WO2022064552A1 - Temperature estimation method, temperature estimation program, and temperature estimation device - Google Patents

Temperature estimation method, temperature estimation program, and temperature estimation device Download PDF

Info

Publication number
WO2022064552A1
WO2022064552A1 PCT/JP2020/035711 JP2020035711W WO2022064552A1 WO 2022064552 A1 WO2022064552 A1 WO 2022064552A1 JP 2020035711 W JP2020035711 W JP 2020035711W WO 2022064552 A1 WO2022064552 A1 WO 2022064552A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
subject
temperature sensor
temperature estimation
proportional coefficient
Prior art date
Application number
PCT/JP2020/035711
Other languages
French (fr)
Japanese (ja)
Inventor
雄次郎 田中
大地 松永
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022551458A priority Critical patent/JPWO2022064552A1/ja
Priority to PCT/JP2020/035711 priority patent/WO2022064552A1/en
Publication of WO2022064552A1 publication Critical patent/WO2022064552A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Definitions

  • the present invention relates to a temperature estimation method, a temperature estimation program, and a temperature estimation device for estimating the internal temperature of a subject such as a living body.
  • the in-vivo temperature estimation method disclosed in Patent Document 1 is known.
  • the method disclosed in Patent Document 1 estimates the core body temperature T CBT of the living body 100 by using the heat equivalent circuit model of the living body 100 and the sensor 101 as shown in FIG.
  • the sensor 101 measures the temperature T Skin of the skin surface of the living body 100 and the heat flux HS of the skin surface.
  • T top is the temperature of the upper surface of the sensor 101 on the side opposite to the surface of the living body 100 in contact with the skin
  • T Air is the outside air temperature
  • RB is the thermal resistance of the living body 100
  • R S is the thermal resistance of the sensor 101
  • RA the outside air. Thermal resistance.
  • the proportionality coefficient ⁇ of the equation (1) is determined by the thermophysical characteristic value of the living body 100.
  • the proportionality coefficient ⁇ is generally the rectal temperature and eardrum temperature measured by another sensor at the time of initial calibration as the core body temperature T CBT , and the temperature T Skin and heat flux H measured by the core body temperature T CBT and the sensor 101. It can be obtained by using S.
  • thermophysical characteristic value of the living body 100 is constant, and the proportionality coefficient ⁇ is also constant.
  • thermophysical characteristic values vary from person to person and fluctuate when the blood flow of the living body 100 increases or decreases during the measurement of the core body temperature T CBT . Due to this fluctuation in the thermophysical characteristics, the conventional method has a problem that an error occurs in the estimation of the core body temperature T CBT .
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a temperature estimation method, a temperature estimation program, and a temperature estimation device capable of reducing an error in estimating the internal temperature of a subject such as a living body. And.
  • the temperature estimation method of the present invention includes a first step of applying a heat pulse from a heater to a subject, a second step of measuring the temperature of the surface of the subject by a first temperature sensor, and the second step. Based on the measurement result of the step, the third step of calculating the movement time from the application of the heat pulse to the arrival at the first temperature sensor through the subject, and the movement time.
  • the fourth step of deriving the proportionality coefficient depending on the thermophysical property value of the subject, the fifth step of measuring the temperature of the surface of the subject by the second temperature sensor, and the position away from the subject.
  • the temperature estimation program of the present invention is characterized in that the computer executes the third step, the fourth step, and the seventh step.
  • the temperature estimation device of the present invention includes a heater configured to apply a heat pulse to the subject, a first temperature sensor configured to measure the temperature of the surface of the subject, and the first temperature sensor.
  • a movement time calculation unit configured to calculate the movement time from the application of the heat pulse to the arrival at the first temperature sensor through the subject based on the measurement result of the temperature sensor 1.
  • a proportional coefficient derivation unit configured to derive a proportional coefficient depending on the thermophysical property value of the subject based on the travel time, and a first unit configured to measure the temperature of the surface of the subject.
  • the temperature sensor (2), a third temperature sensor configured to measure the temperature at a position away from the subject, the measurement results of the second and third temperature sensors, and the proportional coefficient are used. It is characterized by including a temperature calculation unit configured to calculate the internal temperature of the subject.
  • a heat pulse is applied from the heater to the subject, the movement time from the application of the heat pulse to the time when the heat pulse is transmitted to the first temperature sensor is calculated, and the movement of the heat pulse is calculated.
  • FIG. 1 is a block diagram showing a configuration of a temperature estimation device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a heat equivalent circuit model of a temperature sensor, a heat insulating material, and a living body according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating the operation of the temperature estimation device according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing an observation example of a thermal pulse.
  • FIG. 5 is a diagram showing an example of the relationship between the proportionality coefficient and the travel time.
  • FIG. 6 is a diagram showing the core body temperature estimated by the temperature estimation device according to the embodiment of the present invention and the eardrum temperature measured by the eardrum thermometer.
  • FIG. 7 is a block diagram showing a configuration example of a computer that realizes the temperature estimation device according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing a thermal equivalent circuit model of a living body and a sensor.
  • the proportional coefficient ⁇ is obtained using the time t. It is possible. Thereby, in the present invention, the core body temperature of the living body can be estimated while correcting the proportionality coefficient ⁇ which changes depending on individual differences and blood flow.
  • FIG. 1 is a block diagram showing a configuration of a temperature estimation device according to an embodiment of the present invention.
  • the temperature estimation device includes a temperature sensor 1 that measures the temperature T Skin of the skin surface of the living body 100 (subject), a temperature sensor 2 that measures the temperature T top at a position away from the living body 100, and a temperature sensor 1 and a temperature sensor 2.
  • a heat insulating material 3 that holds the above, a heater 4 that applies a heat pulse to the living body 100, a temperature sensor 5 that measures the temperature T of the skin surface of the living body 100, and a heat insulating material 6 that holds the heater 4 and the temperature sensor 5.
