記光エネルギ強度値との比と前記発光波長との関係を前記キャリブレーションによって作成されたルックアップテーブルを前記デジタル画像処理装置内に含み、前記光エネルギ強度比測定値に対応する前記発光波長が前記ルックアップテーブルが参照され、中間値について按分補間を加算して前記発光波長が決定される請求項10記載のマイクロLED発光検査装置に用いる光学フィルタ検査装置。 The predetermined formula for calculating the emission wavelength of the micro LED is based on the relationship between the light emission wavelength and the ratio of the light energy intensity value in the arrangement without the optical filter to the light energy intensity value in the arrangement with the optical filter. A look-up table created by calibration is included in the digital image processing device, and the look-up table is referenced to determine the emission wavelength corresponding to the light energy intensity ratio measurement value, and proportional interpolation is added for intermediate values. The optical filter inspection device for use in a micro LED emission inspection device according to claim 10, wherein the emission wavelength is determined. 請求項7から11いずれか1項に記載のマイクロLED発光検査装置に用いる光学フィルタ検査装置を含む請求項1から6いずれか1項目に記載のマイクロLED発光検査装置。 The micro LED emission inspection device according to any one of claims 1 to 6, including an optical filter inspection device used in the micro LED emission inspection device according to any one of claims 7 to 11. 前記デジタル画像処理装置は、永続的ストレッジへの接続インターフェースをさらに含み、前記フィルタ特性及び前記ルックアップテーブルはマスターデータとして永続的ストレッジから受入れ可能であり、前記デジタル画像処理装置内の前記メモリに格納される請求項6に記載のマイクロLED発光検査装置。 The digital image processing device further includes a connection interface to persistent storage, the filter characteristics and the lookup table being receivable as master data from the persistent storage and stored in the memory within the digital image processing device. The micro LED emission testing device according to claim 6 . 前記デジタル画像処理装置は、前記撮像装置の光学的視野内に前記フィルタ特性のキャリブレーションのための既知の発光波長の光を参照光として配設可能である請求項6又は12又は13記載のマイクロLED発光検査装置。 14. The microprocessor according to claim 6, wherein the digital image processing device is capable of disposing light of a known emission wavelength for calibrating the filter characteristics within the optical field of the imaging device as a reference light. LED emission inspection equipment. 前記マイクロLED発光検査装置は、前記参照発光体の光強度モニタリングのための光センサをさらに備え、前記画像処理装置は、前記光センサの信号出力を受入れ、前記光センサの光強度モニタ値によって正規化された前記参照発光体の段階的光強度を用い前記キャリブレーションを補正可能に構成された前記画像処理装置である請求項14に記載のマイクロLED発光検査装置。 The micro LED luminescence inspection device further includes a light sensor for monitoring the light intensity of the reference light emitter, and the image processing device receives the signal output of the light sensor and performs normalization according to the light intensity monitor value of the light sensor. 15. The micro LED light emission inspection device according to claim 14, wherein the image processing device is configured to be able to correct the calibration using the stepwise light intensity of the reference light emitter. 前記マイクロLED発光検査装置の前記制御装置は、前記フィルタ駆動機構で生成されるステータス信号の受信部をさらに含み、前記制御装置の前記制御部は前記フィルタ駆動機構に対して前記フィルタ無の選択を指示する制御信号を生成し、これを前記フィルタ駆動機構に送信可能であり、かつ前記制御装置は前記画像処理装置に対して前記光学フィルタ無の配置における前記光エネルギ強度値の測定開始を指示する制御信号を生成し、これを制御信号送信部を介し前記画像処理装置へ送信可能であり、
前記制御装置の前記制御部は、前記ステータス信号を前記フィルタ駆動機構から受信後又は検査開始の指示を受け入れると、引き続いて前記画像処理装置へ前記光学フィルタ無の配置における前記光エネルギ強度値の測定開始を指示する制御信号を生成し、これを制御信号送信部を介し前記画像処理装置へ送信し、前記画像処理装置は、マイクロLEDマッピングデータ上で異常値を示すマイクロLEDをマイクロLED不良品と識別し、マイクロLED製品から除外するための不良品フラグデータを保持するマイクロLED不良品判定部を有する請求項1記載のマイクロLED発光検査装置。
The control device of the micro LED emission inspection device further includes a reception unit for a status signal generated by the filter drive mechanism, and the control unit of the control device instructs the filter drive mechanism to select the filter-free state. The control device is capable of generating a control signal for instructing and transmitting it to the filter drive mechanism, and the control device instructs the image processing device to start measuring the light energy intensity value in the arrangement without the optical filter. It is possible to generate a control signal and transmit it to the image processing device via a control signal transmitter,
After receiving the status signal from the filter drive mechanism or accepting an instruction to start an inspection, the control unit of the control device subsequently causes the image processing device to measure the light energy intensity value in the arrangement without the optical filter. A control signal instructing the start is generated and transmitted to the image processing device via the control signal transmission unit, and the image processing device determines that the micro LED showing an abnormal value on the micro LED mapping data is a defective micro LED. 2. The micro LED light emitting inspection device according to claim 1, further comprising a micro LED defective product determination section that holds defective product flag data for identifying and excluding micro LED products.
前記マイクロLED発光検査装置の前記デジタル画像処理装置は、前記マイクロLEDの配列設計データ入力のための外部接続路及びデータ入力部を含み、前記外部接続路を介して前記データ入力部から前記アレイ状に配列されたマイクロLEDの配列設計データを受入れ、前記デジタル画像処理装置内の前記メモリへ、前記アレイ状に配列されたマイクロLEDの配列設計データが格納され、前記マイクロLED不良品データと前記マイクロLEDの配列設計データとを照合し、正常マイクロLEDの配列の端部を認識しこれをもって前記マイクロLEDマップを更新するマイクロLEDマップ境界判定部を含む請求項16記載のマイクロLED発光検査装置。 The digital image processing device of the micro LED emission inspection device includes an external connection path and a data input section for inputting array design data of the micro LEDs, and the data input section is configured to input the array design data from the data input section via the external connection path. The array design data of the micro LEDs arranged in the array is accepted, and the array design data of the micro LEDs arranged in the array is stored in the memory in the digital image processing device. 17. The micro LED light emission inspection apparatus according to claim 16, further comprising a micro LED map boundary determination section that checks the LED array design data, recognizes the end of the array of normal micro LEDs, and updates the micro LED map based on this. 所定の光エネルギ強度特性及び所定の前記発光波長特性によって定められた所定の範疇に前記マイクロLEDを割り当てることを特徴とする請求項1記載のマイクロLED発光検査装置。 2. The micro LED emission testing device according to claim 1, wherein the micro LED is assigned to a predetermined category defined by a predetermined light energy intensity characteristic and a predetermined emission wavelength characteristic. 請求項1記載の前記マイクロLED発光検査装置は前記光路の光軸に対する前記光学フィルタの傾斜を制御するための傾斜角制御信号の受信部を含むフィルタ光軸傾斜角駆動機構をさらに備え、前記所定の光波長帯域を有する光学フィルタは、所定の波長範囲の中心値よりも長い波長をフィルタ透過率の半値として作成された誘電体薄膜光学フィルタを用い、前記光軸方向に対して前記光学フィルタの前記傾斜角を前記所定の波長範囲の中心値にフィルタ透過率の半値を調整可能と構成されることを特徴とする請求項1記載のマイクロLED発光検査装置。 The micro LED emission inspection device according to claim 1 further comprises a filter optical axis tilt angle drive mechanism including a receiver for a tilt angle control signal for controlling the tilt of the optical filter with respect to the optical axis of the optical path, and An optical filter having a light wavelength band of 2. The micro LED emission testing device according to claim 1, wherein the inclination angle can be adjusted to a half value of the filter transmittance to a central value of the predetermined wavelength range. 請求項1記載の前記マイクロLED発光検査装置の前記制御装置の前記制御部は前記フィルタ駆動機構に対して所定の波長範囲の中心値よりも長い波長をフィルタ透過率の半値として作成された薄膜光学フィルタの選択を指示する制御信号を生成し、前記フィルタ駆動機構及び前記フィルタ光軸傾斜角駆動機構と前記制御装置とは第1の通信ネットワークを介して双方向通信可能に構成され、
前記制御装置と前記画像処理装置との間とは第2の通信ネットワークを介して双方向通信可能に構成され、
前記制御装置は前記画像処理装置から第2の通信ネットワークを介して所定の前記単位映像体の前記光強度を取得可能に構成され、かつ前記制御装置の制御部は前記傾斜角制御信号を生成可能であり前記第1の通信ネットワークを介してこれを前記フィルタ光軸傾斜角駆動機構へ送信可能に構成されており、前記光軸方向に対して前記光学フィルタの前記傾斜角が前記所定の波長範囲の中心値にフィルタ透過率の半値との差異が所定のしきい値内に収まるように前記傾斜角が構成されることを特徴とする請求項19に記載のマイクロLED発光検査装置。
The control unit of the control device of the micro LED emission testing device according to claim 1 is configured to provide a thin film optical system for the filter drive mechanism, which is created by setting a wavelength longer than the center value of a predetermined wavelength range to half the value of the filter transmittance. generates a control signal instructing filter selection, and the filter drive mechanism, the filter optical axis inclination angle drive mechanism, and the control device are configured to be able to communicate bidirectionally via a first communication network;
Bidirectional communication is possible between the control device and the image processing device via a second communication network,
The control device is configured to be able to obtain the light intensity of the predetermined unit image object from the image processing device via a second communication network, and the control unit of the control device is capable of generating the tilt angle control signal. and is configured to be able to transmit this to the filter optical axis inclination angle driving mechanism via the first communication network, and the inclination angle of the optical filter with respect to the optical axis direction is within the predetermined wavelength range. 20. The micro LED emission inspection apparatus according to claim 19, wherein the inclination angle is configured such that a difference between a center value of and a half value of the filter transmittance falls within a predetermined threshold value.
