WO2014157138A1 - Internal temperature measurement method and contact type internal temperature gauge - Google Patents

Internal temperature measurement method and contact type internal temperature gauge Download PDF

Info

Publication number
WO2014157138A1
WO2014157138A1 PCT/JP2014/058185 JP2014058185W WO2014157138A1 WO 2014157138 A1 WO2014157138 A1 WO 2014157138A1 JP 2014058185 W JP2014058185 W JP 2014058185W WO 2014157138 A1 WO2014157138 A1 WO 2014157138A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
temperature
heat
contact
type internal
Prior art date
Application number
PCT/JP2014/058185
Other languages
French (fr)
Japanese (ja)
Inventor
幸雄 黒山
菜津子 北田
松本 知子
Original Assignee
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンホールディングス株式会社 filed Critical シチズンホールディングス株式会社
Priority to JP2015508512A priority Critical patent/JP5956063B2/en
Publication of WO2014157138A1 publication Critical patent/WO2014157138A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals

Definitions

  • the present invention relates to an internal temperature measuring method and a contact type internal thermometer.
  • thermometer In various situations, there is a demand for measuring the internal temperature, not the surface temperature of a measurement object, quickly, accurately, and simply (ie, non-invasively).
  • a typical example of such a requirement is measurement of body temperature of a living body including a human body.
  • body temperature of a living body including a human body.
  • the measurement target is a human body, generally hold the thermometer in a place where heat is difficult to escape to the outside, such as under the tongue or under the arm, and read the thermometer after the thermometer and human body are in thermal equilibrium.
  • thermometer for measuring the internal temperature of the human body quickly and accurately, a first temperature sensor that is in contact with the body surface and a second temperature that is disposed with a heat insulating material interposed between the first temperature sensor and the first temperature sensor.
  • a thermometer has been proposed that includes at least two sets of sensors. In such a thermometer, in order to solve the simultaneous heat conduction equation from the temperature measurement result in each temperature sensor in the steady state and obtain the internal temperature, the heat flux passing through each set is devised so that the size of the heat flux is different. .
  • Patent Document 1 discloses a thermometer in which the thermal resistance value of the heat insulating material in each sensor set is different.
  • Patent Document 2 discloses a thermometer in which a heat insulating material is further arranged between the second temperature sensor (intermediate sensor) and the outside air, and the heat resistance value of the heat insulating material is different for each sensor set. Has been.
  • Patent Document 3 discloses a thermometer in which a heat radiating plate having a different area is arranged for each set of sensors between the second temperature sensor (temperature measuring means 21, 22) and the outside air.
  • the internal temperature cannot be obtained until each sensor set is in a steady state, but heat is sufficiently transmitted to the second temperature sensor through the heat insulating material, and until the steady state is reached. Since a considerable time, for example, several minutes, is required, it cannot be said that the temperature measurement is fast. Therefore, in order to shorten the time to reach a steady state, the heat capacity of each sensor set is reduced, that is, if a small one is used for each temperature sensor, the temperature difference between each temperature sensor is reduced, so the measurement accuracy is reduced. Gets worse.
  • the present invention has been made in view of such circumstances, and the problem to be solved is an internal temperature measurement method capable of achieving both high speed and accuracy of measurement using a simple and low-cost structure, and such a method.
  • a step of determining a ratio K that is not 1 between the heat resistance of the heat dissipation surface of the first temperature sensor and the heat resistance of the heat dissipation surface of the second temperature sensor, the heat absorption surface of the first temperature sensor, and the second temperature sensor a step of the heat absorbing surface of the temperature sensor is in thermal contact with the measurement surface of the measurement object, the temperature of the first first and the second temperature sensor of the temperature T 1 of the the temperature of the temperature sensor in a steady state measuring a second temperature T 2 is a step of measuring the environmental temperature T e which is a temperature around the first temperature sensor and said second temperature sensor of the first in the steady state temperature T 1, the second temperature T 2, the internal temperature measuring method having the steps of calculating the internal temperature T B of the measurement object from the environment temperature T e and the ratio K.
  • a first temperature sensor having a heat absorption surface thermally coupled to a first contact surface that contacts a surface to be measured of the measurement object, a heat dissipation surface that dissipates heat in the surroundings, and the measurement object
  • a heat absorbing surface that is thermally coupled to the second contact surface that contacts the surface to be measured, and a heat radiating surface that dissipates heat in the surroundings, and a thermal resistance for heat dissipation is different from that of the first temperature sensor.
  • a second temperature sensor an environmental temperature sensor for measuring an environmental temperature that is an ambient temperature of the first temperature sensor and the second temperature sensor, a thermal resistance on a heat radiation surface of the first temperature sensor, and a second And a thermal resistance ratio storage unit that stores thermal resistance or a ratio of the thermal resistance on the heat radiation surface of the temperature sensor.
  • At least one of the first temperature sensor and the second temperature sensor is provided with at least one of a concavo-convex structure, a heat radiating plate, a heat radiating fin, and a heat insulating material. Internal thermometer.
  • At least one of the first temperature sensor and the second temperature sensor is mounted on an FPC (flexible printed circuit board) on the heat absorption surface, and is provided on the FPC.
  • a contact-type internal thermometer thermally coupled to one of the first contact surface and the second contact surface via a heat conductive adhesive filled in an opening exposing a portion of the endothermic surface.
  • At least one of the first temperature sensor and the second temperature sensor is mounted on an FPC arranged parallel to the surface on a surface orthogonal to the heat absorption surface.
  • the contact-type internal thermometer in which the endothermic surface is thermally coupled to either the first contact surface or the second contact surface directly or via a heat conductive adhesive.
  • At least one of the first temperature sensor and the second temperature sensor is inserted into an opening provided in an FPC disposed in parallel with the endothermic surface, A contact which is mounted on the FPC on a surface orthogonal to the heat absorption surface, and the heat absorption surface is thermally coupled to either the first contact surface or the second contact surface directly or via a heat conductive adhesive.
  • Formula internal thermometer Formula internal thermometer.
  • At least one of the first temperature sensor and the second temperature sensor is mounted on the FPC on the heat dissipation surface, and a part of the heat dissipation surface is exposed on the FPC.
  • the first temperature sensor, the second sensor, and the environmental temperature sensor are arranged in a common shielding space that shields outside air and outside light, and A contact-type internal thermometer with a ventilation mechanism that forcibly ventilates the shielding space.
  • the ventilation mechanism includes an airflow control structure, and the airflow control structure includes an amount of airflow acting on the first temperature sensor and an amount of airflow acting on the second temperature sensor.
  • a contact-type internal thermometer that has a different structure.
  • (11) (1) or (2) further comprising a step of detecting a posture of the first temperature sensor and said second temperature sensor of the step of calculating the internal temperature T B of the object to be measured the internal temperature measurement method of calculating the internal temperature T B based on the posture that is further detected.
  • the step of obtaining the ratio K is a step of obtaining a value of the ratio K or a coefficient with respect to the value of the ratio K according to the postures of the first temperature sensor and the second temperature sensor.
  • Internal temperature measurement method including.
  • the thermal resistance ratio storage unit is configured to determine the thermal resistance ratio value according to the attitude value detected by the attitude sensor or A contact-type internal thermometer that stores a coefficient for the value of the thermal resistance ratio.
  • the internal temperature of the measurement object can be measured while achieving both high-speed measurement and accuracy using a simple and low-cost structure.
  • a contact-type internal thermometer capable of measuring the internal temperature of the measurement object while obtaining both high speed and accuracy of measurement using a simple and low-cost structure is obtained. It is done.
  • the thickness of the heat conductive adhesive can be easily controlled to be constant. Further, the heat flow rate passing through the temperature sensor is not hindered by the FPC.
  • the heat flow rate passing through the temperature sensor is not hindered by the FPC.
  • the thermal resistance of the first temperature sensor and the second temperature sensor can be made different due to ventilation.
  • FIG. 3 is a schematic sectional view of a contact-type internal thermometer taken along line III-III in FIG. 1. It is a figure which shows the equivalent thermal circuit of the measurement part provided in the measurement head of the contact-type internal thermometer which concerns on the 1st Embodiment of this invention. It is an external appearance perspective view which shows an example of a 1st temperature sensor. It is an external appearance perspective view which shows another example of a 1st temperature sensor.
  • FIG. 9B is a sectional view taken along line IXB-IXB in FIG. 9A. It is an external appearance perspective view which shows another example of a mode that the 1st temperature sensor or the 2nd temperature sensor is mounted in FPC.
  • FIG. 10B is a sectional view taken along line XB-XB in FIG. 10A. It is a figure which shows an example of the ventilation mechanism which makes the thermal resistance in the thermal radiation surface of a 1st temperature sensor and a 2nd temperature sensor differ. It is a schematic sectional drawing of the contact-type internal thermometer which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is an external view of a contact type internal thermometer 100 according to the first embodiment of the present invention viewed from the back side
  • FIG. 2 is a view of the contact type internal thermometer 100 according to the same embodiment from the measurement surface side. It is an external view.
  • the contact-type internal thermometer is a thermometer, and means a thermometer that measures the internal temperature by bringing it into contact with the surface to be measured.
  • the internal temperature means not the surface temperature of the measurement target but the temperature inside the region that is considered to be a substantially constant temperature heat source.
  • the heat source is substantially constant temperature when the heat capacity inside the measurement target is large, or when heat is constantly supplied to the measurement target, the measurement with the contact-type internal thermometer is practically applied to that temperature. It means that it is considered that there is no influence. For example, when the measurement target is a living body, heat is always supplied from the trunk by the blood flow, which corresponds to the latter.
  • the contact-type internal thermometer 100 shown in the present embodiment is portable as shown in the figure, and the measurement head 2 is attached to the tip of the case 1.
  • the measuring head 2 is provided so as to protrude from the case 1, and the tip thereof is a substantially flat measuring surface 20. Then, the internal surface is measured by pressing the measurement surface 20 against the surface to be measured of the measurement object, for example, the skin.
  • a substantially circular first probe 30 and second probe 31 are arranged in series along the longitudinal direction of the contact-type internal thermometer 100 as shown in FIG. 2.
  • the arrangement of the first probe 30 and the second probe 31 is arbitrary, and the arrangement direction is not necessarily along the longitudinal direction of the contact-type internal thermometer 100.
  • a lamp 11, a display unit 12, and a buzzer 13 are provided on the back surface 10 that is the surface opposite to the measurement surface 20 of the case 1.
  • the direction in which the measurement surface 20 faces is referred to as the measurement surface side
  • the direction in which the back surface 10 that is the opposite direction faces is referred to as the back surface side.
  • the case 1 has a long and rounded shape, and forms a grip 14 that the user has in his hand.
  • a battery lid 15 is provided on the measurement surface side of the grip 14 of the case 1, and a battery serving as a power source for the contact type internal thermometer 100 is accommodated therein.
  • an intake hole 16 is provided at an appropriate position of the case 1, here the position shown in FIG. 2, and an exhaust hole 21 is provided on the side surface of the measurement head 2, so that each internal space communicates with the outside air.
  • Case 1 and measuring head 2 are connected by a support ring 3.
  • the design of the contact type internal thermometer 100 shown in FIGS. 1 and 2 is an example. Such a design may be appropriately changed in consideration of its main use and marketability. Further, the arrangement of each component may be arbitrarily selected within a range that does not impair its function.
  • FIG. 3 is a schematic cross-sectional view of the contact-type internal thermometer 100 taken along line III-III in FIG.
  • the case 1 is preferably a hollow molded product made of any synthetic resin such as ABS resin, and various parts constituting the contact-type internal thermometer 100 are integrally accommodated therein.
  • a battery 4 and a circuit board 5 are accommodated in the grip 14.
  • Various electronic components such as a controller 50 and a non-volatile memory 51 are mounted on the circuit board 5, and are supplied with power from the battery 4 to all components that require power. The power is supplied and the operation is controlled.
  • the illustrated battery 4 is a commercially available AAA type (referred to as AAA in the United States) dry battery, but the type thereof may be arbitrary, such as a button type or a square type, or a primary type.
  • the battery and secondary battery may be optional. Note that wiring for electrically connecting each component and the circuit board 5 is omitted because the illustration is complicated.
  • the controller 50 is an appropriate information processing apparatus, and is a computer (CPU) (Central Processing Unit) and a memory, a so-called microcontroller, a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), or other PLD (Programmable). (Logic Device) or the like may be used.
  • the lamp 11 is preferably a light emitting diode capable of emitting multiple colors, and is lit to notify the user of the state of the contact type internal thermometer 100.
  • the display unit 12 is a liquid crystal display device in the present embodiment, and is used to notify the user of the measurement result of the contact-type internal thermometer 100 in a manner as shown in FIG. Of course, any other information such as the remaining amount of the battery 4 may be displayed on the display unit 12. Alternatively, the state of the contact type internal thermometer 100 may be displayed together and the lamp 11 may be omitted.
  • the buzzer 13 is a general electronic buzzer in this embodiment, and is for notifying the user of the state of the contact-type internal thermometer 100 by a beep sound. The form of the buzzer 13 is also arbitrary, and a speaker may be provided to notify by voice or melody. Alternatively, the buzzer 13 may be omitted only for notification by the lamp 11 and / or the display unit 12.
  • a partition wall 18 is provided inside the case 1, and the inside of the case 1 is partitioned into a grip space 19a and a head space 19b.
  • the partition wall 18 is provided with an opening, and the blower 7 is attached so as to close the opening. The function of the blower 7 will be described later.
  • the measuring head 2 is attached to the tip of the case 1 through a support ring 3.
  • the support ring 3 is preferably made of a material having elasticity such as silicon rubber or a foam thereof and excellent in heat insulation, and allows a slight movement of the measuring head 2 with respect to the case 1 and from the measuring head 2 to the case.
  • the heat transfer to 1 is cut off. This is because when the measurement surface 20 is pressed against the measurement object, in particular, the first probe 30 and the second probe 31 on the measurement surface 20 are in close contact with the measurement object, and from the measurement head 2. This is to prevent the occurrence of measurement errors due to heat flowing out to case 1.
  • the support ring 3 is not an essential configuration, there is no problem in the close contact between the measurement surface 20 and the measurement object, and when the measurement head 2 is a material having a sufficiently low thermal conductivity and there is no practical problem, This may be omitted, and the measurement head 2 may be directly fixed to the case 1 or both may be integrally formed. Further, the shape of the support ring 3 is not limited to an annular shape, and an arbitrary shape may be used.
  • the measuring head 2 is preferably formed of a material having a stable shape, low thermal conductivity and low specific heat.
  • a material having a stable shape, low thermal conductivity and low specific heat for example, rigid foamed urethane or rigid foamed vinyl chloride is suitably used.
  • the material is not particularly limited in this respect as long as there is no practical problem, and any material may be used.
  • the measurement surface 20 of the measurement head 2 is provided with openings at positions corresponding to the first probe 30 and the second probe 31, and each probe is attached so as to slightly protrude from the measurement surface 20. Therefore, when the measurement surface 20 is pressed against the surface to be measured, the first contact surface that is the surface on the measurement surface side of the first probe 30 and the second contact that is the surface on the measurement surface side of the second probe 31.
  • the surfaces come into close contact with the surface to be measured, and heat is transferred between them.
  • the contact surface refers to a surface that is in contact with the surface to be measured and mainly transfers heat.
  • Each probe is preferably made of a material having high thermal conductivity, and is made of metal in this embodiment.
  • the material of the 1st probe 30 and the 2nd probe 31 is equipped with corrosion resistance, and aluminum and stainless steel are suitable for a metal material.
  • the measurement head 2 itself is made of a material having low thermal conductivity, the first probe 30 and the second probe 31 are thermally isolated from each other.
  • the first temperature sensor 32 is provided on the back surface of the first probe 30, and both are thermally coupled to each other.
  • a second temperature sensor 33 is provided on the rear surface of the second probe 31, and both are thermally coupled to each other.
  • an environmental temperature sensor 34 for measuring the ambient temperature is provided at an arbitrary position on the back side away from the first temperature sensor 32 and the second temperature sensor 33.
  • the support structure for the ambient temperature sensor 34 is not shown in FIG. 3, any structure may be used.