  • the travel time calculation unit 8 that calculates the travel time tp until reaching the temperature sensor 5, the proportional coefficient derivation unit 9 that derives the proportionality coefficient ⁇ based on the travel time tp, and the measurement results of the temperature sensors 1 and 2 are proportional. It includes a temperature calculation unit 10 that calculates the core body temperature T CBT (internal temperature) of the living body 100 based on the coefficient ⁇ , and a communication unit 11 that transmits the calculation result of the core body temperature T CBT to the external terminal 12.
  • T CBT internal temperature
  • the temperature estimation device is arranged so that the heat insulating materials 3 and 6 come into contact with the skin of the living body 100.
  • the temperature sensor 1 is provided on the surface of the heat insulating material 3 on the living body side.
  • the temperature sensor 2 is provided on the surface of the heat insulating material 3 opposite to the surface on the living body side so as to come into contact with air.
  • the heat insulating material 3 holds the temperature sensor 1 and the temperature sensor 2, and serves as a resistance against the heat flowing into the temperature sensor 1.
  • the heater 4 and the temperature sensor 5 are provided on the surface of the heat insulating material 6 on the living body side at a distance from each other.
  • the heat insulating material 6 is a resistor that holds the heater 4 and the temperature sensor 5 and prevents the heat pulse from reaching the temperature sensor 5 through a non-living body.
  • a known thermistor, a thermopile using a thermocouple, or the like can be used as the temperature sensors 1, 2, and 5, for example.
  • FIG. 2 is a diagram showing a heat equivalent circuit model of the temperature sensors 1 and 2, the heat insulating material 3, and the living body 100. Since the thermal equivalent circuit model is the same as in the conventional case in this embodiment, the same reference numerals as those in FIG. 8 will be used for description.
  • FIG. 3 is a flowchart illustrating the operation of the temperature estimation device of this embodiment.
  • the moving time calculation unit 8 heats the heater 4 to apply a heat pulse from the heater 4 to the living body 100 (step S100 in FIG. 3).
  • the temperature sensor 5 measures the temperature of the skin surface of the living body 100 (step S101 in FIG. 3).
  • the measurement data of the temperature sensor 5 is stored in the storage unit 7.
  • the travel time calculation unit 8 calculates the travel time tp from when the heat pulse is applied to the living body 100 to when it travels through the living body 100 and reaches the temperature sensor 5 (step 3 in FIG. 3). S102).
  • Figure 4 shows an example of thermal pulse observation.
  • the horizontal axis of FIG. 4 is time, and the vertical axis is the absolute value of the time derivative of the temperature T measured by the temperature sensor 5. It is easier to detect the peak of the thermal pulse when the temperature T is time-differentiated. Therefore, the travel time calculation unit 8 may calculate the travel time tp by detecting the peak of the heat pulse by the time derivative of the temperature T.
  • FIG. 4 show heat pulses applied to three living bodies having different heat physical property values (heat capacity, density, and thermal conductivity). According to FIG. 4, it can be seen that the arrival time of the heat pulse changes depending on the thermophysical characteristic value of the living body.
  • the storage unit 7 stores in advance a calibration table in which the proportionality coefficient ⁇ is registered for each movement time tp.
  • the proportional coefficient derivation unit 9 derives the proportional coefficient ⁇ by acquiring the value of the proportional coefficient ⁇ corresponding to the travel time tp calculated by the travel time calculation unit 8 from the calibration table of the storage unit 7 (step 3 in FIG. 3). S103).
  • FIG. 5 is a diagram showing an example of the relationship between the proportionality coefficient ⁇ and the travel time tp.
  • the formula for estimating the core body temperature T CBT of the living body 100 is as follows.
  • T CBT T Skin + ⁇ (T Skin -T top ) ⁇ ⁇ ⁇ (2)
  • a thermal pulse is applied to a pseudo-biological sample such as a polymer having a known thermophysical property value in advance, and the travel time tp is measured, and the surface of the pseudo-biological sample is measured.
  • the temperature T Skin is measured by the temperature sensor 1, and the temperature T top at a position away from the pseudo biological sample is measured by the temperature sensor 2.
  • the proportional coefficient ⁇ corresponding to the travel time tp is calculated by the equation (2). be able to.
  • a calibration table can be prepared in advance by obtaining the experimental value of the proportionality coefficient ⁇ for various pseudo-biological samples having different thermophysical characteristics.
  • the temperature sensor 1 measures the temperature T Skin of the skin surface of the living body 100 (step S104 in FIG. 3).
  • the temperature sensor 2 measures the temperature T top at a position away from the living body 100 (step S105 in FIG. 3).
  • the measurement data of the temperature sensors 1 and 2 is stored in the storage unit 7.
  • the temperature calculation unit 10 formulates the core body temperature T CBT of the living body 100 based on the temperatures T Skin and T top measured by the temperature sensors 1 and 2 and the proportional coefficient ⁇ derived by the proportional coefficient derivation unit 9. Calculated according to 2) (step S106 in FIG. 3). It should be noted that calculating T Skin ⁇ T top as in equation (2) corresponds to calculating the heat flux HS in equation (1).
  • the communication unit 11 transmits the calculation result of the temperature calculation unit 10 to the external terminal 12 (step S107 in FIG. 3).
  • the external terminal 12 including a PC (Personal Computer), a smartphone, or the like displays the value of the core body temperature T CBT received from the temperature estimation device.
  • the temperature estimation device performs the above processes of steps S100 to S107 at regular time intervals, for example, until the user gives an instruction to end the measurement (YES in step S108 of FIG. 3).
  • FIG. 6 shows the deep body temperature T CBT estimated in this example and the deep temperature (tympanic membrane temperature) measured by the eardrum thermometer for comparison.
  • Figures 60, 61, 62, and 63 in FIG. 6 show the results for different living organisms 100. According to FIG. 6, it can be seen that an estimation result close to the eardrum temperature is obtained by this example.
  • the storage unit 7, the travel time calculation unit 8, the proportional coefficient derivation unit 9, the temperature calculation unit 10, and the communication unit 11 described in this embodiment are a computer equipped with a CPU (Central Processing Unit), a storage device, and an interface. It can be realized by a program that controls these hardware resources. An example of the configuration of this computer is shown in FIG.
  • the computer includes a CPU 200, a storage device 201, and an interface device (I / F) 202.
  • the sensors 1, 2, 5 and the heater 4, the hardware of the communication unit 11, and the like are connected to the I / F 202.
  • the temperature estimation program for realizing the temperature estimation method of the present invention is stored in the storage device 201.
  • the CPU 200 executes the process described in this embodiment according to the program stored in the storage device 201.
  • the present invention can be applied to a technique for estimating the internal temperature of a subject such as a living body.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