前記光強度ピクセルマップは、隣接するピクセル間は移動平均によって前記ピクセルの段階的光強度の平滑処理がなされる請求項1に記載のマイクロLED発光検査装置。 2. The micro LED emission inspection device according to claim 1, wherein the light intensity pixel map is subjected to stepwise smoothing processing of the light intensity of the pixels by a moving average between adjacent pixels. 前記マイクロLED上に重畳された前記マイクロLEDの発光波長は、隣接するマイクロLED間について移動平均によって前記光波長の平滑処理がなされる請求項1に記載のマイクロLED発光検査装置。 2. The micro LED light emission inspection device according to claim 1, wherein the light emission wavelength of the micro LED superimposed on the micro LED is smoothed by a moving average between adjacent micro LEDs. 請求項1記載の前記マイクロLED発光検査装置は前記光路の光軸に対する前記イメージセンサ傾斜角を制御するためのイメージセンサ傾斜角制御信号の受信部を含むイメージセンサ傾斜角駆動機構及び合焦のためのアクチュエータを前記撮像部はさらに備え、かつ前記制御装置と前記画像処理装置とは各々の通信部を介して通信可能に構成され、かつ前記制御装置の制御部は前記イメージセンサ傾斜角制御信号を生成可能であり前記通信部を介してこれを前記イメージセンサ傾斜角駆動機構へ送信可能に構成されており、
前記制御装置は前記通信部を介して前記画像処理装置から取得された前記光強度ピクセルマップにおいて、所定のコントラストで前記光強度ピクセルマップの光強度を調整し、調整後の段階的光強度によって合焦するように前記イメージセンサ光軸傾斜角駆動機構及び前記アクチュエータを駆動することを特徴とする請求項1記載のマイクロLED発光検査装置。
The micro LED emission testing device according to claim 1 includes an image sensor tilt angle drive mechanism including a receiver for an image sensor tilt angle control signal for controlling the image sensor tilt angle with respect to the optical axis of the optical path, and for focusing. The imaging unit further includes an actuator, and the control device and the image processing device are configured to be able to communicate via respective communication units, and the control unit of the control device receives the image sensor tilt angle control signal. is configured to be able to generate and transmit this to the image sensor tilt angle drive mechanism via the communication unit,
The control device adjusts the light intensity of the light intensity pixel map at a predetermined contrast in the light intensity pixel map acquired from the image processing device via the communication unit, and combines the light intensity according to the adjusted stepwise light intensity. 2. The micro LED light emission inspection apparatus according to claim 1, wherein the image sensor optical axis tilt angle drive mechanism and the actuator are driven to focus the image sensor.
前記画像処理装置は、映像表示装置をさらに備え、複数のマイクロLEDの前記光強度特性と前記発光波長の二次元マップを生成し、前記映像表示装置に表示することを特徴とする請求項1に記載のマイクロLED発光検査装置。 2. The image processing device further includes a video display device, and generates a two-dimensional map of the light intensity characteristics and the emission wavelengths of the plurality of micro LEDs, and displays the map on the video display device. The micro LED luminescence inspection device described above. 請求項1記載の前記マイクロLED発光検査装置は、さらに、前記制御部は、当該マイクロLED発光検査装置の制御のためのCPU及びメモリを備え、かつ前記フィルタ駆動機構と前記制御装置との間は伝送路を介して通信可能と構成され、かつ前記制御装置と前記画像処理装置との間は通信路を介して双方向通信可能と構成され、
前記制御部の処理の開始とともに前記給電機構によってマイクロLEDを点灯するマイクロLED点灯ステップと、及び
引続き前記光フィルタが前記光路に存在しないステータスを選択する信号を前記制御部が生成し、さらに前記伝送路を介して前記信号を前記フィルタ駆動機構へ送信した後に、前記制御部は直ちに最初の撮像の開始指示通知待ちとなる最初のフィルタ移動指示ステップと、を実行するモジュールを前記制御部は含み、
前記フィルタ駆動機構は前記フィルタ駆動機構と前記制御装置の間の伝送路を介して前記光フィルタが前記光路に存在しないステータスを選択する信号を受入れ、前記光学フィルタを光路から外す最初のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構は含み、
前記制御部は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、前記制御部は前記第1の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記発光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにマイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し対応する前記マイクロLEDを前記ピクセルマップ上にマッピングし前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルタ無の配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリに格納するフィルタ無し光強度を測定するステップと、を実行するモジュールを前記画像処理装置は含み、
前記第2のフィルタ移動指示待ちとなっている前記制御部は、第2のフィルタ移動指示を受け入れると、当該指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ当該信号を送信し、後に第2の撮像開始指示待ちとなる第2のフィルタ移動指示ステップを実行するモジュールを前記制御部はさらに含み、前記フィルタ駆動機構は前記伝送路を介して前記光学フィルタを光路に配設する信号を前記制御部から受入れ、前記光学フィルタを光路に配設する第2のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構はさらに含み、
前記制御部は、前記第2のフィルタ移動指示ステップの最終処理である第2の撮像開始指示待ちで前記第2の撮像の開始指示通知を受け入れると、前記第2の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第2の撮像の開始指示信号を送信する、第2の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、前記画像処理装置は、前記通信路を介して前記第2の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第2の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記発光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにマイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し対応する前記マイクロLEDを前記ピクセルマップ上にマッピングし前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルタ有りの配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記マイクロLEDの前記光学フィルタ有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルタ無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルタ有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルタ無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
これに引き続き、前記マイクロLED検査部において、所定の前記マイクロLEDの発光波長算出式によって前記マイクロLEDの発光波長を決定する発光波長計算ステップと、
及び
前記マイクロLED検査データ出力のための外部接続路及びデータ出力部を含み、前記発光波長データを前記デジタル画像処理装置内の前記メモリを介して、前記データ出力部から外部接続路に出力するマイクロLED発光波長データ出力ステップと、を実行するモジュールを前記画像処理装置はさらに含む請求項1に記載のマイクロLED発光検査装置。
The micro LED emission testing device according to claim 1, further includes a CPU and a memory for controlling the micro LED emission testing device, and a distance between the filter drive mechanism and the control device. configured to be able to communicate via a transmission path, and configured to be able to communicate bidirectionally between the control device and the image processing device via the communication path;
a micro-LED lighting step of lighting the micro-LED by the power supply mechanism at the start of the processing of the control section, and subsequently, the control section generates a signal to select a status in which the optical filter is not present in the optical path, and further the transmission The control unit includes a module that executes an initial filter movement instruction step in which the control unit immediately waits for notification of a first imaging start instruction after transmitting the signal to the filter drive mechanism via a path,
The filter driving mechanism receives a signal for selecting a status in which the optical filter is not present in the optical path via a transmission path between the filter driving mechanism and the control device, and a first filter movement step of removing the optical filter from the optical path is performed. The filter drive mechanism includes a module that performs
When the control unit accepts the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit executes the first imaging start instruction. After generating a signal and transmitting the first imaging start instruction signal to the image processing device via the communication path, immediately execute a first imaging start instruction step of waiting for a second filter movement instruction. The control unit further includes a module that
When the image processing device receives the first imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and receives the video signal on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the pixel map, and storing this in the memory in the image processing device;
Subsequently, the unit image object identifying section identifies the light emitting unit image object from the light intensity pixel map based on the predetermined criteria, further generates unit image object mapping data to the pixel map, and is stored in the memory in the image processing device, and a micro-LED identification section identifies a plurality of micro-LEDs arranged in the array from the unit image object and places the corresponding micro-LEDs on the pixel map. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. determining an intensity and storing the light energy intensity value for the optically filterless arrangement of the micro-LEDs in the memory in the image processing device; processing equipment includes;
When the control unit, which is waiting for the second filter movement instruction, receives the second filter movement instruction, it generates a signal for arranging the optical filter on the optical path based on the instruction, and moves the optical filter through the transmission path. The control unit further includes a module that transmits the signal to the filter drive mechanism and executes a second filter movement instruction step that will later wait for a second imaging start instruction, and the filter drive mechanism transmits the signal to the filter drive mechanism via the transmission path. The filter drive mechanism further includes a module that receives a signal from the control unit to arrange the optical filter in the optical path, and executes a second filter movement step to arrange the optical filter in the optical path,
When the control unit receives the second imaging start instruction notification while waiting for the second imaging start instruction, which is the final process of the second filter movement instruction step, the control unit generates the second imaging start instruction signal. The control unit further includes a module that executes a second imaging start instruction step of transmitting a second imaging start instruction signal to the image processing apparatus via the communication path, receives the second imaging start instruction signal via the communication path, accepts the video signal from the imaging device, and inputs the graded light intensity measured at each pixel into a pixel map on the image data frame. a second imaging step of generating the light intensity pixel map on which is superimposed and storing it in the memory in the image processing device;
Subsequently, the unit image object identifying section identifies the light emitting unit image object from the light intensity pixel map based on the predetermined criteria, further generates unit image object mapping data to the pixel map, and is stored in the memory in the image processing device, and a micro-LED identification section identifies a plurality of micro-LEDs arranged in the array from the unit image object and places the corresponding micro-LEDs on the pixel map. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. determining the intensity and measuring the filtered light intensity to be stored in the memory in the image processing device as the light energy intensity value in the optically filtered arrangement of the micro LED;
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device. The light energy intensity value of the micro LED in the arrangement is read from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter and the light energy intensity value of the micro LED in the arrangement without the optical filter are determined. calculating the ratio of the unfiltered light intensity to the filtered light intensity by;
Subsequently, in the micro LED inspection section, a light emission wavelength calculation step of determining the light emission wavelength of the micro LED using a predetermined light emission wavelength calculation formula of the micro LED;
and a micro LED including an external connection path and a data output section for outputting the micro LED inspection data, and outputs the emission wavelength data from the data output section to the external connection path via the memory in the digital image processing device. The micro LED emission inspection apparatus according to claim 1, wherein the image processing apparatus further includes a module that executes the step of outputting LED emission wavelength data.
