JP7393055B2 - Calibration method, calibration program, storage medium and reference sample for thermophysical property measuring equipment - Google Patents

Calibration method, calibration program, storage medium and reference sample for thermophysical property measuring equipment Download PDF

Info

Publication number
JP7393055B2
JP7393055B2 JP2022534131A JP2022534131A JP7393055B2 JP 7393055 B2 JP7393055 B2 JP 7393055B2 JP 2022534131 A JP2022534131 A JP 2022534131A JP 2022534131 A JP2022534131 A JP 2022534131A JP 7393055 B2 JP7393055 B2 JP 7393055B2
Authority
JP
Japan
Prior art keywords
thermophysical property
reference sample
temperature
target
property value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022534131A
Other languages
Japanese (ja)
Other versions
JPWO2022004888A1 (en
Inventor
猪一郎 森
孝昭 粟野
哲也 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bethel KK
Original Assignee
Bethel KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bethel KK filed Critical Bethel KK
Publication of JPWO2022004888A1 publication Critical patent/JPWO2022004888A1/ja
Application granted granted Critical
Publication of JP7393055B2 publication Critical patent/JP7393055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Description

本発明は、校正の対象となる熱物性測定装置である対象装置について、基準となる熱物性測定装置に対する校正を行う校正方法、当該校正方法を実行するプログラム、当該プログラムを記憶した記憶媒体及び当該校正方法に用いられる基準試料に関する。 The present invention relates to a calibration method for calibrating a target device, which is a thermophysical property measuring device to be calibrated, against a reference thermophysical property measuring device, a program for executing the calibration method, a storage medium storing the program, and the calibration method. It relates to reference samples used in calibration methods.

熱物性とは、物質における熱の伝わりやすさ等を示す物性値であり、具体的には、主に熱伝導率、熱拡散率、及び熱浸透率が該当する。熱伝導率は、定常法等で測定される。熱拡散率は、主に周期加熱法やレーザフラッシュ法で測定される。さらに、測定する試料の比熱と密度を測定することにより、熱拡散率や熱伝導率から熱浸透率を計算で導くことができる。 Thermophysical properties are physical property values that indicate the ease of heat transfer in a substance, and specifically include thermal conductivity, thermal diffusivity, and thermal effusivity. Thermal conductivity is measured by a steady method or the like. Thermal diffusivity is mainly measured by a periodic heating method or a laser flash method. Furthermore, by measuring the specific heat and density of the sample to be measured, the thermal effusivity can be calculated from the thermal diffusivity and thermal conductivity.

試料の厚さ方向における熱伝導率の測定方法としては、定常法(JIS A1412-2、ISO 8301)が知られている。また、熱拡散率の測定方法としては、周期加熱法(JIS R7240、特許文献1)や、フラッシュ法(レーザフラッシュ法)(JIS R 1611、ISO 18755)が知られている。 A steady method (JIS A1412-2, ISO 8301) is known as a method for measuring thermal conductivity in the thickness direction of a sample. Further, as methods for measuring thermal diffusivity, a periodic heating method (JIS R7240, Patent Document 1) and a flash method (laser flash method) (JIS R 1611, ISO 18755) are known.

これらの熱物性値を測定する熱物性測定装置は、各装置において測定精度を向上させるために日々改良が進められており、それぞれ各測定値の精度や安定性が向上している。 The thermophysical property measuring devices that measure these thermophysical property values are being improved day by day in order to improve the measurement accuracy of each device, and the accuracy and stability of each measurement value is improving.

特開2011-185852号公報Japanese Patent Application Publication No. 2011-185852

一方で、熱物性測定装置による測定結果は、複数の熱物性測定装置の間で個体差があり、同一の試料の測定を行った場合でも、測定結果に差が出るおそれがある。また、同じ物性値、例えば熱拡散率を求める場合であっても、周期加熱法によって求めた値と、レーザフラッシュ法で求めた場合に、測定結果に差が出る場合がある。 On the other hand, measurement results obtained by thermophysical property measuring devices have individual differences among a plurality of thermophysical property measuring devices, and even when the same sample is measured, there may be differences in the measurement results. Further, even when determining the same physical property value, for example, thermal diffusivity, there may be a difference in the measurement results between the value determined by the periodic heating method and the value determined by the laser flash method.

このように、熱物性値は、測定装置の個体差、又は測定方法の相違によって差が生じることがあり、その場合は、複数の熱物性測定装置の各利用者間の測定結果の相互交換や比較評価を正しく行うことができないという不都合がある。 As described above, differences in thermophysical property values may occur due to individual differences in measuring devices or differences in measurement methods. In such cases, mutual exchange of measurement results between users of multiple thermophysical property measuring devices or This has the disadvantage that comparative evaluation cannot be performed correctly.

本発明は、上記課題に鑑み、熱物性測定装置の校正方法等の改良を目的とし、複数の熱物性測定装置における個体差や測定方法の相違による測定結果の差が生じないように校正を行う校正方法等を提供することを目的とする。 In view of the above-mentioned problems, the present invention aims to improve a method for calibrating thermophysical property measuring devices, etc., and performs calibration so that differences in measurement results do not occur due to individual differences or differences in measurement methods among multiple thermophysical property measuring devices. The purpose is to provide calibration methods, etc.

上記目的を達成するために、本発明の第1の態様の熱物性測定装置の校正方法は、基準温度における基準熱物性値を有する基準試料を用いて、熱物性測定装置の基準となる基準装置に対して、校正対象である対象装置の校正を行う熱物性測定装置の校正方法であって、前記基準試料を前記基準温度となるように温度調節するステップと、前記対象装置に前記基準試料を装着するステップと、前記対象装置によって前記基準試料の熱物性値である対象熱物性値を測定するステップと、前記基準試料の周囲温度である測定時温度を測定し、前記基準試料の前記測定時温度における修正熱物性値と、前記対象熱物性値との差を算出して前記対象装置における補正値を求めるステップと、を有する。 In order to achieve the above object, the method for calibrating a thermophysical property measuring device according to the first aspect of the present invention uses a reference sample having a reference thermophysical property value at a reference temperature to calibrate a reference device that serves as a reference for the thermophysical property measuring device. This is a method for calibrating a thermophysical property measuring device for calibrating a target device that is a calibration target, the method comprising: adjusting the temperature of the reference sample to the reference temperature; and supplying the reference sample to the target device. a step of measuring a target thermophysical property value, which is a thermophysical property value of the reference sample, using the target device; and a step of measuring a temperature at the time of measurement, which is an ambient temperature of the reference sample, and The method includes the step of calculating a difference between a corrected thermophysical property value at temperature and the target thermophysical property value to obtain a correction value for the target device.

通常は、基準試料を基準温度となるようにして対象熱物性値を測定するが、対象装置の状態によっては、基準試料が基準温度に保たれない場合がある。本発明の第1の態様の熱物性測定装置の校正方法では、対象熱物性値を測定するステップにおいて、基準試料の周囲温度である測定時温度を測定し、基準試料の測定時温度における修正熱物性値と、対象熱物性値との差を算出して対象装置における補正値を求めている。従って、対象熱物性値と比較されるのは、基準試料の基準温度における熱物性値ではなく、測定時温度における熱物性値であるため、補正値を正確に算出することができる。ここで、前記基準試料の周囲温度である測定時温度の測定は、対象熱物性値を測定するステップの前に行ってもよく、後に行ってもよい。 Normally, the target thermophysical property value is measured while keeping the reference sample at the reference temperature, but depending on the state of the target device, the reference sample may not be kept at the reference temperature. In the method for calibrating a thermophysical property measuring device according to the first aspect of the present invention, in the step of measuring the target thermophysical property value, a temperature at the time of measurement, which is the ambient temperature of the reference sample, is measured, and a corrected temperature at the temperature at the time of measurement of the reference sample is measured. A correction value for the target device is obtained by calculating the difference between the physical property value and the target thermophysical property value. Therefore, what is compared with the target thermophysical property value is not the thermophysical property value of the reference sample at the reference temperature, but the thermophysical property value at the measurement temperature, so that the correction value can be calculated accurately. Here, the temperature at the time of measurement, which is the ambient temperature of the reference sample, may be measured before or after the step of measuring the target thermophysical property value.

