JP3130833U - Differential scanning calorimeter - Google Patents

Differential scanning calorimeter Download PDF

Info

Publication number
JP3130833U
JP3130833U JP2007000425U JP2007000425U JP3130833U JP 3130833 U JP3130833 U JP 3130833U JP 2007000425 U JP2007000425 U JP 2007000425U JP 2007000425 U JP2007000425 U JP 2007000425U JP 3130833 U JP3130833 U JP 3130833U
Authority
JP
Japan
Prior art keywords
sample
thermal resistor
temperature
differential scanning
drift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007000425U
Other languages
Japanese (ja)
Inventor
孝二 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007000425U priority Critical patent/JP3130833U/en
Application granted granted Critical
Publication of JP3130833U publication Critical patent/JP3130833U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

【課題】DSC曲線で示されるベースラインのドリフトを補正することができる示差走査熱量測定装置を提供する。
【解決手段】試料Sと基準物質Rを収容するサンプルパン21、22に接触させてその温度を検出する温度センサ24、25を備えたDSC検出器2を内設した加熱炉1と、その下に厚みを傾斜的に変えた熱伝導率の異なる2種類の熱抵抗体31、32を重ね合わせて保持リング33で固定し、この保持リング33に調整レバー34を設けて平面上で回転できるようにした合成熱抵抗体3を配置し、この合成熱抵抗体3をヒータ8で加熱する。合成熱抵抗体3を平面上で回転させその位置を調整してサンプルパン21、22への熱伝達率を変えることによりベースラインのドリフトを補正する。
【選択図】 図1
A differential scanning calorimeter capable of correcting a baseline drift indicated by a DSC curve is provided.
A heating furnace 1 having a DSC detector 2 provided with a temperature sensor 24, 25 for detecting the temperature of the sample pan 21, 22 in contact with a sample pan 21, 22 containing a sample S and a reference substance R, and Two types of thermal resistors 31 and 32 having different thermal conductivities with different thicknesses are superposed and fixed by a holding ring 33, and an adjustment lever 34 is provided on the holding ring 33 so that it can be rotated on a plane. The combined thermal resistor 3 is disposed, and the combined thermal resistor 3 is heated by the heater 8. The drift of the baseline is corrected by rotating the synthetic thermal resistor 3 on a plane and adjusting its position to change the heat transfer rate to the sample pans 21 and 22.
[Selection] Figure 1

Description

本考案は、試料を加熱し示差走査熱量測定(Differential Scanning Calorimetry)を行い、材料物性を評価する示差走査熱量測定装置に関する。   The present invention relates to a differential scanning calorimetry apparatus that heats a sample, performs differential scanning calorimetry, and evaluates material properties.

示差走査熱量測定(DSC)装置は、炉体温度を変化させながら、炉体内に収容された測定対象となる試料と熱的に不活性な例えばアルミナ粉末等の基準物質との温度差を測定することにより、単位時間当りに試料に出入りする熱量を求めるもので、材料物性の評価に広く利用されている。   A differential scanning calorimetry (DSC) apparatus measures a temperature difference between a sample to be measured contained in the furnace body and a thermally inactive reference material such as alumina powder while changing the furnace body temperature. Therefore, the amount of heat that enters and exits the sample per unit time is obtained, and it is widely used for evaluating material properties.

従来の示差走査熱量測定装置は、図5に示すように、加熱炉1はネジ13で熱抵抗体3Aを挿んでベース筐体7に固定され、熱抵抗体3Aを介しヒータ8で発生した熱を受熱し、試料Sと基準物質Rとを収容して加熱する。試料Sはサンプルパン21に、基準物質Rはサンプルパン22に収容されて、加熱炉1内のDSC検出器2上に載置される。   In the conventional differential scanning calorimeter, as shown in FIG. 5, the heating furnace 1 is fixed to the base housing 7 by inserting the thermal resistor 3A with a screw 13, and the heat generated by the heater 8 through the thermal resistor 3A. The sample S and the reference material R are accommodated and heated. The sample S is accommodated in the sample pan 21 and the reference substance R is accommodated in the sample pan 22 and placed on the DSC detector 2 in the heating furnace 1.