  • the measurement head 2 or the case 1 may be provided with an appropriate structure such as a beam, and the environmental temperature sensor 34 may be fixed, or the first temperature sensor 32 and / or the second temperature sensor 33 may be mounted.
  • the environmental temperature sensor 34 may be arranged at an appropriate position in the head space 19b.
  • the head space 19b is a shielding space that shields light (external light) and airflow (external airflow) outside the contact-type internal thermometer 100, and includes a first temperature sensor 32, a second temperature sensor 33, and an environmental temperature sensor. 34 is arranged in a head space 19b which is a common shielding space.
  • the heat from the measurement object is transferred to the contact surface of the first probe 30 and the contact surface of the second probe 31, and further, the heat is the first.
  • the first temperature sensor 32 and the second temperature sensor 33 are transmitted to the first temperature sensor 32 and the second temperature sensor 33, and after passing through the first temperature sensor 32 and the second temperature sensor 33 to the back side, are diffused into the head space 19b.
  • the surface on the measurement surface 20 side of the first temperature sensor 32 and the second temperature sensor 33 is called an endothermic surface
  • the endothermic surface of the first temperature sensor 32 is the same as that of the first probe 30 and the heat. As a result, the thermal contact with the contact surface results.
  • the endothermic surface of the second temperature sensor 33 is thermally coupled to the contact surface of the second probe 31.
  • the heat of the measurement object transmitted to each contact surface flows into the first temperature sensor 32 and the second temperature sensor 33 from the endothermic surface.
  • the back surfaces of the first temperature sensor 32 and the second temperature sensor 33 are surfaces that dissipate heat in the head space 19b, these surfaces are referred to as heat dissipation surfaces.
  • each temperature sensor is a thermistor.
  • Each temperature sensor is connected to the circuit board 5 by wiring (not shown), in this embodiment, FPC, and the controller 50 can detect the temperature of each temperature sensor.
  • the thermal resistance of the heat radiation surface of the first temperature sensor 32 and the thermal resistance of the heat radiation surface of the second temperature sensor 33 are different. Therefore, the value of the ratio of the two thermal resistances is naturally not 1.
  • a structure for making the thermal resistance of the heat radiation surface of the first temperature sensor 32 different from the heat resistance of the heat radiation surface of the second temperature sensor 33 will be described later.
  • the first temperature sensor 32 and the second temperature sensor 33 may have the same size and shape.
  • FIG. 4 is a diagram showing an equivalent thermal circuit of the measurement unit provided in the measurement head 2 of the contact-type internal thermometer 100 according to the present embodiment.
  • T B is the internal temperature of the measurement target
  • T 1 is the temperature of the first temperature sensor 32
  • T 2 is the temperature of the second temperature sensor 33
  • T e is the environmental temperature This is the temperature of the sensor 34.
  • the heat resistance R B is from the interior of the constant temperature heat source to be measured first probe 30 and second probe 31, further first through the heat absorbing surface of the first temperature sensor 32 and second temperature sensor 33 It is a thermal resistance when heat is transmitted to the temperature sensor 32 and the second temperature sensor 33.
  • Te is the temperature of the environmental temperature sensor 34 and indicates the temperature of the environment around the first temperature sensor 32 and the second temperature sensor 33.
  • the thermal resistance R 1 is a thermal resistance when heat is dissipated from the heat radiation surface of the first temperature sensor 32 to the surrounding environment
  • the thermal resistance R 2 is a heat resistance R 2 from the heat radiation surface of the second temperature sensor 33 to the surrounding environment. It is the thermal resistance when heat is dissipated.
  • T B > T 1 > T e and T B > T 2 > T e are established.
  • K is a ratio of the thermal resistance R 1 and the thermal resistance R 2 and is a constant other than 1, and is obtained in advance by experiments or the like.
  • the ratio K is R 2 / R 1 .
  • the internal temperature is measured by the above method, it is not necessary to use a laminated structure with a heat insulating material as the first temperature sensor 32 and the second temperature sensor 33, so that the manufacturing is easy and the cost is low. It becomes. Further, since the first temperature sensor 32 and the second temperature sensor 33 may be a single element as a temperature sensor, the heat capacity is small, and the time until a steady state is reached is short. Furthermore, since the temperature difference in the steady state between the first temperature sensor 32 and the second temperature sensor 33 can be easily controlled by applying various structures to be described later, the first temperature sensor 32 and the second temperature sensor 33. It is easy to maintain the measurement accuracy even when a small size is used to increase the measurement speed.
  • Step 1 determine the specific K the thermal resistance R 1 and the thermal resistance R 2, is stored in the nonvolatile memory 51 is a thermal resistance ratio storage unit.
  • the ratio K is, for example, the first probe 30 and second probe 31 in a thermostat and the like is brought into contact with thermostatic heat source with a known temperature, to actually measure the temperature T 1, T 2 and T e Thus, it can be easily obtained from the above-described Expression 2 and Expression 3.
  • the value stored in the nonvolatile memory 51 may be the ratio K itself or the thermal resistances R 1 and R 2 . Since this procedure only needs to be performed once after the contact-type internal thermometer 100 is manufactured, for example, it may be performed in a factory before shipment. The user of the contact-type internal thermometer 100 does not need to execute the procedure 1 for each measurement, and may perform the following procedure 2 and subsequent steps.
  • Procedure 2 The measurement surface 20 of the contact-type internal thermometer 100 is brought into contact with the measurement object, and measurement is started. This measurement may be started automatically by detecting an increase in temperature measured by the first temperature sensor 32 or the second temperature sensor 33, or a switch such as a push button (not shown) may be used. You may carry out by a user's operation. At this time, the controller 50 notifies the user that the measurement is started by a beep sound by the buzzer 13. At the same time, the lamp 11 is lit in an arbitrary color, for example, red, and prompts the user to keep the measurement surface 20 in contact with the measurement object.
  • Procedure 3 Ventilate the head space 19b. After starting the measurement, the controller 50 operates the blower 7 to ventilate the head space 19b. This is because the temperature around the first temperature sensor 32 or the second temperature sensor 33 rises locally due to the heat transferred from the measurement object, or the temperature T e of the environmental sensitivity sensor becomes different. This is to prevent an error from occurring due to a difference from the above.
  • the blower 7 forcibly generates an airflow flowing from the grip space 19a to the head space 19b in FIG. Therefore, the air flow induced by the blower 7 is sucked from the intake hole 16 as shown by an arrow in the figure, passes through the blower 7, and passes through the vicinity of the first temperature sensor 32 and the second temperature sensor 33. It passes through and is discharged from the exhaust hole 21. Therefore, the blower 7, the intake hole 16, and the exhaust hole 21 of the present embodiment cooperate to constitute a ventilation mechanism that ventilates the head space 19b.
  • any configuration of the ventilation mechanism may be used, and the arrangement of the blower 7, the intake hole 16, and the exhaust hole 21 is arbitrary. Further, the direction of intake and exhaust may be reversed.
  • the type of the blower 7 is not particularly limited, and may be a general fan or a micro blower using a piezoelectric element. Alternatively, when sufficient measurement accuracy is obtained by ventilation by natural convection, and furthermore, the amount of heat flowing through the first temperature sensor 32 and the second temperature sensor 33 with respect to the heat capacity of the head space 19b is sufficiently small and ignored. If possible, the ventilation mechanism itself can be eliminated and step 3 can be omitted.
  • Step 4 The controller 50 calculates the internal temperature T B of the measurement object after the first temperature sensor 32 and second temperature sensor 33 has reached a steady state, and displays. That is, the controller 50 monitors the outputs of the first temperature sensor 32 and the second temperature sensor 33, and uses the outputs when the temperature changes of these temperature sensors are equal to or lower than a predetermined threshold value, as described above. determining the internal temperature T B from Equation 4. Number 4 As is clear from the controller 50, the temperature T 1 of the first temperature sensor 32 in the steady state, the temperature T 2 of the second temperature sensor 33, the temperature T e of the environmental temperature sensor 34 and a non-volatile memory, than the stored ratio K 51 calculates the internal temperature T B to be measured.
  • the internal temperature T B which is calculated is displayed on the display unit 12 as shown in FIG. Further, the user is notified that the measurement is completed by generating a beep sound by the buzzer 13 and lighting the lamp 11 in an arbitrary color different from the previous color, for example, green.
  • the internal temperature T B which is calculated, in the present embodiment is set to be notified to the user by displaying on the display unit 12 is not limited to this, accumulated in a memory provided in contact inside thermometer 100 Or may be output to a device outside the contact-type internal thermometer 100 by wire or wirelessly.
  • the display unit 12 is not necessarily an essential configuration.
  • various notifications of measurement start and measurement end to the user are all performed by a beep sound by the buzzer 13 and lighting of the lamp 11, but these notification methods are limited to those exemplified here.
  • the beep sound may be omitted, or may not be uttered according to user settings.
  • how the lamp 11 is turned on, for example, how to select the emission color is arbitrary.
  • various notifications are made to the user by flashing the lamp 11, changing the intensity of the emitted light, or providing a plurality of lamps 11 and changing the number and positions of the lamps 11 regardless of the colored light. It may be. Further, as described above, various notifications may be given to the user by the display unit 12 instead of the lamp 11.
  • the structure for making the thermal resistance in the thermal radiation surface of the 1st temperature sensor 32 of this embodiment and the 2nd temperature sensor 33 different is demonstrated.
  • the thermal resistance R 1 in the first temperature sensor 32 is smaller than the thermal resistance R 2 in the second temperature sensor 33, but this may be reversed. .
  • FIG. 5A is an external perspective view showing an example of the first temperature sensor 32.
  • the bottom surface of the first temperature sensor 32 is a heat absorbing surface 36, and the upper surface on the opposite side is a heat radiating surface 37.
  • the terminal 35 is provided in the opposing side surface.
  • the heat radiating surface 37 of the first temperature sensor 32 is assumed and irregular structure of the fin is provided to increase the surface area of the heat radiation surface 37, less the thermal resistance R 1.
  • Such a concavo-convex structure is a process of manufacturing the first temperature sensor 32 by partially removing one surface of the first temperature sensor 32 by, for example, cutting with a dicing saw or by laminating green sheets. It is obtained by making it in.
  • the concavo-convex structure is not limited to the fin-like shape shown here, but may be a pin-like structure, for example.
  • FIG. 5B is an external perspective view showing another example of the first temperature sensor 32.
  • a heat radiating plate 38 having a good thermal conductivity such as metal is attached to the heat radiating surface 37 of the first temperature sensor 32. In this way it is also possible to reduce the thermal resistance R 1 of the radiating surface 37.
  • FIG. 5C is an external perspective view showing still another example of the first temperature sensor 32.
  • a heat radiating fin 39 made of a material having good thermal conductivity such as metal is attached to the heat radiating surface 37 of the first temperature sensor 32. In this way it is also possible to reduce the thermal resistance R 1 of the radiating surface 37.
  • FIG. 6A is an external perspective view showing an example of the second temperature sensor 33.
  • the bottom surface of the second temperature sensor 33 is a heat absorbing surface 36, and the upper surface on the opposite side is a heat radiating surface 37.
  • the terminal 35 is provided in the opposing side surface.
  • the radiating surface 37 of the second temperature sensor 33 is covered by a suitable insulation 40, and increases the thermal resistance R 2.
  • the material and thickness of the heat insulating material 40 are preferably set so as not to significantly disturb the heat flux passing through the second temperature sensor 33.
  • an appropriate organic material such as a photoresist material may be coated.
  • FIG. 6B is an external perspective view showing another example of the second temperature sensor 33.
  • a heat insulating material 41 is partially provided on the heat radiating surface 37 of the second temperature sensor 33.
  • the heat insulating material 41 may use a material having high heat insulating performance, for example, a foam of various synthetic resins.
  • the value of the thermal resistance R 2 can be controlled by the covering area of the heat insulating material 41 occupying the heat radiating surface 37. Roughly speaking, the value of the thermal resistance R 2 is inversely proportional to the ratio of covering the area of the heat radiation surface 37 with the heat insulating material 41.
  • the ratio K may be a value other than 1.
  • the first temperature sensor 32 and the second temperature sensor 33 are thermistors.
  • a small-sized temperature sensor such as a thermistor is a rectangular parallelepiped whose outer shape is generally flat, and a surface having the smallest area facing each other is often a terminal.
  • the heat resistance at the heat absorbing surface and the heat radiating surface is It is desirable to use the opposite surfaces having the largest area as the heat absorbing surface and the heat radiating surface, respectively, so as to be small.
  • one of the opposed surfaces of the rectangular parallelepiped temperature sensor must be thermally coupled to the first probe 30 or the second probe 31, and the other of the opposed surfaces needs to be a heat dissipation surface that radiates heat to the atmosphere. There is. For this reason, it is not possible to simply use one of the surfaces having the largest area of the temperature sensor and mount it on the FPC, and some ingenuity is required to mount the first temperature sensor 32 and the second temperature sensor 33. It is.
  • FIG. 7A is an external perspective view showing an example of a state in which the first temperature sensor 32 or the second temperature sensor 33 is mounted on the FPC 42.
  • the temperature sensor shown in the figure may be either the first temperature sensor 32 or the second temperature sensor 33, but in the following description, the first temperature sensor 32 will be described as a representative. Further, in this drawing, illustration of appropriate heat dissipation structure and heat insulation structure on the heat dissipation surface 37 is omitted.
  • the first temperature sensor 32 is mounted such that the heat absorption surface 36 is in contact with the FPC 42, and the FPC 42 is electrically connected by the solder 43 on the side of the terminal 35 on the heat absorption surface 36 side. .
  • the FPC 42 is disposed in parallel with the heat absorbing surface 36.
  • FIG. 7B is a cross-sectional view taken along the line VIIB-VIIB in FIG. 7A.
  • an opening 42a slightly smaller than the endothermic surface 36 is provided on the surface facing the endothermic surface 36 of the FPC 42, and a part of the endothermic surface 36, in this case, most of the measurement surface is provided. It is designed to be exposed to the side.
  • a heat conductive adhesive 44 is filled between the heat absorbing surface 36 and the first probe 30 (or the second probe 31; hereinafter, represented by the first probe 30).
  • the heat absorbing surface 36 and the first probe 30 are thermally coupled to each other.
  • the FPC 42 does not interfere with the heat flux on the heat-absorbing surface 36. Can do. Further, since the FPC 42 functions as a spacer that determines the gap between the heat absorbing surface 36 and the back surface of the first probe 30, the thickness of the heat conductive adhesive 44 can be easily kept constant.
  • FIG. 8A is an external perspective view showing another example of a state in which the first temperature sensor 32 (or the second temperature sensor 33) is mounted on the FPC. Also in this figure, illustration of an appropriate heat dissipation structure and heat insulation structure on the heat dissipation surface 37 is omitted.
  • the first temperature sensor 32 is inserted into the opening 42 a provided in the FPC 42, and the terminal 35 provided on the surface orthogonal to the heat absorption surface 36 is electrically connected to the FPC 42 by the solder 43 in the middle of the surface. Connection is established.
  • the FPC 42 is disposed in parallel with the heat absorbing surface 36.
  • FIG. 8B is a cross-sectional view taken along line VIIIB-VIIIB in FIG. 8A.
  • the opening 42 a provided in the FPC 42 is slightly larger than the outer diameter of the first temperature sensor 32.
  • a heat transfer adhesive 44 is filled between the heat absorption surface 36 and the first probe 30 (or the second probe 31), and the heat absorption surface 36 and the first probe 30 are interposed via the heat transfer adhesive 44.
  • FIG. 9A is an external perspective view showing still another example of a state in which the first temperature sensor 32 (or the second temperature sensor 33) is mounted on the FPC. Also in this figure, illustration of an appropriate heat dissipation structure and heat insulation structure on the heat dissipation surface 37 is omitted.
  • the first temperature sensor 32 is mounted such that a surface orthogonal to the heat absorption surface 36 is in contact with the FPC 42, and soldering is performed on a side orthogonal to the heat absorption surface 36 of the terminal 35 (side in the drawing). 43 is electrically connected to the FPC 42.
  • FIG. 9B is a cross-sectional view taken along line IXB-IXB in FIG. 9A.