次に、本発明の第2の態様の熱物性測定装置の校正方法は、基準温度における基準熱物性値を有する基準試料を用いて、熱物性測定装置の基準となる基準装置に対して、校正対象である対象装置の校正を行う熱物性測定装置の校正方法であって、前記基準試料を前記基準温度となるように温度調節するステップと、前記対象装置に前記基準試料を装着するステップと、前記対象装置によって前記基準試料の熱物性値である対象熱物性値を測定する際に、前記基準試料の周囲温度である測定時温度を測定するステップと、前記測定時温度と前記基準温度に差がある場合、前記基準試料が前記基準温度となるように温度調節を行って前記対象熱物性値を測定するステップと、前記対象熱物性値と前記基準熱物性値との差を算出して前記対象装置における補正値を求めるステップと、を有する。 Next, in the method for calibrating a thermophysical property measuring device according to the second aspect of the present invention, a reference sample having a reference thermophysical property value at a reference temperature is used to perform calibration with respect to a reference device that is a reference for the thermophysical property measuring device. A method for calibrating a thermophysical property measuring device that calibrates a target device, the method comprising: adjusting the temperature of the reference sample to the reference temperature; and mounting the reference sample on the target device. When measuring a target thermophysical property value, which is a thermophysical property value of the reference sample, by the target device, a step of measuring a temperature at the time of measurement, which is an ambient temperature of the reference sample, and a difference between the temperature at the time of measurement and the reference temperature. If there is, the step of measuring the target thermophysical property value by adjusting the temperature so that the reference sample has the reference temperature, and calculating the difference between the target thermophysical property value and the reference thermophysical property value. and determining a correction value for the target device.

本発明の第2の態様の熱物性測定装置の校正方法によれば、測定時温度と基準温度に差がある場合、基準試料が基準温度となるように温度調節を行って対象熱物性値を測定するため、基準熱物性値と対象熱物性値から補正値を正確に算出することができる。 According to the method for calibrating a thermophysical property measuring device according to the second aspect of the present invention, when there is a difference between the temperature at the time of measurement and the reference temperature, the temperature is adjusted so that the reference sample has the reference temperature, and the target thermophysical property value is adjusted. Because of the measurement, the correction value can be accurately calculated from the reference thermophysical property value and the target thermophysical property value.

また、本発明の熱物性測定装置の校正方法においては、前記対象熱物性値を測定するステップを、異なる基準熱物性値を有する複数の基準試料で行い、縦軸を前記対象熱物性値とし、横軸を前記基準熱物性値としたときに表れる点を近似直線関数で適正化した直線の値を前記対象熱物性値とするステップを有していてもよい。当該構成によれば、複数の基準熱物性値と複数の対象熱物性値で補正値が求められるので、対象装置の特性を、より基準装置の特性に近づけることができる。 Further, in the method for calibrating a thermophysical property measuring device of the present invention, the step of measuring the target thermophysical property value is performed using a plurality of reference samples having different reference thermophysical property values, and the vertical axis is the target thermophysical property value, The method may include the step of setting a value of a straight line obtained by optimizing the points appearing when the horizontal axis is the reference thermophysical property value using an approximate linear function as the target thermophysical property value. According to this configuration, since a correction value is obtained using a plurality of reference thermophysical property values and a plurality of target thermophysical property values, it is possible to bring the characteristics of the target device closer to the characteristics of the reference device.

また、本発明の熱物性測定装置の校正方法においては、前記基準装置における測定方式と前記対象装置における測定方式が異なる場合に、前記基準試料を異なる測定方式のすべてで測定可能な熱物性値を有する試料を用いて校正を行ってもよい。当該構成によれば、測定方法の相違による熱物性値の誤差を正確に校正することができる。 In addition, in the method for calibrating a thermophysical property measuring device of the present invention, when the measurement method in the reference device and the measurement method in the target device are different, the thermophysical property values that can be measured for the reference sample by all the different measurement methods are provided. Calibration may be performed using a sample that has According to this configuration, it is possible to accurately calibrate errors in thermophysical property values due to differences in measurement methods.

また、本発明の熱物性測定装置の校正方法においては、前記対象装置に対して、少なくとも埃、電磁波、又は振動のいずれかを低減させるノイズ防止処理を行うステップをさらに有していてもよい。対象装置の校正を行う際に、対象装置又は基準試料に埃等が付着すると、熱物性値に誤差が生じるおそれがある。従って、例えば、対象装置自体に防塵カバー等を装着するか、基準試料に防塵カバー等を装着し、或いは電磁波や振動を低減させるノイズ防止処理をすることで、対象装置において正確な熱物性値を測定することができる。 The method for calibrating a thermophysical property measuring device of the present invention may further include the step of performing noise prevention processing on the target device to reduce at least one of dust, electromagnetic waves, and vibrations. When calibrating the target device, if dust or the like adheres to the target device or the reference sample, there is a risk that errors will occur in the thermophysical property values. Therefore, for example, by attaching a dustproof cover to the target device itself, by attaching a dustproof cover to the reference sample, or by performing noise prevention processing to reduce electromagnetic waves and vibrations, accurate thermophysical property values can be obtained in the target device. can be measured.

また、本発明の第1の態様の熱物性測定装置の校正方法を実行可能な校正プログラムは、基準温度における基準熱物性値を有する基準試料を用いて、熱物性測定装置の基準となる基準装置に対して、校正対象である対象装置の校正を行う熱物性測定装置の校正方法を実行可能な校正プログラムであって、前記対象装置で実行可能であり、前記基準試料が装着された前記対象装置を作動させて、前記基準試料の熱物性値を測定して対象熱物性値を測定する際に前記基準試料の周囲温度である測定時温度を測定し、前記基準試料の前記測定時温度における修正熱物性値と、前記対象熱物性値との差を算出して前記対象装置における補正値を求め、前記補正値を前記対象装置で使用可能とする校正プログラムである。 Further, a calibration program that can execute the method for calibrating a thermophysical property measuring device according to the first aspect of the present invention uses a reference sample having a reference thermophysical property value at a reference temperature, and uses a reference sample that is a reference for the thermophysical property measuring device. A calibration program capable of executing a method for calibrating a thermophysical property measuring device that calibrates a target device that is a calibration target, the program being executable on the target device, the target device having the reference sample attached thereto. to measure the temperature at the time of measurement, which is the ambient temperature of the reference sample, when measuring the thermophysical property value of the reference sample to measure the target thermophysical property value, and correct the temperature at the time of measurement of the reference sample. The calibration program calculates a difference between a thermophysical property value and the target thermophysical property value to obtain a correction value for the target device, and makes the correction value usable in the target device.

また、本発明の第2の態様の熱物性測定装置の校正方法を実行可能な校正プログラムは、基準温度における基準熱物性値を有する基準試料を用いて、熱物性測定装置の基準となる基準装置に対して、校正対象である対象装置の校正を行う熱物性測定装置の校正方法を実行可能な校正プログラムであって、前記対象装置で実行可能であり、前記基準試料が装着された前記対象装置を作動させて、前記基準試料の熱物性値を測定して対象熱物性値を測定する際に前記基準試料の周囲温度である測定時温度を測定し、前記測定時温度と前記基準温度に差がある場合、前記基準試料が前記基準温度となるように温度調節を行って前記対象熱物性値を測定し、前記対象熱物性値と前記基準熱物性値との差を算出して前記対象装置における補正値を求め、前記補正値を前記対象装置で使用可能とする校正プログラムである。 Further, a calibration program that can execute the method for calibrating a thermophysical property measuring device according to the second aspect of the present invention uses a reference sample having a reference thermophysical property value at a reference temperature, and uses a reference sample that is a reference for the thermophysical property measuring device. A calibration program capable of executing a method for calibrating a thermophysical property measuring device that calibrates a target device that is a calibration target, the program being executable on the target device, the target device having the reference sample attached thereto. to measure the temperature at the time of measurement, which is the ambient temperature of the reference sample, when measuring the thermophysical property value of the reference sample to measure the target thermophysical property value, and detect the difference between the temperature at the time of measurement and the reference temperature. If so, adjust the temperature of the reference sample to the reference temperature, measure the target thermophysical property value, calculate the difference between the target thermophysical property value and the reference thermophysical property value, and measure the target thermophysical property value. This is a calibration program that calculates a correction value for and makes the correction value usable in the target device.

第1及び第2の校正プログラムは、対象装置やサーバ等にインストールされていてもよく、ネットワーク上で送受信されてもよく、CDロム、DVDロム、或いはフラッシュメモリ等の記憶媒体に記憶されていてもよい。 The first and second calibration programs may be installed in the target device, server, etc., may be transmitted and received over a network, and may be stored in a storage medium such as a CD ROM, DVD ROM, or flash memory. Good too.

また、本発明の熱物性測定装置の校正方法に使用される基準試料は、縦軸を前記基準試料の厚さとし、横軸を前記基準試料の熱拡散率としたときに表れる点が、定常法、レーザフラッシュ法、及び周期加熱法で測定可能な領域が互いに重なる領域となる熱物性を有する素材が用いられる。当該素材としては、ジルコニアセラミックを用いることができる。 Further, the reference sample used in the method for calibrating the thermophysical property measuring device of the present invention has a point that appears when the vertical axis is the thickness of the reference sample and the horizontal axis is the thermal diffusivity of the reference sample. A material is used that has thermophysical properties such that regions that can be measured by , laser flash method, and periodic heating method overlap with each other. Zirconia ceramic can be used as the material.