前記DSC検出器2は、載置されたサンプルパン21内の試料Sとサンプルパン22内の基準物質Rの温度をそれぞれ検出するための温度センサ24、25を備えた載置台であり、ここで検出された試料Sと基準物質Rの温度信号は測定・制御部100を構成するDSC信号検出回路101に送られる。DSC信号検出回路101は、これら試料Sと基準物質Rの温度差に基づいて、単位時間当たりに試料Sに出入りする熱量を示すDSC信号を求めるものであり、このDSC信号は、試料温度信号とともにコンピュータ103に送られ試料Sへ流入または試料Sから流出する熱量、すなわち試料のエンタルピー変化量が測定される。また、温度制御回路102は、ヒータ8の近傍に設置した温度センサ26の検出信号が、コンピュータ103から出力される昇温プログラム信号に一致するように制御するものである。   The DSC detector 2 is a mounting table provided with temperature sensors 24 and 25 for detecting the temperatures of the sample S in the sample pan 21 and the reference substance R in the sample pan 22, respectively. The detected temperature signals of the sample S and the reference material R are sent to the DSC signal detection circuit 101 that constitutes the measurement / control unit 100. The DSC signal detection circuit 101 obtains a DSC signal indicating the amount of heat entering and exiting the sample S per unit time based on the temperature difference between the sample S and the reference material R, and this DSC signal is combined with the sample temperature signal. The amount of heat that is sent to the computer 103 and flows into or out of the sample S, that is, the amount of change in the enthalpy of the sample is measured. The temperature control circuit 102 controls the detection signal of the temperature sensor 26 installed in the vicinity of the heater 8 so as to coincide with the temperature increase program signal output from the computer 103.

上記示差走査熱量測定装置において、前記コンピュータ103に昇温プログラムを設定し、図6に例示するように加熱炉1の炉体温度Tfを経時的に昇温させることによって試料温度Tsと基準温度Trとを漸次昇温させると、試料Sに熱的変化がない場合は、試料S及び基準物質Rとも炉体温度Tfの上昇に伴って同様に温度上昇していくが、例えば試料温度Tsが融解温度に到達すると、融解の終了まで試料Sの温度上昇は停止し、融解が終了すると速やかに系の温度に復帰し、元の昇温速度で昇温を再開する。このような試料温度Tsの挙動は、試料温度Tsと基準温度Trとの温度差に基づくDSC信号Wとして検出される。   In the differential scanning calorimeter, a temperature raising program is set in the computer 103, and the temperature of the furnace body Tf of the heating furnace 1 is raised with time as illustrated in FIG. When the sample S has no thermal change, the temperature of the sample S and the reference material R rises in the same manner as the furnace temperature Tf rises. For example, the sample temperature Ts melts. When the temperature is reached, the temperature rise of the sample S stops until the end of melting. When the melting ends, the temperature of the system immediately returns to the system temperature, and the temperature increase is resumed at the original temperature increase rate. Such behavior of the sample temperature Ts is detected as a DSC signal W based on the temperature difference between the sample temperature Ts and the reference temperature Tr.

前記DSC信号Wは、炉体温度をTf、試料温度をTs、基準物質温度をTr、基準物質Rの昇温速度をdTr/dt、熱抵抗をRt、比例定数をAとすると式(1)で表わされる(特許文献1参照)。
W=−ARt(Ts−Tr)dTr/dt・・・(1)
特開2000−193618号公報
The DSC signal W is expressed by the equation (1) where Tf is the furnace temperature, Ts is the sample temperature, Tr is the reference material temperature, dTr / dt is the temperature rising rate of the reference material R, Rt is the thermal resistance, and A is the proportionality constant. (See Patent Document 1).
W = −ARt (Ts−Tr) dTr / dt (1)
JP 2000-193618 A

従来の示差走査熱量測定装置は上記のように構成されているが、試料Sを収容するサンプルパン21や基準物質Rを収容するサンプルパン22の配置位置のずれ、構成部品の寸法誤差あるいは組立精度に起因して、試料Sと基準物質Rとの温度差は、前者に何ら熱的変化がなくても変化し、図7の曲線D1あるいはD2で示すように炉体温度Tfの増加に伴いDSC信号のベースラインが増加または減少するドリフトを発生しやすい。通常ベースラインのドリフトはデータ処理によって見かけ上そのドリフトを打ち消すという方法が用いられているが、物理的には試料Sと基準物質Rとに余計な温度差がついた状態となり望ましいものではない。
本考案は上記の事情に鑑みてなされたものであって、ベースラインのドリフトをサンプルパンへの熱供給量を調節することにより除去できる示差走査熱量測定装置を提供することを目的とするものである。
The conventional differential scanning calorimeter is configured as described above. However, the displacement of the arrangement position of the sample pan 21 containing the sample S and the sample pan 22 containing the reference material R, the dimensional error of the components, or the assembly accuracy As a result, the temperature difference between the sample S and the reference material R changes even if there is no thermal change in the former, and as shown by the curve D1 or D2 in FIG. Prone to drift in which the baseline of the signal increases or decreases. Usually, the drift of the baseline is apparently canceled by data processing. However, physically, the sample S and the reference material R have an extra temperature difference, which is not desirable.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a differential scanning calorimeter capable of removing baseline drift by adjusting the amount of heat supplied to a sample pan. is there.