This temperature estimation device is provided with: a heater (4) that applies a thermal pulse to a living body (100); a temperature sensor (5) that measures the surface temperature of the living body (100); a transfer time calculation unit (8) that calculates the transfer time from application of the thermal pulse until the thermal pulse propagates through the living body (100) to reach the temperature sensor (5); a proportionality coefficient deriving unit (9) that derives a proportionality coefficient depending on thermophysical properties of the living body (100) on the basis of the transfer time; a temperature sensor (1) that measures the surface temperature of the living body (100); a temperature sensor (2) that measures the temperature of a position away from the living body (100); and a temperature calculation unit (10) that calculates the deep body temperature of the living body (100) on the basis the measurement results from the temperature sensors (1, 2) and the proportionality coefficient.

Description

温度推定方法、温度推定プログラムおよび温度推定装置Temperature estimation method, temperature estimation program and temperature estimation device
 本発明は、生体等の被検体の内部温度を推定する温度推定方法、温度推定プログラムおよび温度推定装置に関するものである。 The present invention relates to a temperature estimation method, a temperature estimation program, and a temperature estimation device for estimating the internal temperature of a subject such as a living body.
 生体の深部体温を推定する方法として、特許文献1に開示された生体内温度推定方法が知られている。特許文献1に開示された方法は、図8に示すように生体100とセンサ101の熱等価回路モデルを用いて、生体100の深部体温TCBTを推定するものである。センサ101は、生体100の皮膚表面の温度TSkinと皮膚表面の熱流束HSとを計測する。Ttopは生体100の皮膚と接する面と反対側のセンサ101の上面の温度、TAirは外気温度、RBは生体100の熱抵抗、RSはセンサ101の熱抵抗、RAは外気の熱抵抗である。深部体温TCBTを推定する式は、次式のようになる。
 TCBT=TSkin+αHS                ・・・(1)
As a method for estimating the core body temperature of a living body, the in-vivo temperature estimation method disclosed in Patent Document 1 is known. The method disclosed in Patent Document 1 estimates the core body temperature T CBT of the living body 100 by using the heat equivalent circuit model of the living body 100 and the sensor 101 as shown in FIG. The sensor 101 measures the temperature T Skin of the skin surface of the living body 100 and the heat flux HS of the skin surface. T top is the temperature of the upper surface of the sensor 101 on the side opposite to the surface of the living body 100 in contact with the skin, T Air is the outside air temperature, RB is the thermal resistance of the living body 100, R S is the thermal resistance of the sensor 101, and RA is the outside air. Thermal resistance. The formula for estimating the core body temperature T CBT is as follows.
T CBT = T Skin + αH S ... (1)
 式(1)の比例係数αは、生体100の熱物性値によって決まる。比例係数αは、一般に、初期校正時に別のセンサを用いて計測された直腸温や鼓膜温を深部体温TCBTとして、この深部体温TCBTとセンサ101によって計測された温度TSkinと熱流束HSとを用いることにより求めることができる。 The proportionality coefficient α of the equation (1) is determined by the thermophysical characteristic value of the living body 100. The proportionality coefficient α is generally the rectal temperature and eardrum temperature measured by another sensor at the time of initial calibration as the core body temperature T CBT , and the temperature T Skin and heat flux H measured by the core body temperature T CBT and the sensor 101. It can be obtained by using S.
 従来の方法では、生体100の熱物性値を一定とし、比例係数αも一定としていた。しかしながら、熱物性値は、個人差があり、また深部体温TCBTの計測中に生体100の血流が増減すると変動する。この熱物性値の変動により、従来の方法では、深部体温TCBTの推定に誤差が生じるという課題があった。 In the conventional method, the thermophysical characteristic value of the living body 100 is constant, and the proportionality coefficient α is also constant. However, the thermophysical characteristic values vary from person to person and fluctuate when the blood flow of the living body 100 increases or decreases during the measurement of the core body temperature T CBT . Due to this fluctuation in the thermophysical characteristics, the conventional method has a problem that an error occurs in the estimation of the core body temperature T CBT .
特開2020-3291号公報Japanese Unexamined Patent Publication No. 2020-3291
 本発明は、上記課題を解決するためになされたもので、生体等の被検体の内部温度の推定誤差を低減することができる温度推定方法、温度推定プログラムおよび温度推定装置を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a temperature estimation method, a temperature estimation program, and a temperature estimation device capable of reducing an error in estimating the internal temperature of a subject such as a living body. And.
 本発明の温度推定方法は、ヒータから被検体に熱パルスを印加する第1のステップと、前記被検体の表面の温度を第1の温度センサによって計測する第2のステップと、前記第2のステップの計測結果に基づいて、前記熱パルスが印加されてから前記被検体を伝わって前記第1の温度センサに到達するまでの移動時間を算出する第3のステップと、前記移動時間に基づいて前記被検体の熱物性値に依存する比例係数を導出する第4のステップと、前記被検体の表面の温度を第2の温度センサによって計測する第5のステップと、前記被検体から遠ざかる位置の温度を第3の温度センサによって計測する第6のステップと、前記第5、第6のステップの計測結果と前記比例係数とに基づいて前記被検体の内部温度を算出する第7のステップとを含むことを特徴とするものである。
 また、本発明の温度推定プログラムは、前記の第3のステップ、第4のステップ、第7のステップをコンピュータに実行させることを特徴とするものである。
The temperature estimation method of the present invention includes a first step of applying a heat pulse from a heater to a subject, a second step of measuring the temperature of the surface of the subject by a first temperature sensor, and the second step. Based on the measurement result of the step, the third step of calculating the movement time from the application of the heat pulse to the arrival at the first temperature sensor through the subject, and the movement time. The fourth step of deriving the proportionality coefficient depending on the thermophysical property value of the subject, the fifth step of measuring the temperature of the surface of the subject by the second temperature sensor, and the position away from the subject. The sixth step of measuring the temperature by the third temperature sensor and the seventh step of calculating the internal temperature of the subject based on the measurement results of the fifth and sixth steps and the proportional coefficient. It is characterized by including.