前記マイクロLED発光検査装置の光源は、前記光源の光波長の可変機構を備える既知の光波長の波長光源であり、前記マイクロLED発光検査装置は、さらに前記制御部に当該マイクロLED発光検査装置の制御のためのCPU及びメモリを備え、かつ前記フィルタ駆動機構と前記制御装置との間で伝送路を介して通信可能と構成され、かつ前記制御装置と前記画像処理装置との間で通信路を介して双方向通信可能と構成され、かつ
前記制御部が処理の開始とともに前記可変機構によって前記光源の光波長の設定値を初期値に更新する、光波長初期化ステップと、
前記可変機構によって前記光源の光波長を更新し、前記給電機構によって更新後の前記既知の光波長の波長光源を点灯するキャリブレーション光源点灯ステップと、及び
引続き前記光フィルタが前記光路に存在しないステータスを選択する信号を前記制御部が生成し、さらに前記伝送路を介して前記信号を前記フィルタ駆動機構へ送信した後に、前記制御部は直ちに最初の撮像の開始指示通知待ちとなる最初のフィルタ移動指示ステップと、を実行するモジュールを前記制御部は含み、
前記フィルタ駆動機構は前記フィルタ駆動機構と前記制御装置の間の伝送路を介して前記光フィルタが前記光路に存在しないステータスを選択する信号を受入れ、前記光学フィルタを光路から外す最初のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構は含み、
前記制御部は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、前記制御部は前記第1の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記キャリブレーション光源光をマイクロLEDの発光とみなし、前記キャリブレーション光源光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにキャリブレーション光源マッピングを前記マイクロLEDマッピングとみなし、前記マイクロLED識別部において、前記単位映像体から前記キャリブレーション光源マッピングとみなされた前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの発光とみなされたキャリブレーション光源の前記光学フィルタ無の配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタなし光強度を測定するステップと、を実行するモジュールを前記画像処理装置は含み、
前記第2のフィルタ移動指示待ちとなっている前記制御部は、第2のフィルタ移動指示を受け入れると、当該指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ当該信号を送信し、後に第2の撮像開始指示待ちとなる第2のフィルタ移動指示ステップを実行するモジュールを前記制御部はさらに含み、
これに引き続き、第2の撮像の開始指示通知待ちとなっている前記制御部は、第2の撮像の開始指示を受け入れると、前記開始指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ送信し、後に他の処理待ちとなる第2のフィルタ移動指示ステップと、
前記フィルタ駆動機構は前記伝送路を介して前記光学フィルタを光路に配設する信号を前記制御部から受入れ、前記光学フィルタを光路に配設する第2のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構はさらに含み、
前記制御部は、前記第2のフィルタ移動指示ステップの最終処理である第2の撮像開始指示待ちで前記第2の撮像の開始指示通知を受け入れると、前記第2の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第2の撮像の開始指示信号を送信する、第2の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第2の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第2の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記キャリブレーション光源光をマイクロLEDの発光とみなし、前記キャリブレーション光源光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに、前記マイクロLED識別部において、前記単位映像体から前記キャリブレーション光源マッピングとみなされた前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの発光とみなされたキャリブレーション光源の前記光学フィルタ有りの配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記キャリブレーション光源としての前記マイクロLEDの前記光学フィルタ有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルタ無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルタ有の配置における前記キャリブレーション光源の前記光エネルギ強度値と、前記光学フィルタ無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
引き続き、前記マイクロLED検査部において、前記既知の光源波長と前記光強度の比を前記メモリに格納するステップと、
前記光源の光波長の設定値を所定の増分値で更新する光源波長更新ステップと、
前記更新後の前記光源の光波長が所定の境界値を超えるか否かをチェックし、NOの場合には、キャリブレーション光源点灯ステップへ戻り、YESの場合には、ルックアップテーブル作成ステップへ進む、繰り返し判定ステップと、及び、
前記繰り返しで前記メモリに格納された複数の前記波長と前記光強度の比の組からルックアップテーブルを作成し、これを前記メモリに格納するルックアップテーブル作成ステップと、を実行するモジュールを含む請求項5又は6に記載のマイクロLED発光検査装置。
The light source of the micro LED luminescence testing device is a wavelength light source of a known light wavelength that is equipped with a mechanism for changing the light wavelength of the light source, and the micro LED luminescence testing device further has the control unit control the micro LED luminescence testing device. The filter drive mechanism includes a CPU and a memory for control, and is configured to be able to communicate between the filter drive mechanism and the control device via a transmission path, and a communication path is provided between the control device and the image processing device. an optical wavelength initialization step, in which the control unit is configured to enable bidirectional communication via the light source, and the control unit updates a set value of the optical wavelength of the light source to an initial value by the variable mechanism at the start of processing;
a calibration light source lighting step of updating the light wavelength of the light source by the variable mechanism and lighting the wavelength light source of the updated known light wavelength by the power feeding mechanism; and a subsequent status in which the optical filter is not present in the optical path. After the control unit generates a signal for selecting the first filter and further transmits the signal to the filter drive mechanism via the transmission path, the control unit immediately waits for notification of an instruction to start the first imaging. The control unit includes a module that executes the instruction step;
The filter driving mechanism receives a signal for selecting a status in which the optical filter is not present in the optical path via a transmission path between the filter driving mechanism and the control device, and a first filter movement step of removing the optical filter from the optical path is performed. The filter drive mechanism includes a module that performs
When the control unit accepts the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit executes the first imaging start instruction. After generating a signal and transmitting the first imaging start instruction signal to the image processing device via the communication path, immediately execute a first imaging start instruction step of waiting for a second filter movement instruction. The control unit further includes a module for
When the image processing device receives the first imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and receives the video signal on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the pixel map, and storing this in the memory in the image processing device;
Subsequently, in the unit image object identification section, the calibration light source light is regarded as light emission from a micro LED from the light intensity pixel map, and the unit image object of the calibration light source light is identified based on the predetermined criteria; Further, unit image object mapping data to the pixel map is generated and stored in the memory in the image processing device, furthermore, the calibration light source mapping is regarded as the micro LED mapping, and the micro LED identification unit generates the The micro LED mapping data, which is regarded as the calibration light source mapping, is generated from the unit image object, and stored in the memory, and the predetermined light energy is calculated from the light intensity on the light intensity map on the micro LED map. The light energy intensity of the micro LED is determined by an intensity calculation formula, and the light energy intensity value in the arrangement without the optical filter of the calibration light source, which is considered to be light emission from the micro LED, is stored in the memory in the image processing device. The image processing device includes a module that performs the steps of: measuring unfiltered light intensity stored in the image processing apparatus;
When the control unit, which is waiting for the second filter movement instruction, receives the second filter movement instruction, it generates a signal for arranging the optical filter on the optical path based on the instruction, and moves the optical filter through the transmission path. The control unit further includes a module that transmits the signal to the filter drive mechanism and executes a second filter movement instruction step that will later wait for a second imaging start instruction,
Subsequently, upon receiving the second imaging start instruction, the control unit, which is waiting for notification of a second imaging start instruction, generates a signal for arranging the optical filter in the optical path based on the start instruction. a second filter movement instruction step, which is transmitted to the filter drive mechanism via the transmission path and is later placed on standby for other processing;
The filter drive mechanism receives a signal from the control unit to arrange the optical filter in the optical path via the transmission path, and moves the module to execute a second filter movement step to arrange the optical filter in the optical path. The drive mechanism further includes;
When the control unit receives the second imaging start instruction notification while waiting for the second imaging start instruction, which is the final process of the second filter movement instruction step, the control unit generates the second imaging start instruction signal. The control unit further includes a module that executes a second imaging start instruction step of transmitting a second imaging start instruction signal to the image processing device via the communication path,
When the image processing device receives the second imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and inputs the image data measured at each pixel into a pixel map on the image data frame. a second imaging step of generating the light intensity pixel map on which graded light intensities are superimposed and storing it in the memory in the image processing device;
Subsequently, in the unit image object identification section, the calibration light source light is regarded as light emission from a micro LED from the light intensity pixel map, and the unit image object of the calibration light source light is identified based on the predetermined criteria; Further, unit image object mapping data to the pixel map is generated and stored in the memory in the image processing device, and further, in the micro LED identification section, the unit image object is regarded as the calibration light source mapping data. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. determining the intensity and measuring the filtered light intensity to be stored in the memory in the image processing device as the light energy intensity value in the optical filtered arrangement of the calibration light source that is considered to be the light emission of the micro LED; and,
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED as the calibration light source in the arrangement with the optical filter is read out from the memory in the image processing device, and the light energy intensity value corresponding to the micro LED is read out from the memory in the image processing device. The light energy intensity value in the arrangement without the optical filter is read from the memory in the image processing device, and the light energy intensity value of the calibration light source in the arrangement with the optical filter and the arrangement without the optical filter are read out from the memory in the image processing device. calculating a ratio of unfiltered light intensity to filtered light intensity according to the light energy intensity value of
Subsequently, in the micro LED inspection section, storing the ratio of the known light source wavelength and the light intensity in the memory;
a light source wavelength updating step of updating a set value of the light wavelength of the light source by a predetermined increment value;
Check whether the light wavelength of the light source after the update exceeds a predetermined boundary value, and if NO, return to the calibration light source lighting step; if YES, proceed to the lookup table creation step. , an iterative determination step, and
A look-up table creation step of creating a look-up table from a plurality of sets of ratios of the wavelength and the light intensity stored in the memory in the repetition, and storing the look-up table in the memory. Item 6. Micro LED luminescence inspection device according to item 5 or 6.