上記の目的を達成するため、本考案の示差走査熱量測定装置は、試料及び基準物質を加熱する加熱炉と、その加熱炉と加熱手段であるヒータとの間に介在され熱交換を行う熱抵抗体と、加熱炉の温度を制御する温度制御手段と、前記加熱炉内にあって試料と基準物質の温度差を検出する検出器とを備えた示差走査熱量測定装置において、前記熱抵抗体を熱伝導率が互いに異なるとともに、厚さが円周方向に異なる2種類の熱抵抗体で構成し、この熱抵抗体を回転させる回転機構を備えているものである。
また本考案の示差走査熱量測定装置は、さらにブランク測定時のベースラインのドリフトを補正するための熱抵抗体の回転量を記憶するドリフト補正量記憶手段と、実試料測定時に自動的に記憶された熱抵抗体の回転量だけ熱抵抗体を回転させてベースラインのドリフトを補正するドリフト補正手段を備えているものである。
本考案の示差走査熱量測定装置は上記のように構成されており、ベースラインのドリフトを補正することができ、正確な示差走査熱量の測定を行うことができる。
In order to achieve the above object, the differential scanning calorimeter of the present invention includes a heating furnace that heats a sample and a reference material, and a thermal resistance that is interposed between the heating furnace and a heater that is a heating means to perform heat exchange. In the differential scanning calorimetry apparatus comprising a body, temperature control means for controlling the temperature of the heating furnace, and a detector in the heating furnace for detecting a temperature difference between a sample and a reference material, the thermal resistor is It is composed of two types of thermal resistors having different thermal conductivities and different thicknesses in the circumferential direction, and provided with a rotating mechanism for rotating the thermal resistors.
The differential scanning calorimeter of the present invention further includes a drift correction amount storage means for storing the rotation amount of the thermal resistor for correcting the baseline drift during blank measurement, and is automatically stored during actual sample measurement. And a drift correction means for correcting the drift of the baseline by rotating the thermal resistor by the amount of rotation of the thermal resistor.
The differential scanning calorimeter of the present invention is configured as described above, can correct the baseline drift, and can accurately measure the differential scanning calorific value.

部品の寸法公差や、組立精度に関わらず、物理的にDSC信号のベースラインのドリフトを補正することができ、理想的な熱的対称性を実現することで、より正確なエンタルピーの変化量や比熱容量の測定を行うことができる。   Regardless of dimensional tolerance of parts or assembly accuracy, DSC signal baseline drift can be physically corrected, and by realizing ideal thermal symmetry, more accurate enthalpy variation and Specific heat capacity can be measured.

本考案による示差走査熱量測定装置の実施例を図面を参照しながら詳細に説明する。図1は本考案による示差走査熱量測定装置の構成を示す断面構成図、図2は実施例に係わる合成熱抵抗体の平面図(A)とそのA−A断面図(B)、図3は示差走査熱量測定装置の外観図である。なお、図5に示した従来例の示差走査熱量測定装置と同様の機能を有する構成部材には同一番号を付記する。   An embodiment of a differential scanning calorimeter according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of a differential scanning calorimeter according to the present invention, FIG. 2 is a plan view (A) of the synthetic thermal resistor according to the embodiment, its A-A cross section (B), and FIG. It is an external view of a differential scanning calorimeter. In addition, the same number is attached | subjected to the structural member which has a function similar to the differential scanning calorimetry apparatus of the prior art example shown in FIG.