Further, the temperature estimation program of the present invention is characterized in that the computer executes the third step, the fourth step, and the seventh step.
 また、本発明の温度推定装置は、被検体に熱パルスを印加するように構成されたヒータと、前記被検体の表面の温度を計測するように構成された第1の温度センサと、前記第1の温度センサの計測結果に基づいて、前記熱パルスが印加されてから前記被検体を伝わって前記第1の温度センサに到達するまでの移動時間を算出するように構成された移動時間算出部と、前記移動時間に基づいて前記被検体の熱物性値に依存する比例係数を導出するように構成された比例係数導出部と、前記被検体の表面の温度を計測するように構成された第2の温度センサと、前記被検体から遠ざかる位置の温度を計測するように構成された第3の温度センサと、前記第2、第3の温度センサの計測結果と前記比例係数とに基づいて前記被検体の内部温度を算出するように構成された温度算出部とを備えることを特徴とするものである。 Further, the temperature estimation device of the present invention includes a heater configured to apply a heat pulse to the subject, a first temperature sensor configured to measure the temperature of the surface of the subject, and the first temperature sensor. A movement time calculation unit configured to calculate the movement time from the application of the heat pulse to the arrival at the first temperature sensor through the subject based on the measurement result of the temperature sensor 1. A proportional coefficient derivation unit configured to derive a proportional coefficient depending on the thermophysical property value of the subject based on the travel time, and a first unit configured to measure the temperature of the surface of the subject. The temperature sensor (2), a third temperature sensor configured to measure the temperature at a position away from the subject, the measurement results of the second and third temperature sensors, and the proportional coefficient are used. It is characterized by including a temperature calculation unit configured to calculate the internal temperature of the subject.
 本発明によれば、ヒータから被検体に熱パルスを印加し、熱パルスが印加されてから被検体を伝わって第1の温度センサに到達するまでの移動時間を算出して、熱パルスの移動時間に基づいて被検体の熱物性値に依存する比例係数を導出し、被検体の表面の温度と被検体から遠ざかる位置の温度と比例係数とに基づいて被検体の内部温度を算出することにより、被検体の個体差や血流によって変わる比例係数を補正することができるので、被検体の内部温度の推定誤差を低減することができる。 According to the present invention, a heat pulse is applied from the heater to the subject, the movement time from the application of the heat pulse to the time when the heat pulse is transmitted to the first temperature sensor is calculated, and the movement of the heat pulse is calculated. By deriving a proportionality coefficient that depends on the thermophysical property value of the subject based on time, and calculating the internal temperature of the subject based on the temperature of the surface of the subject, the temperature at a position away from the subject, and the proportionality coefficient. Since the proportionality coefficient that changes depending on the individual difference of the subject and the blood flow can be corrected, the estimation error of the internal temperature of the subject can be reduced.
図1は、本発明の実施例に係る温度推定装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a temperature estimation device according to an embodiment of the present invention. 図2は、本発明の実施例に係る温度センサと断熱材と生体の熱等価回路モデルを示す図である。FIG. 2 is a diagram showing a heat equivalent circuit model of a temperature sensor, a heat insulating material, and a living body according to an embodiment of the present invention. 図3は、本発明の実施例に係る温度推定装置の動作を説明するフローチャートである。FIG. 3 is a flowchart illustrating the operation of the temperature estimation device according to the embodiment of the present invention. 図4は、熱パルスの観測例を示す図である。FIG. 4 is a diagram showing an observation example of a thermal pulse. 図5は、比例係数と移動時間の関係の1例を示す図である。FIG. 5 is a diagram showing an example of the relationship between the proportionality coefficient and the travel time. 図6は、本発明の実施例に係る温度推定装置によって推定した深部体温と鼓膜温度計によって計測した鼓膜温とを示す図である。FIG. 6 is a diagram showing the core body temperature estimated by the temperature estimation device according to the embodiment of the present invention and the eardrum temperature measured by the eardrum thermometer. 図7は、本発明の実施例に係る温度推定装置を実現するコンピュータの構成例を示すブロック図である。FIG. 7 is a block diagram showing a configuration example of a computer that realizes the temperature estimation device according to the embodiment of the present invention. 図8は、生体とセンサの熱等価回路モデルを示す図である。FIG. 8 is a diagram showing a thermal equivalent circuit model of a living body and a sensor.
[発明の原理]
 熱が生体の皮膚表面を移動するのに要する時間t(熱が皮膚表面を移動する速度)は、生体の熱物性値に依存しているため、時間tを利用して比例係数αを取得することが可能である。これにより、本発明では、個人差や血流によって変わる比例係数αを補正しながら生体の深部体温を推定することができる。
[Principle of invention]
Since the time t (the speed at which heat moves on the skin surface) required for heat to move on the skin surface of the living body depends on the thermophysical property value of the living body, the proportional coefficient α is obtained using the time t. It is possible. Thereby, in the present invention, the core body temperature of the living body can be estimated while correcting the proportionality coefficient α which changes depending on individual differences and blood flow.
[実施例]
 以下、本発明の実施例について図面を参照して説明する。図1は本発明の実施例に係る温度推定装置の構成を示すブロック図である。温度推定装置は、生体100(被検体)の皮膚表面の温度TSkinを計測する温度センサ1と、生体100から遠ざかる位置の温度Ttopを計測する温度センサ2と、温度センサ1と温度センサ2とを保持する断熱材3と、生体100に熱パルスを印加するヒータ4と、生体100の皮膚表面の温度Tを計測する温度センサ5と、ヒータ4と温度センサ5とを保持する断熱材6と、熱パルスの移動時間に対応する比例係数αが登録された校正テーブルを予め記憶する記憶部7と、温度センサ5の計測結果に基づいて、熱パルスが印加されてから生体100を伝わって温度センサ5に到達するまでの移動時間tpを算出する移動時間算出部8と、移動時間tpに基づいて比例係数αを導出する比例係数導出部9と、温度センサ1,2の計測結果と比例係数αとに基づいて生体100の深部体温TCBT(内部温度)を算出する温度算出部10と、深部体温TCBTの算出結果を外部端末12に送信する通信部11とを備えている。
[Example]