  • the FPC 42 is orthogonal to the heat radiating surface 37 and the heat absorbing surface 36, and is arranged so as not to hit the first probe 30 (or the second probe 31).
  • a heat transfer adhesive 44 is filled between the heat absorption surface 36 and the first probe 30, and the heat absorption surface 36 and the first probe 30 are thermally coupled via the heat transfer adhesive 44. Even if it does in this way, it can be set as the structure which FPC42 does not prevent the heat flux in the endothermic surface 36.
  • FIG. 10A is an external perspective view showing still another example of a state in which the first temperature sensor 32 (or the second temperature sensor 33) is mounted on the FPC. Also in this figure, illustration of an appropriate heat dissipation structure and heat insulation structure on the heat dissipation surface 37 is omitted.
  • the first temperature sensor 32 is mounted such that the heat radiation surface 37 is in contact with the FPC 42. Electrical connection between the terminal 35 and the FPC 42 is made on the surface of the FPC 42 on the measurement surface side.
  • an opening 42a that is slightly smaller than the heat dissipation surface 37 is provided on the surface of the FPC 42 that faces the heat dissipation surface 37, and a part of the heat dissipation surface 37, in this case, most of the surface is exposed to the back side. Yes.
  • the FPC 42 is disposed in parallel with the heat dissipation surface 37.
  • FIG. 10B is a cross-sectional view taken along line XB-XB in FIG. 10A.
  • the FPC 42 is electrically connected to the terminal 35 and the solder 43 on the back side thereof.
  • a heat transfer adhesive 44 is filled between the heat absorption surface 36 and the first probe 30 (or the second probe 31), and the heat absorption surface 36 and the first probe 30 are interposed via the heat transfer adhesive 44.
  • a heat transfer adhesive 44 is filled between the heat absorption surface 36 and the first probe 30 (or the second probe 31), and the heat absorption surface 36 and the first probe 30 are interposed via the heat transfer adhesive 44.
  • FIG. 10B is a cross-sectional view taken along line XB-XB in FIG. 10A.
  • the FPC 42 is electrically connected to the terminal 35 and the solder 43 on the back side thereof.
  • a heat transfer adhesive 44 is filled between the heat absorption surface 36 and the first probe 30 (or the second probe 31), and the heat absorption surface 36 and the first probe 30 are interposed via the
  • FIGS. 5A to 5C and FIGS. The structure shown in 6B was used. However, in place of or in addition to such a structure, it is possible to make the thermal resistances of the heat radiation surfaces of the first temperature sensor 32 and the second temperature sensor 33 different by using the ventilation mechanism described above. is there.
  • FIG. 11 is a diagram showing an example of a ventilation mechanism in which the thermal resistances on the heat radiation surfaces of the first temperature sensor 32 and the second temperature sensor 33 are different.
  • This figure is a cross-sectional view of the contact-type internal thermometer 100 corresponding to FIG. 3 already described, and the reference numerals attached in the figure indicate the same as those already described.
  • the number of exhaust holes 21 provided in the measurement head 2 is different between the first temperature sensor 32 side and the second temperature sensor 33 side. As shown in the figure, three rows of exhaust holes 21 are provided on the first temperature sensor 32 side, whereas there are only one row of exhaust holes 21 on the second temperature sensor 33 side. Therefore, when forced ventilation by the blower 7 is performed, as indicated by the thick arrows in the figure, the airflow flows more to the first temperature sensor 32 side, and the airflow is relatively less on the second temperature sensor 33 side. . In addition, the thickness of the thick arrow in a figure has shown the quantity of the airflow typically.
  • the thermal resistances on the heat radiation surfaces of the first temperature sensor 32 and the second temperature sensor 33 can be made different by using the ventilation mechanism.
  • the ventilation mechanism is provided with an airflow control structure for controlling the amount of airflow directed toward the first temperature sensor 32 and the amount of airflow directed toward the second temperature sensor 33, and the first temperature The amount of airflow acting on the sensor 32 side may be different from the amount of airflow acting on the second temperature sensor 33.
  • the exhaust hole 21 provided asymmetrically on the first temperature sensor 32 side and the second temperature sensor 33 side corresponds to the airflow control structure.
  • Various airflow control structures may be used, such as providing a different pressure loss in the airflow passage toward the first temperature sensor 32 side and the second temperature sensor 33 side.
  • the ventilation mechanism is omitted, the head space 19b is a closed space or a semi-closed space, and heat flows into the head space 19b from the first temperature sensor 32 and the second temperature sensor 33 naturally.
  • the heat exchange is performed by the warmed air flowing vertically upward, so the attitude of the contact-type internal thermometer 100 can affect the measurement accuracy.
  • the value of K in the above equation 4 has posture (that is, angle) dependency.
  • FIG. 12 is a schematic sectional view of a contact-type internal thermometer 200 according to the second embodiment of the present invention.
  • This figure shows a cross-section corresponding to FIG. 3 in the previous embodiment, and the appearance of the contact-type internal thermometer 200 is the same as that of the previous embodiment, so FIG. 1 and FIG. Uses this as what concerns this embodiment.
  • the measurement principle of the internal temperature in the contact-type internal thermometer 200 is the same as that of the previous embodiment.
  • symbol is attached
  • the partition wall 18 completely separates the grip space 19a and the head space 19b, and the exhaust holes and intake air seen in the previous embodiment are also shown. Since the hole and the blower are not provided, the head space 19b is a closed space.
  • the closed space refers to a space partitioned from the external space so that the gas inside the space cannot be exchanged with the outside air.
  • the semi-enclosed space means that the gas inside the space is exchanged with the outside air, but the behavior of the gas inside the space is not affected by the flow of the outside air, and is due to the thermal convection of the inside gas.
  • the semi-enclosed space has a large flow resistance with the outside air by, for example, making the opening for ventilation that circulates to the outside air with a small diameter, inserting a porous body, or so-called labyrinth structure. This can be easily realized.
  • the head space 19b of this embodiment is a closed space, but this may be a semi-closed space.
  • an attitude sensor 52 is provided on the circuit board 5.
  • This attitude sensor 52 detects the inclination of the contact-type internal temperature 200 with respect to the vertical direction.
  • the type of the sensor used as the attitude sensor 52 is not particularly limited. For example, by detecting the gravitational acceleration direction using an acceleration sensor or by detecting the geomagnetic direction using a geomagnetic sensor, the contact-type internal temperature 200 can be changed. The inclination with respect to the vertical direction can be detected. Further, the position where the attitude sensor 52 is provided is not necessarily on the circuit board 5, and may be an arbitrary position of the contact type internal temperature 200.
  • FIG. 13A when the normal direction of the measurement surface 20 of the contact-type internal thermometer 200 coincides with the vertically downward direction (gravity direction), the first temperature sensor 32 and the second temperature sensor 32.
  • the air currents rising from the temperature sensor 33 flow as indicated by thick arrows in the figure and hardly interfere with each other.
  • FIG. 13B when the normal direction of the measurement surface 20 of the contact-type internal thermometer 200 is the horizontal direction, the first temperature sensor 32 and the second temperature sensor 33 The rising airflow is considered to flow as shown by the thick arrows in the figure. In the example shown in the figure, the airflow rising from the second temperature sensor 33 flows to the vicinity of the first temperature sensor 32.
  • the change in the heat transfer rate from the first temperature sensor 32 to the outside air and the heat transfer rate from the second temperature sensor 33 to the outside air, that is, the change in the value of K is caused by the head space 19b being a closed space or a semi-closed space. Since only thermal convection needs to be taken into consideration, it is considered to depend on the attitude of the contact-type internal thermometer 200. However, since the change in the value of K depends on the shape of the head space 19b and the arrangement of the first temperature sensor 32 and the second temperature sensor 33, the change is predicted in advance using a general formula or the like. Is usually difficult.
  • the controller 50 when obtaining the internal temperature T B from Equation 4, to detect the posture of the contact type internal thermometer 200 to the attitude sensor 52, corresponding to the detected posture read from the nonvolatile memory 51 the value of K to determine the internal temperature T B using such K. In this way, by correcting the measurement error due to the change in the posture of the contact type internal thermometer 200, it can be more accurate measurement of the internal temperature T B at any position.
  • the posture detected by the posture sensor 52 can be generally expressed as a vector composed of two angle values.
  • the orthogonal coordinates depending on the contact-type internal thermometer 200 are taken as the X, Y, Z directions, and the detected gravitational acceleration direction.
  • Is the g direction and the Z direction is the normal direction of the measurement surface 20, as shown in FIG. 14, the attitude of the contact-type internal thermometer 200 is represented by angles ( ⁇ , ⁇ ) indicating the g direction. be able to.
  • is an angle between the vector g and the X axis when the vector g is projected onto the XY plane
  • is an angle between the vector g and the XY plane.
  • the relationship between the attitude of the contact-type internal thermometer 200 and the value of K is K (or the heat transfer rate from the first temperature sensor 32 to the outside air and the first value for the two angle values ( ⁇ , ⁇ ). 2 can be expressed as a two-dimensional table indicating the value of the heat transfer rate from the temperature sensor 33 to the outside air.
  • An example of such a table is shown in FIG.
  • K ⁇ what is represented as K ⁇
  • is an actual measurement value of K in the posture.
  • the units of ⁇ and ⁇ are degrees.
  • the measurement intervals of ⁇ and ⁇ are 5 °, but how to do this is arbitrary.
  • the controller 50 reads the value of such coefficient from nonvolatile memory 51, thereby determining the internal temperature T B is multiplied by the value of K.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

Provided is a novel internal temperature measurement method employing a simple and low-cost structure to achieve both high speed and accuracy of measurement, the method including: a step of calculating a non-1 ratio K of thermal resistance at a heat-radiating surface of a first temperature sensor (32) and of thermal resistance at a heat-radiating surface of a second temperature sensor (33); a step of bringing about thermal contact of a heat-absorbing surface of a first temperature sensor (32) and a heat-absorbing surface of a second temperature sensor (33), against a measured surface of a measured object; a step of measuring, in a steady state, a first temperature T1 indicating the temperature of the first temperature sensor (32) and a second temperature T2 indicating the temperature of the second temperature sensor (33); a step of measuring an environmental temperature Te indicating the temperature of the surroundings of the first temperature sensor (32) and the second temperature sensor (33); and a step of computing an internal temperature TB of the measured object, from the steady-state first temperature T1, the second temperature T2, the environmental temperature Te, and the ratio K.

Description

内部温度測定方法及び接触式内部温度計Internal temperature measurement method and contact-type internal thermometer
 本発明は、内部温度測定方法及び接触式内部温度計に関する。 The present invention relates to an internal temperature measuring method and a contact type internal thermometer.
 様々な状況において、測定対象物の表面温度ではなく、その内部温度を迅速・正確かつ簡便(すなわち、非侵襲)に測定したいとの要求が存在している。そのような要求の代表的なものとして、人体を含む生体の体温測定が挙げられる。しかしながら、生体の内部温度(深部体温などと称されることもある)、すなわち、血流により概ね恒温に保たれていると考えられる程度の生体内部の温度を測定するのは通常困難である。測定対象が人体の場合、一般的には、舌下や脇の下など熱が外部に逃げにくい場所に温度計を保持し、温度計と人体とが熱平衡状態となってからの温度計の読みを体温として採用することが多いが、熱平衡状態が得られるまでに5分から10分程度と長時間を要し、また得られる体温は必ずしもその内部温度と一致するとは限らない。このため、かかる方式は、乳幼児やある種の傷病患者等、長時間の体温測定が困難な対象への適用が困難な場合があり、また、精密な体温管理を行うに足る精度の高い体温を得るのは難しい。 In various situations, there is a demand for measuring the internal temperature, not the surface temperature of a measurement object, quickly, accurately, and simply (ie, non-invasively). A typical example of such a requirement is measurement of body temperature of a living body including a human body. However, it is usually difficult to measure the internal temperature of the living body (sometimes referred to as deep body temperature), that is, the temperature inside the living body that is considered to be maintained at a constant temperature by the blood flow. When the measurement target is a human body, generally hold the thermometer in a place where heat is difficult to escape to the outside, such as under the tongue or under the arm, and read the thermometer after the thermometer and human body are in thermal equilibrium. However, it takes a long time of about 5 to 10 minutes until the thermal equilibrium state is obtained, and the obtained body temperature does not always match the internal temperature. For this reason, this method may be difficult to apply to subjects that are difficult to measure body temperature for a long time, such as infants and certain injuries and patients, and a highly accurate body temperature is required to perform precise body temperature management. Hard to get.
 そこで、人体の内部温度を迅速・正確に測定するための温度計として、体表面に接触する第1の温度センサと、第1の温度センサに対し断熱材を挟んで配置される第2の温度センサからなるセンサの組を少なくとも二組備えた体温計が提案されている。このような体温計では、定常状態における各温度センサにおける温度測定結果から連立熱伝導方程式を解き、内部温度を求めるため、各組を通過する熱流束の大きさが異なるものとなるよう工夫されている。 Therefore, as a thermometer for measuring the internal temperature of the human body quickly and accurately, a first temperature sensor that is in contact with the body surface and a second temperature that is disposed with a heat insulating material interposed between the first temperature sensor and the first temperature sensor. A thermometer has been proposed that includes at least two sets of sensors. In such a thermometer, in order to solve the simultaneous heat conduction equation from the temperature measurement result in each temperature sensor in the steady state and obtain the internal temperature, the heat flux passing through each set is devised so that the size of the heat flux is different. .
 例えば、特許文献1には、それぞれのセンサの組における断熱材の熱抵抗値を異なるものとした体温計が開示されている。 For example, Patent Document 1 discloses a thermometer in which the thermal resistance value of the heat insulating material in each sensor set is different.
 また、特許文献2には、第2の温度センサ(中間センサ)と外気との間にさらに断熱材を配置し、かかる断熱材の熱抵抗値をセンサの組毎に異なるものとした体温計が開示されている。 Patent Document 2 discloses a thermometer in which a heat insulating material is further arranged between the second temperature sensor (intermediate sensor) and the outside air, and the heat resistance value of the heat insulating material is different for each sensor set. Has been.
 さらに、特許文献3には、第2の温度センサ(温度測定手段21,22)と外気との間にセンサの組毎に面積の異なる放熱板を配置した体温計が開示されている。 Furthermore, Patent Document 3 discloses a thermometer in which a heat radiating plate having a different area is arranged for each set of sensors between the second temperature sensor (temperature measuring means 21, 22) and the outside air.
特開2007-212407号公報JP 2007-212407 A 特許第4798280号公報Japanese Patent No. 4798280 特開2008-76144号公報JP 2008-76144 A
 上述の技術では、測定精度を十分なものとするためには、適宜の素材の断熱材を高精度に成形するとともに、かかる断熱材に正確に温度センサを取り付ける必要があり、製造上の手間やコストが増大する原因となる。 In the above-described technology, in order to ensure sufficient measurement accuracy, it is necessary to form a heat insulating material of an appropriate material with high accuracy and to attach a temperature sensor accurately to such heat insulating material, This increases the cost.
 さらに、上述の技術では、各センサの組が定常状態となるまで内部温度を求めることはできないが、断熱材を介して第2の温度センサに熱が十分に伝わり、定常状態となるまでには相当の時間、例えば数分程度を要するため、温度測定の高速性という点において十分とは言えない。そこで、定常状態となるまでの時間を短縮するため、各センサの組の熱容量を小さくする、すなわち、各温度センサに小型のものを用いると、各温度センサ間の温度差が小さくなるため測定精度が悪化する。 Furthermore, in the above-described technology, the internal temperature cannot be obtained until each sensor set is in a steady state, but heat is sufficiently transmitted to the second temperature sensor through the heat insulating material, and until the steady state is reached. Since a considerable time, for example, several minutes, is required, it cannot be said that the temperature measurement is fast. Therefore, in order to shorten the time to reach a steady state, the heat capacity of each sensor set is reduced, that is, if a small one is used for each temperature sensor, the temperature difference between each temperature sensor is reduced, so the measurement accuracy is reduced. Gets worse.