本発明の基準試料によれば、定常法、レーザフラッシュ法、及び周期加熱法のいずれの方式でも熱物性値を測定することが可能となる。従って、これらの測定法であって異なった測定法の測定を行う熱物性測定装置において、相互に校正を行うことができる。 According to the reference sample of the present invention, thermophysical property values can be measured using any of the steady method, laser flash method, and periodic heating method. Therefore, in thermophysical property measuring apparatuses that perform measurements using different measuring methods, mutual calibration can be performed.

また、本発明の基準試料においては、少なくとも前記レーザフラッシュ法及び前記周期加熱法の測定を行う熱物性測定装置に装着可能であり、前記熱物性測定装置に装着した状態で熱物性の測定が可能な測定窓を備えたケースに収納されていてもよい。当該構成によれば、少なくともレーザフラッシュ法及び周期加熱法の測定を行う際に、基準試料をケースに収納した状態で測定を行うことができる。 Furthermore, the reference sample of the present invention can be attached to a thermophysical property measuring device that performs measurements using at least the laser flash method and the periodic heating method, and the thermophysical properties can be measured while being attached to the thermophysical property measuring device. It may be housed in a case equipped with a measurement window. According to this configuration, when performing measurements using at least the laser flash method and the periodic heating method, the measurements can be performed with the reference sample housed in the case.

また、本発明の基準試料においては、前記ケースに前記基準試料の個体識別情報を含む情報が記憶されていてもよい。当該構成によれば、ケースに基準試料の個体識別情報が記憶されているので、校正方法の実行の際の測定ミスを防ぐことができる。 Further, in the reference sample of the present invention, information including individual identification information of the reference sample may be stored in the case. According to this configuration, since the individual identification information of the reference sample is stored in the case, it is possible to prevent measurement errors when executing the calibration method.

また、本発明の基準試料においては、前記ケースに、前記対象装置に装着される際の位置決めを行う位置決め部を備えていてもよい。基準試料には、試料の方向によって熱物性値が異なるものがあるが、当該位置決め部を備えることで、対象装置に対して基準試料を常に正しい方向で装着することができる。 Further, in the reference sample of the present invention, the case may include a positioning section for positioning the reference sample when it is attached to the target device. Some reference samples have different thermophysical property values depending on the direction of the sample, but by providing the positioning section, the reference sample can always be attached to the target device in the correct direction.

基準装置、複数の対象装置及びサーバがネットワークに接続された状態を示す説明図。FIG. 3 is an explanatory diagram showing a state in which a reference device, a plurality of target devices, and a server are connected to a network. 基準装置及び対象装置の機能的構成を示す説明図。FIG. 2 is an explanatory diagram showing the functional configurations of a reference device and a target device. 縦軸を基準試料の厚さとし、横軸を基準試料の熱拡散率としたグラフ。A graph where the vertical axis is the thickness of the reference sample and the horizontal axis is the thermal diffusivity of the reference sample. 基準試料及びケースの一例を示す説明図。An explanatory diagram showing an example of a reference sample and a case. 縦軸を対象装置の熱拡散率とし、横軸を基準装置の熱拡散率としたグラフ。A graph in which the vertical axis is the thermal diffusivity of the target device and the horizontal axis is the thermal diffusivity of the reference device. ケースの変形例を示す説明図。Explanatory diagram showing a modified example of the case.

次に、図1~図6を参照して、本発明の実施形態である熱物性測定装置の校正方法、プログラム及び基準試料について説明する。図1は、本発明の校正方法で使用される熱物性測定装置である基準装置1と、複数の校正対象である対象装置20(20a~20d)と、サーバ2がネットワーク3に接続された状態を示す説明図である。本実施形態においては、サーバ2内に本発明の校正方法を実行するためのプログラムが記憶されている。このプログラムは、サーバ2内のハードディスク等の記憶媒体に記憶され、サーバ2或いは対象装置20において実行可能である。 Next, with reference to FIGS. 1 to 6, a calibration method, a program, and a reference sample for a thermophysical property measuring device according to an embodiment of the present invention will be described. FIG. 1 shows a state in which a reference device 1 that is a thermophysical property measuring device used in the calibration method of the present invention, target devices 20 (20a to 20d) that are a plurality of calibration targets, and a server 2 are connected to a network 3. FIG. In this embodiment, a program for executing the calibration method of the present invention is stored in the server 2. This program is stored in a storage medium such as a hard disk within the server 2 and can be executed on the server 2 or the target device 20.

図1を参照して、ネットワーク3は、インターネット、イントラネット、或いは電話回線網等を含むものであり、その形式は特に限定されない。ネットワーク3には、1台の基準装置1と、複数台の対象装置20が接続されている。この各装置間の接続は、有線であってもよく無線であってもよい。また、本実施形態では、基準装置1と対象装置20がネットワーク3で接続されている場合について説明しているが、各装置がネットワーク3に接続せず、独立した状態であってもよい。 Referring to FIG. 1, network 3 includes the Internet, an intranet, a telephone line network, etc., and its format is not particularly limited. One reference device 1 and a plurality of target devices 20 are connected to the network 3. The connection between these devices may be wired or wireless. Further, in this embodiment, a case is described in which the reference device 1 and the target device 20 are connected through the network 3, but each device may not be connected to the network 3 and may be in an independent state.

図2を参照して、本発明の校正方法で使用される基準装置1及び対象装置20について説明する。本実施形態においては、基準装置1及び対象装置20は、基本的に同じ構成を備えた熱物性測定装置である。熱物性測定装置としては、例えば、測定方式として、周期加熱法(レーザ周期加熱法)により熱拡散率を測定する熱拡散率測定装置、レーザフラッシュ法により熱拡散率を測定する熱拡散率測定装置、或いは定常法により熱伝導率を測定する熱伝導率測定装置等が該当する。ここでは、周期加熱法により熱拡散率を測定する熱拡散率測定装置であるサーモウェーブアナライザ(株式会社ベテル製)を例にして説明する。 Referring to FIG. 2, the reference device 1 and target device 20 used in the calibration method of the present invention will be described. In this embodiment, the reference device 1 and the target device 20 are thermophysical property measuring devices having basically the same configuration. Examples of thermophysical property measuring devices include, for example, a thermal diffusivity measuring device that measures thermal diffusivity using a periodic heating method (laser periodic heating method), and a thermal diffusivity measuring device that measures thermal diffusivity using a laser flash method. , or a thermal conductivity measuring device that measures thermal conductivity using a steady method. Here, a thermowave analyzer (manufactured by Bethel Co., Ltd.), which is a thermal diffusivity measurement device that measures thermal diffusivity using a periodic heating method, will be explained as an example.

図2に示すように、基準装置1は、基準試料4等の測定対象物を保持するホルダ5と、測定対象物を加熱する加熱部6と、測定対象物の熱を検出する熱センサ7と、基準装置1の制御を行う制御部8を備えている。制御部8は、加熱部6によって測定対象物の温度制御を行う温度制御部9と、基準装置1の制御のための各種データを記憶している記憶部10と、熱センサ7からの信号を用いて演算を行う演算部11を備えている。 As shown in FIG. 2, the reference device 1 includes a holder 5 that holds an object to be measured such as a reference sample 4, a heating section 6 that heats the object to be measured, and a thermal sensor 7 that detects the heat of the object to be measured. , a control section 8 that controls the reference device 1. The control unit 8 includes a temperature control unit 9 that controls the temperature of the object to be measured using the heating unit 6, a storage unit 10 that stores various data for controlling the reference device 1, and a signal from the thermal sensor 7. It is equipped with an arithmetic unit 11 that performs arithmetic operations.

加熱部6は、本実施形態ではダイオードレーザを備えたレーザ装置を用いている。熱センサ7は、加熱された測定対象物(基準試料4等)から放射される熱エネルギーを温度に換算し、温度分布として画像表示する赤外線サーモグラフィを用いている。 In this embodiment, the heating section 6 uses a laser device equipped with a diode laser. The thermal sensor 7 uses infrared thermography, which converts thermal energy radiated from a heated measurement object (reference sample 4, etc.) into temperature, and displays an image as a temperature distribution.

制御部8における温度制御部9、及び演算部11は、基準装置1に内蔵され、或いは外部から接続されたコンピュータと、コンピュータにインストールされたプログラム(ソフトウエア)によって構成される。このコンピュータは、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスク、各種インターフェース等から構成されている。記憶部10は、RAM、ROM、ハードディスク等の記憶デバイスによって構成される。なお、サーバ2についても、CPU等を有するコンピュータと、各種通信装置等を備えている。 The temperature control section 9 and calculation section 11 in the control section 8 are configured by a computer built into the reference device 1 or connected from the outside, and a program (software) installed in the computer. This computer is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a hard disk, various interfaces, and the like. The storage unit 10 is composed of storage devices such as RAM, ROM, and hard disk. Note that the server 2 also includes a computer having a CPU, etc., and various communication devices.