マイクロLED発光検査装置に用いる光学フィルタのための光学フィルタ検査装置は、さらに前記制御部に当該光学フィルタ検査装置の制御のためのCPU及びメモリを備え、かつ前記フィルタ駆動機構と前記制御装置との間で伝送路を介して通信可能と構成され、かつ前記制御装置と前記画像処理装置との間で通信路を介して双方向通信可能と構成され、かつ
前記制御部が処理の開始とともに前記光源の光波長の可変機構によって前記光源の光波長の設定値を初期値に更新する、光波長初期化ステップと、
前記可変機構によって前記光源の光波長を更新し、前記マイクロLEDの発光のための給電機構によって更新後の前記既知の光波長の波長光源を点灯するキャリブレーション光源点灯ステップと、及び
引続き前記光フィルタが前記光路に存在しないステータスを選択する信号を前記制御部が生成し、さらに前記伝送路を介して前記信号を前記フィルタ駆動機構へ送信した後に、前記制御部は直ちに最初の撮像の開始指示通知待ちとなる最初のフィルタ移動指示ステップと、を実行するモジュールを前記制御部は含み、
前記フィルタ駆動機構は前記フィルタ駆動機構と前記制御装置の間の伝送路を介して前記光フィルタが前記光路に存在しないステータスを選択する信号を受入れ、前記光学フィルタを光路から外す最初のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構は含み、
前記制御部は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、前記制御部は前記第1の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記キャリブレーション光源の反射光をマイクロLEDの発光とみなし、前記反射光の単位映像体(反射光体という、本段落で以下同様)を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに反射光体マッピングを前記マイクロLEDマッピングとみなし、前記マイクロLED識別部において、前記単位映像体から前記反射光体マッピングとみなされた前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの発光とみなされた反射光の前記光学フィルタ無の配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ無し光強度を測定するステップと、を実行するモジュールを前記画像処理装置は含み、
前記第2のフィルタ移動指示待ちとなっている前記制御部は、第2のフィルタ移動指示を受け入れると、当該指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ当該信号を送信し、後に第2の撮像開始指示待ちとなる第2のフィルタ移動指示ステップを実行するモジュールを前記制御部はさらに含み、これに引き続き、第2の撮像の開始指示通知待ちとなっている前記制御部は、第2の撮像の開始指示を受け入れると、前記開始指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ送信し、後に他の処理待ちとなる第2のフィルタ移動指示ステップと、
前記フィルタ駆動機構は前記伝送路を介して前記光学フィルタを光路に配設する信号を前記制御部から受入れ、前記光学フィルタを光路に配設する第2のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構はさらに含み、
前記画像処理装置は、前記通信路を介して前記第2の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第2の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記キャリブレーション光源の反射光をマイクロLEDの発光とみなし、前記反射光の単位映像体(反射光体という、本段落で以下同様)を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに反射光体マッピングを前記マイクロLEDマッピングとみなし、前記マイクロLED識別部において、前記単位映像体から前記反射光体マッピングとみなされた前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの発光とみなされた反射光の前記光学フィルタ有りの配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記キャリブレーション光源の反射光としての前記マイクロLEDの前記光学フィルタ有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルタ無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルタ有の配置における前記キャリブレーション光源の前記光エネルギ強度値と、前記光学フィルタ無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
引き続き、前記マイクロLED検査部において、前記既知の光源波長と前記光強度の比を前記メモリに格納するステップと、
前記光源の光波長の設定値を所定の増分値で更新する光源波長更新ステップと、
前記更新後の前記光源の光波長が所定の境界値を超えるか否かをチェックし、NOの場合には、キャリブレーション光源点灯ステップへ戻り、YESの場合には、ルックアップテーブル作成ステップへ進む、繰り返し判定ステップと、及び、
前記繰り返しで前記メモリに格納された複数の前記波長と前記光強度の比の組からルックアップテーブルを作成し、これを前記メモリに格納するルックアップテーブル作成ステップと、を実行するモジュールを含む請求項10又は11に記載の光学フィルタ検査装置。
An optical filter inspection device for an optical filter used in a micro LED emission inspection device further includes a CPU and a memory for controlling the optical filter inspection device in the control section, and a connection between the filter drive mechanism and the control device. The control device and the image processing device are configured to be able to communicate with each other via a transmission path, and the control device and the image processing device are configured to be able to communicate bidirectionally via a communication path, and the control unit controls the light source at the start of processing. an optical wavelength initialization step of updating a set value of the optical wavelength of the light source to an initial value using the optical wavelength variable mechanism;
a calibration light source lighting step of updating the light wavelength of the light source by the variable mechanism, and lighting the updated wavelength light source of the known light wavelength by the power supply mechanism for light emission of the micro LED ; and subsequently, the light filter After the control unit generates a signal that selects a status in which a is not present in the optical path, and further transmits the signal to the filter drive mechanism via the transmission path, the control unit immediately issues a notification of an instruction to start the first imaging. The control unit includes a module that executes a step of instructing a first filter movement to be waited for;
The filter driving mechanism receives a signal for selecting a status in which the optical filter is not present in the optical path via a transmission path between the filter driving mechanism and the control device, and a first filter movement step of removing the optical filter from the optical path is performed. The filter drive mechanism includes a module that performs
When the control unit accepts the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit executes the first imaging start instruction. After generating a signal and transmitting the first imaging start instruction signal to the image processing device via the communication path, immediately execute a first imaging start instruction step of waiting for a second filter movement instruction. The control unit further includes a module for
When the image processing device receives the first imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and receives the video signal on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the pixel map, and storing this in the memory in the image processing device;
Subsequently, in the unit image object identification section, the reflected light of the calibration light source is regarded as the light emission of the micro LED from the light intensity pixel map, and the unit image object (referred to as a reflective light object, hereinafter referred to as a reflection light object) of the reflected light is similar) based on the predetermined criteria, further generate unit image object mapping data to the pixel map, store this in the memory in the image processing device, and further perform reflective light object mapping on the micro LED. The micro-LED identification unit generates the micro-LED mapping data, which is considered as the reflective light object mapping, from the unit image object and stores it in the memory, and The light energy intensity of the micro LED is determined from the light intensity on the intensity map using the predetermined light energy intensity calculation formula, and the light energy of the reflected light considered to be emitted by the micro LED in the arrangement without the optical filter is determined. The image processing device includes a module for measuring an unfiltered light intensity to be stored in the memory in the image processing device as an intensity value;
When the control unit, which is waiting for the second filter movement instruction, receives the second filter movement instruction, it generates a signal for arranging the optical filter on the optical path based on the instruction, and moves the optical filter through the transmission path. The control unit further includes a module that executes a second filter movement instruction step that transmits the signal to the filter drive mechanism and waits for a second imaging start instruction, and subsequently starts the second imaging. When the control unit, which is waiting for an instruction notification, receives the instruction to start the second imaging, it generates a signal for arranging the optical filter in the optical path based on the start instruction, and drives the filter via the transmission path. a second filter movement instruction step of transmitting the filter to the mechanism and later waiting for other processing;
The filter drive mechanism receives a signal from the control unit to arrange the optical filter in the optical path via the transmission path, and moves the module to execute a second filter movement step to arrange the optical filter in the optical path. The drive mechanism further includes;
When the image processing device receives the second imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and inputs the image data measured at each pixel into a pixel map on the image data frame. a second imaging step of generating the light intensity pixel map on which graded light intensities are superimposed and storing it in the memory in the image processing device;
Subsequently, in the unit image object identification section, the reflected light of the calibration light source is regarded as the light emission of the micro LED from the light intensity pixel map, and the unit image object (referred to as a reflective light object, hereinafter referred to as a reflection light object) of the reflected light is similar) based on the predetermined criteria, further generate unit image object mapping data to the pixel map, store this in the memory in the image processing device, and further perform reflective light object mapping on the micro LED. The micro-LED identification unit generates the micro-LED mapping data, which is considered as the reflective light object mapping, from the unit image object and stores it in the memory, and The light energy intensity of the micro LED is determined from the light intensity on the intensity map using the predetermined light energy intensity calculation formula, and the light energy in the arrangement with the optical filter of the reflected light considered to be emitted by the micro LED is determined. measuring a filtered light intensity to be stored in the memory in the image processing device as an intensity value;
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED in the arrangement with the optical filter as the reflected light of the calibration light source is read out from the memory in the image processing device, and The light energy intensity value in the arrangement without the optical filter corresponding to the LED is read from the memory in the image processing device, and the light energy intensity value of the calibration light source in the arrangement with the optical filter and the optical filter are read out. calculating a ratio of unfiltered light intensity to filtered light intensity according to the light energy intensity value of the empty configuration;
Subsequently, in the micro LED inspection section, storing the ratio of the known light source wavelength and the light intensity in the memory;
a light source wavelength updating step of updating a set value of the light wavelength of the light source by a predetermined increment value;
Check whether the light wavelength of the light source after the update exceeds a predetermined boundary value, and if NO, return to the calibration light source lighting step; if YES, proceed to the lookup table creation step. , an iterative determination step, and
A look-up table creation step of creating a look-up table from a plurality of sets of ratios of the wavelength and the light intensity stored in the memory in the repetition, and storing the look-up table in the memory. The optical filter inspection device according to item 10 or 11.
請求項5又は6又は12に準用される請求項5又は6に記載の前記マイクロLED発光検査装置は、さらに、前記制御部は、当該マイクロLED発光検査装置の制御のためのCPU及びメモリを備え、かつ前記フィルタ駆動機構と前記制御装置との間は伝送路を介して通信可能と構成され、かつ前記制御装置と前記画像処理装置との間は通信路を介して双方向通信可能と構成され、
前記制御部の処理の開始とともに前記給電機構によってマイクロLEDを点灯するマイクロLED点灯ステップと、及び
引続き前記光フィルタが前記光路に存在しないステータスを選択する信号を前記制御部が生成し、さらに前記伝送路を介して前記信号を前記フィルタ駆動機構へ送信した後に、前記制御部は直ちに最初の撮像の開始指示通知待ちとなる最初のフィルタ移動指示ステップと、を実行するモジュールを前記制御部は含み、
前記フィルタ駆動機構は前記フィルタ駆動機構と前記制御装置の間の伝送路を介して前記光フィルタが前記光路に存在しないステータスを選択する信号を受入れ、前記光学フィルタを光路から外す最初のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構は含み、
前記制御部は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、前記制御部は前記第1の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記発光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにマイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し対応する前記マイクロLEDを前記ピクセルマップ上にマッピングし前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルタ無の配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリに格納するフィルタなし光強度を測定するステップと、を実行するモジュールを前記画像処理装置は含み、
前記第2のフィルタ移動指示待ちとなっている前記制御部は、第2のフィルタ移動指示を受け入れると、当該指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ当該信号を送信し、後に第2の撮像開始指示待ちとなる第2のフィルタ移動指示ステップを実行するモジュールを前記制御部はさらに含み、
前記フィルタ駆動機構は前記伝送路を介して前記光学フィルタを光路に配設する信号を前記制御部から受入れ、前記光学フィルタを光路に配設する第2のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構はさらに含み、
前記制御部は、前記第2のフィルタ移動指示ステップの最終処理である第2の撮像開始指示待ちで前記第2の撮像の開始指示通知を受け入れると、前記第2の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第2の撮像の開始指示信号を送信した後に、第2の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記第2の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第2の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記発光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにマイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し対応する前記マイクロLEDを前記ピクセルマップ上にマッピングし前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルタ有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記マイクロLEDの前記光学フィルタ有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルタ無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルタ有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルタ無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
引き続き、前記マイクロLED検査部において、前記ルックアップテーブルの参照によって前記マイクロLEDの発光波長を決定するルックアップテーブル参照方式の発光波長決定ステップと、及び
前記マイクロLEDの配列設計データ出力のための外部接続路及びデータ出力部を含み、
前記発光波長データを前記デジタル画像処理装置内の前記メモリを介して、前記データ出力部から外部接続路に前記発光波長データを出力するマイクロLED発光波長データ出力ステップと、
を実行するモジュールを含む請求項5又は6又は12に記載のマイクロLED発光検査装置。
The micro LED emission testing device according to claim 5 or 6, which is applied mutatis mutandis to claim 5, 6, or 12, further comprises a CPU and a memory for controlling the micro LED emission testing device. , and the filter drive mechanism and the control device are configured to be able to communicate via a transmission path, and the control device and the image processing device are configured to be able to communicate bidirectionally via a communication path. ,
a micro-LED lighting step of lighting the micro-LED by the power supply mechanism at the start of the processing of the control section, and subsequently, the control section generates a signal to select a status in which the optical filter is not present in the optical path, and further the transmission The control unit includes a module that executes an initial filter movement instruction step in which the control unit immediately waits for notification of a first imaging start instruction after transmitting the signal to the filter drive mechanism via a path,
The filter driving mechanism receives a signal for selecting a status in which the optical filter is not present in the optical path via a transmission path between the filter driving mechanism and the control device, and a first filter movement step of removing the optical filter from the optical path is performed. The filter drive mechanism includes a module that performs
When the control unit accepts the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit executes the first imaging start instruction. After generating a signal and transmitting the first imaging start instruction signal to the image processing device via the communication path, immediately execute a first imaging start instruction step of waiting for a second filter movement instruction. The control unit further includes a module for
When the image processing device receives the first imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and receives the video signal on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the pixel map, and storing this in the memory in the image processing device;
Subsequently, the unit image object identifying section identifies the light emitting unit image object from the light intensity pixel map based on the predetermined criteria, further generates unit image object mapping data to the pixel map, and is stored in the memory in the image processing device, and a micro-LED identification section identifies a plurality of micro-LEDs arranged in the array from the unit image object and places the corresponding micro-LEDs on the pixel map. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. determining an intensity and storing the light energy intensity value for the optically filterless arrangement of the micro-LEDs in the memory in the image processing device; processing equipment includes;
When the control unit, which is waiting for the second filter movement instruction, receives the second filter movement instruction, it generates a signal for arranging the optical filter on the optical path based on the instruction, and moves the optical filter through the transmission path. The control unit further includes a module that transmits the signal to the filter drive mechanism and executes a second filter movement instruction step that will later wait for a second imaging start instruction,
The filter drive mechanism receives a signal from the control unit to arrange the optical filter in the optical path via the transmission path, and moves the module to execute a second filter movement step to arrange the optical filter in the optical path. The drive mechanism further includes;
When the control unit receives the second imaging start instruction notification while waiting for the second imaging start instruction, which is the final process of the second filter movement instruction step, the control unit generates the second imaging start instruction signal. The control unit further includes a module that executes a second imaging start instruction step after transmitting the second imaging start instruction signal to the image processing device via the communication path,
When the image processing device receives the second imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and inputs the image data measured at each pixel into a pixel map on the image data frame. a second imaging step of generating the light intensity pixel map on which graded light intensities are superimposed and storing it in the memory in the image processing device;
Subsequently, the unit image object identifying section identifies the light emitting unit image object from the light intensity pixel map based on the predetermined criteria, further generates unit image object mapping data to the pixel map, and is stored in the memory in the image processing device, and a micro-LED identification section identifies a plurality of micro-LEDs arranged in the array from the unit image object and places the corresponding micro-LEDs on the pixel map. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. determining the intensity and storing the light energy intensity value for the optically filtered arrangement of the micro-LEDs in the memory in the image processing device;
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device. The light energy intensity value of the micro LED in the arrangement is read from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter and the light energy intensity value of the micro LED in the arrangement without the optical filter are determined. calculating the ratio of the unfiltered light intensity to the filtered light intensity by;
Subsequently, in the micro LED inspection section, a step of determining the light emission wavelength of the micro LED by referring to the look-up table is performed, and a step of determining the light emission wavelength of the micro LED by referring to the look-up table is performed. including a connection path and a data output section,
a micro LED emission wavelength data output step of outputting the emission wavelength data from the data output unit to an external connection path via the memory in the digital image processing device;
The micro LED emission inspection device according to claim 5, 6 or 12, comprising a module that executes.