 本発明はかかる事情に鑑みてなされたものであり、その解決しようとする課題は、簡易かつ低コストの構造を用いて、測定の高速性と精度を両立させ得る内部温度測定方法、及び、かかる内部温度測定方法を用いた接触式内部温度計を提供することである。 The present invention has been made in view of such circumstances, and the problem to be solved is an internal temperature measurement method capable of achieving both high speed and accuracy of measurement using a simple and low-cost structure, and such a method. To provide a contact type internal thermometer using an internal temperature measuring method.
 上記課題を解決すべく本出願において開示される発明は種々の側面を有しており、それら側面の代表的なものの概要は以下のとおりである。 The invention disclosed in the present application in order to solve the above problems has various aspects, and the outline of typical ones of these aspects is as follows.
 (1)第1の温度センサの放熱面における熱抵抗と第2の温度センサの放熱面における熱抵抗の1でない比Kを求める工程と、前記第1の温度センサの吸熱面及び前記第2の温度センサの吸熱面を測定対象物の被測定面に熱的に接触させる工程と、定常状態において前記第1の温度センサの温度である第1の温度Tと前記第2の温度センサの温度である第2の温度Tを測定する工程と、前記第1の温度センサ及び前記第2の温度センサの周囲の温度である環境温度Tを測定する工程と、定常状態における前記第1の温度T、前記第2の温度T、前記環境温度T及び前記比Kより前記測定対象物の内部温度Tを算出する工程と、を有する内部温度測定方法。 (1) A step of determining a ratio K that is not 1 between the heat resistance of the heat dissipation surface of the first temperature sensor and the heat resistance of the heat dissipation surface of the second temperature sensor, the heat absorption surface of the first temperature sensor, and the second temperature sensor a step of the heat absorbing surface of the temperature sensor is in thermal contact with the measurement surface of the measurement object, the temperature of the first first and the second temperature sensor of the temperature T 1 of the the temperature of the temperature sensor in a steady state measuring a second temperature T 2 is a step of measuring the environmental temperature T e which is a temperature around the first temperature sensor and said second temperature sensor of the first in the steady state temperature T 1, the second temperature T 2, the internal temperature measuring method having the steps of calculating the internal temperature T B of the measurement object from the environment temperature T e and the ratio K.
 (2)(1)において、前記内部温度Tを算出する工程は、次式 (2) (1), the step of calculating the internal temperature T B, the following equation
Figure JPOXMLDOC01-appb-M000002
により内部温度Tを算出する内部温度測定方法。
Figure JPOXMLDOC01-appb-M000002
Internal temperature measurement method of calculating the internal temperature T B by.
 (3)測定対象物の被測定面に接触する第1の接触面と熱的に結合される吸熱面と、周囲に熱を放散する放熱面を有する第1の温度センサと、前記測定対象物の前記被測定面に接触する第2の接触面と熱的に結合される吸熱面と、周囲に熱を放散する放熱面を有し、放熱についての熱抵抗が前記第1の温度センサと異なる第2の温度センサと、前記第1の温度センサ及び前記第2の温度センサの周囲の温度である環境温度を測定する環境温度センサと、前記第1の温度センサの放熱面における熱抵抗と第2の温度センサの放熱面における熱抵抗又はその比を記憶する熱抵抗比記憶部と、を有する接触式内部温度計。 (3) a first temperature sensor having a heat absorption surface thermally coupled to a first contact surface that contacts a surface to be measured of the measurement object, a heat dissipation surface that dissipates heat in the surroundings, and the measurement object A heat absorbing surface that is thermally coupled to the second contact surface that contacts the surface to be measured, and a heat radiating surface that dissipates heat in the surroundings, and a thermal resistance for heat dissipation is different from that of the first temperature sensor. A second temperature sensor, an environmental temperature sensor for measuring an environmental temperature that is an ambient temperature of the first temperature sensor and the second temperature sensor, a thermal resistance on a heat radiation surface of the first temperature sensor, and a second And a thermal resistance ratio storage unit that stores thermal resistance or a ratio of the thermal resistance on the heat radiation surface of the temperature sensor.
 (4)(3)において、前記第1の温度センサ及び前記第2の温度センサの少なくとも一方の放熱面には、凹凸構造、放熱板、放熱フィン、断熱材の少なくともいずれかが設けられる接触式内部温度計。 (4) In (3), at least one of the first temperature sensor and the second temperature sensor is provided with at least one of a concavo-convex structure, a heat radiating plate, a heat radiating fin, and a heat insulating material. Internal thermometer.
 (5)(3)又は(4)において、前記第1の温度センサ及び前記第2の温度センサの少なくとも一方は、前記吸熱面においてFPC(フレキシブルプリント基板)に実装され、前記FPCに設けられ、前記吸熱面の一部分を露出する開口に充填された伝熱性接着剤を介して前記第1の接触面及び前記第2の接触面のいずれかに熱的に結合される接触式内部温度計。 (5) In (3) or (4), at least one of the first temperature sensor and the second temperature sensor is mounted on an FPC (flexible printed circuit board) on the heat absorption surface, and is provided on the FPC. A contact-type internal thermometer thermally coupled to one of the first contact surface and the second contact surface via a heat conductive adhesive filled in an opening exposing a portion of the endothermic surface.
 (6)(3)又は(4)において、前記第1の温度センサ及び前記第2の温度センサの少なくとも一方は、前記吸熱面と直交する面において当該面と平行に配置されたFPCに実装され、前記吸熱面は直接又は伝熱性接着剤を介して前記第1の接触面及び前記第2の接触面のいずれかに熱的に結合される接触式内部温度計。 (6) In (3) or (4), at least one of the first temperature sensor and the second temperature sensor is mounted on an FPC arranged parallel to the surface on a surface orthogonal to the heat absorption surface. The contact-type internal thermometer in which the endothermic surface is thermally coupled to either the first contact surface or the second contact surface directly or via a heat conductive adhesive.
 (7)(3)又は(4)において、前記第1の温度センサ及び前記第2の温度センサの少なくとも一方は、前記吸熱面と平行に配置されたFPCに設けられた開口に挿入され、前記吸熱面と直交する面において前記FPCに実装され、前記吸熱面は直接又は伝熱性接着剤を介して前記第1の接触面及び前記第2の接触面のいずれかに熱的に結合される接触式内部温度計。 (7) In (3) or (4), at least one of the first temperature sensor and the second temperature sensor is inserted into an opening provided in an FPC disposed in parallel with the endothermic surface, A contact which is mounted on the FPC on a surface orthogonal to the heat absorption surface, and the heat absorption surface is thermally coupled to either the first contact surface or the second contact surface directly or via a heat conductive adhesive. Formula internal thermometer.
 (8)(3)又は(4)において、前記第1の温度センサ及び前記第2の温度センサの少なくとも一方は、前記放熱面においてFPCに実装され、前記FPCには前記放熱面の一部分を露出する開口が設けられる接触式内部温度計。 (8) In (3) or (4), at least one of the first temperature sensor and the second temperature sensor is mounted on the FPC on the heat dissipation surface, and a part of the heat dissipation surface is exposed on the FPC. A contact-type internal thermometer with an opening.
 (9)(3)乃至(8)のいずれかにおいて、前記第1の温度センサ、前記第2のセンサ及び前記環境温度センサは外気および外光を遮蔽する共通の遮蔽空間内に配置され、前記遮蔽空間を強制的に換気する換気機構を有す接触式内部温度計。 (9) In any one of (3) to (8), the first temperature sensor, the second sensor, and the environmental temperature sensor are arranged in a common shielding space that shields outside air and outside light, and A contact-type internal thermometer with a ventilation mechanism that forcibly ventilates the shielding space.
 (10)(9)において、前記換気機構は、気流制御構造を含み、前記気流制御構造は、前記第1の温度センサに作用する気流の量と前記第2の温度センサに作用する気流の量を異ならしめる構造である接触式内部温度計。 (10) In (9), the ventilation mechanism includes an airflow control structure, and the airflow control structure includes an amount of airflow acting on the first temperature sensor and an amount of airflow acting on the second temperature sensor. A contact-type internal thermometer that has a different structure.
 (11)(1)又は(2)において、さらに、前記第1の温度センサ及び前記第2の温度センサの姿勢を検知する工程を有し、前記測定対象物の内部温度Tを算出する工程は、さらに検知された前記姿勢に基いて内部温度Tを算出する内部温度測定方法。 (11) (1) or (2), further comprising a step of detecting a posture of the first temperature sensor and said second temperature sensor of the step of calculating the internal temperature T B of the object to be measured the internal temperature measurement method of calculating the internal temperature T B based on the posture that is further detected.
 (12)(11)において、前記比Kを求める工程は、前記第1の温度センサ及び前記第2の温度センサの姿勢に応じた前記比Kの値又は前記比Kの値に対する係数を求める工程を含む内部温度測定方法。 (12) In (11), the step of obtaining the ratio K is a step of obtaining a value of the ratio K or a coefficient with respect to the value of the ratio K according to the postures of the first temperature sensor and the second temperature sensor. Internal temperature measurement method including.
 (13)(3)~(8)のいずれかにおいて、さらに、姿勢センサを有し、前記熱抵抗比記憶部は、姿勢センサにより検出された姿勢の値に応じた前記熱抵抗比の値又は、前記熱抵抗比の値に対する係数を記憶する接触式内部温度計。 (13) In any one of (3) to (8), further including an attitude sensor, the thermal resistance ratio storage unit is configured to determine the thermal resistance ratio value according to the attitude value detected by the attitude sensor or A contact-type internal thermometer that stores a coefficient for the value of the thermal resistance ratio.
 上記(1)又は(2)の側面によれば、簡易かつ低コストの構造を用いて、測定の高速性と精度を両立させつつ測定対象物の内部温度を測定できる。 According to the above aspect (1) or (2), the internal temperature of the measurement object can be measured while achieving both high-speed measurement and accuracy using a simple and low-cost structure.
 上記(3)又は(4)の側面によれば、簡易かつ低コストの構造を用いて、測定の高速性と精度を両立させつつ測定対象物の内部温度を測定できる接触式内部温度計が得られる。 According to the above aspect (3) or (4), a contact-type internal thermometer capable of measuring the internal temperature of the measurement object while obtaining both high speed and accuracy of measurement using a simple and low-cost structure is obtained. It is done.
 上記(5)の側面によれば、伝熱性接着剤の厚みを容易に一定に制御することができる。また、FPCにより温度センサを通過する熱流速が妨げられることがない。 According to the above aspect (5), the thickness of the heat conductive adhesive can be easily controlled to be constant. Further, the heat flow rate passing through the temperature sensor is not hindered by the FPC.
 上記(6)乃至(8)のいずれかの側面によれば、FPCにより温度センサを通過する熱流速が妨げられることがない。 According to any one of the above aspects (6) to (8), the heat flow rate passing through the temperature sensor is not hindered by the FPC.
 上記(9)の側面によれば、外光や外部の気流による測定誤差を排除するとともに、連続測定時にも測定精度を維持することができる。 According to the above aspect (9), it is possible to eliminate measurement errors due to external light and external airflow, and to maintain measurement accuracy even during continuous measurement.
 上記(10)の側面によれば、換気により第1の温度センサと第2の温度センサの放熱についての熱抵抗を異なるものとすることができる。 According to the above aspect (10), the thermal resistance of the first temperature sensor and the second temperature sensor can be made different due to ventilation.
 上記(11)又は(12)の側面によれば、測定対象物の内部温度を測定する際に、測定時の姿勢によらずに精度の高い測定ができる。 According to the above aspect (11) or (12), when measuring the internal temperature of the measurement object, high-precision measurement can be performed regardless of the posture during measurement.
 上記(13)の側面によれば、測定時の接触式内部温度計の姿勢によらずに精度の高い測定ができる。 According to the side of (13) above, highly accurate measurement can be performed regardless of the attitude of the contact-type internal thermometer at the time of measurement.
本発明の第1の実施形態に係る接触式内部温度計を背面側から見た外観図である。It is the external view which looked at the contact-type internal thermometer which concerns on the 1st Embodiment of this invention from the back side. 本発明の第1の実施形態に係る接触式内部温度計を測定面側から見た外観図である。It is the external view which looked at the contact-type internal thermometer which concerns on the 1st Embodiment of this invention from the measurement surface side. 図1のIII-III線による接触式内部温度計の概略断面図である。FIG. 3 is a schematic sectional view of a contact-type internal thermometer taken along line III-III in FIG. 1. 本発明の第1の実施形態に係る接触式内部温度計の測定ヘッドに設けられた測定部の等価熱回路を示す図である。It is a figure which shows the equivalent thermal circuit of the measurement part provided in the measurement head of the contact-type internal thermometer which concerns on the 1st Embodiment of this invention. 第1の温度センサの一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of a 1st temperature sensor. 第1の温度センサの別の一例を示す外観斜視図である。It is an external appearance perspective view which shows another example of a 1st temperature sensor. 第1の温度センサのさらに別の一例を示す外観斜視図である。It is an external appearance perspective view which shows another example of a 1st temperature sensor. 第2の温度センサの一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of a 2nd temperature sensor. 第2の温度センサの別の一例を示す外観斜視図である。It is an external appearance perspective view which shows another example of a 2nd temperature sensor. 第1の温度センサ又は第2の温度センサをFPCに実装している様子の一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of a mode that the 1st temperature sensor or the 2nd temperature sensor is mounted in FPC. 図7AのVIIB-VIIB線における断面図である。It is sectional drawing in the VIIB-VIIB line | wire of FIG. 7A. 第1の温度センサ又は第2の温度センサをFPCに実装している様子の他の一例を示す外観斜視図である。It is an external appearance perspective view which shows another example of a mode that the 1st temperature sensor or the 2nd temperature sensor is mounted in FPC. 図8AのVIIIB-VIIIB線における断面図である。It is sectional drawing in the VIIIB-VIIIB line | wire of FIG. 8A. 第1の温度センサ又は第2の温度センサをFPCに実装している様子のさらに他の一例を示す外観斜視図である。It is an external appearance perspective view which shows another example of a mode that the 1st temperature sensor or the 2nd temperature sensor is mounted in FPC. 図9AのIXB-IXB線における断面図である。FIG. 9B is a sectional view taken along line IXB-IXB in FIG. 9A. 第1の温度センサ又は第2の温度センサをFPCに実装している様子のさらに他の一例を示す外観斜視図である。It is an external appearance perspective view which shows another example of a mode that the 1st temperature sensor or the 2nd temperature sensor is mounted in FPC. 図10AのXB-XB線における断面図である。FIG. 10B is a sectional view taken along line XB-XB in FIG. 10A. 第1の温度センサと第2の温度センサの放熱面における熱抵抗を異なるものとする換気機構の一例を示す図である。It is a figure which shows an example of the ventilation mechanism which makes the thermal resistance in the thermal radiation surface of a 1st temperature sensor and a 2nd temperature sensor differ. 本発明の第2の実施形態に係る接触式内部温度計の概略断面図である。It is a schematic sectional drawing of the contact-type internal thermometer which concerns on the 2nd Embodiment of this invention. 接触式内部温度計の測定面の法線方向が鉛直下方向(重力方向)と一致している場合を示す図である。It is a figure which shows the case where the normal line direction of the measurement surface of a contact-type internal thermometer corresponds with the perpendicular downward direction (gravity direction). 接触式内部温度計の測定面の法線方向が水平方向となっている場合を示す図である。It is a figure which shows the case where the normal line direction of the measurement surface of a contact-type internal thermometer is a horizontal direction. 接触式内部温度計の姿勢を角度(θ、δ)により表す説明図である。It is explanatory drawing showing the attitude | position of a contact-type internal thermometer by angle ((theta), (delta)). 角度(θ、δ)とKとの関係を示す2次元テーブルの例である。It is an example of a two-dimensional table showing the relationship between angles (θ, δ) and K.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る接触式内部温度計100を背面側から見た外観図、図2は同実施形態に係る接触式内部温度計100を測定面側から見た外観図である。なお、本明細書にて接触式内部温度計とは、温度計であって、測定対象表面に接触させることにより内部温度を測定する温度計を意味している。また、内部温度とは、測定対象の表面温度でなく、その内部であって、実質的に恒温熱源と考えられる部位の温度を意味している。ここで、実質的に恒温熱源と考えられるとは、測定対象内部の熱容量が大きい場合や、測定対象内部に常に熱が供給される結果、接触式内部温度計による測定がその温度に実用上の影響を及ぼさないと考えられることを意味している。たとえば、測定対象が生体である場合には、血流により体幹より常に熱が供給されることとなるので、後者に該当する。 FIG. 1 is an external view of a contact type internal thermometer 100 according to the first embodiment of the present invention viewed from the back side, and FIG. 2 is a view of the contact type internal thermometer 100 according to the same embodiment from the measurement surface side. It is an external view. In the present specification, the contact-type internal thermometer is a thermometer, and means a thermometer that measures the internal temperature by bringing it into contact with the surface to be measured. In addition, the internal temperature means not the surface temperature of the measurement target but the temperature inside the region that is considered to be a substantially constant temperature heat source. Here, it is considered that the heat source is substantially constant temperature when the heat capacity inside the measurement target is large, or when heat is constantly supplied to the measurement target, the measurement with the contact-type internal thermometer is practically applied to that temperature. It means that it is considered that there is no influence. For example, when the measurement target is a living body, heat is always supplied from the trunk by the blood flow, which corresponds to the latter.