Hereinafter, examples of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a temperature estimation device according to an embodiment of the present invention. The temperature estimation device includes a temperature sensor 1 that measures the temperature T Skin of the skin surface of the living body 100 (subject), a temperature sensor 2 that measures the temperature T top at a position away from the living body 100, and a temperature sensor 1 and a temperature sensor 2. A heat insulating material 3 that holds the above, a heater 4 that applies a heat pulse to the living body 100, a temperature sensor 5 that measures the temperature T of the skin surface of the living body 100, and a heat insulating material 6 that holds the heater 4 and the temperature sensor 5. And, based on the measurement result of the temperature sensor 5 and the storage unit 7 that stores the calibration table in which the proportional coefficient α corresponding to the movement time of the heat pulse is registered in advance, the heat pulse is applied and then transmitted to the living body 100. The travel time calculation unit 8 that calculates the travel time tp until reaching the temperature sensor 5, the proportional coefficient derivation unit 9 that derives the proportionality coefficient α based on the travel time tp, and the measurement results of the temperature sensors 1 and 2 are proportional. It includes a temperature calculation unit 10 that calculates the core body temperature T CBT (internal temperature) of the living body 100 based on the coefficient α, and a communication unit 11 that transmits the calculation result of the core body temperature T CBT to the external terminal 12.
 温度推定装置は、断熱材3,6が生体100の皮膚と接触するように配置される。温度センサ1は、断熱材3の生体側の面に設けられる。温度センサ2は、断熱材3の生体側の面と反対側の面に、空気と触れるように設けられる。断熱材3は、温度センサ1と温度センサ2とを保持し、且つ温度センサ1に流入する熱に対する抵抗体となる。 The temperature estimation device is arranged so that the heat insulating materials 3 and 6 come into contact with the skin of the living body 100. The temperature sensor 1 is provided on the surface of the heat insulating material 3 on the living body side. The temperature sensor 2 is provided on the surface of the heat insulating material 3 opposite to the surface on the living body side so as to come into contact with air. The heat insulating material 3 holds the temperature sensor 1 and the temperature sensor 2, and serves as a resistance against the heat flowing into the temperature sensor 1.
 ヒータ4と温度センサ5とは、断熱材6の生体側の面に互いに距離を隔てて設けられる。断熱材6は、ヒータ4と温度センサ5とを保持し、且つ生体以外を通して熱パルスが温度センサ5に到達することを防ぐ抵抗体となる。温度センサ1,2,5としては、例えば公知のサーミスタや、熱電対を用いたサーモパイルなどを用いることができる。 The heater 4 and the temperature sensor 5 are provided on the surface of the heat insulating material 6 on the living body side at a distance from each other. The heat insulating material 6 is a resistor that holds the heater 4 and the temperature sensor 5 and prevents the heat pulse from reaching the temperature sensor 5 through a non-living body. As the temperature sensors 1, 2, and 5, for example, a known thermistor, a thermopile using a thermocouple, or the like can be used.
 図2は温度センサ1,2と断熱材3と生体100の熱等価回路モデルを示す図である。本実施例においても熱等価回路モデルは従来と同様であるので、図8と同じ符号を用いて説明する。 FIG. 2 is a diagram showing a heat equivalent circuit model of the temperature sensors 1 and 2, the heat insulating material 3, and the living body 100. Since the thermal equivalent circuit model is the same as in the conventional case in this embodiment, the same reference numerals as those in FIG. 8 will be used for description.
 図3は本実施例の温度推定装置の動作を説明するフローチャートである。まず、移動時間算出部8は、ヒータ4を発熱させることにより、ヒータ4から生体100に熱パルスを印加させる(図3ステップS100)。
 温度センサ5は、生体100の皮膚表面の温度を計測する(図3ステップS101)。温度センサ5の計測データは記憶部7に格納される。
FIG. 3 is a flowchart illustrating the operation of the temperature estimation device of this embodiment. First, the moving time calculation unit 8 heats the heater 4 to apply a heat pulse from the heater 4 to the living body 100 (step S100 in FIG. 3).
The temperature sensor 5 measures the temperature of the skin surface of the living body 100 (step S101 in FIG. 3). The measurement data of the temperature sensor 5 is stored in the storage unit 7.
 移動時間算出部8は、温度センサ5の計測結果に基づいて、熱パルスが生体100に印加されてから生体100を伝わって温度センサ5に到達するまでの移動時間tpを算出する(図3ステップS102)。 Based on the measurement result of the temperature sensor 5, the travel time calculation unit 8 calculates the travel time tp from when the heat pulse is applied to the living body 100 to when it travels through the living body 100 and reaches the temperature sensor 5 (step 3 in FIG. 3). S102).
 図4に熱パルスの観測例を示す。図4の横軸は時間、縦軸は温度センサ5によって計測された温度Tの時間微分の絶対値である。温度Tを時間微分した方が熱パルスのピークを検出し易い。したがって、移動時間算出部8は、温度Tの時間微分によって熱パルスのピークを検出することにより、移動時間tpを算出すればよい。 Figure 4 shows an example of thermal pulse observation. The horizontal axis of FIG. 4 is time, and the vertical axis is the absolute value of the time derivative of the temperature T measured by the temperature sensor 5. It is easier to detect the peak of the thermal pulse when the temperature T is time-differentiated. Therefore, the travel time calculation unit 8 may calculate the travel time tp by detecting the peak of the heat pulse by the time derivative of the temperature T.
 図4の40,41,42は、それぞれ異なる熱物性値(熱容量、密度、熱伝導率)を有する3体の生体に印加した熱パルスを示している。図4によれば、生体の熱物性値によって熱パルスの到達時間が変わることが分かる。 40, 41, and 42 in FIG. 4 show heat pulses applied to three living bodies having different heat physical property values (heat capacity, density, and thermal conductivity). According to FIG. 4, it can be seen that the arrival time of the heat pulse changes depending on the thermophysical characteristic value of the living body.
 次に、記憶部7には、比例係数αが移動時間tp毎に登録された校正テーブルが予め記憶されている。
 比例係数導出部9は、移動時間算出部8によって算出された移動時間tpに対応する比例係数αの値を記憶部7の校正テーブルから取得することにより、比例係数αを導出する(図3ステップS103)。
Next, the storage unit 7 stores in advance a calibration table in which the proportionality coefficient α is registered for each movement time tp.
The proportional coefficient derivation unit 9 derives the proportional coefficient α by acquiring the value of the proportional coefficient α corresponding to the travel time tp calculated by the travel time calculation unit 8 from the calibration table of the storage unit 7 (step 3 in FIG. 3). S103).
 図5は比例係数αと移動時間tpの関係の1例を示す図である。本実施例において、生体100の深部体温TCBTを推定する式は、次式のようになる。
 TCBT=TSkin+α(TSkin-Ttop)         ・・・(2)