対象装置20は、基準装置1と同様に、ホルダ22、加熱部23、熱センサ24、制御部25、温度制御部26、記憶部27、及び演算部28を備えている。図2に記載された追加温度制御部29は、本実施形態の校正方法での校正の際に用いられる装置である。追加温度制御部29は、対象装置20に装着された測定対象物の温度を検知する温度センサ30と、測定対象物の周囲の温度を制御する温度制御部31を備えている。この温度制御部31は、ペルチェ冷却素子とヒータ(図示省略)を備えており、測定対象物の周囲の温度を制御して、測定対象物の温度を制御することができる。 The target device 20, like the reference device 1, includes a holder 22, a heating section 23, a thermal sensor 24, a control section 25, a temperature control section 26, a storage section 27, and a calculation section 28. The additional temperature control unit 29 shown in FIG. 2 is a device used during calibration in the calibration method of this embodiment. The additional temperature control unit 29 includes a temperature sensor 30 that detects the temperature of a measurement target attached to the target device 20, and a temperature control unit 31 that controls the temperature around the measurement target. The temperature control unit 31 includes a Peltier cooling element and a heater (not shown), and can control the temperature of the object to be measured by controlling the temperature around the object to be measured.

また、本実施形態においては、対象装置20の加熱部23、基準試料4、ホルダ22、及び熱センサ24の周囲をノイズ防止パネル32で囲い、ノイズ防止処理を行っている。このノイズ防止パネル32は、埃を遮断する他、外部からの振動や電磁波を低減できる機能を有している。 Further, in this embodiment, the heating section 23, reference sample 4, holder 22, and thermal sensor 24 of the target device 20 are surrounded by a noise prevention panel 32 to perform noise prevention processing. This noise prevention panel 32 has the function of blocking dust and reducing external vibrations and electromagnetic waves.

次に、本実施形態の熱物性測定装置の校正方法で用いられる基準試料4及び基準試料用のケース40について、図3及び図4を参照して説明する。図3は、縦軸を基準試料4の厚さとし、横軸を基準試料4の熱拡散率としたグラフである。図4は、基準試料4と、この基準試料4の周囲を囲むケース40を示す説明図である。 Next, the reference sample 4 and the reference sample case 40 used in the method for calibrating a thermophysical property measuring device of this embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is a graph in which the thickness of the reference sample 4 is plotted on the vertical axis and the thermal diffusivity of the reference sample 4 is plotted on the horizontal axis. FIG. 4 is an explanatory diagram showing the reference sample 4 and a case 40 surrounding the reference sample 4.

基準試料4は、基準温度で基準熱物性値を有する試料である。例えば、基準温度である25℃で熱拡散率が1000mm/sとなる部材である。基準試料4は、本実施形態では平面視で正方形に形成され、厚さは30μmに形成されている。Reference sample 4 is a sample having reference thermophysical property values at reference temperature. For example, it is a member whose thermal diffusivity is 1000 mm 2 /s at a reference temperature of 25°C. In this embodiment, the reference sample 4 is formed into a square shape when viewed from above, and has a thickness of 30 μm.

また、本実施形態において、基準試料4は、図3に示すように、縦軸を基準試料4の厚さとし、横軸を基準試料4の熱拡散率としたグラフに表される定常法の測定可能領域A、レーザフラッシュ法の測定可能領域B、及び周期加熱法の測定可能領域Cが互いに重なる領域に合致する素材を用いている(図3中の符号D)。本実施形態においては、基準試料4の素材として、ジルコニアセラミックを用いている。 In addition, in this embodiment, the reference sample 4 is measured by the steady method, which is expressed in a graph where the vertical axis is the thickness of the reference sample 4 and the horizontal axis is the thermal diffusivity of the reference sample 4, as shown in FIG. A material is used that matches the region where the measurable region A, the measurable region B of the laser flash method, and the measurable region C of the periodic heating method overlap each other (symbol D in FIG. 3). In this embodiment, zirconia ceramic is used as the material for the reference sample 4.

基準試料4を保護するケース40は、各種の熱物性測定装置に装着可能なケースである。本実施形態では、図4に示すように、ケース40は、金属製の線材により格子状に形成されたガード部41と、ガード部41を保持して基準試料4に当接するスペーサ42とを備えている。本実施形態のケース40は、上記構成となっているので、線材の箇所以外が測定可能な測定窓43となっており、加熱部23によって基準試料4を全体的に加熱することが可能となる。 The case 40 that protects the reference sample 4 is a case that can be attached to various thermophysical property measuring devices. In this embodiment, as shown in FIG. 4, the case 40 includes a guard part 41 formed in a lattice shape from a metal wire, and a spacer 42 that holds the guard part 41 and abuts against the reference sample 4. ing. Since the case 40 of this embodiment has the above-mentioned configuration, the measurement window 43 is capable of measuring areas other than the wire rod, and the reference sample 4 can be heated entirely by the heating unit 23. .

また、本実施形態においては、スペーサ42に、記憶部44が設けられている。この記憶部44は、内部に保持された測定対象物である基準試料4の個体識別情報を含む情報が記憶されている。本実施形態においては、ケース40に基準試料4を収納した状態で、対象装置20のホルダ22に装着すると、ホルダ22に設けられているインターフェース(図示省略)に接続され、対象装置20に基準試料4の個体識別情報を読み取り可能となっている。基準試料4の個体識別情報としては、基準試料の材質、基準温度時の熱物性値等が挙げられる。 Furthermore, in this embodiment, the spacer 42 is provided with a storage section 44 . This storage unit 44 stores information including individual identification information of the reference sample 4, which is the measurement target object held therein. In this embodiment, when the case 40 houses the reference sample 4 and is attached to the holder 22 of the target device 20, the reference sample 4 is connected to the interface (not shown) provided in the holder 22, and the reference sample 4 is attached to the target device 20. 4 individual identification information can be read. The individual identification information of the reference sample 4 includes the material of the reference sample, the thermophysical property value at the reference temperature, and the like.

次に、校正前の対象装置20における熱物性測定方法について説明する。対象装置20が通常の状態で使用される際には、図2に示す追加温度制御部29は対象装置20に装着されていない状態となる。 Next, a method for measuring thermophysical properties in the target device 20 before calibration will be described. When the target device 20 is used in a normal state, the additional temperature control unit 29 shown in FIG. 2 is not attached to the target device 20.

この状態で、対象装置20を用いて基準試料4の熱物性値の測定を行う場合は、まず、基準試料4が基準温度である25℃になるように温度調整される。次に、この基準試料4を対象装置20のホルダ22に装着する。次に、基準試料4を加熱部23によって加熱し、熱センサ24により検出された熱信号を演算部28によって演算し、熱拡散率を算出測定する。具体的な熱拡散率の測定については、特許文献1や、装置の取扱説明書等に記載されており周知であるため、ここでは詳細な説明は省略する。 In this state, when measuring the thermophysical property values of the reference sample 4 using the target device 20, the temperature of the reference sample 4 is first adjusted to the reference temperature of 25°C. Next, this reference sample 4 is attached to the holder 22 of the target device 20. Next, the reference sample 4 is heated by the heating unit 23, the thermal signal detected by the thermal sensor 24 is calculated by the calculation unit 28, and the thermal diffusivity is calculated and measured. The specific measurement of thermal diffusivity is described in Patent Document 1, the instruction manual of the device, etc., and is well known, so a detailed explanation will be omitted here.

ここで、基準装置1と対象装置20との間に個体差がある場合、基準装置1によって測定された熱拡散率の値と、対象装置20によって測定された熱拡散率の値に差が生じる。 Here, if there is an individual difference between the reference device 1 and the target device 20, a difference will occur between the value of the thermal diffusivity measured by the reference device 1 and the value of the thermal diffusivity measured by the target device 20. .

次に、本発明の第1の実施形態の熱物性測定装置の校正方法について、図1~図6を参照して説明する。第1の実施形態の校正方法では、基準装置1と対象装置20との間に個体差によって生じる熱拡散率の値の差を補正し、基準装置1と対象装置20との個体差を解消し、対象装置20で測定した測定結果である対象熱物性値が、基準装置1で測定した基準熱物性値と同一になるように校正を行う。 Next, a method for calibrating the thermophysical property measuring device according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 6. In the calibration method of the first embodiment, the difference in thermal diffusivity values caused by individual differences between the reference device 1 and the target device 20 is corrected, and the individual differences between the reference device 1 and the target device 20 are eliminated. Calibration is performed so that the target thermophysical property value, which is the measurement result measured by the target device 20, is the same as the reference thermophysical property value measured by the reference device 1.

本発明の第1の実施形態の校正方法は、主にサーバ2にインストールされた校正プログラムによって実行され、以下のステップで行われる。まず、基準試料4の温度が基準温度である25℃になるように温度調節を行う(STEP1)。具体的には、基準試料4をケース40に収納された状態で、恒温装置等を用いて基準温度に保つようにする。 The calibration method according to the first embodiment of the present invention is mainly executed by a calibration program installed on the server 2, and is performed in the following steps. First, the temperature of the reference sample 4 is adjusted to the reference temperature of 25° C. (STEP 1). Specifically, the reference sample 4 is housed in the case 40 and kept at the reference temperature using a constant temperature device or the like.

次に、校正を行う作業者が対象装置20に基準試料4を装着する(STEP2)。本実施形態では、周期加熱法で熱物性の測定を行う測定器であるため、基準試料4はケース40に収納された状態でホルダ22に装着される。このとき、ケース40に設けられた記憶部44に記憶された基準試料4の個体識別情報が対象装置20に読み込まれる。 Next, the operator who performs the calibration attaches the reference sample 4 to the target device 20 (STEP 2). In this embodiment, since the measuring instrument measures thermophysical properties using a periodic heating method, the reference sample 4 is attached to the holder 22 while being housed in the case 40 . At this time, the individual identification information of the reference sample 4 stored in the storage unit 44 provided in the case 40 is read into the target device 20.

次に、作業者が、対象装置20の加熱部23、基準試料4、ホルダ22、及び熱センサ24の周囲をノイズ防止パネル32で囲い、ノイズ防止処理を行う(STEP3)。このノイズ防止処理は、対象装置20の外側全体をノイズ防止パネルで囲うようにしてもよい(図示省略)。 Next, the operator surrounds the heating unit 23, reference sample 4, holder 22, and thermal sensor 24 of the target device 20 with a noise prevention panel 32, and performs noise prevention processing (STEP 3). This noise prevention process may be performed by surrounding the entire outside of the target device 20 with a noise prevention panel (not shown).

次に、本発明の校正プログラムが対象装置20を作動させて、基準試料4の熱物性値である対象熱物性値を測定する(STEP4)。具体的には、温度制御部26が、加熱部23のダイオードレーザを作動させて基準試料4を加熱し、熱センサ24によって基準試料4の裏面の熱エネルギーを検出し、熱センサ24により検出された熱信号を演算部28によって演算し、対象熱物性値(熱拡散率)を算出測定する。 Next, the calibration program of the present invention operates the target device 20 to measure the target thermophysical property value, which is the thermophysical property value of the reference sample 4 (STEP 4). Specifically, the temperature control section 26 activates the diode laser of the heating section 23 to heat the reference sample 4, and the thermal sensor 24 detects thermal energy on the back surface of the reference sample 4. The calculated thermal signal is calculated by the calculation unit 28, and the target thermophysical property value (thermal diffusivity) is calculated and measured.

このとき、追加温度制御部29の温度センサ30によって、基準試料4の周囲温度である測定時温度を測定する(STEP5)。本実施形態では、周囲温度である測定時温度として、ホルダ22の温度を測定している。この周囲温度としては、例えば、基準試料4の雰囲気温度、ケース40の温度、その他基準試料4の周囲にある部材や空間の温度が挙げられる。 At this time, the temperature sensor 30 of the additional temperature control section 29 measures the measurement temperature, which is the ambient temperature of the reference sample 4 (STEP 5). In this embodiment, the temperature of the holder 22 is measured as the ambient temperature at the time of measurement. Examples of this ambient temperature include the ambient temperature of the reference sample 4, the temperature of the case 40, and the temperature of other members and spaces around the reference sample 4.

この測定時温度が基準温度と異なる場合は、基準試料4の熱物性値が基準温度における基準熱物性値とは異なることになる。ここで、本発明の校正プログラムでは、基準試料4の前記測定時温度における熱物性値である修正熱物性値を読み出す。この修正熱物性値は、サーバ2内に記憶されているか、或いはケース40の記憶部44に記憶されているか、基準装置1で測定した温度と熱物性値のデータテーブルから読み出される。この修正熱物性値は、記憶部27にロードして使用する場合もある。 If the temperature at the time of measurement is different from the reference temperature, the thermophysical property value of the reference sample 4 will be different from the reference thermophysical property value at the reference temperature. Here, in the calibration program of the present invention, a corrected thermophysical property value, which is a thermophysical property value of the reference sample 4 at the temperature at the time of measurement, is read out. This corrected thermophysical property value is stored in the server 2 or in the storage unit 44 of the case 40, or is read from a data table of temperature and thermophysical property values measured by the reference device 1. This corrected thermophysical property value may be loaded into the storage unit 27 and used.

次に、本発明の校正プログラムは、対象熱物性値と修正熱物性値との差を算出して、対象装置20における補正値を求める(STEP6)。対象熱物性値は測定時温度における熱物性値であり、修正熱物性値も測定時温度と同一の温度における基準試料4の熱物性値である。このため、対象熱物性値と修正熱物性値との差を算出し、この差を解消するような補正値(又は関数)を算出し、対象装置20で使用可能とすることにより、正確に対象装置20の校正を行うことができる。 Next, the calibration program of the present invention calculates the difference between the target thermophysical property value and the corrected thermophysical property value to obtain a correction value for the target device 20 (STEP 6). The target thermophysical property value is the thermophysical property value at the temperature at the time of measurement, and the corrected thermophysical property value is also the thermophysical property value of the reference sample 4 at the same temperature as the temperature at the time of measurement. Therefore, by calculating the difference between the target thermophysical property value and the corrected thermophysical property value, calculating a correction value (or function) that eliminates this difference, and making it usable in the target device 20, it is possible to accurately target the target thermophysical property value. Calibration of device 20 can be performed.

例えば、対象熱物性値が、修正熱物性値に対して10%マイナスとなっている場合、このマイナス10%の値を、基準熱物性値と同一の値に補正するための数値(又は関数)が補正値となる。このように、上記校正方法により、対象装置20は、基準装置1と同様の特性を有する装置となる。従って、複数の対象装置20(図1における20a~20d)が存在する場合であっても、各対象装置20a~20dの間で測定データの誤差がなくなるので、測定データの共有や比較が容易となる。 For example, if the target thermophysical property value is 10% minus the corrected thermophysical property value, a numerical value (or function) to correct this minus 10% value to the same value as the reference thermophysical property value. is the correction value. In this way, by the above calibration method, the target device 20 becomes a device having the same characteristics as the reference device 1. Therefore, even if there are multiple target devices 20 (20a to 20d in FIG. 1), there will be no error in the measured data between the target devices 20a to 20d, making it easy to share and compare the measured data. Become.

次に、本発明の第2の実施形態の校正方法について説明する。第2の実施形態の校正方法では、測定時温度と基準温度とが異なる場合、測定時温度が基準温度と同一となるように基準試料4の温度制御を行う点が上記第1の実施形態と異なっている。 Next, a calibration method according to a second embodiment of the present invention will be described. The calibration method of the second embodiment is different from the first embodiment in that, when the temperature at the time of measurement and the reference temperature are different, the temperature of the reference sample 4 is controlled so that the temperature at the time of measurement is the same as the reference temperature. It's different.

第2の実施形態の校正方法においても、第1の実施形態と同様に、基準試料4の温度が基準温度である25℃になるように温度調節を行い(STEP1)、対象装置20に基準試料4を装着し(STEP2)、ノイズ防止処理を行った上で(STEP3)、対象装置20を作動させて基準試料4の熱物性値である対象熱物性値を測定し(STEP4)、追加温度制御部29の温度センサ30によって、基準試料4の周囲温度である測定時温度を測定する(STEP5)。 In the calibration method of the second embodiment, as in the first embodiment, the temperature of the reference sample 4 is adjusted to the reference temperature of 25° C. (STEP 1), and the reference sample is placed in the target device 20. 4 (STEP 2), performs noise prevention processing (STEP 3), operates the target device 20 to measure the target thermophysical property value, which is the thermophysical property value of the reference sample 4 (STEP 4), and performs additional temperature control. The temperature at the time of measurement, which is the ambient temperature of the reference sample 4, is measured by the temperature sensor 30 of the section 29 (STEP 5).

第2の実施形態の校正方法において、測定時温度が基準温度と異なる場合は、測定時温度が基準温度と同一となるように制御を行う(STEP7)。具体的には、測定時温度が基準温度よりも低い場合、温度制御部31によって基準試料4の周囲を加温して、基準試料4の周囲の温度が基準温度である25℃となるように制御する。逆に、基準試料4の測定時温度が基準温度よりも高い場合は、温度制御部31によって基準試料4の周囲を冷却する。 In the calibration method of the second embodiment, if the temperature at the time of measurement is different from the reference temperature, control is performed so that the temperature at the time of measurement is the same as the reference temperature (STEP 7). Specifically, when the temperature at the time of measurement is lower than the reference temperature, the temperature control section 31 warms the area around the reference sample 4 so that the temperature around the reference sample 4 reaches the reference temperature of 25°C. Control. Conversely, if the temperature of the reference sample 4 at the time of measurement is higher than the reference temperature, the temperature control section 31 cools the area around the reference sample 4.