 本実施形態で示す接触式内部温度計100は、図示の通り携帯式であり、ケース1の先端に測定ヘッド2が取り付けられている。測定ヘッド2はケース1から突き出すように設けられており、その先端はおおむね平坦な測定面20となっている。そして、かかる測定面20を測定対象物の被測定面、例えば皮膚に押し付けることによりその内部温度を計測する。測定面20の表面には、略円形の第1のプローブ30及び第2のプローブ31が図2に示すように、接触式内部温度計100の長手方向に沿って直列に配置されている。なお、これら第1のプローブ30及び第2のプローブ31の配置は任意であり、その配置方向は必ずしも接触式内部温度計100の長手方向に沿ったものでなくともよい。 The contact-type internal thermometer 100 shown in the present embodiment is portable as shown in the figure, and the measurement head 2 is attached to the tip of the case 1. The measuring head 2 is provided so as to protrude from the case 1, and the tip thereof is a substantially flat measuring surface 20. Then, the internal surface is measured by pressing the measurement surface 20 against the surface to be measured of the measurement object, for example, the skin. On the surface of the measurement surface 20, a substantially circular first probe 30 and second probe 31 are arranged in series along the longitudinal direction of the contact-type internal thermometer 100 as shown in FIG. 2. The arrangement of the first probe 30 and the second probe 31 is arbitrary, and the arrangement direction is not necessarily along the longitudinal direction of the contact-type internal thermometer 100.
 ケース1の測定面20の反対側の面である背面10には、ランプ11、表示部12、ブザー13が設けられている。以降、本明細書では、測定面20が向く方向を測定面側、その反対方向である背面10が向く方向を背面側と称する。また、ケース1は長く伸び丸みを帯びた形状をしており、使用者が手に持つグリップ14を形成している。図2に見られるように、ケース1のグリップ14の測定面側には電池蓋15が設けられ、内部に接触式内部温度計100の電源となる電池を収容するようになっている。また、ケース1の適宜の位置、ここでは図2に示した位置に吸気穴16が、測定ヘッド2の側面に排気穴21が設けられ、それぞれの内部空間が外気と連通するようになされている。ケース1と測定ヘッド2は、支持環3により接続されている。 A lamp 11, a display unit 12, and a buzzer 13 are provided on the back surface 10 that is the surface opposite to the measurement surface 20 of the case 1. Hereinafter, in this specification, the direction in which the measurement surface 20 faces is referred to as the measurement surface side, and the direction in which the back surface 10 that is the opposite direction faces is referred to as the back surface side. Further, the case 1 has a long and rounded shape, and forms a grip 14 that the user has in his hand. As shown in FIG. 2, a battery lid 15 is provided on the measurement surface side of the grip 14 of the case 1, and a battery serving as a power source for the contact type internal thermometer 100 is accommodated therein. In addition, an intake hole 16 is provided at an appropriate position of the case 1, here the position shown in FIG. 2, and an exhaust hole 21 is provided on the side surface of the measurement head 2, so that each internal space communicates with the outside air. . Case 1 and measuring head 2 are connected by a support ring 3.
 なお、図1及び図2に示した接触式内部温度計100のデザインは一例である。かかるデザインは、その主たる用途や市場性等を考慮の上適宜変更して差し支えない。また、各構成部品の配置は、その機能を損なわない範囲で任意に選択してよい。 The design of the contact type internal thermometer 100 shown in FIGS. 1 and 2 is an example. Such a design may be appropriately changed in consideration of its main use and marketability. Further, the arrangement of each component may be arbitrarily selected within a range that does not impair its function.
 図3は、図1のIII-III線による接触式内部温度計100の概略断面図である。ケース1は、好ましくはABS樹脂等任意の合成樹脂製の中空の成形品であり、接触式内部温度計100を構成する各種部品をその内部に一体に収容する。グリップ14内には、電池4及び回路基板5が収容されている。回路基板5上には、その上にコントローラ50、不揮発性メモリ51を始めとする各種の電子部品が実装されており、電池4からの電力供給を受けて、電力を必要とする全ての部品への電力を供給するとともにその動作を制御している。電池4は、図示のものは市販の単4型(米国ではAAAと称される)乾電池であるが、その形式は任意のものであってよく、ボタン型、角型等の形状や、1次電池・2次電池の別も任意であってよい。なお、各部品と回路基板5とを電気的に接続する配線は、図示が煩雑となるため省略している。また、コントローラ50は、適宜の情報処理装置であり、CPU(Central Processing Unit)及びメモリ等からなるコンピュータやいわゆるマイクロコントローラ、DSP(Digital Signal Processor)、FPGA(Field Prgrammable Gate Array)等のPLD(Programmable Logic Device)等を用いてよい。 FIG. 3 is a schematic cross-sectional view of the contact-type internal thermometer 100 taken along line III-III in FIG. The case 1 is preferably a hollow molded product made of any synthetic resin such as ABS resin, and various parts constituting the contact-type internal thermometer 100 are integrally accommodated therein. A battery 4 and a circuit board 5 are accommodated in the grip 14. Various electronic components such as a controller 50 and a non-volatile memory 51 are mounted on the circuit board 5, and are supplied with power from the battery 4 to all components that require power. The power is supplied and the operation is controlled. The illustrated battery 4 is a commercially available AAA type (referred to as AAA in the United States) dry battery, but the type thereof may be arbitrary, such as a button type or a square type, or a primary type. The battery and secondary battery may be optional. Note that wiring for electrically connecting each component and the circuit board 5 is omitted because the illustration is complicated. The controller 50 is an appropriate information processing apparatus, and is a computer (CPU) (Central Processing Unit) and a memory, a so-called microcontroller, a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), or other PLD (Programmable). (Logic Device) or the like may be used.
 ランプ11は、好ましくは多色発光可能な発光ダイオードであり、接触式内部温度計100の状態を使用者に通知するために点灯するものである。表示部12は、本実施形態では液晶表示装置であり、接触式内部温度計100の測定結果を図1に示すような態様で使用者に通知するためのものである。もちろん、表示部12にはこのほかにも任意の情報、例えば、電池4の残量等を表示するようにしてよい。あるいは、接触式内部温度計100の状態を併せて表示するようにして、ランプ11を省略してもよい。ブザー13は、本実施形態では一般的な電子ブザーであり、ビープ音により接触式内部温度計100の状態を使用者に通知するためのものである。なお、ブザー13の形式も又任意であり、スピーカを備えるようにして、音声あるいはメロディ等による通知をするようにしてもよい。あるいは、ランプ11及び/又は表示部12による通知のみとして、ブザー13を省略してもよい。 The lamp 11 is preferably a light emitting diode capable of emitting multiple colors, and is lit to notify the user of the state of the contact type internal thermometer 100. The display unit 12 is a liquid crystal display device in the present embodiment, and is used to notify the user of the measurement result of the contact-type internal thermometer 100 in a manner as shown in FIG. Of course, any other information such as the remaining amount of the battery 4 may be displayed on the display unit 12. Alternatively, the state of the contact type internal thermometer 100 may be displayed together and the lamp 11 may be omitted. The buzzer 13 is a general electronic buzzer in this embodiment, and is for notifying the user of the state of the contact-type internal thermometer 100 by a beep sound. The form of the buzzer 13 is also arbitrary, and a speaker may be provided to notify by voice or melody. Alternatively, the buzzer 13 may be omitted only for notification by the lamp 11 and / or the display unit 12.
 また、ケース1内部には隔壁18が設けられており、ケース1内部をグリップ空間19aとヘッド空間19bとに仕切っている。隔壁18には開口が設けられており、かかる開口を塞ぐようにブロア7が取り付けられている。ブロア7の機能については後述する。 Further, a partition wall 18 is provided inside the case 1, and the inside of the case 1 is partitioned into a grip space 19a and a head space 19b. The partition wall 18 is provided with an opening, and the blower 7 is attached so as to close the opening. The function of the blower 7 will be described later.
 ケース1の先端部には、支持環3を介して測定ヘッド2が取り付けられる。支持環3は、好ましくはシリコンゴム或いはその発泡体等の弾力を有し且つ断熱性に優れた材料で形成され、測定ヘッド2のケース1に対する若干の動きを許容するとともに、測定ヘッド2からケース1への伝熱を遮断するようになっている。これは、測定面20を測定対象物に押し付ける際に、測定面20の特に第1のプローブ30及び第2のプローブ31が確実に測定対象物に密着するようにするためと、測定ヘッド2からケース1へと熱が流出することによる測定誤差の発生を防止するためである。しかしながら、支持環3は必須の構成でなく、測定面20と測定対象物との密着に問題がなく、また測定ヘッド2が十分に熱伝導率の低い材質であり実用上問題ない場合には、これを省略し、測定ヘッド2を直接ケース1に固定する又は両者を一体に形成するなどしてもよい。また、支持環3の形状も環状に限定されるものでなく、任意の形状のものを用いてよい。 The measuring head 2 is attached to the tip of the case 1 through a support ring 3. The support ring 3 is preferably made of a material having elasticity such as silicon rubber or a foam thereof and excellent in heat insulation, and allows a slight movement of the measuring head 2 with respect to the case 1 and from the measuring head 2 to the case. The heat transfer to 1 is cut off. This is because when the measurement surface 20 is pressed against the measurement object, in particular, the first probe 30 and the second probe 31 on the measurement surface 20 are in close contact with the measurement object, and from the measurement head 2. This is to prevent the occurrence of measurement errors due to heat flowing out to case 1. However, the support ring 3 is not an essential configuration, there is no problem in the close contact between the measurement surface 20 and the measurement object, and when the measurement head 2 is a material having a sufficiently low thermal conductivity and there is no practical problem, This may be omitted, and the measurement head 2 may be directly fixed to the case 1 or both may be integrally formed. Further, the shape of the support ring 3 is not limited to an annular shape, and an arbitrary shape may be used.
 測定ヘッド2は、形状が安定しており、熱伝導率が低く、かつ比熱の小さい材質で形成することが好ましく、例えば、硬質発泡ウレタンや硬質発泡塩化ビニルが好適に用いられる。しかしながら、この点についても実用上の問題がなければ材質は特に限定されるものでなく、任意でよい。 The measuring head 2 is preferably formed of a material having a stable shape, low thermal conductivity and low specific heat. For example, rigid foamed urethane or rigid foamed vinyl chloride is suitably used. However, the material is not particularly limited in this respect as long as there is no practical problem, and any material may be used.
 測定ヘッド2の測定面20には第1のプローブ30及び第2のプローブ31に対応する位置に開口が設けられており、各プローブが測定面20からわずかに突出するように取り付けられている。そのため、測定面20を被測定面に押し付けると、第1のプローブ30の測定面側の面である第1の接触面と、第2のプローブ31の測定面側の面である第2の接触面がそれぞれ被測定面に密着するように接触し、両者の間で熱の授受が行われる。なおここで、接触面とは、被測定面と接触して主として熱の授受を行う面を指すものとする。各プローブは、熱伝導率の高い材質であることが好ましく、本実施形態では金属製である。なお、第1のプローブ30及び第2のプローブ31の材質は耐腐食性を備えていることが好ましく、金属材料では、アルミニウムやステンレスが好適である。なお、上述の通り、測定ヘッド2自体は熱伝導率が低い材質から構成されるため、第1のプローブ30及び第2のプローブ31は、互いに熱的に隔離されることとなる。 The measurement surface 20 of the measurement head 2 is provided with openings at positions corresponding to the first probe 30 and the second probe 31, and each probe is attached so as to slightly protrude from the measurement surface 20. Therefore, when the measurement surface 20 is pressed against the surface to be measured, the first contact surface that is the surface on the measurement surface side of the first probe 30 and the second contact that is the surface on the measurement surface side of the second probe 31. The surfaces come into close contact with the surface to be measured, and heat is transferred between them. Here, the contact surface refers to a surface that is in contact with the surface to be measured and mainly transfers heat. Each probe is preferably made of a material having high thermal conductivity, and is made of metal in this embodiment. In addition, it is preferable that the material of the 1st probe 30 and the 2nd probe 31 is equipped with corrosion resistance, and aluminum and stainless steel are suitable for a metal material. As described above, since the measurement head 2 itself is made of a material having low thermal conductivity, the first probe 30 and the second probe 31 are thermally isolated from each other.
 第1のプローブ30の背面側の面には、第1の温度センサ32が設けられており、両者は互いに熱的に結合している。また、第2のプローブ31の背面側の面には、第2の温度センサ33が設けられており、両者は互いに熱的に結合している。また、第1の温度センサ32、第2の温度センサ33から離れた背面側の任意の位置に、周囲の温度を測定する環境温度センサ34が設けられる。環境温度センサ34の支持構造は図3には示されていないが、これは任意の構造を用いてよい。例えば、測定ヘッド2又はケース1に梁などの適宜の構造を設け、環境温度センサ34を固定するようにしてもよいし、第1の温度センサ32及び/又は第2の温度センサ33が実装されるFPCの適宜の位置に環境温度センサ34を実装することにより、環境温度センサ34がヘッド空間19b内の適当な位置に配置されるようにしてもよい。ヘッド空間19bは、接触式内部温度計100の外部の光(外光)や気流(外部気流)を遮蔽する遮蔽空間であり、第1の温度センサ32、第2の温度センサ33及び環境温度センサ34は共通の遮蔽空間であるヘッド空間19b内に配置される。 The first temperature sensor 32 is provided on the back surface of the first probe 30, and both are thermally coupled to each other. A second temperature sensor 33 is provided on the rear surface of the second probe 31, and both are thermally coupled to each other. In addition, an environmental temperature sensor 34 for measuring the ambient temperature is provided at an arbitrary position on the back side away from the first temperature sensor 32 and the second temperature sensor 33. Although the support structure for the ambient temperature sensor 34 is not shown in FIG. 3, any structure may be used. For example, the measurement head 2 or the case 1 may be provided with an appropriate structure such as a beam, and the environmental temperature sensor 34 may be fixed, or the first temperature sensor 32 and / or the second temperature sensor 33 may be mounted. By mounting the environmental temperature sensor 34 at an appropriate position of the FPC, the environmental temperature sensor 34 may be arranged at an appropriate position in the head space 19b. The head space 19b is a shielding space that shields light (external light) and airflow (external airflow) outside the contact-type internal thermometer 100, and includes a first temperature sensor 32, a second temperature sensor 33, and an environmental temperature sensor. 34 is arranged in a head space 19b which is a common shielding space.
 かかる構造では、測定面20を測定対象物に接触させると、測定対象物からの熱は第1のプローブ30の接触面及び第2のプローブ31の接触面に伝達され、さらにその熱は第1の温度センサ32及び第2の温度センサ33に伝達され、第1の温度センサ32及び第2の温度センサ33を背面側へと通過した後、ヘッド空間19b内に放散されることになる。ここで、第1の温度センサ32及び第2の温度センサ33の測定面20側の面を吸熱面と呼ぶこととすると、第1の温度センサ32の吸熱面は、第1のプローブ30と熱的に結合する結果、その接触面と熱的に結合することになる。また、第2の温度センサ33の吸熱面は、同様に、第2のプローブ31の接触面と熱的に結合することになる。それぞれの接触面に伝達された測定対象物の熱は、吸熱面から第1の温度センサ32及び第2の温度センサ33へと流入する。また、第1の温度センサ32及び第2の温度センサ33の背面側の面は、ヘッド空間19b内に熱を放散する面であるから、これらの面を放熱面と呼ぶこととする。 In such a structure, when the measurement surface 20 is brought into contact with the measurement object, the heat from the measurement object is transferred to the contact surface of the first probe 30 and the contact surface of the second probe 31, and further, the heat is the first. The first temperature sensor 32 and the second temperature sensor 33 are transmitted to the first temperature sensor 32 and the second temperature sensor 33, and after passing through the first temperature sensor 32 and the second temperature sensor 33 to the back side, are diffused into the head space 19b. Here, if the surface on the measurement surface 20 side of the first temperature sensor 32 and the second temperature sensor 33 is called an endothermic surface, the endothermic surface of the first temperature sensor 32 is the same as that of the first probe 30 and the heat. As a result, the thermal contact with the contact surface results. Similarly, the endothermic surface of the second temperature sensor 33 is thermally coupled to the contact surface of the second probe 31. The heat of the measurement object transmitted to each contact surface flows into the first temperature sensor 32 and the second temperature sensor 33 from the endothermic surface. In addition, since the back surfaces of the first temperature sensor 32 and the second temperature sensor 33 are surfaces that dissipate heat in the head space 19b, these surfaces are referred to as heat dissipation surfaces.
 なお、各温度センサにはどのようなものを用いてもよいが、本実施形態ではサーミスタである。それぞれの温度センサは、回路基板5に図示しない配線、本実施形態ではFPCにより接続されており、コントローラ50により各温度センサにおける温度を検知できるようになっている。 In addition, although what kind of thing may be used for each temperature sensor, in this embodiment, it is a thermistor. Each temperature sensor is connected to the circuit board 5 by wiring (not shown), in this embodiment, FPC, and the controller 50 can detect the temperature of each temperature sensor.
 ここで、第1の温度センサ32の放熱面における熱抵抗と、第2の温度センサ33の放熱面における熱抵抗は異なるものとなっている。したがって、この2つの熱抵抗の比の値は当然に1でない。第1の温度センサ32の放熱面における熱抵抗と、第2の温度センサ33の放熱面における熱抵抗を異ならしめる構造については後述する。なお、第1の温度センサ32と第2の温度センサ33の寸法や形状は同じものであってもよい。 Here, the thermal resistance of the heat radiation surface of the first temperature sensor 32 and the thermal resistance of the heat radiation surface of the second temperature sensor 33 are different. Therefore, the value of the ratio of the two thermal resistances is naturally not 1. A structure for making the thermal resistance of the heat radiation surface of the first temperature sensor 32 different from the heat resistance of the heat radiation surface of the second temperature sensor 33 will be described later. The first temperature sensor 32 and the second temperature sensor 33 may have the same size and shape.
 ここで、本実施形態の接触式内部温度計100による内部温度の測定原理を図4を参照して説明する。 Here, the measurement principle of the internal temperature by the contact-type internal thermometer 100 of this embodiment will be described with reference to FIG.
 図4は、本実施形態に係る接触式内部温度計100の測定ヘッド2に設けられた測定部の等価熱回路を示す図である。同図を図4を参照しつつ説明すると、Tは測定対象の内部温度、Tは第1の温度センサ32の温度、Tは第2の温度センサ33の温度、Tは環境温度センサ34の温度である。また、熱抵抗Rは測定対象の内部の恒温熱源から第1のプローブ30及び第2のプローブ31、さらに第1の温度センサ32及び第2の温度センサ33の吸熱面を通って第1の温度センサ32及び第2の温度センサ33に熱が伝わる際の熱抵抗である。また、Tは環境温度センサ34の温度であり、第1の温度センサ32及び第2の温度センサ33の周囲の環境の温度を示している。熱抵抗Rは第1の温度センサ32の放熱面から周囲の環境へと熱が放散される際の熱抵抗、熱抵抗Rは第2の温度センサ33の放熱面から周囲の環境へと熱が放散される際の熱抵抗である。また、T>T>T及び、T>T>Tが成立している。 FIG. 4 is a diagram showing an equivalent thermal circuit of the measurement unit provided in the measurement head 2 of the contact-type internal thermometer 100 according to the present embodiment. To explain with reference to FIG. 4 to FIG, T B is the internal temperature of the measurement target, T 1 is the temperature of the first temperature sensor 32, T 2 is the temperature of the second temperature sensor 33, T e is the environmental temperature This is the temperature of the sensor 34. The heat resistance R B is from the interior of the constant temperature heat source to be measured first probe 30 and second probe 31, further first through the heat absorbing surface of the first temperature sensor 32 and second temperature sensor 33 It is a thermal resistance when heat is transmitted to the temperature sensor 32 and the second temperature sensor 33. Te is the temperature of the environmental temperature sensor 34 and indicates the temperature of the environment around the first temperature sensor 32 and the second temperature sensor 33. The thermal resistance R 1 is a thermal resistance when heat is dissipated from the heat radiation surface of the first temperature sensor 32 to the surrounding environment, and the thermal resistance R 2 is a heat resistance R 2 from the heat radiation surface of the second temperature sensor 33 to the surrounding environment. It is the thermal resistance when heat is dissipated. Further, T B > T 1 > T e and T B > T 2 > T e are established.
 ここで、図に示した系が定常状態にある場合を考えると、TよりTへと流れる熱流束は一定であるから、次式が成立する。 Here, consider the case in the system is steady state shown in FIG., The heat flux flowing into T 1 than T B is is constant, the following equation is established.
Figure JPOXMLDOC01-appb-M000003
同様に、TよりTへと流れる熱流束を考えると、
Figure JPOXMLDOC01-appb-M000003
Similarly, given the heat flux flowing into T 2 than T B,
Figure JPOXMLDOC01-appb-M000004
が成立する。この数2及び数3をTについて解くと、
Figure JPOXMLDOC01-appb-M000004
Is established. Solving this equation 2 and equation 3 for T B,
Figure JPOXMLDOC01-appb-M000005
として求められる。ここで、Kは熱抵抗Rと熱抵抗Rの比であり、1でない定数となるので、あらかじめ実験等によりこれを求めておく。数4においては、比KはR/Rである。
Figure JPOXMLDOC01-appb-M000005
As required. Here, K is a ratio of the thermal resistance R 1 and the thermal resistance R 2 and is a constant other than 1, and is obtained in advance by experiments or the like. In Equation 4, the ratio K is R 2 / R 1 .
 以上の方法により内部温度を測定する場合には、第1の温度センサ32及び第2の温度センサ33として断熱材を介して積層した構造物を用いる必要がないため、製造が容易でかつ低コストとなる。また、第1の温度センサ32及び第2の温度センサ33は温度センサとしての素子単体で良いことから熱容量も小さく、定常状態となるまでの時間は短いものとなる。さらに、後述する各種の構造を適用して第1の温度センサ32及び第2の温度センサ33の定常状態における温度差を容易に制御できるため、第1の温度センサ32及び第2の温度センサ33に小型のものを採用して計測の高速化を図った際にも計測精度を保ちやすい。 In the case where the internal temperature is measured by the above method, it is not necessary to use a laminated structure with a heat insulating material as the first temperature sensor 32 and the second temperature sensor 33, so that the manufacturing is easy and the cost is low. It becomes. Further, since the first temperature sensor 32 and the second temperature sensor 33 may be a single element as a temperature sensor, the heat capacity is small, and the time until a steady state is reached is short. Furthermore, since the temperature difference in the steady state between the first temperature sensor 32 and the second temperature sensor 33 can be easily controlled by applying various structures to be described later, the first temperature sensor 32 and the second temperature sensor 33. It is easy to maintain the measurement accuracy even when a small size is used to increase the measurement speed.
 続いて、本実施形態に係る接触式内部温度計100を用いて内部温度を測定する手順を説明する。 Subsequently, a procedure for measuring the internal temperature using the contact-type internal thermometer 100 according to the present embodiment will be described.
 手順1:熱抵抗Rと熱抵抗Rの比Kを求め、熱抵抗比記憶部である不揮発性メモリ51に記憶させる。比Kは、例えば恒温槽内で第1のプローブ30及び第2のプローブ31を温度のわかっている恒温熱源に接触させる等して、温度T、T及びTを実際に測定することにより、上述の式2及び式3より容易に求めることができる。なお、不揮発性メモリ51に記憶される値は、比Kそのものであっても、熱抵抗R及びRであってもよい。この手順は接触式内部温度計100の製造後1度だけ実施すればよいものなので、例えば出荷前に工場において実施しておくとよい。接触式内部温度計100の使用者は、個々の測定にあたってはこの手順1を実行する必要はなく、次の手順2以降を実行すればよい。 Step 1: determine the specific K the thermal resistance R 1 and the thermal resistance R 2, is stored in the nonvolatile memory 51 is a thermal resistance ratio storage unit. The ratio K is, for example, the first probe 30 and second probe 31 in a thermostat and the like is brought into contact with thermostatic heat source with a known temperature, to actually measure the temperature T 1, T 2 and T e Thus, it can be easily obtained from the above-described Expression 2 and Expression 3. The value stored in the nonvolatile memory 51 may be the ratio K itself or the thermal resistances R 1 and R 2 . Since this procedure only needs to be performed once after the contact-type internal thermometer 100 is manufactured, for example, it may be performed in a factory before shipment. The user of the contact-type internal thermometer 100 does not need to execute the procedure 1 for each measurement, and may perform the following procedure 2 and subsequent steps.
 手順2:接触式内部温度計100の測定面20を測定対象物に接触させ、測定を開始する。なお、この測定の開始は、第1の温度センサ32又は第2の温度センサ33により測定される温度の上昇を検知することにより自動的に行ってもよいし、図示しない押ボタン等のスイッチを使用者が操作することにより行ってもよい。このとき、コントローラ50はブザー13によるビープ音により測定を開始したことを使用者に通知する。同時に、ランプ11を任意の色、例えば赤色に点灯し、使用者に測定面20を測定対象物に接触させたまま維持するよう促す。 Procedure 2: The measurement surface 20 of the contact-type internal thermometer 100 is brought into contact with the measurement object, and measurement is started. This measurement may be started automatically by detecting an increase in temperature measured by the first temperature sensor 32 or the second temperature sensor 33, or a switch such as a push button (not shown) may be used. You may carry out by a user's operation. At this time, the controller 50 notifies the user that the measurement is started by a beep sound by the buzzer 13. At the same time, the lamp 11 is lit in an arbitrary color, for example, red, and prompts the user to keep the measurement surface 20 in contact with the measurement object.
 手順3:ヘッド空間19bを換気する。コントローラ50は、測定開始後、ブロア7を作動させ、ヘッド空間19bの換気を行う。これは、測定対象物から伝わった熱により、第1の温度センサ32又は第2の温度センサ33の周囲の温度が局所的に上昇して互いに異なるものとなったり、環境感度センサの温度Tと異なるものとなったりすることにより誤差が生じるのを防止するためである。 Procedure 3: Ventilate the head space 19b. After starting the measurement, the controller 50 operates the blower 7 to ventilate the head space 19b. This is because the temperature around the first temperature sensor 32 or the second temperature sensor 33 rises locally due to the heat transferred from the measurement object, or the temperature T e of the environmental sensitivity sensor becomes different. This is to prevent an error from occurring due to a difference from the above.
 本実施形態では、ブロア7は図1のグリップ空間19aからヘッド空間19bへと流れる気流を強制的に発生させる。そのため、ブロア7により誘起される空気の流れは、図中矢印に示すように、吸気穴16から吸い込まれ、ブロア7を通過し、第1の温度センサ32及び第2の温度センサ33の近傍を通過して排気穴21から排出されるものとなる。従って、本実施形態のブロア7、吸気穴16及び排気穴21は協働してヘッド空間19bを換気する換気機構を構成することになる。 In this embodiment, the blower 7 forcibly generates an airflow flowing from the grip space 19a to the head space 19b in FIG. Therefore, the air flow induced by the blower 7 is sucked from the intake hole 16 as shown by an arrow in the figure, passes through the blower 7, and passes through the vicinity of the first temperature sensor 32 and the second temperature sensor 33. It passes through and is discharged from the exhaust hole 21. Therefore, the blower 7, the intake hole 16, and the exhaust hole 21 of the present embodiment cooperate to constitute a ventilation mechanism that ventilates the head space 19b.
 なお、換気機構の構成はどのようなものであってもよく、ブロア7、吸気穴16及び排気穴21の配置は任意である。また、吸排気の向きを逆にしてもよい。また、ブロア7の形式は特に限定されず、一般的なファンであってもよいし、圧電素子を利用したマイクロブロアであってもよい。あるいは、自然対流による換気により十分な測定精度が得られる場合や、さらには、ヘッド空間19bの熱容量に対して、第1の温度センサ32及び第2の温度センサ33を通して流入する熱量が十分小さく無視できる場合には、この換気機構そのものを廃し、手順3を省略しても差し支えない。 Note that any configuration of the ventilation mechanism may be used, and the arrangement of the blower 7, the intake hole 16, and the exhaust hole 21 is arbitrary. Further, the direction of intake and exhaust may be reversed. The type of the blower 7 is not particularly limited, and may be a general fan or a micro blower using a piezoelectric element. Alternatively, when sufficient measurement accuracy is obtained by ventilation by natural convection, and furthermore, the amount of heat flowing through the first temperature sensor 32 and the second temperature sensor 33 with respect to the heat capacity of the head space 19b is sufficiently small and ignored. If possible, the ventilation mechanism itself can be eliminated and step 3 can be omitted.
 手順4:コントローラ50は、第1の温度センサ32及び第2の温度センサ33が定常状態に達した後に測定対象物の内部温度Tを算出し、表示する。すなわち、コントローラ50は、第1の温度センサ32及び第2の温度センサ33の出力を監視し、これら温度センサの温度変化があらかじめ定められた閾値以下となった時点における出力を用いて、上述の数4から内部温度Tを求める。数4より明らかなように、コントローラ50は、定常状態における第1の温度センサ32の温度T、第2の温度センサ33の温度T、環境温度センサ34の温度T、及び不揮発性メモリ51に記憶された比Kより測定対象の内部温度Tを算出する。算出された内部温度Tは、図1に示したように表示部12に表示される。また、ブザー13によるビープ音の発生、並びに、ランプ11を先ほどの色とは異なる任意の色、例えば緑色に点灯することにより、使用者に測定が終了したことを通知する。なお、算出された内部温度Tは、本実施形態では表示部12に表示することにより使用者に通知することとしているが、これに限られず、接触式内部温度計100に設けたメモリに蓄積したり、接触式内部温度計100の外部の機器に有線又は無線にて出力したりしてもよい。この場合には、表示部12は必ずしも必須の構成ではない。 Step 4: The controller 50 calculates the internal temperature T B of the measurement object after the first temperature sensor 32 and second temperature sensor 33 has reached a steady state, and displays. That is, the controller 50 monitors the outputs of the first temperature sensor 32 and the second temperature sensor 33, and uses the outputs when the temperature changes of these temperature sensors are equal to or lower than a predetermined threshold value, as described above. determining the internal temperature T B from Equation 4. Number 4 As is clear from the controller 50, the temperature T 1 of the first temperature sensor 32 in the steady state, the temperature T 2 of the second temperature sensor 33, the temperature T e of the environmental temperature sensor 34 and a non-volatile memory, than the stored ratio K 51 calculates the internal temperature T B to be measured. The internal temperature T B which is calculated is displayed on the display unit 12 as shown in FIG. Further, the user is notified that the measurement is completed by generating a beep sound by the buzzer 13 and lighting the lamp 11 in an arbitrary color different from the previous color, for example, green. The internal temperature T B which is calculated, in the present embodiment is set to be notified to the user by displaying on the display unit 12 is not limited to this, accumulated in a memory provided in contact inside thermometer 100 Or may be output to a device outside the contact-type internal thermometer 100 by wire or wirelessly. In this case, the display unit 12 is not necessarily an essential configuration.