本考案実施形態の示差走査熱量測定装置は、図1に示すように試料Sと基準物質Rとを加熱するための加熱炉1を備えている。この加熱炉1は上方が開口した炉体11と蓋12からなり、炉内の温度分布を均一化するために、銀や銅等の熱伝導性の良い金属を用い肉厚状の壁面で形成されている。その上部に凹状の試料収容部1aが形成され、この中にDSC検出器2が配設されている。   The differential scanning calorimeter according to the embodiment of the present invention includes a heating furnace 1 for heating the sample S and the reference material R as shown in FIG. The heating furnace 1 is composed of a furnace body 11 having an opening at the top and a lid 12, and is formed with a thick wall surface using a metal having good thermal conductivity such as silver or copper in order to make the temperature distribution in the furnace uniform. Has been. A concave sample container 1a is formed in the upper part, and the DSC detector 2 is disposed therein.

前記DSC検出器2は、試料Sと基準物質Rを収容するサンプルパン21及びサンプルパン22を載置するためのプレート23と、各サンプルパン21、22の裏面に設けられた熱電対等の温度センサ24、25によって構成され、試料Sと基準物質Rの温度は温度センサ24、25により検出される。前記炉体11の上方開口部は、サンプルパン21、22を載置した後に、蓋12によって塞がれる。   The DSC detector 2 includes a sample pan 21 for storing the sample S and the reference material R and a plate 23 for mounting the sample pan 22, and a temperature sensor such as a thermocouple provided on the back surface of each sample pan 21, 22. The temperature of the sample S and the reference material R is detected by the temperature sensors 24 and 25. The upper opening of the furnace body 11 is closed by the lid 12 after the sample pans 21 and 22 are placed.

前記加熱炉1はその下に合成熱抵抗体3を回転自在に介設した状態でベース筐体7に4本のネジ13で固定され、均一な温度雰囲気を形成するために内部に窒素などの不活性ガスを封入し遮熱カバー4を被せている。前記合成熱抵抗体3は、図2の平面図(A)、A−A断面図(B)に示すように、熱伝導率の異なる2種類の材質の熱抵抗体31、32を、それぞれ厚みが連続的に変わるよう勾配を設け、厚みが異なる方向で重ね合わせ、これを保持リング33で固定するとともにこの保持リング33に平面方向に回転させるための調整レバー34を設けている。   The heating furnace 1 is fixed to the base housing 7 with four screws 13 with a synthetic thermal resistor 3 interposed between the heating furnace 1 and the inner surface of the heating furnace 1 so as to form a uniform temperature atmosphere. An inert gas is sealed and a heat insulating cover 4 is covered. As shown in the plan view (A) and the AA sectional view (B) in FIG. 2, the synthetic thermal resistor 3 has two thicknesses of thermal resistors 31 and 32 having different thermal conductivities. Is provided with an adjustment lever 34 that is provided with a gradient so as to continuously change, overlaps in different thickness directions, is fixed by a holding ring 33 and is rotated on the holding ring 33 in a plane direction.

本示差走査熱量測定装置は、前記遮熱カバー4の周囲を図3に示すように、外カバー5で覆いその上部に外蓋6を被せて外部環境温度の加熱炉1への影響を遮断している。この外カバー5には前記調整レバー34を平面方向に回転させたときの回転角度を測定しておくための目盛付開口部5aが設けられている。   In the differential scanning calorimeter, as shown in FIG. 3, the periphery of the heat shield cover 4 is covered with an outer cover 5 and covered with an outer lid 6 to block the influence of the external environment temperature on the heating furnace 1. ing. The outer cover 5 is provided with a scaled opening 5a for measuring a rotation angle when the adjustment lever 34 is rotated in the plane direction.

前記ベース筐体7の上部には図1に示すように前記合成熱抵抗体3を加熱するためのヒータ8が固設されている。このヒータ8は温度制御回路102から供給される電流により加熱され、前記合成熱抵抗体3を加熱する。このヒータ電流は基準物質Rの温度Trを上昇させるコンピュータ103の昇温プログラムから発生される設定信号に前記DSC検出器2の温度センサ25もしくは別途設けた温度センサ(図示省略)の温度検出信号が等しくなるように制御される。これにより基準物質Rの温度は昇温プログラムに対応して上昇し、試料Sの温度も上昇する。   As shown in FIG. 1, a heater 8 for heating the synthetic thermal resistor 3 is fixed to the upper portion of the base casing 7. The heater 8 is heated by the current supplied from the temperature control circuit 102 to heat the synthetic thermal resistor 3. The heater current is generated by a temperature detection signal from a temperature sensor 25 of the DSC detector 2 or a temperature sensor (not shown) provided separately from a setting signal generated from a temperature raising program of the computer 103 that raises the temperature Tr of the reference material R. Controlled to be equal. As a result, the temperature of the reference material R rises corresponding to the temperature raising program, and the temperature of the sample S also rises.