このSTEP7によって、温度センサ30により検出される温度が基準温度と同一の温度となって安定した後、校正プログラムは、対象熱物性値と基準熱物性値との差を算出して、対象装置20における補正値を求める(STEP8)。この場合、対象熱物性値及び基準熱物性値は、共に基準温度における熱物性値であるため、両者の差が基準装置1と対象装置20の個体差となる。 After the temperature detected by the temperature sensor 30 becomes the same as the reference temperature and stabilizes in STEP 7, the calibration program calculates the difference between the target thermophysical property value and the reference thermophysical property value, and Find a correction value for (STEP 8). In this case, since both the target thermophysical property value and the reference thermophysical property value are thermophysical property values at the reference temperature, the difference between the two becomes the individual difference between the reference device 1 and the target device 20.

校正プログラムは、対象熱物性値が基準熱物性値と同一となるような補正値を求め、この補正値を記憶部27に記憶させる。これにより、当該補正値は対象装置20で使用可能となる。例えば、対象熱物性値が、基準熱物性値に対して10%マイナスとなっている場合、このマイナス10%の値を、基準熱物性値と同一の値に補正するための数値(又は関数)が補正値となる。 The calibration program determines a correction value that makes the target thermophysical property value the same as the reference thermophysical property value, and stores this correction value in the storage unit 27. This allows the correction value to be used by the target device 20. For example, if the target thermophysical property value is 10% minus the reference thermophysical property value, a numerical value (or function) to correct this minus 10% value to the same value as the reference thermophysical property value. is the correction value.

また、第1及び第2の実施形態の校正方法によれば、基準装置1と対象装置20の測定方式が異なる場合であっても、基準試料4が、測定方式の異なる方式のいずれにも対応可能であるため、各測定方式の対象装置20において、上記実施形態と同様の流れで校正を行うことができる。 Further, according to the calibration methods of the first and second embodiments, even if the measurement methods of the reference device 1 and the target device 20 are different, the reference sample 4 is compatible with any of the different measurement methods. Since this is possible, calibration can be performed in the target device 20 of each measurement method in the same manner as in the above embodiment.

また、第1及び第2の実施形態の校正方法において、対象装置20の加熱部23の加熱エネルギー量と、基準装置1の加熱部6の加熱エネルギー量とを比較し、両者に差があれば、対象装置20の加熱部23の加熱エネルギー量を、基準装置1と同様に制御するようにしてもよい。これにより、校正の際の基準試料4の温度変化特性についても基準装置1と同様に制御することができ、基準装置1と対象装置20の個体差をさらに減少させることができる。 In addition, in the calibration methods of the first and second embodiments, the amount of heating energy of the heating unit 23 of the target device 20 and the amount of heating energy of the heating unit 6 of the reference device 1 are compared, and if there is a difference between the two, , the amount of heating energy of the heating unit 23 of the target device 20 may be controlled in the same way as the reference device 1. Thereby, the temperature change characteristics of the reference sample 4 during calibration can be controlled in the same manner as the reference device 1, and the individual differences between the reference device 1 and the target device 20 can be further reduced.

また、上記各実施形態の校正方法において、補正値を求めるステップを複数回行い、得られた複数の補正値を平均化するようにしてもよい。これにより、より正確な補正値を得ることができる。 Furthermore, in the calibration method of each of the embodiments described above, the step of obtaining the correction value may be performed multiple times, and the obtained correction values may be averaged. This makes it possible to obtain more accurate correction values.

その際、得られた対象熱物性値又は補正値について、予め適正範囲を定めておき、この適正範囲を超えた値が検出された際に、その値をノイズとして除去するようにしてもよい。熱物性測定装置による測定の際には、外乱要因により不適切な値が得られる場合があるが、このように各値について適正範囲を定めておくことで、外来要因によるノイズを除去することができる。 At this time, an appropriate range may be determined in advance for the obtained target thermophysical property value or correction value, and when a value exceeding this appropriate range is detected, that value may be removed as noise. When measuring with a thermophysical property measuring device, inappropriate values may be obtained due to disturbance factors, but by setting the appropriate range for each value in this way, it is possible to eliminate noise caused by external factors. can.

次に、上記各実施形態の校正方法について、異なる基準熱物性値を有する複数の基準試料4を用いて行う場合について説明する。例えば、基準試料4の素材をグラファイトシートとし、基準熱物性値がそれぞれ800、900、及び1000mm/sの熱拡散率を有する3枚の基準試料4を用いる。Next, the case where the calibration method of each of the above embodiments is performed using a plurality of reference samples 4 having different reference thermophysical property values will be described. For example, the material of the reference sample 4 is a graphite sheet, and three reference samples 4 having reference thermophysical property values of thermal diffusivities of 800, 900, and 1000 mm 2 /s, respectively, are used.

これらの3枚の基準試料4を用いて対象熱物性値を求め、縦軸を対象熱物性値(対象装置20で求められた熱拡散率)とし、横軸を基準熱物性値(基準装置1で求められた熱拡散率)としてグラフに表すと、図5の通りとなる。ここで、図5に表れる3つの点を用いて、近似直線関数で適正化した直線を引くと、符号Lの直線となる。この符号Lで表された直線の値から対象熱物性値を導き出すことで、より対象装置20の特性を基準装置1の特性に近づけることができる。なお、近似直線関数での最適化は、最小二乗法による直線回帰等、周知の手法で行うことができる。 The target thermophysical property values are determined using these three reference samples 4, and the vertical axis is the target thermophysical property value (thermal diffusivity determined by the target device 20), and the horizontal axis is the reference thermophysical property value (the thermal diffusivity determined by the target device 1). When expressed in a graph as the thermal diffusivity (thermal diffusivity determined by Here, when a straight line optimized by an approximate straight line function is drawn using the three points appearing in FIG. 5, a straight line with symbol L is obtained. By deriving the target thermophysical property value from the value of the straight line represented by the symbol L, the characteristics of the target device 20 can be brought closer to the characteristics of the reference device 1. Note that the optimization using the approximate linear function can be performed by a well-known method such as linear regression using the least squares method.

上記実施形態の校正方法を、図1に示す複数台の対象装置20a~20dに実施することにより、サーバ2には各対象装置20の補正値等のデータを蓄積することができる。また、上記実施形態の校正方法を、各対象装置20a~20dについて定期的に実施することもできる。このように定期的に校正方法の実施を行うことにより、各対象装置20a~20dの経時的な特性の変化も管理者側で把握することができる。従って、各対象装置20a~20dのいずれかの装置に故障が発生しそうな状況となった場合に、事前に修理等の対応を行うことができる。 By implementing the calibration method of the above embodiment on a plurality of target devices 20a to 20d shown in FIG. 1, data such as correction values for each target device 20 can be stored in the server 2. Further, the calibration method of the embodiment described above can be periodically performed on each of the target devices 20a to 20d. By periodically performing the calibration method in this way, the administrator can also grasp changes in the characteristics of each of the target devices 20a to 20d over time. Therefore, in the event that a failure is likely to occur in any one of the target devices 20a to 20d, repairs or other measures can be taken in advance.

次に、ケース40の変形例について図6を参照して説明する。図6に示すように、ケース45は、金属製の本体が基準試料4のほぼ全面を覆うものであり、中央の一部に円形の測定窓46を設けた形状となっている。図6はケース45の表面を表しているが、裏面も同様に測定窓46が形成されている。 Next, a modification of the case 40 will be described with reference to FIG. 6. As shown in FIG. 6, the case 45 has a metal body that covers almost the entire surface of the reference sample 4, and has a shape in which a circular measurement window 46 is provided in a part of the center. Although FIG. 6 shows the front surface of the case 45, a measurement window 46 is similarly formed on the back surface.

熱物性測定装置が周期加熱方式で測定を行う装置の場合、基準試料4の加熱点及び測定点は点であるため、このような形状のケースが基準試料4の保護のために適している。また、ケース45の表面には、基準試料4の個体識別情報が記録された二次元コード47を設けてもよい。さらに、RFIDタグ等を用いて無線で個体識別情報を取得可能としてもよい。 When the thermophysical property measuring device performs measurements using a periodic heating method, the heating point and measurement point of the reference sample 4 are points, so a case having such a shape is suitable for protecting the reference sample 4. Further, a two-dimensional code 47 in which individual identification information of the reference sample 4 is recorded may be provided on the surface of the case 45. Furthermore, individual identification information may be acquired wirelessly using an RFID tag or the like.