 なお、以上の説明では、使用者への測定開始及び測定終了の各種通知をいずれもブザー13によるビープ音及びランプ11の点灯により行ったが、これらの通知の方法はここで例示したものに限定されない。特に、ビープ音についてはこれを省略し、或いは使用者の設定によりこれを発声しないこととしてもよい。音声を用いず、ランプ11の点灯のみにより使用者に各種の通知を行うようにすると、例えば測定対象が就寝中の乳児である場合に、乳児の睡眠を妨げることなく測定が可能である等好ましい場合がある。もちろん、ランプ11の点灯をどのようにするか、例えば発光色をどのように選択するかは任意である。また、発色光によらず、ランプ11を点滅させたり、発光光の強度を変化させたり、あるいはランプ11を複数設けておき、その点灯数や位置を違えることにより使用者に各種通知を行うようにしてもよい。さらに前述したように、ランプ11でなく、表示部12により使用者に各種通知を行ってもよい。 In the above description, various notifications of measurement start and measurement end to the user are all performed by a beep sound by the buzzer 13 and lighting of the lamp 11, but these notification methods are limited to those exemplified here. Not. In particular, the beep sound may be omitted, or may not be uttered according to user settings. It is preferable to perform various notifications to the user only by lighting the lamp 11 without using sound, for example, when the measurement target is a sleeping baby, measurement is possible without disturbing the infant's sleep, etc. There is a case. Of course, how the lamp 11 is turned on, for example, how to select the emission color is arbitrary. In addition, various notifications are made to the user by flashing the lamp 11, changing the intensity of the emitted light, or providing a plurality of lamps 11 and changing the number and positions of the lamps 11 regardless of the colored light. It may be. Further, as described above, various notifications may be given to the user by the display unit 12 instead of the lamp 11.
 続いて、本実施形態の第1の温度センサ32と第2の温度センサ33の放熱面における熱抵抗を異なるものとするための構造を説明する。以降の説明では、一例として、第1の温度センサ32における熱抵抗Rの方が、第2の温度センサ33における熱抵抗Rよりも小さいものとするが、これを逆にしても差し支えない。 Then, the structure for making the thermal resistance in the thermal radiation surface of the 1st temperature sensor 32 of this embodiment and the 2nd temperature sensor 33 different is demonstrated. In the following description, as an example, it is assumed that the thermal resistance R 1 in the first temperature sensor 32 is smaller than the thermal resistance R 2 in the second temperature sensor 33, but this may be reversed. .
 図5Aは、第1の温度センサ32の一例を示す外観斜視図である。図示の例では、第1の温度センサ32の底面が吸熱面36となっており、その反対側の上面が放熱面37となっている。また、対向する側面には端子35が設けられている。同図に示すように、第1の温度センサ32の放熱面37にはフィン状の凹凸構造が設けられており、放熱面37の表面積を増大させ、熱抵抗Rを小さいものとしている。このような凹凸構造は、第1の温度センサ32の一の面を例えばダイシングソーで切削する等により部分的に除去したり、グリーンシートを積層する等の第1の温度センサ32を製造する過程で作り込んだりすることにより得られる。また、凹凸構造は、ここで示したフィン状の形状に限定されず、他にも例えばピン状の構造等であってもよい。 FIG. 5A is an external perspective view showing an example of the first temperature sensor 32. In the illustrated example, the bottom surface of the first temperature sensor 32 is a heat absorbing surface 36, and the upper surface on the opposite side is a heat radiating surface 37. Moreover, the terminal 35 is provided in the opposing side surface. As shown in the figure, the heat radiating surface 37 of the first temperature sensor 32 is assumed and irregular structure of the fin is provided to increase the surface area of the heat radiation surface 37, less the thermal resistance R 1. Such a concavo-convex structure is a process of manufacturing the first temperature sensor 32 by partially removing one surface of the first temperature sensor 32 by, for example, cutting with a dicing saw or by laminating green sheets. It is obtained by making it in. Further, the concavo-convex structure is not limited to the fin-like shape shown here, but may be a pin-like structure, for example.
 図5Bは、第1の温度センサ32の別の一例を示す外観斜視図である。図示の例では、第1の温度センサ32の放熱面37に、金属など熱伝導性の良い放熱板38が取り付けられている。このようにしても放熱面37の熱抵抗Rを小さくすることができる。 FIG. 5B is an external perspective view showing another example of the first temperature sensor 32. In the illustrated example, a heat radiating plate 38 having a good thermal conductivity such as metal is attached to the heat radiating surface 37 of the first temperature sensor 32. In this way it is also possible to reduce the thermal resistance R 1 of the radiating surface 37.
 図5Cは、第1の温度センサ32のさらに別の一例を示す外観斜視図である。図示の例では、第1の温度センサ32の放熱面37に、金属など熱伝導性の良い材質の放熱フィン39が取り付けられている。このようにしても放熱面37の熱抵抗Rを小さくすることができる。 FIG. 5C is an external perspective view showing still another example of the first temperature sensor 32. In the illustrated example, a heat radiating fin 39 made of a material having good thermal conductivity such as metal is attached to the heat radiating surface 37 of the first temperature sensor 32. In this way it is also possible to reduce the thermal resistance R 1 of the radiating surface 37.
 図6Aは、第2の温度センサ33の一例を示す外観斜視図である。図示の例では、第2の温度センサ33の底面が吸熱面36となっており、その反対側の上面が放熱面37となっている。また、対向する側面には端子35が設けられている。そして、第2の温度センサ33の放熱面37は適宜の断熱材40により覆われており、熱抵抗Rを増大させている。断熱材40の材質や厚みは、第2の温度センサ33を通過する熱流束を著しく妨げない程度のものとすることが好ましく、たとえば適宜のフォトレジスト材等の有機材料によるコーティングを行うとよい。 FIG. 6A is an external perspective view showing an example of the second temperature sensor 33. In the illustrated example, the bottom surface of the second temperature sensor 33 is a heat absorbing surface 36, and the upper surface on the opposite side is a heat radiating surface 37. Moreover, the terminal 35 is provided in the opposing side surface. The radiating surface 37 of the second temperature sensor 33 is covered by a suitable insulation 40, and increases the thermal resistance R 2. The material and thickness of the heat insulating material 40 are preferably set so as not to significantly disturb the heat flux passing through the second temperature sensor 33. For example, an appropriate organic material such as a photoresist material may be coated.
 図6Bは、第2の温度センサ33の別の一例を示す外観斜視図である。図示の例では、第2の温度センサ33の放熱面37に、部分的に断熱材41が設けられている。この場合、断熱材41は断熱性能の高い材料、例えば各種合成樹脂の発泡体を用いてよい。断熱材41の断熱性能が十分に高い場合には、熱抵抗Rの値を、放熱面37に占める断熱材41の被覆面積により制御することができる。大まかにいって、熱抵抗Rの値は、放熱面37の面積を断熱材41により覆う割合に反比例する。 FIG. 6B is an external perspective view showing another example of the second temperature sensor 33. In the illustrated example, a heat insulating material 41 is partially provided on the heat radiating surface 37 of the second temperature sensor 33. In this case, the heat insulating material 41 may use a material having high heat insulating performance, for example, a foam of various synthetic resins. When the heat insulating performance of the heat insulating material 41 is sufficiently high, the value of the thermal resistance R 2 can be controlled by the covering area of the heat insulating material 41 occupying the heat radiating surface 37. Roughly speaking, the value of the thermal resistance R 2 is inversely proportional to the ratio of covering the area of the heat radiation surface 37 with the heat insulating material 41.
 第1の温度センサ32、第2の温度センサ33は、そのいずれか一方または両方において、放熱面37に図5A乃至5C及び図6A及び図6Bに示した構造を適宜採用して、その熱抵抗の比Kを1でない値とすればよい。 Either or both of the first temperature sensor 32 and the second temperature sensor 33 adopt the structure shown in FIGS. 5A to 5C and FIGS. The ratio K may be a value other than 1.
 ところで、本実施形態では、第1の温度センサ32、第2の温度センサ33はサーミスタである。サーミスタのような小型の温度センサは、その外形が概ね扁平な直方体であり、対向する最も面積の小さい面が端子となっていることが多い。そして、本実施形態に係る接触式内部温度計100のように、温度センサの一の面を吸熱面として、また他の面を放熱面として用いる場合には、吸熱面、放熱面における熱抵抗が小さくなるよう、対向する最も面積の大きい面をそれぞれ吸熱面、放熱面として用いることが望ましい。 Incidentally, in the present embodiment, the first temperature sensor 32 and the second temperature sensor 33 are thermistors. A small-sized temperature sensor such as a thermistor is a rectangular parallelepiped whose outer shape is generally flat, and a surface having the smallest area facing each other is often a terminal. And, like the contact type internal thermometer 100 according to the present embodiment, when one surface of the temperature sensor is used as the heat absorbing surface and the other surface is used as the heat radiating surface, the heat resistance at the heat absorbing surface and the heat radiating surface is It is desirable to use the opposite surfaces having the largest area as the heat absorbing surface and the heat radiating surface, respectively, so as to be small.
 すなわち、直方体形状の温度センサの相対する面の一方を第1のプローブ30又は第2のプローブ31に熱的に結合させ、相対する面の他方を大気へと熱を放散する放熱面とする必要がある。そのため、温度センサの最も面積の大きい面の一つを単純に用いてFPCに実装することができず、第1の温度センサ32及び第2の温度センサ33を実装するにあたっては若干の工夫が必要である。 That is, one of the opposed surfaces of the rectangular parallelepiped temperature sensor must be thermally coupled to the first probe 30 or the second probe 31, and the other of the opposed surfaces needs to be a heat dissipation surface that radiates heat to the atmosphere. There is. For this reason, it is not possible to simply use one of the surfaces having the largest area of the temperature sensor and mount it on the FPC, and some ingenuity is required to mount the first temperature sensor 32 and the second temperature sensor 33. It is.
 図7Aは、第1の温度センサ32又は第2の温度センサ33をFPC42に実装している様子の一例を示す外観斜視図である。なお、同図に示す温度センサは第1の温度センサ32及び第2の温度センサ33のいずれでもよいが、以降の説明では第1の温度センサ32により代表して説明することとする。また、この図では放熱面37における適宜の放熱構造や断熱構造は図示を省略している。この例では、第1の温度センサ32は、吸熱面36がFPC42に接するように実装されており、端子35の吸熱面36側の辺において半田43によりFPC42と電気的な接続がとられている。FPC42は、吸熱面36と平行に配置される。 FIG. 7A is an external perspective view showing an example of a state in which the first temperature sensor 32 or the second temperature sensor 33 is mounted on the FPC 42. The temperature sensor shown in the figure may be either the first temperature sensor 32 or the second temperature sensor 33, but in the following description, the first temperature sensor 32 will be described as a representative. Further, in this drawing, illustration of appropriate heat dissipation structure and heat insulation structure on the heat dissipation surface 37 is omitted. In this example, the first temperature sensor 32 is mounted such that the heat absorption surface 36 is in contact with the FPC 42, and the FPC 42 is electrically connected by the solder 43 on the side of the terminal 35 on the heat absorption surface 36 side. . The FPC 42 is disposed in parallel with the heat absorbing surface 36.
 図7Bは、図7AのVIIB-VIIB線における断面図である。同図に表れているように、FPC42の吸熱面36に対向する面には、吸熱面36よりもやや小さい開口42aが設けられており、吸熱面36の一部分、この場合は大部分が測定面側に露出するようになっている。そして、吸熱面36と第1のプローブ30(又は第2のプローブ31。以降は第1のプローブ30で代表する)の間には伝熱性接着材44が充填され、かかる伝熱性接着材44を介して吸熱面36と第1のプローブ30は熱的に結合される。 FIG. 7B is a cross-sectional view taken along the line VIIB-VIIB in FIG. 7A. As shown in the figure, an opening 42a slightly smaller than the endothermic surface 36 is provided on the surface facing the endothermic surface 36 of the FPC 42, and a part of the endothermic surface 36, in this case, most of the measurement surface is provided. It is designed to be exposed to the side. A heat conductive adhesive 44 is filled between the heat absorbing surface 36 and the first probe 30 (or the second probe 31; hereinafter, represented by the first probe 30). The heat absorbing surface 36 and the first probe 30 are thermally coupled to each other.
 このように、FPC42に開口42aを設け、吸熱面36を部分的に覆い、その一部分を露出するようにすることで、FPC42が吸熱面36における熱流束を妨げることがないような構成とすることができる。さらに、FPC42が吸熱面36と第1のプローブ30の背面との間隙を決定するスペーサとして働くため、伝熱性接着材44の厚さを容易に一定に保つことができる。 In this way, by providing the opening 42a in the FPC 42, partially covering the heat-absorbing surface 36, and exposing a part thereof, the FPC 42 does not interfere with the heat flux on the heat-absorbing surface 36. Can do. Further, since the FPC 42 functions as a spacer that determines the gap between the heat absorbing surface 36 and the back surface of the first probe 30, the thickness of the heat conductive adhesive 44 can be easily kept constant.
 図8Aは、第1の温度センサ32(又は第2の温度センサ33)をFPC42に実装している様子の他の一例を示す外観斜視図である。この図においても放熱面37における適宜の放熱構造や断熱構造は図示を省略している。この例では、第1の温度センサ32は、FPC42に設けられた開口42aに挿入され、吸熱面36と直交する面に設けられた端子35とは、その面の中途において半田43によりFPC42と電気的な接続がとられている。FPC42は、吸熱面36と平行に配置される。 FIG. 8A is an external perspective view showing another example of a state in which the first temperature sensor 32 (or the second temperature sensor 33) is mounted on the FPC. Also in this figure, illustration of an appropriate heat dissipation structure and heat insulation structure on the heat dissipation surface 37 is omitted. In this example, the first temperature sensor 32 is inserted into the opening 42 a provided in the FPC 42, and the terminal 35 provided on the surface orthogonal to the heat absorption surface 36 is electrically connected to the FPC 42 by the solder 43 in the middle of the surface. Connection is established. The FPC 42 is disposed in parallel with the heat absorbing surface 36.
 図8Bは、図8AのVIIIB-VIIIB線における断面図である。同図に表れているように、FPC42に設けられた開口42aは第1の温度センサ32の外径よりやや大きくなっている。また、吸熱面36と第1のプローブ30(又は第2のプローブ31)の間には伝熱性接着材44が充填され、かかる伝熱性接着材44を介して吸熱面36と第1のプローブ30は熱的に結合される。このようにしても、FPC42が吸熱面36における熱流束を妨げることがないような構成とすることができる。 FIG. 8B is a cross-sectional view taken along line VIIIB-VIIIB in FIG. 8A. As shown in the figure, the opening 42 a provided in the FPC 42 is slightly larger than the outer diameter of the first temperature sensor 32. Further, a heat transfer adhesive 44 is filled between the heat absorption surface 36 and the first probe 30 (or the second probe 31), and the heat absorption surface 36 and the first probe 30 are interposed via the heat transfer adhesive 44. Are thermally coupled. Even if it does in this way, it can be set as the structure which FPC42 does not prevent the heat flux in the endothermic surface 36. FIG.
 図9Aは、第1の温度センサ32(又は第2の温度センサ33)をFPC42に実装している様子のさらに他の一例を示す外観斜視図である。この図においても放熱面37における適宜の放熱構造や断熱構造は図示を省略している。この例では、第1の温度センサ32は、吸熱面36に直交する面がFPC42に接するように実装されており、端子35の吸熱面36と直交する辺(図中奥側の辺)において半田43によりFPC42と電気的な接続がとられている。 FIG. 9A is an external perspective view showing still another example of a state in which the first temperature sensor 32 (or the second temperature sensor 33) is mounted on the FPC. Also in this figure, illustration of an appropriate heat dissipation structure and heat insulation structure on the heat dissipation surface 37 is omitted. In this example, the first temperature sensor 32 is mounted such that a surface orthogonal to the heat absorption surface 36 is in contact with the FPC 42, and soldering is performed on a side orthogonal to the heat absorption surface 36 of the terminal 35 (side in the drawing). 43 is electrically connected to the FPC 42.