ベースラインのドリフト補正は、試料S及び基準物質Rをサンプルパン21、22に載置しない状態の測定、すなわちブランク測定を行う。上記の熱抵抗体31の熱伝導度が熱抵抗体32の熱伝導度より小さいとして、ベースラインが図7の曲線D1で示される発熱方向にドリフトした場合、このドリフトを補正するため調整レバー34をA1の矢印方向に回す。これによりサンプルパン22側の熱抵抗体32の厚みが増し、サンプルパン22側への熱伝達量が相対的に増大するのでベースラインは曲線D0で示されるベースラインに近づく。そして調整レバー34を丁度ベースラインがほぼ曲線D0になる位置に設定し、その目盛位置を記憶する。また、ベースラインが曲線D2で示される吸熱方向にドリフトした場合、調整レバー34をA2の矢印方向に回す。これによりサンプルパン21側の熱抵抗体32の厚みが増し、サンプルパン21側への熱伝達量が相対的に増大するのでベースラインは曲線D0で示されるベースラインに近づく。そして調整レバー34の位置をベースラインがほぼ曲線D0となるように設定し、その目盛位置を記憶する。以後この目盛位置で測定を行う。   Baseline drift correction is performed in a state where the sample S and the reference material R are not placed on the sample pans 21 and 22, that is, blank measurement. If the base line drifts in the heat generation direction indicated by the curve D1 in FIG. 7 assuming that the thermal conductivity of the thermal resistor 31 is smaller than the thermal conductivity of the thermal resistor 32, the adjustment lever 34 is used to correct this drift. Rotate in the direction of the arrow A1. As a result, the thickness of the thermal resistor 32 on the sample pan 22 side increases and the amount of heat transfer to the sample pan 22 side relatively increases, so that the baseline approaches the baseline indicated by the curve D0. Then, the adjustment lever 34 is set to a position where the base line is almost the curve D0, and the scale position is stored. When the base line drifts in the endothermic direction indicated by the curve D2, the adjustment lever 34 is rotated in the direction of the arrow A2. As a result, the thickness of the thermal resistor 32 on the sample pan 21 side is increased and the amount of heat transfer to the sample pan 21 side is relatively increased, so that the baseline approaches the baseline indicated by the curve D0. Then, the position of the adjustment lever 34 is set so that the base line is substantially the curve D0, and the scale position is stored. Thereafter, measurement is performed at this scale position.

図4は前記合成熱抵抗体3の他の実施例を示すもので、この合成熱抵抗体3Bは合成熱抵抗体3にベースラインのドリフト補正を自動的に行うことができるドリフト補正機能を付加したものである。すなわち合成熱抵抗体3Bはシャフト91、カップリング92及びステッピングモータ93からなる駆動機構9を合成熱抵抗体3に付加したものである。図1の合成熱抵抗体3の代わりに合成熱抵抗体3Bを用い、試料S及び基準物質Rを載置しない状態(ブランク測定)でステッピングモータ93を停止してDSC信号を測定しそのドリフト量を前記コンピュータ103に記憶する。そして実試料測定時にコンピュータ103からのドリフト信号により合成熱抵抗体3Bをステッピングモータ93で駆動してドリフトを補正してDSC信号を測定する。   FIG. 4 shows another embodiment of the synthetic thermal resistor 3, and this synthetic thermal resistor 3B adds a drift correction function that can automatically perform baseline drift correction to the synthetic thermal resistor 3. It is a thing. That is, the synthetic thermal resistor 3B is obtained by adding a drive mechanism 9 including a shaft 91, a coupling 92, and a stepping motor 93 to the synthetic thermal resistor 3. The synthetic thermal resistor 3B is used in place of the synthetic thermal resistor 3 in FIG. 1, and the DSC signal is measured by stopping the stepping motor 93 in a state where the sample S and the reference material R are not placed (blank measurement), and the amount of drift Is stored in the computer 103. At the time of actual sample measurement, the combined thermal resistor 3B is driven by the stepping motor 93 by the drift signal from the computer 103 to correct the drift and measure the DSC signal.