FIG. 5 is a diagram showing an example of the relationship between the proportionality coefficient α and the travel time tp. In this embodiment, the formula for estimating the core body temperature T CBT of the living body 100 is as follows.
T CBT = T Skin + α (T Skin -T top ) ・ ・ ・ (2)
 図5にプロットされた比例係数αの実験値を求めるには、あらかじめ熱物性値が既知のポリマー等の疑似生体サンプルに熱パルスを印加して移動時間tpを計測し、疑似生体サンプルの表面の温度TSkinを温度センサ1によって計測し、疑似生体サンプルから遠ざかる位置の温度Ttopを温度センサ2によって計測する。さらにセンサ1,2,5とヒータ4の周囲の部位における疑似生体サンプルの内部温度TCBTを例えば熱流補償法によって計測すれば、式(2)により移動時間tpに対応する比例係数αを算出することができる。このような比例係数αの実験値を、熱物性値が異なる多種の疑似生体サンプルについて求めることにより、校正テーブルを予め作成することができる。 In order to obtain the experimental value of the proportionality coefficient α plotted in FIG. 5, a thermal pulse is applied to a pseudo-biological sample such as a polymer having a known thermophysical property value in advance, and the travel time tp is measured, and the surface of the pseudo-biological sample is measured. The temperature T Skin is measured by the temperature sensor 1, and the temperature T top at a position away from the pseudo biological sample is measured by the temperature sensor 2. Further, if the internal temperature T CBT of the pseudo biological sample in the parts around the sensors 1, 2, 5 and the heater 4 is measured by, for example, the heat flow compensation method, the proportional coefficient α corresponding to the travel time tp is calculated by the equation (2). be able to. A calibration table can be prepared in advance by obtaining the experimental value of the proportionality coefficient α for various pseudo-biological samples having different thermophysical characteristics.
 次に、温度センサ1は、生体100の皮膚表面の温度TSkinを計測する(図3ステップS104)。温度センサ2は、生体100から遠ざかる位置の温度Ttopを計測する(図3ステップS105)。温度センサ1,2の計測データは記憶部7に格納される。 Next, the temperature sensor 1 measures the temperature T Skin of the skin surface of the living body 100 (step S104 in FIG. 3). The temperature sensor 2 measures the temperature T top at a position away from the living body 100 (step S105 in FIG. 3). The measurement data of the temperature sensors 1 and 2 is stored in the storage unit 7.
 温度算出部10は、温度センサ1,2によって計測された温度TSkin,Ttopと、比例係数導出部9によって導出された比例係数αとに基づいて、生体100の深部体温TCBTを式(2)により算出する(図3ステップS106)。なお、式(2)のようにTSkin-Ttopを算出することは、式(1)の熱流束HSを算出することに相当する。 The temperature calculation unit 10 formulates the core body temperature T CBT of the living body 100 based on the temperatures T Skin and T top measured by the temperature sensors 1 and 2 and the proportional coefficient α derived by the proportional coefficient derivation unit 9. Calculated according to 2) (step S106 in FIG. 3). It should be noted that calculating T SkinT top as in equation (2) corresponds to calculating the heat flux HS in equation (1).
 通信部11は、温度算出部10の算出結果を外部端末12に送信する(図3ステップS107)。PC(Personal Computer)やスマートフォン等からなる外部端末12は、温度推定装置から受信した深部体温TCBTの値を表示する。 The communication unit 11 transmits the calculation result of the temperature calculation unit 10 to the external terminal 12 (step S107 in FIG. 3). The external terminal 12 including a PC (Personal Computer), a smartphone, or the like displays the value of the core body temperature T CBT received from the temperature estimation device.
 温度推定装置は、以上のステップS100~S107の処理を、例えばユーザから計測終了の指示があるまで(図3ステップS108においてYES)、一定時間毎に実施する。 The temperature estimation device performs the above processes of steps S100 to S107 at regular time intervals, for example, until the user gives an instruction to end the measurement (YES in step S108 of FIG. 3).
 図6に本実施例で推定した深部体温TCBTと、比較のために鼓膜温度計によって計測した深部温度(鼓膜温)とを示す。図6の60,61,62,63は、それぞれ異なる生体100を対象とする結果を示している。図6によれば、鼓膜温に近い推定結果が本実施例によって得られていることが分かる。 FIG. 6 shows the deep body temperature T CBT estimated in this example and the deep temperature (tympanic membrane temperature) measured by the eardrum thermometer for comparison. Figures 60, 61, 62, and 63 in FIG. 6 show the results for different living organisms 100. According to FIG. 6, it can be seen that an estimation result close to the eardrum temperature is obtained by this example.
 本実施例で説明した記憶部7と移動時間算出部8と比例係数導出部9と温度算出部10と通信部11とは、CPU(Central Processing Unit)、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。このコンピュータの構成例を図7に示す。 The storage unit 7, the travel time calculation unit 8, the proportional coefficient derivation unit 9, the temperature calculation unit 10, and the communication unit 11 described in this embodiment are a computer equipped with a CPU (Central Processing Unit), a storage device, and an interface. It can be realized by a program that controls these hardware resources. An example of the configuration of this computer is shown in FIG.
 コンピュータは、CPU200と、記憶装置201と、インタフェース装置(I/F)202とを備えている。I/F202には、センサ1,2,5やヒータ4、通信部11のハードウェア等が接続される。このようなコンピュータにおいて、本発明の温度推定方法を実現させるための温度推定プログラムは記憶装置201に格納される。CPU200は、記憶装置201に格納されたプログラムに従って本実施例で説明した処理を実行する。 The computer includes a CPU 200, a storage device 201, and an interface device (I / F) 202. The sensors 1, 2, 5 and the heater 4, the hardware of the communication unit 11, and the like are connected to the I / F 202. In such a computer, the temperature estimation program for realizing the temperature estimation method of the present invention is stored in the storage device 201. The CPU 200 executes the process described in this embodiment according to the program stored in the storage device 201.
 本発明は、生体等の被検体の内部温度を推定する技術に適用することができる。 The present invention can be applied to a technique for estimating the internal temperature of a subject such as a living body.
 1,2,5…温度センサ、3,6…断熱材、4…ヒータ、7…記憶部、8…移動時間算出部、9…比例係数導出部、10…温度算出部、11…通信部、12…外部端末。 1,2,5 ... Temperature sensor, 3,6 ... Insulation material, 4 ... Heater, 7 ... Storage unit, 8 ... Movement time calculation unit, 9 ... Proportional coefficient derivation unit, 10 ... Temperature calculation unit, 11 ... Communication unit, 12 ... External terminal.

Claims (7)

  1.  ヒータから被検体に熱パルスを印加する第1のステップと、
     前記被検体の表面の温度を第1の温度センサによって計測する第2のステップと、
     前記第2のステップの計測結果に基づいて、前記熱パルスが印加されてから前記被検体を伝わって前記第1の温度センサに到達するまでの移動時間を算出する第3のステップと、
     前記移動時間に基づいて前記被検体の熱物性値に依存する比例係数を導出する第4のステップと、
     前記被検体の表面の温度を第2の温度センサによって計測する第5のステップと、
     前記被検体から遠ざかる位置の温度を第3の温度センサによって計測する第6のステップと、
     前記第5、第6のステップの計測結果と前記比例係数とに基づいて前記被検体の内部温度を算出する第7のステップとを含むことを特徴とする温度推定方法。
    The first step of applying a heat pulse from the heater to the subject,
    The second step of measuring the temperature of the surface of the subject by the first temperature sensor, and
    Based on the measurement results of the second step, the third step of calculating the travel time from the application of the heat pulse to the arrival at the first temperature sensor through the subject, and the third step.
    A fourth step of deriving a proportionality coefficient depending on the thermophysical characteristic value of the subject based on the travel time, and
    The fifth step of measuring the temperature of the surface of the subject by the second temperature sensor, and
    The sixth step of measuring the temperature at a position away from the subject by the third temperature sensor, and
    A temperature estimation method comprising a seventh step of calculating the internal temperature of the subject based on the measurement results of the fifth and sixth steps and the proportionality coefficient.
  2.  請求項1記載の温度推定方法において、
     前記第4のステップは、前記第3のステップで算出した移動時間に対応する比例係数の値を予め記憶された校正テーブルから取得することにより、前記比例係数を導出するステップを含むことを特徴とする温度推定方法。
    In the temperature estimation method according to claim 1,
    The fourth step is characterized by including a step of deriving the proportional coefficient by acquiring the value of the proportional coefficient corresponding to the travel time calculated in the third step from a calibration table stored in advance. Temperature estimation method.
  3.  請求項1または2記載の温度推定方法において、
     前記ヒータと前記第1の温度センサとは、前記被検体と接触する第1の断熱材の被検体側の面に互いに距離を隔てて設けられ、
     前記第2の温度センサは、前記被検体と接触する第2の断熱材の被検体側の面に設けられ、
     前記第3の温度センサは、前記第2の断熱材の被検体側の面と反対側の面に設けられることを特徴とする温度推定方法。
    In the temperature estimation method according to claim 1 or 2.
    The heater and the first temperature sensor are provided on the surface of the first heat insulating material on the subject side of the first heat insulating material in contact with the subject at a distance from each other.
    The second temperature sensor is provided on the surface of the second heat insulating material on the subject side in contact with the subject.
    A temperature estimation method, wherein the third temperature sensor is provided on a surface of the second heat insulating material opposite to the surface on the subject side.
  4.  請求項1または2記載の第3のステップ、第4のステップ、第7のステップをコンピュータに実行させることを特徴とする温度推定プログラム。 A temperature estimation program comprising causing a computer to execute the third step, the fourth step, and the seventh step according to claim 1 or 2.
  5.  被検体に熱パルスを印加するように構成されたヒータと、
     前記被検体の表面の温度を計測するように構成された第1の温度センサと、
     前記第1の温度センサの計測結果に基づいて、前記熱パルスが印加されてから前記被検体を伝わって前記第1の温度センサに到達するまでの移動時間を算出するように構成された移動時間算出部と、
     前記移動時間に基づいて前記被検体の熱物性値に依存する比例係数を導出するように構成された比例係数導出部と、
     前記被検体の表面の温度を計測するように構成された第2の温度センサと、
     前記被検体から遠ざかる位置の温度を計測するように構成された第3の温度センサと、
     前記第2、第3の温度センサの計測結果と前記比例係数とに基づいて前記被検体の内部温度を算出するように構成された温度算出部とを備えることを特徴とする温度推定装置。
    A heater configured to apply a thermal pulse to the subject,
    A first temperature sensor configured to measure the temperature of the surface of the subject, and
    Based on the measurement result of the first temperature sensor, the travel time configured to calculate the travel time from the application of the heat pulse to the arrival at the first temperature sensor through the subject. Calculation unit and
    A proportional coefficient derivation unit configured to derive a proportional coefficient depending on the thermophysical characteristic value of the subject based on the travel time, and a proportional coefficient derivation unit.
    A second temperature sensor configured to measure the temperature of the surface of the subject, and
    A third temperature sensor configured to measure the temperature at a position away from the subject, and
    A temperature estimation device including a temperature calculation unit configured to calculate the internal temperature of the subject based on the measurement results of the second and third temperature sensors and the proportional coefficient.
  6.  請求項5記載の温度推定装置において、
     前記移動時間に対応する前記比例係数が移動時間毎に登録された校正テーブルを予め記憶するように構成された記憶部をさらに備え、
     前記比例係数導出部は、前記移動時間算出部によって算出された移動時間に対応する比例係数の値を前記校正テーブルから取得することにより、前記比例係数を導出することを特徴とする温度推定装置。
    In the temperature estimation device according to claim 5,
    Further, a storage unit configured to store in advance a calibration table in which the proportional coefficient corresponding to the movement time is registered for each movement time is provided.
    The proportional coefficient derivation unit is a temperature estimation device, characterized in that the proportional coefficient is derived by acquiring the value of the proportional coefficient corresponding to the travel time calculated by the travel time calculation unit from the calibration table.
  7.  請求項5または6記載の温度推定装置において、
     前記ヒータと前記第1の温度センサとは、前記被検体と接触する第1の断熱材の被検体側の面に互いに距離を隔てて設けられ、
     前記第2の温度センサは、前記被検体と接触する第2の断熱材の被検体側の面に設けられ、
     前記第3の温度センサは、前記第2の断熱材の被検体側の面と反対側の面に設けられることを特徴とする温度推定装置。
    In the temperature estimation device according to claim 5 or 6.
    The heater and the first temperature sensor are provided on the surface of the first heat insulating material on the subject side of the first heat insulating material in contact with the subject at a distance from each other.
    The second temperature sensor is provided on the surface of the second heat insulating material on the subject side in contact with the subject.
    The third temperature sensor is a temperature estimation device provided on a surface of the second heat insulating material opposite to the surface on the subject side.
PCT/JP2020/035711 2020-09-23 2020-09-23 Temperature estimation method, temperature estimation program, and temperature estimation device WO2022064552A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022551458A JPWO2022064552A1 (en) 2020-09-23 2020-09-23
PCT/JP2020/035711 WO2022064552A1 (en) 2020-09-23 2020-09-23 Temperature estimation method, temperature estimation program, and temperature estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035711 WO2022064552A1 (en) 2020-09-23 2020-09-23 Temperature estimation method, temperature estimation program, and temperature estimation device