また、図6に示すように、ケース45に対象装置20のホルダ22に設けられた位置決め突起(図示省略)に対応し、ケース45のホルダ22に対する位置決めを行う位置決め凹部48(位置決め部)を設けてもよい。熱物性値の測定対象物がグラファイトシートのような素材であるときは、試料の縦方向と横方向で特性が異なる場合が多い。このような場合、基準試料4をホルダ22に装着する際に、基準試料4の縦横を常に一定にする必要がある。 Further, as shown in FIG. 6, the case 45 is provided with a positioning recess 48 (positioning part) that positions the case 45 with respect to the holder 22, corresponding to a positioning protrusion (not shown) provided on the holder 22 of the target device 20. It's okay. When the object to be measured for thermophysical properties is a material such as a graphite sheet, the properties often differ between the longitudinal and lateral directions of the sample. In such a case, when mounting the reference sample 4 on the holder 22, it is necessary to always keep the length and width of the reference sample 4 constant.

本実施形態では、ケース45にこのような位置決め凹部48を設けることで、ホルダ22に対して常に正しい方向に基準試料4を装着することができる。このため、特に周期加熱法を用いて熱物性値の測定を行う熱物性測定装置に対して好適である。この位置決め凹部48は突起としてもよく、図4におけるケース40の場合は、ガード部41を位置決めに用いてもよい。 In this embodiment, by providing such a positioning recess 48 in the case 45, the reference sample 4 can always be attached to the holder 22 in the correct direction. Therefore, it is particularly suitable for a thermophysical property measuring device that measures thermophysical property values using a periodic heating method. This positioning recess 48 may be a protrusion, and in the case of the case 40 in FIG. 4, the guard portion 41 may be used for positioning.

なお、上記各実施形態における校正プログラムは、サーバ2内にインストールしているが、これに限らず、フラッシュメモリ等の記憶媒体に記憶させ、校正を行う対象装置20に直接インストールするようにしてもよい。また、上記各実施形態においては、ノイズ防止処理を行っているが、対象装置20がクリーンルーム等、埃等が問題とならない環境に設置されている場合は、ノイズ防止処理は不要となる。 Although the calibration program in each of the above embodiments is installed in the server 2, the present invention is not limited to this, and the calibration program may be stored in a storage medium such as a flash memory and installed directly in the target device 20 to be calibrated. good. Further, in each of the above embodiments, noise prevention processing is performed, but if the target device 20 is installed in an environment where dust and the like are not a problem, such as a clean room, noise prevention processing is not necessary.

1…基準装置、2…サーバ、3…ネットワーク、4…基準試料、5…ホルダ、6…加熱部、7…熱センサ、8…制御部、9…温度制御部、10…記憶部、11…演算部、20…対象装置、22…ホルダ、23…加熱部、24…熱センサ、25…制御部、26…温度制御部、27…記憶部、28…演算部、29…追加温度制御部、30…温度センサ、31…温度制御部、32…ノイズ防止パネル、40…ケース、41…ガード部、42…スペーサ、43…測定窓、44…記憶部、45…ケース、46…測定窓、47…二次元コード、48…位置決め凹部。

DESCRIPTION OF SYMBOLS 1... Reference device, 2... Server, 3... Network, 4... Reference sample, 5... Holder, 6... Heating part, 7... Thermal sensor, 8... Control part, 9... Temperature control part, 10... Storage part, 11... Arithmetic unit, 20... Target device, 22... Holder, 23... Heating unit, 24... Heat sensor, 25... Control unit, 26... Temperature control unit, 27... Storage unit, 28... Arithmetic unit, 29... Additional temperature control unit, 30...Temperature sensor, 31...Temperature control section, 32...Noise prevention panel, 40...Case, 41...Guard section, 42...Spacer, 43...Measurement window, 44...Storage section, 45...Case, 46...Measurement window, 47 ...Two-dimensional code, 48...Positioning recess.

Claims (13)

基準温度における基準熱物性値を有する基準試料を用いて、熱物性測定装置の基準となる基準装置に対して、校正対象である対象装置の校正を行う熱物性測定装置の校正方法であって、
前記基準試料を前記基準温度となるように温度調節するステップと、
前記対象装置に前記基準試料を装着するステップと、
前記対象装置によって前記基準試料の熱物性値である対象熱物性値を測定するステップと、
前記基準試料の周囲温度である測定時温度を測定し、前記基準試料の前記測定時温度における修正熱物性値と、前記対象熱物性値との差を算出して前記対象装置における補正値を求めるステップと、を有する熱物性測定装置の校正方法。
A method for calibrating a thermophysical property measuring device, in which a target device to be calibrated is calibrated with respect to a reference device serving as a reference for the thermophysical property measuring device, using a reference sample having a reference thermophysical property value at a reference temperature, the method comprising:
adjusting the temperature of the reference sample to the reference temperature;
mounting the reference sample on the target device;
measuring a target thermophysical property value that is a thermophysical property value of the reference sample using the target device;
A temperature at the time of measurement, which is an ambient temperature of the reference sample, is measured, and a difference between a corrected thermophysical property value of the reference sample at the temperature at the time of measurement and the target thermophysical property value is calculated to obtain a correction value for the target device. A method for calibrating a thermophysical property measuring device, comprising the steps of:
基準温度における基準熱物性値を有する基準試料を用いて、熱物性測定装置の基準となる基準装置に対して、校正対象である対象装置の校正を行う熱物性測定装置の校正方法であって、
前記基準試料を前記基準温度となるように温度調節するステップと、
前記対象装置に前記基準試料を装着するステップと、
前記対象装置によって前記基準試料の熱物性値である対象熱物性値を測定する際に、前記基準試料の周囲温度である測定時温度を測定するステップと、
前記測定時温度と前記基準温度に差がある場合、前記基準試料が前記基準温度となるように温度調節を行って前記対象熱物性値を測定するステップと、
前記対象熱物性値と前記基準熱物性値との差を算出して前記対象装置における補正値を求めるステップと、を有する熱物性測定装置の校正方法。
A method for calibrating a thermophysical property measuring device, in which a target device to be calibrated is calibrated with respect to a reference device serving as a reference for the thermophysical property measuring device, using a reference sample having a reference thermophysical property value at a reference temperature, the method comprising:
adjusting the temperature of the reference sample to the reference temperature;
mounting the reference sample on the target device;
when measuring a target thermophysical property value, which is a thermophysical property value of the reference sample, with the target device, measuring a temperature at the time of measurement, which is an ambient temperature of the reference sample;
If there is a difference between the temperature at the time of measurement and the reference temperature, adjusting the temperature so that the reference sample reaches the reference temperature and measuring the target thermophysical property value;
A method for calibrating a thermophysical property measuring device, comprising the step of calculating a difference between the target thermophysical property value and the reference thermophysical property value to obtain a correction value for the target device.
請求項1又は2に記載の熱物性測定装置の校正方法であって、
前記対象熱物性値を測定するステップを、異なる基準熱物性値を有する複数の基準試料で行い、
縦軸を前記対象熱物性値とし、横軸を前記基準熱物性値としたときに表れる点を近似直線関数で適正化した直線の値を前記対象熱物性値とするステップを有する熱物性測定装置の校正方法。
A method for calibrating a thermophysical property measuring device according to claim 1 or 2, comprising:
performing the step of measuring the target thermophysical property value with a plurality of reference samples having different reference thermophysical property values;
A thermophysical property measuring device comprising the step of setting the value of a straight line obtained by optimizing the points appearing when the vertical axis is the target thermophysical property value and the horizontal axis is the reference thermophysical property value as the target thermophysical property value. Calibration method.
請求項1乃至3のいずれか1項に記載の熱物性測定装置の校正方法であって、
前記基準装置における測定方式と前記対象装置における測定方式が異なる場合に、
前記基準試料を異なる測定方式のすべてで測定可能な熱物性値を有する試料を用いて校正を行う熱物性測定装置の校正方法。
A method for calibrating a thermophysical property measuring device according to any one of claims 1 to 3, comprising:
When the measurement method in the reference device and the measurement method in the target device are different,
A method for calibrating a thermophysical property measuring device, in which the reference sample is calibrated using a sample having thermophysical property values that can be measured by all different measurement methods.
請求項1乃至4のいずれか1項に記載の熱物性測定装置の校正方法であって、
前記対象装置に対して、少なくとも埃、電磁波、又は振動のいずれかを低減させるノイズ防止処理を行うステップをさらに有する熱物性測定装置の校正方法。
A method for calibrating a thermophysical property measuring device according to any one of claims 1 to 4, comprising:
A method for calibrating a thermophysical property measuring device, further comprising the step of performing noise prevention processing on the target device to reduce at least one of dust, electromagnetic waves, and vibrations.
基準温度における基準熱物性値を有する基準試料を用いて、熱物性測定装置の基準となる基準装置に対して、校正対象である対象装置の校正を行う熱物性測定装置の校正方法を実行可能な校正プログラムであって、
前記対象装置で実行可能であり、
前記基準試料が装着された前記対象装置を作動させて、前記基準試料の熱物性値を測定して対象熱物性値を測定する際に前記基準試料の周囲温度である測定時温度を測定し、
前記基準試料の前記測定時温度における修正熱物性値と、前記対象熱物性値との差を算出して前記対象装置における補正値を求め、前記補正値を前記対象装置で使用可能とする校正プログラム。
A method for calibrating a thermophysical property measuring device that calibrates a target device to be calibrated can be executed against a reference device that is a reference for the thermophysical property measuring device using a reference sample having a reference thermophysical property value at a reference temperature. A calibration program,
executable on the target device;
Activating the target device to which the reference sample is attached, and measuring the temperature at the time of measurement, which is the ambient temperature of the reference sample when measuring the thermophysical property value of the reference sample and measuring the target thermophysical property value;
A calibration program that calculates a difference between a corrected thermophysical property value of the reference sample at the measurement temperature and the target thermophysical property value to obtain a correction value in the target device, and makes the correction value usable in the target device. .
基準温度における基準熱物性値を有する基準試料を用いて、熱物性測定装置の基準となる基準装置に対して、校正対象である対象装置の校正を行う熱物性測定装置の校正方法を実行可能な校正プログラムであって、
前記対象装置で実行可能であり、
前記基準試料が装着された前記対象装置を作動させて、前記基準試料の熱物性値を測定して対象熱物性値を測定する際に前記基準試料の周囲温度である測定時温度を測定し、
前記測定時温度と前記基準温度に差がある場合、前記基準試料が前記基準温度となるように温度調節を行って前記対象熱物性値を測定し、
前記対象熱物性値と前記基準熱物性値との差を算出して前記対象装置における補正値を求め、前記補正値を前記対象装置で使用可能とする校正プログラム。
A method for calibrating a thermophysical property measuring device that calibrates a target device to be calibrated can be executed against a reference device that is a reference for the thermophysical property measuring device using a reference sample having a reference thermophysical property value at a reference temperature. A calibration program,
executable on the target device;
Activating the target device to which the reference sample is attached, and measuring the temperature at the time of measurement, which is the ambient temperature of the reference sample when measuring the thermophysical property value of the reference sample and measuring the target thermophysical property value;
If there is a difference between the temperature at the time of measurement and the reference temperature, adjusting the temperature so that the reference sample reaches the reference temperature and measuring the target thermophysical property value;
A calibration program that calculates a difference between the target thermophysical property value and the reference thermophysical property value to obtain a correction value for the target device, and makes the correction value usable in the target device.
請求項6又は7に記載の校正プログラムが記憶された記憶媒体。 A storage medium storing the calibration program according to claim 6 or 7. 請求項1乃至5のいずれか1項に記載の熱物性測定装置の校正方法に使用される基準試料であって、
縦軸を前記基準試料の厚さとし、横軸を前記基準試料の熱拡散率としたときに表れる点が、定常法、レーザフラッシュ法、及び周期加熱法で測定可能な領域が互いに重なる領域となる熱物性を有する素材である基準試料。
A reference sample used in the method for calibrating a thermophysical property measuring device according to any one of claims 1 to 5,
When the vertical axis is the thickness of the reference sample and the horizontal axis is the thermal diffusivity of the reference sample, the point that appears is the area where the areas measurable by the steady method, laser flash method, and periodic heating method overlap with each other. A reference sample that is a material with thermophysical properties.
前記素材がジルコニアセラミックである請求項9に記載の基準試料。 The reference sample according to claim 9, wherein the material is zirconia ceramic. 請求項9又は10のいずれか1項に記載の基準試料であって、
少なくとも前記レーザフラッシュ法及び前記周期加熱法の測定を行う熱物性測定装置に装着可能であり、前記熱物性測定装置に装着した状態で熱物性の測定が可能な測定窓を備えたケースに収納された基準試料。
The reference sample according to any one of claims 9 or 10,
It can be attached to a thermophysical property measuring device that performs measurements using at least the laser flash method and the periodic heating method, and is housed in a case equipped with a measurement window that allows measurement of thermophysical properties while being attached to the thermophysical property measuring device. Standard sample.
前記ケースに前記基準試料の個体識別情報を含む情報が記憶された請求項11に記載の基準試料。 The reference sample according to claim 11, wherein information including individual identification information of the reference sample is stored in the case. 前記ケースに、前記対象装置に装着される際の位置決めを行う位置決め部を備えた請求項11又は12に記載の基準試料。
The reference sample according to claim 11 or 12, wherein the case includes a positioning section that performs positioning when the case is mounted on the target device.
JP2022534131A 2020-07-02 2021-07-02 Calibration method, calibration program, storage medium and reference sample for thermophysical property measuring equipment Active JP7393055B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020115150 2020-07-02
JP2020115150 2020-07-02
PCT/JP2021/025212 WO2022004888A1 (en) 2020-07-02 2021-07-02 Method for calibrating thermophysical property measurement device, calibration program, storage medium, and reference sample