またブランク測定時にベースラインのドリフト量を入力、ステッピングモータ93の回転角を出力、制御目標をドリフト量0とするフィードバック制御を実施し、この時の回転角の変化を前記コンピュータ103に記憶させる学習機能AIを前記合成熱抵抗体3Bに持たせることができる。これにより実試料測定時には、試料変化に起因する真のベースライン変化によって誤動作しないようこのフィードバック制御を停止し、記憶された回転角情報に基づいてステッピングモータ93を回転させドリフトを打ち消すというダイナミックな運転を行うことができる。   Also, learning is performed by inputting the baseline drift amount during blank measurement, outputting the rotation angle of the stepping motor 93, and performing feedback control with the control target as the drift amount 0, and storing the change in the rotation angle at this time in the computer 103. The function AI can be provided to the synthetic thermal resistor 3B. As a result, during actual sample measurement, this feedback control is stopped so as not to malfunction due to a true baseline change caused by the sample change, and the dynamic operation of canceling the drift by rotating the stepping motor 93 based on the stored rotation angle information It can be performed.

示差走査熱量測定装置に用いられる。   Used in a differential scanning calorimeter.

本考案の実施例による示差走査熱量測定装置の全体断面図である。1 is an overall cross-sectional view of a differential scanning calorimeter according to an embodiment of the present invention. 実施例に係わる合成熱抵抗体の平面図(A)とそのA−A断面図(B)である。It is the top view (A) of the synthetic | combination thermal resistor which concerns on an Example, and its AA sectional drawing (B). 示差走査熱量測定装置の全体外観図である。1 is an overall external view of a differential scanning calorimeter. 他の実施例による合成熱抵抗体の構成図である。It is a block diagram of the synthetic | combination thermal resistor by another Example. 従来の示差走査熱量測定装置の加熱炉の側面断面図と測定・制御部のブロック図(A)及びそのA−A断面図(B)である。It is a side sectional view of a heating furnace of a conventional differential scanning calorimeter, a block diagram (A) of a measurement / control unit, and an AA sectional view (B) thereof. 加熱炉内温度Tfに対する試料温度特性Ts及び基準物質温度特性Trを示す図である。It is a figure which shows the sample temperature characteristic Ts and the reference | standard substance temperature characteristic Tr with respect to the heating furnace internal temperature Tf. DSC信号のベースラインの温度ドリフトを示す図であるIt is a figure which shows the temperature drift of the baseline of a DSC signal

符号の説明Explanation of symbols

1 加熱炉
1a 試料収容部
11 炉体
12 蓋
13 ネジ
2 DSC検出器
21 サンプルパン
22 サンプルパン
23 プレート
24 温度センサ
25 温度センサ
26 温度センサ
3 合成熱抵抗体
3A 熱抵抗体
3B 合成熱抵抗体
31 熱抵抗体
32 熱抵抗体
33 保持リング
34 調整レバー
4 遮熱カバー
5 外カバー
5a 目盛付開口部
6 外蓋
7 ベース筐体
8 ヒータ
9 駆動機構
91 シャフト
92 カップリング
93 ステッピングモータ
100 測定・制御部
101 DSC信号検出回路
102 温度制御回路
103 コンピュータ
DESCRIPTION OF SYMBOLS 1 Heating furnace 1a Sample accommodating part 11 Furnace body 12 Cover 13 Screw 2 DSC detector 21 Sample pan 22 Sample pan 23 Plate 24 Temperature sensor 25 Temperature sensor 26 Temperature sensor 3 Synthetic thermal resistor 3A Thermal resistor 3B Synthetic thermal resistor 31 Thermal resistor 32 Thermal resistor 33 Holding ring 34 Adjustment lever 4 Heat shield cover 5 Outer cover 5a Scaled opening 6 Outer lid 7 Base housing 8 Heater 9 Drive mechanism 91 Shaft 92 Coupling 93 Stepping motor 100 Measurement / control unit 101 DSC signal detection circuit 102 Temperature control circuit 103 Computer

Claims (2)