Publications (1)

Publication Number Publication Date
WO2022064552A1 true WO2022064552A1 (en) 2022-03-31

Family

ID=80845626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035711 WO2022064552A1 (en) 2020-09-23 2020-09-23 Temperature estimation method, temperature estimation program, and temperature estimation device

Country Status (2)

Country Link
JP (1) JPWO2022064552A1 (en)
WO (1) WO2022064552A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143251A1 (en) * 2009-06-08 2010-12-16 株式会社日立製作所 Blood flow measuring device and method
WO2014157138A1 (en) * 2013-03-28 2014-10-02 シチズンホールディングス株式会社 Internal temperature measurement method and contact type internal temperature gauge
WO2018180800A1 (en) * 2017-03-31 2018-10-04 日本電気株式会社 Thermal diffusion coefficient measuring device, and deep-body thermometer, deep-body temperature measuring device, and deep-body temperature measuring method using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143251A1 (en) * 2009-06-08 2010-12-16 株式会社日立製作所 Blood flow measuring device and method
WO2014157138A1 (en) * 2013-03-28 2014-10-02 シチズンホールディングス株式会社 Internal temperature measurement method and contact type internal temperature gauge
WO2018180800A1 (en) * 2017-03-31 2018-10-04 日本電気株式会社 Thermal diffusion coefficient measuring device, and deep-body thermometer, deep-body temperature measuring device, and deep-body temperature measuring method using same

Also Published As

Publication number Publication date
JPWO2022064552A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
US20220170800A1 (en) Temperature measurement device and temperature measurement method
JP4751386B2 (en) Temperature measuring device
JP6153646B2 (en) Method for correcting temperature drift of temperature measuring device using thermocouple
CN106706165B (en) A kind of method and device of temperature measurement
JP2010511894A (en) Detection of temperature sensor configuration in a process variable transmitter
CN114008422A (en) Apparatus, system, and method for non-invasive thermal interrogation
CN112013978B (en) Automatic compensation method for dynamic temperature measurement of temperature sensor
CN111141420A (en) Object deep temperature measuring method and device based on heat flow method
CN110179444B (en) Infant body temperature detection foot ring system and detection method thereof
WO2022064552A1 (en) Temperature estimation method, temperature estimation program, and temperature estimation device
JP2005098982A (en) Electronic clinical thermometer
JP7147977B2 (en) Temperature measurement method and program
WO2022064553A1 (en) Temperature estimation method, temperature estimation program, and temperature estimation device
JP7435825B2 (en) Temperature estimation method, temperature estimation program and temperature estimation device
US20240053209A1 (en) Thermometer with a diagnostic function
US20230145806A1 (en) Temperature Measurement Device and Temperature Measurement Method
JP7473074B2 (en) TEMPERATURE ESTIMATION METHOD, TEMPERATURE ESTIMATION PROGRAM, AND TEMPERATURE ESTIMATION DEVICE
JP3300110B2 (en) Gas detector
RU2647504C1 (en) Method of dynamic grading of thermometers of resistance
JP7392837B2 (en) Temperature measurement device and temperature measurement method
JP6648720B2 (en) Heat output control device
JP4371804B2 (en) Absolute temperature measuring device and method
WO2022230039A1 (en) Temperature estimation method, temperature estimation program, and temperature estimation device
JP7375933B2 (en) Temperature measuring device, method and program
US20230172456A1 (en) Installation State Determination Method, and Installation State Determination System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955146

Country of ref document: EP

Kind code of ref document: A1