前記マイクロLED発光検査装置の光源は、前記光源の光波長の可変機構を備える既知の光波長の波長光源であり、前記マイクロLED発光検査装置は、さらに前記制御部にCPU及びメモリを備え、
前記制御部が処理の開始とともに前記可変機構によって前記光源の光波長の設定値を前記帯域幅の中心波長に更新する、光波長の中心波長設定ステップと、
前記可変機構によって前記光源の光波長を前記中心波長へ更新し、前記給電機構によって前記光波長の波長光源を点灯する中心波長光源点灯ステップと、及び
引続き前記光フィルタが前記光路に存在しないステータスを選択する信号を前記制御部が生成し、さらに伝送路を介して前記信号を前記フィルタ駆動機構へ送信した後に、前記制御部は直ちに最初の撮像の開始指示通知待ちとなる最初のフィルタ移動指示ステップと、を実行するモジュールを前記制御部は含み、
前記フィルタ駆動機構は前記フィルタ駆動機構と前記制御装置の間の伝送路を介して前記光フィルタが前記光路に存在しないステータスを選択する信号を受入れ、前記光学フィルタを光路から外す最初のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構は含み、
前記制御部は、第1の前記フィルタ移動指示ステップの最終処理である最初の撮像の開始指示通知待ちで最初の撮像の開始指示通知を受け入れると、前記制御部は前記第1の撮像の開始指示信号を生成し、通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記中心波長光源であるキャリブレーション光源光をマイクロLEDの発光とみなし、前記キャリブレーション光源光の単位映像体を前記所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに前記キャリブレーション光源マッピングを前記マイクロLEDマッピングとみなし、前記マイクロLED識別部において、前記単位映像体から前記キャリブレーション光源マッピングとみなされた前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、マイクロLEDとみなされた前記キャリブレーション光源発光体の前記光学フィルタ無の配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ無し光強度を測定するステップと、を実行するモジュールを前記画像処理装置は含み、
前記第2のフィルタ移動指示待ちとなっている前記制御部は、第2のフィルタ移動指示を受け入れると、当該指示に基づき前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介し前記フィルタ駆動機構へ当該信号を送信し、後に後続の撮像開始指示待ちとなる第2のフィルタ移動指示ステップを実行するモジュールを前記制御部はさらに含み、
前記フィルタ駆動機構は前記伝送路を介して前記光学フィルタを光路に配設する信号を前記制御部から受入れ、前記光学フィルタを光路に配設する第2のフィルタ移動ステップを実行するモジュールを前記フィルタ駆動機構はさらに含み、
前記制御部は、後続の撮像開始指示待ちで前記後続の撮像の開始指示通知を受け入れると、前記後続の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記後続の撮像の開始指示信号を送信した後に、後続の撮像の開始指示ステップを実行するモジュールを前記制御部はさらに含み、
前記画像処理装置は、前記通信路を介して前記後続の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する後続の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記キャリブレーション光源光をマイクロLEDの発光とみなし、前記キャリブレーション光源光の単位映像体を所定のクライテリアに基づき特定し、さらに前記ピクセルマップへの前記単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに前記マイクロLED識別部において、マイクロLEDの発光とみなされた前記キャリブレーション光源光を前記単位映像体からマイクロLEDとして特定し前記ピクセルマップ上にマッピングする前記マイクロLEDマッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDとみなされた前記キャリブレーション光源発光体の前記光エネルギ強度を決定し、前記キャリブレーション光源の前記光学フィルタ有りの配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記マイクロLEDの前記光学フィルタ有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルタ無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルタ有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルタ無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
光強度の比が所定の判定幅内で0.5の近傍か否かを所定の判定条件によって判定し、
前記判定条件がNOであれば、前記フィルタ光軸傾斜角駆動機構のためにフィルタの角の変動ステップを駆動する信号を生成し、当該信号を前記フィルタ光軸傾斜角駆動機構へ送信し、フィルタ角の変動ステップを実行するモジュールへ制御を分岐し、その後、前記後続の撮像の開始指示通知を前記制御部へ前記通信部を介し前記制御装置へ送信し、前記制御部の後続の撮像ステップを実行するモジュールへ制御を戻し、以降の処理をループさせ、
記判定条件がYESであれば、フィルタ角を前記メモリに格納する、フィルタ角を記録するステップへ分岐しループ処理を終了する、適正フィルタ角判定ステップと、を実行するモジュールを前記画像処理装置は含み、
ここで、前記フィルタ光軸傾斜角駆動機構は、所定の幅で前記フィルタ角を変動させる前記フィルタ角の変動ステップを実行するモジュールを含む請求項20に記載のマイクロLED発光検査装置。
The light source of the micro LED emission inspection device is a wavelength light source of a known light wavelength that is equipped with a variable wavelength mechanism of the light source, and the micro LED emission inspection device further includes a CPU and a memory in the control unit,
a step of setting a center wavelength of the light wavelength, in which the control unit updates the set value of the light wavelength of the light source to the center wavelength of the bandwidth by the variable mechanism at the start of processing;
a center wavelength light source lighting step of updating the light wavelength of the light source to the center wavelength by the variable mechanism and lighting the light source with the wavelength of the light wavelength by the power supply mechanism; After the control unit generates a signal to be selected and further transmits the signal to the filter drive mechanism via a transmission path, the control unit immediately waits for a notification of an instruction to start the first imaging to perform the first filter movement. The control unit includes a module that executes the instruction step;
The filter driving mechanism receives a signal for selecting a status in which the optical filter is not present in the optical path via a transmission path between the filter driving mechanism and the control device, and a first filter movement step of removing the optical filter from the optical path is performed. The filter drive mechanism includes a module that performs
When the control unit accepts the first imaging start instruction notification while waiting for the first imaging start instruction notification, which is the final process of the first filter movement instruction step, the control unit executes the first imaging start instruction. After generating a signal and transmitting the first imaging start instruction signal to the image processing device via a communication path, immediately execute a first imaging start instruction step of waiting for a second filter movement instruction. The control unit further includes a module for
When the image processing device receives the first imaging start instruction signal via the communication path, it accepts the video signal from the imaging device and processes the pixels on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the map, and storing this in the memory in the image processing device;
Subsequently, in the unit image object identification section, the calibration light source light , which is the center wavelength light source, is regarded as light emission from a micro LED from the light intensity pixel map, and the unit image object of the calibration light source light is determined according to the predetermined criteria. further generate unit image object mapping data to the pixel map and store it in the memory in the image processing device, further consider the calibration light source mapping as the micro LED mapping, The LED identification section generates the micro LED mapping data that is considered as the calibration light source mapping from the unit image object, stores it in the memory, and calculates the light intensity on the light intensity map on the micro LED map. The light energy intensity of the micro LED is determined by the predetermined light energy intensity calculation formula from The image processing device includes a module that performs the step of: measuring unfiltered light intensity to be stored in the memory in the processing device;
When the control unit, which is waiting for the second filter movement instruction, receives the second filter movement instruction, it generates a signal for arranging the optical filter on the optical path based on the instruction, and moves the optical filter through the transmission path. The control unit further includes a module that executes a second filter movement instruction step that transmits the signal to the filter drive mechanism and waits for a subsequent imaging start instruction,
The filter drive mechanism receives a signal from the control unit to arrange the optical filter in the optical path via the transmission path, and moves the module to execute a second filter movement step to arrange the optical filter in the optical path. The drive mechanism further includes;
When the control unit receives the subsequent imaging start instruction notification while waiting for the subsequent imaging start instruction, the control unit generates the subsequent imaging start instruction signal and transmits the subsequent imaging to the image processing device via the communication path. The control unit further includes a module that executes a subsequent imaging start instruction step after transmitting the imaging start instruction signal,
When the image processing device receives the instruction signal to start the subsequent imaging via the communication path, the image processing device receives the video signal from the imaging device and converts the step measured at each pixel into a pixel map on the image data frame. a subsequent imaging step of generating the light intensity pixel map on which the target light intensity is superimposed and storing it in the memory in the image processing device;
Subsequently, the unit image object identification section regards the calibration light source light as light emission from a micro LED from the light intensity pixel map, identifies the unit image object of the calibration light source light based on predetermined criteria, and further The unit image object mapping data to the pixel map is generated and stored in the memory in the image processing device, and the micro LED identification unit further calculates the calibration light source light that is regarded as light emission from the micro LED. is identified as a micro LED from the unit image object and mapped onto the pixel map to generate the micro LED mapping data, which is stored in the memory in the image processing device, and the light intensity on the micro LED map is The light energy intensity of the calibration light source light emitter, which is considered to be the micro LED, is determined from the light intensity on the map by the predetermined light energy intensity calculation formula, and the light energy intensity of the calibration light source with the optical filter is determined. measuring a filtered light intensity to be stored in the memory in the image processing device as the light energy intensity value;
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device. The light energy intensity value of the micro LED in the arrangement is read from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter and the light energy intensity value of the micro LED in the arrangement without the optical filter are determined. calculating the ratio of the unfiltered light intensity to the filtered light intensity by;
Determining whether the light intensity ratio is close to 0.5 within a predetermined determination width according to a predetermined determination condition,
If the judgment condition is NO, generate a signal for driving the filter angle variation step for the filter optical axis tilt angle drive mechanism, send the signal to the filter optical axis tilt angle drive mechanism, and drive the filter. Branching the control to a module that executes the step of changing the angle, and then transmitting a notification of an instruction to start the subsequent imaging to the control unit via the communication unit to the control device, and executing the subsequent imaging step of the control unit. Return control to the executing module, loop the subsequent processing,
If the judgment condition is YES, the image processing module executes the steps of storing the filter angle in the memory, branching to the step of recording the filter angle and terminating the loop processing, and determining the appropriate filter angle. The equipment includes;
21. The micro LED light emission inspection apparatus according to claim 20, wherein the filter optical axis inclination angle driving mechanism includes a module that executes a step of varying the filter angle by varying the filter angle by a predetermined width.
製造プロセス管理コンピュータとの通信路及び製造データ入力部をさらに備え、前記通信路を介して前記製造プロセス管理コンピュータから製造条件を含む製造指示を受入れる製造指示受入れステップを実行するモジュールをさらに含む請求項25又は26又は28又は29に記載のマイクロLED発光検査装置。 10. The method of claim 1, further comprising a communication path with a manufacturing process management computer and a manufacturing data input unit, and further comprising a module that executes a manufacturing instruction receiving step of accepting manufacturing instructions including manufacturing conditions from the manufacturing process management computer via the communication path. 30. The micro LED luminescence inspection device according to 25 or 26 or 28 or 29. 製造プロセス管理コンピュータへの通信路及び製造データ出力部をさらに備え、前記通信路を介して前記製造プロセス管理コンピュータへ前記キャリブレーションのデータその他の進捗データを含む製造プロセスデータを出力する製造データ出力ステップを実行するモジュールをさらに含む請求項26又は28から30のいずれか1項に記載のマイクロLED発光検査装置。 A manufacturing data output step, further comprising a communication path to a manufacturing process management computer and a manufacturing data output unit, and outputting manufacturing process data including the calibration data and other progress data to the manufacturing process management computer via the communication path. 31. The micro LED emission testing device according to any one of claims 26 or 28 to 30, further comprising a module for executing. 請求項1記載の前記マイクロLED発光検査装置は、さらに、前記制御装置が当該マイクロLED発光検査装置の制御のためのCPU及びメモリを備え、かつ前記フィルタ駆動機構と前記制御装置との間は伝送路を介して通信可能と構成され、かつ前記制御装置と前記画像処理装置との間は通信路を介して双方向通信可能と構成され、かつ前記制御装置の前記制御部は以下の、
前記給電機構によってマイクロLEDを点灯するマイクロLED点灯ステップを実行するモジュールと、
前記光フィルタが前記光路に存在しないステータスを選択する信号を生成し、さらに前記伝送路を介して、前記光フィルタが前記光路に存在しないステータスを選択するように前記フィルタ駆動機構を駆動する最初のフィルタ移動ステップを実行するモジュールと、
最初の撮像の開始指示通知を受け入れ、前記第1の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第1の撮像の開始指示信号を送信した後に、直ちに第2のフィルタ移動指示待ちとなる第1の撮像の開始指示ステップを実行するモジュールと、
第2のフィルタ移動指示を受け入れ、当該指示に基づき所定の前記光学フィルタを光路に配設する信号を生成し、前記伝送路を介して、前記光学フィルタを光路に配設するように前記フィルタ駆動機構を駆動する第2のフィルタ移動ステップを実行するモジュールと、
及び
第2の撮像の開始指示通知を受け入れると、前記第2の撮像の開始指示信号を生成し、前記通信路を介して前記画像処理装置へ前記第2の撮像の開始指示信号を送信する、第2の撮像の開始指示ステップを実行するモジュールを前記制御部は含み、
前記画像処理装置は、前記通信路を介して前記第1の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、前記画像処理装置内に格納される画像データフレーム上の前記ピクセルマップへ各ピクセルで測定された段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第1の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記光強度ピクセルマップから前記所定のクライテリアに基づく前記発光の単位映像体を特定し、さらに前記ピクセルマップへの単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらにマイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列されたマイクロLEDを特定し対応する前記マイクロLEDを前記ピクセルマップ上にマッピングし前記マイクロLEDマッピングデータを生成し、これを前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルタ無の配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリに格納するフィルタなし光強度を測定するステップと、
前記通信路を介して前記第2の撮像の開始指示信号を受信すると、前記撮像装置から前記映像信号を受け入れ、画像データフレーム上のピクセルマップへ各ピクセルで測定された前記段階的光強度が重畳された前記光強度ピクセルマップを生成し、これを前記画像処理装置内の前記メモリに格納する第2の撮像ステップと、
これに引き続き、前記単位映像体識別部において、前記単位映像体識別部において、前記光強度ピクセルマップから前記所定のクライテリアに基づく前記発光の単位映像体を特定し、さらに前記ピクセルマップへの前記単位映像体マッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、さらに前記マイクロLED識別部において、前記単位映像体から複数の前記アレイ状に配列された前記マイクロLEDを特定し前記ピクセルマップ上にマッピングする前記マイクロLEDマッピングデータを生成し、これを前記画像処理装置内の前記メモリに格納し、前記マイクロLEDマップ上の前記光強度マップ上の光強度から前記所定の光エネルギ強度算出式によって前記マイクロLEDの前記光エネルギ強度を決定し、前記マイクロLEDの前記光学フィルタ有りの配置における前記光エネルギ強度値として前記画像処理装置内の前記メモリに格納するフィルタ有り光強度を測定するステップと、
これに引き続き、前記マイクロLED検査部において、前記マイクロLEDの前記光学フィルタ有りの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、当該マイクロLEDに対応する前記光学フィルタ無しの配置における前記光エネルギ強度値を前記画像処理装置内の前記メモリから読み出し、前記光学フィルタ有の配置における前記マイクロLEDの前記光エネルギ強度値と、前記光学フィルタ無の配置の前記光エネルギ強度値とによって、フィルタ無し光強度とフィルタ有り光強度の比を計算するステップと、
これに引き続き、前記マイクロLED検査部において、所定の前記マイクロLEDの発光波長算出式によって前記マイクロLEDの発光波長を決定する発光波長計算ステップと、
及び
前記マイクロLEDの配列製品データ出力のための外部接続路及びデータ出力部を含み、前記発光波長データを前記デジタル画像処理装置内の前記メモリを介して、前記データ出力部から外部接続路に前記発光波長データを出力するマイクロLED発光波長データ出力ステップと、
を実行するモジュールを前記画像処理装置は含む請求項1に記載のマイクロLED発光検査装置。
The micro LED emission testing device according to claim 1, further includes a CPU and a memory for controlling the micro LED emission testing device, and a transmission between the filter drive mechanism and the control device. The control device and the image processing device are configured to be able to communicate with each other via a communication path, and the control device and the image processing device are configured to be able to communicate bidirectionally via a communication path, and the control unit of the control device includes the following:
a module that executes a micro LED lighting step of lighting the micro LED by the power feeding mechanism;
generating a signal for selecting a status in which the optical filter does not exist in the optical path, and further driving the filter driving mechanism via the transmission path so that the optical filter selects a status in which the optical filter does not exist in the optical path; a module that performs a filter movement step;
Immediately after accepting the first imaging start instruction notification, generating the first imaging start instruction signal, and transmitting the first imaging start instruction signal to the image processing device via the communication path, a module that executes a first imaging start instruction step of waiting for a filter movement instruction of step 2;
Accepts a second filter movement instruction, generates a signal for arranging a predetermined optical filter on the optical path based on the instruction, and drives the filter via the transmission path so as to arrange the optical filter on the optical path. a module for performing a second filter movement step of driving the mechanism;
and upon receiving a second imaging start instruction notification, generates a second imaging start instruction signal, and transmits the second imaging start instruction signal to the image processing device via the communication path; The control unit includes a module that executes a second imaging start instruction step,
When the image processing device receives the first imaging start instruction signal via the communication path, the image processing device receives the video signal from the imaging device, and receives the video signal on the image data frame stored in the image processing device. a first imaging step of generating the light intensity pixel map in which the graded light intensity measured at each pixel is superimposed on the pixel map, and storing this in the memory in the image processing device;
Subsequently, the unit image object identification section identifies the light emitting unit image object based on the predetermined criteria from the light intensity pixel map, further generates unit image object mapping data to the pixel map, and is stored in the memory in the image processing device, and a micro-LED identification section identifies a plurality of micro-LEDs arranged in the array from the unit image object and places the corresponding micro-LEDs on the pixel map. The micro LED mapping data is generated and stored in the memory, and the light energy of the micro LED is calculated from the light intensity on the light intensity map on the micro LED map using the predetermined light energy intensity calculation formula. measuring unfiltered light intensity to determine the intensity and storing the light energy intensity value in the optical filterless arrangement of the micro-LED in the memory in the image processing device;
When the second imaging start instruction signal is received via the communication channel, the video signal is accepted from the imaging device, and the stepwise light intensity measured at each pixel is superimposed on a pixel map on the image data frame. a second imaging step of generating the light intensity pixel map and storing it in the memory in the image processing device;
Subsequently, the unit image object identification section identifies the unit image object of the light emission based on the predetermined criteria from the light intensity pixel map, and further specifies the unit image object to the pixel map. Image object mapping data is generated and stored in the memory in the image processing device, and the micro LED identification section identifies the plurality of micro LEDs arranged in the array from the unit image object. Generate the micro LED mapping data to be mapped onto the pixel map, store it in the memory in the image processing device, and calculate the predetermined light energy from the light intensity on the light intensity map on the micro LED map. The light energy intensity of the micro LED is determined by an intensity calculation formula, and the filtered light intensity is stored in the memory in the image processing device as the light energy intensity value in the arrangement of the micro LED with the optical filter. the step of
Subsequently, in the micro LED inspection section, the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter is read out from the memory in the image processing device. The light energy intensity value of the micro LED in the arrangement is read from the memory in the image processing device, and the light energy intensity value of the micro LED in the arrangement with the optical filter and the light energy intensity value of the micro LED in the arrangement without the optical filter are determined. calculating the ratio of the unfiltered light intensity to the filtered light intensity by;
Subsequently, in the micro LED inspection section, a light emission wavelength calculation step of determining the light emission wavelength of the micro LED using a predetermined light emission wavelength calculation formula of the micro LED;
and an external connection path and a data output section for outputting array product data of the micro LED, and transmits the emission wavelength data from the data output section to the external connection path via the memory in the digital image processing device. a micro LED emission wavelength data output step for outputting emission wavelength data;
The micro LED emission inspection device according to claim 1, wherein the image processing device includes a module that executes.
前記マイクロLED発光検査装置の前記画像処理装置は、製造条件データ出力部をさらに備え、前記サブストレート全体映像、1又は複数の前記単位映像体マッピングデータ及びこれに対応する前記光強度特性及び前記発光波長特性及びこれらの範疇のうち少なくとも一つを含む前記マイクロLEDマッピングデータ又はマイクロLEDの前記光強度特性の少なくともいずれか1つから所定のデータを所定のデータ形式に変換し製造条件データとして生成及び出力することを特徴とする請求項1又は25又は32に記載のマイクロLED発光検査装置を含むマイクロLED製造装置。 The image processing device of the micro LED emission inspection device further includes a manufacturing condition data output unit, and outputs the whole substrate image, one or more of the unit image object mapping data, and the corresponding light intensity characteristics and the light emission. Predetermined data is converted into a predetermined data format from at least one of the micro LED mapping data including wavelength characteristics and at least one of these categories, or the light intensity characteristics of the micro LED, and is generated as manufacturing condition data. A micro LED manufacturing device comprising the micro LED luminescence testing device according to claim 1 or 25 or 32. 前記マイクロLED発光検査装置の前記画像処理装置は、前記発光波長の二次元マップをさらに出力することを特徴とする請求項33に記載のマイクロLED発光検査装置を含むマイクロLED製造装置。 34. The micro LED manufacturing apparatus including the micro LED emission inspection apparatus according to claim 33, wherein the image processing apparatus of the micro LED emission inspection apparatus further outputs a two-dimensional map of the emission wavelength. 前記反射体は、クロムを主成分とする金属膜から成る請求項7に記載のマイクロLED発光検査装置に用いる光学フィルタ検査装置。 8. The optical filter inspection device for use in a micro LED emission inspection device according to claim 7, wherein the reflector is made of a metal film containing chromium as a main component. 全自動化された製造プロセスに組み込まれたマイクロLED発光検査方法は、請求項1記載の前記マイクロLED発光検査装置を用い、以下の段階、
アライメントマーク情報を含むサブストーレートのジオメオリ情報、マイクロLEDのジオメトリ情報及びマイクロLEDアレイのジオメトリ情報を受け入れる製品情報取得段階と、引き続き実行される、
1又は複数の前記ジオメトリ情報から前記サブストレート上で局所的な製品品質のばらつき及び/又は異常を認識及び管理するための製造管理区域を設定する製造管理区域設定段階と、引き続き実行される、
ネットワーク手段によって接続された製造ライン制御コンピュータに検査受け入れ可能状態を前記ネットワーク手段を介して通知する検査受け入れ可能通知段階と、引き続き実行される、
前記製造ライン制御コンピュータからマイクロLEDウェハ製造情報を受信する製造情報受け入れ段階と、引き続き実行される、
検査ベッド上に前記ウェハを搭載するウェハ搭載段階と、引き続き実行される、
画像処理装置によって前記サブストレートの全体像を撮像し、前記サブストレートに前記製造管理区域をマッピングする製造管理区域マッピング段階と、
画像処理装置によって前記サブストレート上に配設された前記マイクロLEDを前記画像処理装置内に生成された画像フレーム上にマッピングするマイクロLEDマッピング段階と、引き続き実行される、
前記画像処理装置によって、マイクロLEDチップを点灯し発光強度と発光波長を測定するマイクロLED特性測定段階と、引き続き実行される、
前記画像処理装置によって、前記マイクロLED特性を元に所定の分類条件によって前記発光強度と前記発光波長のマトリックスで分類された異常分類を含むカテゴリ情報を前記マイクロLEDマップ情報に付し、全マイクロLEDチップを分類仕分けするマイクロLED仕分け段階と、引き続き実行される、
前記画像処理装置によって、前記カテゴリ情報の付された前記マイクロLEDを前記製造管理区域マップにオーバーレイし、前記製造管理区域に関しマイクロLED製造プロセス状態を認識する製造プロセス状態判定段階と、引き続き実行される、
前記画像処理装置によって、前記ネットワーク手段を介して前記製造ライン制御コンピュータへ前記仕分け情報と前記製造プロセス状態を送信する検査結果送信段階と、引き続き実行される、
検査終了状態を前記ネットワーク手段を介して前記製造ライン制御コンピュータへ検査終了通知を送信する検査終了通知段階と、
を含む、全自動化された製造プロセスに組み込まれたマイクロLED発光検査装置の使用方法。
A micro LED emission inspection method incorporated in a fully automated manufacturing process uses the micro LED emission inspection apparatus according to claim 1, and includes the following steps:
a product information acquisition step that receives substrate geometry information including alignment mark information, micro LED geometry information and micro LED array geometry information;
a manufacturing control area setting step of setting a manufacturing control area for recognizing and managing local product quality variations and/or abnormalities on the substrate from one or more of the geometry information;
an inspection acceptance notification step of notifying the production line control computer connected by the network means of the inspection acceptance status via the network means, and subsequently executed;
a manufacturing information receiving step of receiving micro LED wafer manufacturing information from the manufacturing line control computer;
a wafer loading step of loading the wafer on a test bed;
a manufacturing control area mapping step of capturing an overall image of the substrate using an image processing device and mapping the manufacturing control area to the substrate;
a micro-LED mapping step of mapping the micro-LEDs disposed on the substrate by an image processing device onto an image frame generated within the image processing device;
A micro LED characteristic measuring step of lighting the micro LED chip and measuring the emission intensity and emission wavelength by the image processing device;
The image processing device adds category information including abnormality classification classified by a matrix of the emission intensity and the emission wavelength according to predetermined classification conditions based on the micro LED characteristics to the micro LED map information, and A micro-LED sorting stage for sorting and sorting the chips, followed by a micro-LED sorting stage;
A manufacturing process state determination step of overlaying the micro LED with the category information attached on the manufacturing control area map by the image processing device and recognizing the micro LED manufacturing process state with respect to the manufacturing control area is subsequently executed. ,
an inspection result transmitting step of transmitting the sorting information and the manufacturing process status by the image processing device to the manufacturing line control computer via the network means;
an inspection completion notification step of transmitting an inspection completion status to the production line control computer via the network means;
A method of using a micro LED luminescence inspection device incorporated into a fully automated manufacturing process, including:
JP2021503231A 2019-03-02 2020-02-27 Micro LED emission inspection device, optical filter inspection device used in the device, and micro LED emission inspection method using the device incorporated in the manufacturing process Active JP7394828B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019038091 2019-03-02
JP2019038091 2019-03-02
PCT/IB2020/051681 WO2020178680A1 (en) 2019-03-02 2020-02-27 Micro led light emission inspection device, inspection device for optical filter used in said device, and micro led light emission inspection method using said device incorporated in manufacturing process

Publications (2)

Publication Number Publication Date
JPWO2020178680A1 JPWO2020178680A1 (en) 2020-09-10
JP7394828B2 true JP7394828B2 (en) 2023-12-08

Family

ID=72337701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021503231A Active JP7394828B2 (en) 2019-03-02 2020-02-27 Micro LED emission inspection device, optical filter inspection device used in the device, and micro LED emission inspection method using the device incorporated in the manufacturing process

Country Status (5)

Country Link
JP (1) JP7394828B2 (en)
KR (1) KR102607139B1 (en)
CN (1) CN113508454B (en)
TW (1) TW202101017A (en)
WO (1) WO2020178680A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390612A (en) * 2021-06-04 2021-09-14 盐城东紫光电科技有限公司 MiniLED detection equipment with point-to-point multi-optical-path optical component
CN114264452B (en) * 2021-12-23 2022-10-21 厦门大学 Light color detection system and detection method for single pixel of micro light emitting device array
CN115579446A (en) * 2022-09-15 2023-01-06 弘凯光电(江苏)有限公司 Light emitting module and light emitting device
CN115792473B (en) * 2023-01-29 2023-05-30 惠州威尔高电子有限公司 Quality detection method for MiniLED sheet production process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248196A (en) 2006-03-15 2007-09-27 Pentax Corp Spectral luminance distribution estimation system and method
JP2012084883A (en) 2010-10-11 2012-04-26 Ind Technol Res Inst Detection method and detection device for wafer level light-emitting diode (led) chips and probe card thereof
JP2015010834A (en) 2013-06-26 2015-01-19 東レエンジニアリング株式会社 Method for estimating emission wavelength of luminous body and device therefore
JP2018009851A (en) 2016-07-12 2018-01-18 ソーラーフロンティア株式会社 Band gap measuring method and band gap measuring device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329758A (en) 1986-07-23 1988-02-08 Canon Inc Light source for exposing device
JPS63248141A (en) 1987-04-03 1988-10-14 Mitsubishi Electric Corp Measuring device for optical semiconductor characteristic
JP2006284212A (en) * 2005-03-31 2006-10-19 Dainippon Screen Mfg Co Ltd Unevenness inspection device and unevenness inspection method
CN101566500A (en) * 2008-04-23 2009-10-28 广州市光机电技术研究院 Device and method for testing LED light source intensity space distribution characteristic
CN109065464A (en) * 2018-06-25 2018-12-21 易美芯光(北京)科技有限公司 A kind of test method of mini LED and micro LED

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248196A (en) 2006-03-15 2007-09-27 Pentax Corp Spectral luminance distribution estimation system and method
JP2012084883A (en) 2010-10-11 2012-04-26 Ind Technol Res Inst Detection method and detection device for wafer level light-emitting diode (led) chips and probe card thereof
JP2015010834A (en) 2013-06-26 2015-01-19 東レエンジニアリング株式会社 Method for estimating emission wavelength of luminous body and device therefore
JP2018009851A (en) 2016-07-12 2018-01-18 ソーラーフロンティア株式会社 Band gap measuring method and band gap measuring device

Also Published As

Publication number Publication date
WO2020178680A1 (en) 2020-09-10
CN113508454A (en) 2021-10-15
CN113508454B (en) 2023-02-21
TW202101017A (en) 2021-01-01
KR20210137493A (en) 2021-11-17
JPWO2020178680A1 (en) 2020-09-10
KR102607139B1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
JP7394828B2 (en) Micro LED emission inspection device, optical filter inspection device used in the device, and micro LED emission inspection method using the device incorporated in the manufacturing process
EP1785714B1 (en) Lens evaluation device
CN101021490B (en) Automatic detecting system and method for planar substrate
JP2008153655A (en) Wafer inspection equipment
WO2015014041A1 (en) Detection system
JP2005091003A (en) Two-dimensional spectral apparatus and film thickness measuring instrument
JP2002139451A (en) Surface inspection apparatus
TWI702386B (en) Telecentric bright field and annular dark field seamlessly fused illumination
KR101352702B1 (en) Inspection method of polycrystalline silicon thin film and the same apparatus
KR100924116B1 (en) Inspection apparatus for camera modlue product and method thereof
JP4866294B2 (en) Method for adjusting relative position of line sensor camera
JP2010020151A (en) Observation apparatus
JP2010281626A (en) Device for inspecting optical characteristic
WO2020152866A1 (en) Image inspection device
KR101302881B1 (en) Testing method and apparatus of polycrystalline silicon thin film
JP2006058170A (en) Visual confirmation device and inspection system
JP2005140726A (en) Method for measuring thin film and apparatus for measuring thin film
TWM596869U (en) System for large-area microscopic photoluminescence scanning and side profile measurement
JP4850014B2 (en) Spectrophotometric system and method for correcting illumination light source position of the system
JP2008026147A (en) Inspection device for color filter, and inspection method for the color filter
JP2005274156A (en) Flaw inspection device
US6985217B2 (en) System and method for inspecting a light source of an image reader
TWI727732B (en) System and method for large-area micro-photoluminescence scanning and mapping measurement
JPH1194698A (en) Color inspecting device for color filter picture element
JP2001264266A (en) Substrate inspecting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231128

R150 Certificate of patent or registration of utility model

Ref document number: 7394828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150