試料及び基準物質を加熱する加熱炉と、その加熱炉と加熱手段であるヒータとの間に介在され熱交換を行う熱抵抗体と、加熱炉の温度を制御する温度制御手段と、前記加熱炉内にあって試料と基準物質の温度差を検出する検出器とを備えた示差走査熱量測定装置において、前記熱抵抗体を熱伝導率が互いに異なるとともに、厚さが円周方向に異なる2種類の材質で構成し、この熱抵抗体を回転させる回転機構を備えていることを特徴とする示差走査熱量測定装置。 A heating furnace that heats the sample and the reference material, a thermal resistor that is interposed between the heating furnace and a heater that is a heating means, a temperature control means that controls the temperature of the heating furnace, and the heating furnace In the differential scanning calorimetry apparatus provided with a detector for detecting a temperature difference between the sample and the reference material, the thermal resistor has two kinds of thermal conductivity different from each other and thickness different in the circumferential direction. A differential scanning calorimeter having a rotation mechanism configured to rotate the thermal resistor. ブランク測定時のベースラインのドリフトを補正するための熱抵抗体の回転量を記憶するドリフト補正量記憶手段と、実試料測定時に自動的に記憶された熱抵抗体の回転量だけ熱抵抗体を回転させてベースラインのドリフトを補正するドリフト補正手段を備えたことを特徴とする請求項1に記載の示差走査熱量測定装置。 Drift correction amount storage means for storing the amount of rotation of the thermal resistor for correcting the baseline drift during blank measurement, and the thermal resistor for the amount of rotation of the thermal resistor automatically stored during actual sample measurement The differential scanning calorimetry apparatus according to claim 1, further comprising a drift correction unit that rotates and corrects a drift of the baseline.
JP2007000425U 2007-01-29 2007-01-29 Differential scanning calorimeter Expired - Fee Related JP3130833U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000425U JP3130833U (en) 2007-01-29 2007-01-29 Differential scanning calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000425U JP3130833U (en) 2007-01-29 2007-01-29 Differential scanning calorimeter

Publications (1)

Publication Number Publication Date
JP3130833U true JP3130833U (en) 2007-04-12

Family

ID=43281669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000425U Expired - Fee Related JP3130833U (en) 2007-01-29 2007-01-29 Differential scanning calorimeter

Country Status (1)

Country Link
JP (1) JP3130833U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126366A (en) * 2012-12-25 2014-07-07 Shimadzu Corp Differential scanning calorimeter
CN117388312A (en) * 2023-12-04 2024-01-12 深圳稀导技术有限公司 Testing device and testing method for graphene heat conduction film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126366A (en) * 2012-12-25 2014-07-07 Shimadzu Corp Differential scanning calorimeter
CN117388312A (en) * 2023-12-04 2024-01-12 深圳稀导技术有限公司 Testing device and testing method for graphene heat conduction film
CN117388312B (en) * 2023-12-04 2024-04-05 深圳稀导技术有限公司 Testing device and testing method for graphene heat conduction film

Similar Documents

Publication Publication Date Title
JP4579993B2 (en) Differential scanning calorimeter (DSC) with temperature controlled furnace
JP5721953B2 (en) Thermal analyzer
CA3044692C (en) Method for the in-situ calibration of a thermometer
EP2111299A1 (en) Thermostat apparatus including calibration device
JPH10221183A (en) Method and device for compensating temperature for load cell load detector
US10088441B2 (en) Method and device for material analysis
CN104502000A (en) Shallow-type micro temperature calibration furnace and calibration method
US12092502B2 (en) Non-invasive thermometer
JP2006145446A (en) Thermal conductivity measuring device and method
US6431747B1 (en) Heat flux differential scanning calorimeter sensor
JP3130833U (en) Differential scanning calorimeter
JPH04500425A (en) Self-calibrating temperature controller for heated fuser rollers
US20220334003A1 (en) Noninvasive thermometer
CN108369144B (en) Device and method for reliably and accurately determining the temperature of a medium
EP3070444B1 (en) A surface temperature measuring device
JP3135081B2 (en) Furnace unit of differential scanning calorimeter
JP5266452B2 (en) Temperature characteristic measuring device
US11820650B2 (en) Microelectromechanical apparatus having hermitic chamber
KR102257190B1 (en) Thermal conductivity measurement system and thermal conductivity measurement method thereof
JP4737605B2 (en) Thermal analysis method
JP3328408B2 (en) Surface temperature measurement method
KR100507606B1 (en) A Calibration Device Of A Contact Type Surface Temperature Indicator
JP7393055B2 (en) Calibration method, calibration program, storage medium and reference sample for thermophysical property measuring equipment
JP2019144101A (en) Temperature measuring device, temperature adjusting device, ambient temperature measuring method, and ambient temperature measuring program
JPH10104214A (en) Temperature controlling device for measuring device

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees