WO2022064552A1 - Procédé d'estimation de température, programme d'estimation de température, et dispositif d'estimation de température - Google Patents

Procédé d'estimation de température, programme d'estimation de température, et dispositif d'estimation de température Download PDF

Info

Publication number
WO2022064552A1
WO2022064552A1 PCT/JP2020/035711 JP2020035711W WO2022064552A1 WO 2022064552 A1 WO2022064552 A1 WO 2022064552A1 JP 2020035711 W JP2020035711 W JP 2020035711W WO 2022064552 A1 WO2022064552 A1 WO 2022064552A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
subject
temperature sensor
temperature estimation
proportional coefficient
Prior art date
Application number
PCT/JP2020/035711
Other languages
English (en)
Japanese (ja)
Inventor
雄次郎 田中
大地 松永
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/035711 priority Critical patent/WO2022064552A1/fr
Priority to JP2022551458A priority patent/JPWO2022064552A1/ja
Publication of WO2022064552A1 publication Critical patent/WO2022064552A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Definitions

  • the present invention relates to a temperature estimation method, a temperature estimation program, and a temperature estimation device for estimating the internal temperature of a subject such as a living body.
  • the in-vivo temperature estimation method disclosed in Patent Document 1 is known.
  • the method disclosed in Patent Document 1 estimates the core body temperature T CBT of the living body 100 by using the heat equivalent circuit model of the living body 100 and the sensor 101 as shown in FIG.
  • the sensor 101 measures the temperature T Skin of the skin surface of the living body 100 and the heat flux HS of the skin surface.
  • T top is the temperature of the upper surface of the sensor 101 on the side opposite to the surface of the living body 100 in contact with the skin
  • T Air is the outside air temperature
  • RB is the thermal resistance of the living body 100
  • R S is the thermal resistance of the sensor 101
  • RA the outside air. Thermal resistance.
  • the proportionality coefficient ⁇ of the equation (1) is determined by the thermophysical characteristic value of the living body 100.
  • the proportionality coefficient ⁇ is generally the rectal temperature and eardrum temperature measured by another sensor at the time of initial calibration as the core body temperature T CBT , and the temperature T Skin and heat flux H measured by the core body temperature T CBT and the sensor 101. It can be obtained by using S.
  • thermophysical characteristic value of the living body 100 is constant, and the proportionality coefficient ⁇ is also constant.
  • thermophysical characteristic values vary from person to person and fluctuate when the blood flow of the living body 100 increases or decreases during the measurement of the core body temperature T CBT . Due to this fluctuation in the thermophysical characteristics, the conventional method has a problem that an error occurs in the estimation of the core body temperature T CBT .
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a temperature estimation method, a temperature estimation program, and a temperature estimation device capable of reducing an error in estimating the internal temperature of a subject such as a living body. And.
  • the temperature estimation method of the present invention includes a first step of applying a heat pulse from a heater to a subject, a second step of measuring the temperature of the surface of the subject by a first temperature sensor, and the second step. Based on the measurement result of the step, the third step of calculating the movement time from the application of the heat pulse to the arrival at the first temperature sensor through the subject, and the movement time.
  • the fourth step of deriving the proportionality coefficient depending on the thermophysical property value of the subject, the fifth step of measuring the temperature of the surface of the subject by the second temperature sensor, and the position away from the subject.
  • the temperature estimation program of the present invention is characterized in that the computer executes the third step, the fourth step, and the seventh step.
  • the temperature estimation device of the present invention includes a heater configured to apply a heat pulse to the subject, a first temperature sensor configured to measure the temperature of the surface of the subject, and the first temperature sensor.
  • a movement time calculation unit configured to calculate the movement time from the application of the heat pulse to the arrival at the first temperature sensor through the subject based on the measurement result of the temperature sensor 1.
  • a proportional coefficient derivation unit configured to derive a proportional coefficient depending on the thermophysical property value of the subject based on the travel time, and a first unit configured to measure the temperature of the surface of the subject.
  • the temperature sensor (2), a third temperature sensor configured to measure the temperature at a position away from the subject, the measurement results of the second and third temperature sensors, and the proportional coefficient are used. It is characterized by including a temperature calculation unit configured to calculate the internal temperature of the subject.
  • a heat pulse is applied from the heater to the subject, the movement time from the application of the heat pulse to the time when the heat pulse is transmitted to the first temperature sensor is calculated, and the movement of the heat pulse is calculated.
  • FIG. 1 is a block diagram showing a configuration of a temperature estimation device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a heat equivalent circuit model of a temperature sensor, a heat insulating material, and a living body according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating the operation of the temperature estimation device according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing an observation example of a thermal pulse.
  • FIG. 5 is a diagram showing an example of the relationship between the proportionality coefficient and the travel time.
  • FIG. 6 is a diagram showing the core body temperature estimated by the temperature estimation device according to the embodiment of the present invention and the eardrum temperature measured by the eardrum thermometer.
  • FIG. 7 is a block diagram showing a configuration example of a computer that realizes the temperature estimation device according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing a thermal equivalent circuit model of a living body and a sensor.
  • the proportional coefficient ⁇ is obtained using the time t. It is possible. Thereby, in the present invention, the core body temperature of the living body can be estimated while correcting the proportionality coefficient ⁇ which changes depending on individual differences and blood flow.
  • FIG. 1 is a block diagram showing a configuration of a temperature estimation device according to an embodiment of the present invention.
  • the temperature estimation device includes a temperature sensor 1 that measures the temperature T Skin of the skin surface of the living body 100 (subject), a temperature sensor 2 that measures the temperature T top at a position away from the living body 100, and a temperature sensor 1 and a temperature sensor 2.
  • a heat insulating material 3 that holds the above, a heater 4 that applies a heat pulse to the living body 100, a temperature sensor 5 that measures the temperature T of the skin surface of the living body 100, and a heat insulating material 6 that holds the heater 4 and the temperature sensor 5.
  • the travel time calculation unit 8 that calculates the travel time tp until reaching the temperature sensor 5, the proportional coefficient derivation unit 9 that derives the proportionality coefficient ⁇ based on the travel time tp, and the measurement results of the temperature sensors 1 and 2 are proportional. It includes a temperature calculation unit 10 that calculates the core body temperature T CBT (internal temperature) of the living body 100 based on the coefficient ⁇ , and a communication unit 11 that transmits the calculation result of the core body temperature T CBT to the external terminal 12.
  • T CBT internal temperature
  • the temperature estimation device is arranged so that the heat insulating materials 3 and 6 come into contact with the skin of the living body 100.
  • the temperature sensor 1 is provided on the surface of the heat insulating material 3 on the living body side.
  • the temperature sensor 2 is provided on the surface of the heat insulating material 3 opposite to the surface on the living body side so as to come into contact with air.
  • the heat insulating material 3 holds the temperature sensor 1 and the temperature sensor 2, and serves as a resistance against the heat flowing into the temperature sensor 1.
  • the heater 4 and the temperature sensor 5 are provided on the surface of the heat insulating material 6 on the living body side at a distance from each other.
  • the heat insulating material 6 is a resistor that holds the heater 4 and the temperature sensor 5 and prevents the heat pulse from reaching the temperature sensor 5 through a non-living body.
  • a known thermistor, a thermopile using a thermocouple, or the like can be used as the temperature sensors 1, 2, and 5, for example.
  • FIG. 2 is a diagram showing a heat equivalent circuit model of the temperature sensors 1 and 2, the heat insulating material 3, and the living body 100. Since the thermal equivalent circuit model is the same as in the conventional case in this embodiment, the same reference numerals as those in FIG. 8 will be used for description.
  • FIG. 3 is a flowchart illustrating the operation of the temperature estimation device of this embodiment.
  • the moving time calculation unit 8 heats the heater 4 to apply a heat pulse from the heater 4 to the living body 100 (step S100 in FIG. 3).
  • the temperature sensor 5 measures the temperature of the skin surface of the living body 100 (step S101 in FIG. 3).
  • the measurement data of the temperature sensor 5 is stored in the storage unit 7.
  • the travel time calculation unit 8 calculates the travel time tp from when the heat pulse is applied to the living body 100 to when it travels through the living body 100 and reaches the temperature sensor 5 (step 3 in FIG. 3). S102).
  • Figure 4 shows an example of thermal pulse observation.
  • the horizontal axis of FIG. 4 is time, and the vertical axis is the absolute value of the time derivative of the temperature T measured by the temperature sensor 5. It is easier to detect the peak of the thermal pulse when the temperature T is time-differentiated. Therefore, the travel time calculation unit 8 may calculate the travel time tp by detecting the peak of the heat pulse by the time derivative of the temperature T.
  • FIG. 4 show heat pulses applied to three living bodies having different heat physical property values (heat capacity, density, and thermal conductivity). According to FIG. 4, it can be seen that the arrival time of the heat pulse changes depending on the thermophysical characteristic value of the living body.
  • the storage unit 7 stores in advance a calibration table in which the proportionality coefficient ⁇ is registered for each movement time tp.
  • the proportional coefficient derivation unit 9 derives the proportional coefficient ⁇ by acquiring the value of the proportional coefficient ⁇ corresponding to the travel time tp calculated by the travel time calculation unit 8 from the calibration table of the storage unit 7 (step 3 in FIG. 3). S103).
  • FIG. 5 is a diagram showing an example of the relationship between the proportionality coefficient ⁇ and the travel time tp.
  • the formula for estimating the core body temperature T CBT of the living body 100 is as follows.
  • T CBT T Skin + ⁇ (T Skin -T top ) ⁇ ⁇ ⁇ (2)
  • a thermal pulse is applied to a pseudo-biological sample such as a polymer having a known thermophysical property value in advance, and the travel time tp is measured, and the surface of the pseudo-biological sample is measured.
  • the temperature T Skin is measured by the temperature sensor 1, and the temperature T top at a position away from the pseudo biological sample is measured by the temperature sensor 2.
  • the proportional coefficient ⁇ corresponding to the travel time tp is calculated by the equation (2). be able to.
  • a calibration table can be prepared in advance by obtaining the experimental value of the proportionality coefficient ⁇ for various pseudo-biological samples having different thermophysical characteristics.
  • the temperature sensor 1 measures the temperature T Skin of the skin surface of the living body 100 (step S104 in FIG. 3).
  • the temperature sensor 2 measures the temperature T top at a position away from the living body 100 (step S105 in FIG. 3).
  • the measurement data of the temperature sensors 1 and 2 is stored in the storage unit 7.
  • the temperature calculation unit 10 formulates the core body temperature T CBT of the living body 100 based on the temperatures T Skin and T top measured by the temperature sensors 1 and 2 and the proportional coefficient ⁇ derived by the proportional coefficient derivation unit 9. Calculated according to 2) (step S106 in FIG. 3). It should be noted that calculating T Skin ⁇ T top as in equation (2) corresponds to calculating the heat flux HS in equation (1).
  • the communication unit 11 transmits the calculation result of the temperature calculation unit 10 to the external terminal 12 (step S107 in FIG. 3).
  • the external terminal 12 including a PC (Personal Computer), a smartphone, or the like displays the value of the core body temperature T CBT received from the temperature estimation device.
  • the temperature estimation device performs the above processes of steps S100 to S107 at regular time intervals, for example, until the user gives an instruction to end the measurement (YES in step S108 of FIG. 3).
  • FIG. 6 shows the deep body temperature T CBT estimated in this example and the deep temperature (tympanic membrane temperature) measured by the eardrum thermometer for comparison.
  • Figures 60, 61, 62, and 63 in FIG. 6 show the results for different living organisms 100. According to FIG. 6, it can be seen that an estimation result close to the eardrum temperature is obtained by this example.
  • the storage unit 7, the travel time calculation unit 8, the proportional coefficient derivation unit 9, the temperature calculation unit 10, and the communication unit 11 described in this embodiment are a computer equipped with a CPU (Central Processing Unit), a storage device, and an interface. It can be realized by a program that controls these hardware resources. An example of the configuration of this computer is shown in FIG.
  • the computer includes a CPU 200, a storage device 201, and an interface device (I / F) 202.
  • the sensors 1, 2, 5 and the heater 4, the hardware of the communication unit 11, and the like are connected to the I / F 202.
  • the temperature estimation program for realizing the temperature estimation method of the present invention is stored in the storage device 201.
  • the CPU 200 executes the process described in this embodiment according to the program stored in the storage device 201.
  • the present invention can be applied to a technique for estimating the internal temperature of a subject such as a living body.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

L'invention concerne un dispositif d'estimation de température comprenant : un dispositif de chauffage (4) qui applique une impulsion thermique à un corps vivant (100) ; un capteur de température (5) qui mesure la température de surface du corps vivant (100) ; une unité de calcul de temps de transfert (8) qui calcule le temps de transfert à partir de l'application de l'impulsion thermique jusqu'à ce que l'impulsion thermique se propage à travers le corps vivant (100) pour atteindre le capteur de température (5) ; une unité de dérivation de coefficient de proportionnalité (9) qui dérive un coefficient de proportionnalité dépendant des propriétés thermo-physiques du corps vivant (100) sur la base du temps de transfert ; un capteur de température (1) qui mesure la température de surface du corps vivant (100) ; un capteur de température (2) qui mesure la température d'une position éloignée du corps vivant (100) ; et une unité de calcul de température (10) qui calcule la température de corps profond du corps vivant (100) sur la base des résultats de mesure provenant des capteurs de température (1, 2) et du coefficient de proportionnalité.
PCT/JP2020/035711 2020-09-23 2020-09-23 Procédé d'estimation de température, programme d'estimation de température, et dispositif d'estimation de température WO2022064552A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/035711 WO2022064552A1 (fr) 2020-09-23 2020-09-23 Procédé d'estimation de température, programme d'estimation de température, et dispositif d'estimation de température
JP2022551458A JPWO2022064552A1 (fr) 2020-09-23 2020-09-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035711 WO2022064552A1 (fr) 2020-09-23 2020-09-23 Procédé d'estimation de température, programme d'estimation de température, et dispositif d'estimation de température

Publications (1)

Publication Number Publication Date
WO2022064552A1 true WO2022064552A1 (fr) 2022-03-31

Family

ID=80845626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035711 WO2022064552A1 (fr) 2020-09-23 2020-09-23 Procédé d'estimation de température, programme d'estimation de température, et dispositif d'estimation de température

Country Status (2)

Country Link
JP (1) JPWO2022064552A1 (fr)
WO (1) WO2022064552A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143251A1 (fr) * 2009-06-08 2010-12-16 株式会社日立製作所 Dispositif de mesure de flux sanguin et méthode afférente
WO2014157138A1 (fr) * 2013-03-28 2014-10-02 シチズンホールディングス株式会社 Procédé de mesure de la température interne et jauge de température interne de type à contact
WO2018180800A1 (fr) * 2017-03-31 2018-10-04 日本電気株式会社 Dispositif de mesure de coefficient de diffusion thermique et thermomètre corporel profond, dispositif de mesure de température corporelle profonde, et procédé de mesure de température corporelle profonde à l'aide de celui-ci

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143251A1 (fr) * 2009-06-08 2010-12-16 株式会社日立製作所 Dispositif de mesure de flux sanguin et méthode afférente
WO2014157138A1 (fr) * 2013-03-28 2014-10-02 シチズンホールディングス株式会社 Procédé de mesure de la température interne et jauge de température interne de type à contact
WO2018180800A1 (fr) * 2017-03-31 2018-10-04 日本電気株式会社 Dispositif de mesure de coefficient de diffusion thermique et thermomètre corporel profond, dispositif de mesure de température corporelle profonde, et procédé de mesure de température corporelle profonde à l'aide de celui-ci

Also Published As

Publication number Publication date
JPWO2022064552A1 (fr) 2022-03-31

Similar Documents

Publication Publication Date Title
US20220170800A1 (en) Temperature measurement device and temperature measurement method
JP4751386B2 (ja) 温度測定装置
JP6153646B2 (ja) 熱電対を用いた温度測定装置の温度ドリフト補正方法
CN106706165B (zh) 一种温度测量的方法及装置
JP2010511894A (ja) プロセス変数送信機における温度センサ構成の検出
CN114008422A (zh) 用于非侵入式热询问的装置、系统和方法
CN112013978B (zh) 一种温度传感器动态温度测量的自动补偿方法
CN111141420A (zh) 基于热流法的物体深部温度测量方法及装置
CN110179444B (zh) 一种婴幼儿体温检测脚环系统及其检测方法
WO2022064552A1 (fr) Procédé d'estimation de température, programme d'estimation de température, et dispositif d'estimation de température
JP2005098982A (ja) 電子体温計
JP7147977B2 (ja) 温度測定方法およびプログラム
WO2022064553A1 (fr) Procédé, programme et dispositif d'estimation de température
JP7435825B2 (ja) 温度推定方法、温度推定プログラムおよび温度推定装置
US20240053209A1 (en) Thermometer with a diagnostic function
US20230145806A1 (en) Temperature Measurement Device and Temperature Measurement Method
JP7473074B2 (ja) 温度推定方法、温度推定プログラムおよび温度推定装置
JP3300110B2 (ja) ガス検出器
RU2647504C1 (ru) Способ динамической градуировки термометров сопротивления
JP7392837B2 (ja) 温度測定装置および温度測定方法
JP6648720B2 (ja) 熱出力制御装置
JP4371804B2 (ja) 絶対温度測定装置と方法
WO2022230039A1 (fr) Procédé, programme et dispositif d'estimation de température
JP7375933B2 (ja) 温度測定装置、方法およびプログラム
US20230172456A1 (en) Installation State Determination Method, and Installation State Determination System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955146

Country of ref document: EP

Kind code of ref document: A1