Publications (2)

Publication Number Publication Date
JPWO2022004888A1 JPWO2022004888A1 (en) 2022-01-06
JP7393055B2 true JP7393055B2 (en) 2023-12-06

Family

ID=79316467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022534131A Active JP7393055B2 (en) 2020-07-02 2021-07-02 Calibration method, calibration program, storage medium and reference sample for thermophysical property measuring equipment

Country Status (2)

Country Link
JP (1) JP7393055B2 (en)
WO (1) WO2022004888A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236850A (en) 2001-02-13 2002-08-23 Nippon Paint Co Ltd Paint and paint information providing method using server device, terminal unit and communication terminal
JP2009002688A (en) 2007-06-19 2009-01-08 Ulvac-Riko Inc Temperature calibration method for infrared detector and specific heat capacity measuring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823892B2 (en) * 1978-11-13 1983-05-18 理学電機株式会社 Heat capacity measurement method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236850A (en) 2001-02-13 2002-08-23 Nippon Paint Co Ltd Paint and paint information providing method using server device, terminal unit and communication terminal
JP2009002688A (en) 2007-06-19 2009-01-08 Ulvac-Riko Inc Temperature calibration method for infrared detector and specific heat capacity measuring method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KHUU Vinh et al.,Considerations in the Use of the Laser Flash Method for Thermal Measurements of Thermal Interface Ma,IEEE TRANSACTIONS ON COMPONENTS,PACKAGING AND MANUFACTURING TECHNOLOGY,2011年07月,Vol.1,No.7,pp.1015-1028
小川 光惠,イットリア安定化ジルコニアの高温安定性,熱分析,2007年,Vol.21,No.1,pp.8-13
馬場 哲也 他,熱物性データの生産と利用の社会システム-レーザフラッシュ法による熱拡散率の計測技術・計測標準・標準化,シンセシオロジー,日本,2014年02月,Vol.7,No.1,PP.1-15

Also Published As

Publication number Publication date
WO2022004888A1 (en) 2022-01-06
JPWO2022004888A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP4713588B2 (en) Installed device and system and device for compensating heat transfer error
JP7151607B2 (en) Temperature measuring device and temperature measuring method
JP5358789B2 (en) Adaptive temperature controller
JP2008145133A (en) Radiation thermometer
CN109997032B (en) Thermal conductivity measuring device, thermal conductivity measuring method, and vacuum degree evaluating device
US20130185013A1 (en) Method and device for ascertaining a state of a sensor
CN109396958A (en) In conjunction with lathe main shaft using geometry probe method and be configured to execute the method lathe
JP7393055B2 (en) Calibration method, calibration program, storage medium and reference sample for thermophysical property measuring equipment
US6609824B1 (en) Radiation thermometer
Manoi et al. Size-of-source effect in infrared thermometers with direct reading of temperature
De Lucas et al. Measurement and analysis of the temperature gradient of blackbody cavities, for use in radiation thermometry
US10605677B2 (en) Method for calibrating a temperature control in thermal analyses of samples
König et al. Metrological characterization and calibration of thermographic cameras for quantitative temperature measurement
JP3130833U (en) Differential scanning calorimeter
JP3328408B2 (en) Surface temperature measurement method
JP7435825B2 (en) Temperature estimation method, temperature estimation program and temperature estimation device
JP4552702B2 (en) Infrared analyzer light source
US10184843B2 (en) Thermal protection systems material degradation monitoring system
KR20170014274A (en) System of proofing non-contacting temperature measuring apparatus and method performing thereof
JP3570042B2 (en) Thermal analyzer
WO2022064553A1 (en) Temperature estimation method, temperature estimation program, and temperature estimation device
WO2021260834A1 (en) Temperature measurement device, method, and program
JP4209285B2 (en) Temperature detection method and temperature detector
WO2022064552A1 (en) Temperature estimation method, temperature estimation program, and temperature estimation device
KR102031315B1 (en) Apparatus and method of compensating temperature of therocouple in x-ray diffractometry system and sample for compensating temperature of thermocouple

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231116

R150 Certificate of patent or registration of utility model

Ref document number: 7393055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150