 図9Bは、図9AのIXB-IXB線における断面図である。同図に表れているように、FPC42は放熱面37、吸熱面36に直交しており、第1のプローブ30(又は第2のプローブ31)に突き当たることがないような配置となっている。また、吸熱面36と第1のプローブ30の間には伝熱性接着材44が充填され、かかる伝熱性接着材44を介して吸熱面36と第1のプローブ30は熱的に結合される。このようにしても、FPC42が吸熱面36における熱流束を妨げることがないような構成とすることができる。 FIG. 9B is a cross-sectional view taken along line IXB-IXB in FIG. 9A. As shown in the figure, the FPC 42 is orthogonal to the heat radiating surface 37 and the heat absorbing surface 36, and is arranged so as not to hit the first probe 30 (or the second probe 31). Further, a heat transfer adhesive 44 is filled between the heat absorption surface 36 and the first probe 30, and the heat absorption surface 36 and the first probe 30 are thermally coupled via the heat transfer adhesive 44. Even if it does in this way, it can be set as the structure which FPC42 does not prevent the heat flux in the endothermic surface 36. FIG.
 図10Aは、第1の温度センサ32(又は第2の温度センサ33)をFPC42に実装している様子のさらに他の一例を示す外観斜視図である。この図においても放熱面37における適宜の放熱構造や断熱構造は図示を省略している。この例では、第1の温度センサ32は、放熱面37がFPC42に接するように実装されている。端子35とFPC42との電気的な接続は、FPC42の測定面側の面においてなされる。また、FPC42の放熱面37に対向する面には、放熱面37よりもやや小さい開口42aが設けられており、放熱面37の一部分、この場合は大部分が背面側に露出するようになっている。FPC42は、放熱面37と平行に配置される。 FIG. 10A is an external perspective view showing still another example of a state in which the first temperature sensor 32 (or the second temperature sensor 33) is mounted on the FPC. Also in this figure, illustration of an appropriate heat dissipation structure and heat insulation structure on the heat dissipation surface 37 is omitted. In this example, the first temperature sensor 32 is mounted such that the heat radiation surface 37 is in contact with the FPC 42. Electrical connection between the terminal 35 and the FPC 42 is made on the surface of the FPC 42 on the measurement surface side. Further, an opening 42a that is slightly smaller than the heat dissipation surface 37 is provided on the surface of the FPC 42 that faces the heat dissipation surface 37, and a part of the heat dissipation surface 37, in this case, most of the surface is exposed to the back side. Yes. The FPC 42 is disposed in parallel with the heat dissipation surface 37.
 図10Bは、図10AのXB-XB線における断面図である。同図に表れているように、FPC42はその背面側において、端子35と半田43により電気的に接続されている。また、吸熱面36と第1のプローブ30(又は第2のプローブ31)の間には伝熱性接着材44が充填され、かかる伝熱性接着材44を介して吸熱面36と第1のプローブ30は熱的に結合される。このような構造では、FPC42が放熱面37における熱流束を妨げることがないような構成とすることができる。 FIG. 10B is a cross-sectional view taken along line XB-XB in FIG. 10A. As shown in the figure, the FPC 42 is electrically connected to the terminal 35 and the solder 43 on the back side thereof. Further, a heat transfer adhesive 44 is filled between the heat absorption surface 36 and the first probe 30 (or the second probe 31), and the heat absorption surface 36 and the first probe 30 are interposed via the heat transfer adhesive 44. Are thermally coupled. In such a structure, it can be set as the structure which FPC42 does not prevent the heat flux in the thermal radiation surface 37. FIG.
 以上の説明では、第1の温度センサ32と第2の温度センサ33の放熱面における熱抵抗を異なるものとする方法として、それぞれの温度センサの両方若しくは一方に図5A乃至5C及び図6A及び図6Bに示した構造等を用いるものとした。しかしながら、かかる構造に換えて、或いはかかる構造に加えて、前述した換気機構を用いて第1の温度センサ32と第2の温度センサ33の放熱面における熱抵抗を異なるものとすることも可能である。 In the above description, as a method for differentiating the thermal resistances on the heat radiation surfaces of the first temperature sensor 32 and the second temperature sensor 33, FIGS. 5A to 5C and FIGS. The structure shown in 6B was used. However, in place of or in addition to such a structure, it is possible to make the thermal resistances of the heat radiation surfaces of the first temperature sensor 32 and the second temperature sensor 33 different by using the ventilation mechanism described above. is there.
 図11は、第1の温度センサ32と第2の温度センサ33の放熱面における熱抵抗を異なるものとする換気機構の一例を示す図である。同図は、すでに説明した図3に対応する接触式内部温度計100の断面図であり、同図中付された符号番号は、すでに説明したものと同じものを示している。 FIG. 11 is a diagram showing an example of a ventilation mechanism in which the thermal resistances on the heat radiation surfaces of the first temperature sensor 32 and the second temperature sensor 33 are different. This figure is a cross-sectional view of the contact-type internal thermometer 100 corresponding to FIG. 3 already described, and the reference numerals attached in the figure indicate the same as those already described.
 図11に示した例における換気機構においては、測定ヘッド2に設けられた排気穴21の数が第1の温度センサ32側と、第2の温度センサ33側とで異なっている。図示の通りだと、第1の温度センサ32側には排気穴21が3列設けられているのに対し、第2の温度センサ33側では排気穴21が1列のみとなっている。そのため、ブロア7による強制換気を行った際に、図中太矢印で示したように、気流は第1の温度センサ32側に多く流れ、第2の温度センサ33側は気流が比較的少なくなる。なお、図中の太矢印の太さは、気流の量を模式的に示している。このような状況においては、第1の温度センサ32側において強制対流熱伝達が強く起るため、放熱面における熱伝達率がより増大する結果、その熱抵抗は第2の温度センサ33における熱抵抗よりも小さくなる。 In the ventilation mechanism in the example shown in FIG. 11, the number of exhaust holes 21 provided in the measurement head 2 is different between the first temperature sensor 32 side and the second temperature sensor 33 side. As shown in the figure, three rows of exhaust holes 21 are provided on the first temperature sensor 32 side, whereas there are only one row of exhaust holes 21 on the second temperature sensor 33 side. Therefore, when forced ventilation by the blower 7 is performed, as indicated by the thick arrows in the figure, the airflow flows more to the first temperature sensor 32 side, and the airflow is relatively less on the second temperature sensor 33 side. . In addition, the thickness of the thick arrow in a figure has shown the quantity of the airflow typically. In such a situation, forced convection heat transfer occurs strongly on the first temperature sensor 32 side, and as a result, the heat transfer coefficient at the heat radiating surface is further increased. As a result, the heat resistance is the heat resistance of the second temperature sensor 33. Smaller than.
 以上のように、換気機構を用いることによっても、第1の温度センサ32と第2の温度センサ33の放熱面における熱抵抗を異なるものとすることができる。より具体的には、換気機構に、第1の温度センサ32側へと向かう気流と第2の温度センサ33側へと向かう気流の量を制御するための気流制御構造を設け、第1の温度センサ32側に作用する気流の量と第2の温度センサ33に作用する気流の量を異ならしめればよい。図11に示した例では、第1の温度センサ32側と第2の温度センサ33側とで非対称に設けられた排気穴21が気流制御構造に相当しているが、これ以外にも、ルーバーを設けたり、第1の温度センサ32側と第2の温度センサ33側に向かう気流流路の圧損を異なるものとするなど種々の気流制御構造を用いてよい。 As described above, the thermal resistances on the heat radiation surfaces of the first temperature sensor 32 and the second temperature sensor 33 can be made different by using the ventilation mechanism. More specifically, the ventilation mechanism is provided with an airflow control structure for controlling the amount of airflow directed toward the first temperature sensor 32 and the amount of airflow directed toward the second temperature sensor 33, and the first temperature The amount of airflow acting on the sensor 32 side may be different from the amount of airflow acting on the second temperature sensor 33. In the example shown in FIG. 11, the exhaust hole 21 provided asymmetrically on the first temperature sensor 32 side and the second temperature sensor 33 side corresponds to the airflow control structure. Various airflow control structures may be used, such as providing a different pressure loss in the airflow passage toward the first temperature sensor 32 side and the second temperature sensor 33 side.
 ところで、前述したように、換気機構を省略し、ヘッド空間19bを閉鎖空間又は半閉鎖空間とし、第1の温度センサ32及び第2の温度センサ33からヘッド空間19b内への熱の流入を自然対流にて行う場合を考えると、一般に自然対流の場合は暖められた空気が鉛直上方に流動することによる熱交換が行われるため、接触式内部温度計100の姿勢が測定精度に影響を与える可能性がある。すなわち、接触式内部温度計100による温度測定時の姿勢によって、第1の温度センサ32及び第2の温度センサ33から立ち上る気流の相対的な向きが変化するため、ヘッド空間19b内における対流の様相が異なるものとなるため、前述の数4におけるKの値に姿勢(すなわち、角度)依存性が生じるのである。 By the way, as described above, the ventilation mechanism is omitted, the head space 19b is a closed space or a semi-closed space, and heat flows into the head space 19b from the first temperature sensor 32 and the second temperature sensor 33 naturally. Considering the case of convection, in general, in the case of natural convection, the heat exchange is performed by the warmed air flowing vertically upward, so the attitude of the contact-type internal thermometer 100 can affect the measurement accuracy. There is sex. That is, since the relative direction of the airflow rising from the first temperature sensor 32 and the second temperature sensor 33 changes depending on the posture at the time of temperature measurement by the contact type internal thermometer 100, the convection aspect in the head space 19b. Therefore, the value of K in the above equation 4 has posture (that is, angle) dependency.
 図12は、本発明の第2の実施形態に係る接触式内部温度計200の概略断面図である。同図は、先の実施形態における図3に対応する断面を示したものであり、また、接触式内部温度計200の外観は先の実施形態のものと同じであるため、図1及び図2は本実施形態に係るものとしてこれを援用する。また、接触式内部温度計200における内部温度の測定原理も先の実施形態のものと同様である。また、接触式内部温度計200を構成する部材において、先の実施形態と同様のものについては同符号を付し、その重複する説明は省略するものとする。 FIG. 12 is a schematic sectional view of a contact-type internal thermometer 200 according to the second embodiment of the present invention. This figure shows a cross-section corresponding to FIG. 3 in the previous embodiment, and the appearance of the contact-type internal thermometer 200 is the same as that of the previous embodiment, so FIG. 1 and FIG. Uses this as what concerns this embodiment. Further, the measurement principle of the internal temperature in the contact-type internal thermometer 200 is the same as that of the previous embodiment. Moreover, in the member which comprises the contact-type internal thermometer 200, the same code | symbol is attached | subjected about the thing similar to previous embodiment, and the overlapping description shall be abbreviate | omitted.
 同図に示すように、接触式内部温度計200では、隔壁18はグリップ空間19aとヘッド空間19bを完全に区画するものとなっており、また、先の実施形態にみられた排気穴、吸気穴及びブロアは設けられていないため、ヘッド空間19bは閉鎖空間となっている。 As shown in the figure, in the contact-type internal thermometer 200, the partition wall 18 completely separates the grip space 19a and the head space 19b, and the exhaust holes and intake air seen in the previous embodiment are also shown. Since the hole and the blower are not provided, the head space 19b is a closed space.
 なお、ここで閉鎖空間とは、当該空間内部の気体が外気との交換が実質的に不可能となるように外部空間から区画された空間をいう。また、半閉鎖空間とは、当該空間内部の気体と外気との交換は行われるものの、当該空間内部の気体の挙動が外気の流動の影響を受けることが無く、内部気体の熱対流によるものに支配されるように外部空間から区画された空間をいう。半閉鎖空間は、例えば、外気と流通する換気用の開口を小径のものとしたり、多孔質体を挿入したり、或いはいわゆるラビリンス構造としたりすることによって、外気との間の流動抵抗を大きなものとすることにより容易に実現できる。本実施形態のヘッド空間19bは閉鎖空間であるが、これを半閉鎖空間としてもよい。 Here, the closed space refers to a space partitioned from the external space so that the gas inside the space cannot be exchanged with the outside air. The semi-enclosed space means that the gas inside the space is exchanged with the outside air, but the behavior of the gas inside the space is not affected by the flow of the outside air, and is due to the thermal convection of the inside gas. A space that is partitioned from the external space to be controlled. The semi-enclosed space has a large flow resistance with the outside air by, for example, making the opening for ventilation that circulates to the outside air with a small diameter, inserting a porous body, or so-called labyrinth structure. This can be easily realized. The head space 19b of this embodiment is a closed space, but this may be a semi-closed space.
 また、回路基板5上には、姿勢センサ52が設けられている。この姿勢センサ52は、接触式内部温度200の鉛直方向に対する傾きを検出するものである。姿勢センサ52として用いるセンサの種類については特に限定はないが、例えば加速度センサを用いて重力加速度方向を検出することにより、あるいは地磁気センサを用いて地磁気方向を検出することにより接触式内部温度200の鉛直方向に対する傾きを検出することができる。また、姿勢センサ52を設ける位置についても必ずしも回路基板5上でなくともよく、接触式内部温度200の任意の位置であってよい。 Further, an attitude sensor 52 is provided on the circuit board 5. This attitude sensor 52 detects the inclination of the contact-type internal temperature 200 with respect to the vertical direction. The type of the sensor used as the attitude sensor 52 is not particularly limited. For example, by detecting the gravitational acceleration direction using an acceleration sensor or by detecting the geomagnetic direction using a geomagnetic sensor, the contact-type internal temperature 200 can be changed. The inclination with respect to the vertical direction can be detected. Further, the position where the attitude sensor 52 is provided is not necessarily on the circuit board 5, and may be an arbitrary position of the contact type internal temperature 200.
 ここで、図13Aに示すように、接触式内部温度計200の測定面20の法線方向が鉛直下方向(重力方向)と一致している場合には、第1の温度センサ32及び第2の温度センサ33から立ち上る気流は図中太矢で示したように流動し、互いに殆ど干渉し合うことはない。これに対し、図13Bに示すように、接触式内部温度計200の測定面20の法線方向が水平方向となっている場合には、第1の温度センサ32及び第2の温度センサ33から立ち上る気流は図中太矢で示したように流動すると考えられる。同図で示した例では、第2の温度センサ33から立ち上る気流が第1の温度センサ32の近傍へと流動する結果、第1の温度センサ32から立ち上る気流の流動を妨げる等するため、第1の温度センサ32から外気への熱伝達率が低下し、図4における熱抵抗Rの見かけの値が増大し、数4におけるKの実効値が変化するのである。 Here, as shown in FIG. 13A, when the normal direction of the measurement surface 20 of the contact-type internal thermometer 200 coincides with the vertically downward direction (gravity direction), the first temperature sensor 32 and the second temperature sensor 32. The air currents rising from the temperature sensor 33 flow as indicated by thick arrows in the figure and hardly interfere with each other. On the other hand, as shown in FIG. 13B, when the normal direction of the measurement surface 20 of the contact-type internal thermometer 200 is the horizontal direction, the first temperature sensor 32 and the second temperature sensor 33 The rising airflow is considered to flow as shown by the thick arrows in the figure. In the example shown in the figure, the airflow rising from the second temperature sensor 33 flows to the vicinity of the first temperature sensor 32. As a result, the flow of the airflow rising from the first temperature sensor 32 is hindered. heat transfer rate from the first temperature sensor 32 to the outside air is decreased, the value of the apparent thermal resistance R 1 increases in FIG. 4, is the effective value of K in equation 4 from changing.
 この第1の温度センサ32から外気への熱伝達率及び第2の温度センサ33から外気への熱伝達率の変化、すなわち、Kの値の変化は、ヘッド空間19bが閉鎖空間又は半閉鎖空間であり、熱対流のみを考慮すればよいことから、接触式内部温度計200の姿勢に依存すると考えられる。しかしながら、このKの値の変化は、ヘッド空間19bの形状や第1の温度センサ32及び第2の温度センサ33の配置に依存するため、かかる変化を一般式等を用いて事前に予測することは通常困難である。 The change in the heat transfer rate from the first temperature sensor 32 to the outside air and the heat transfer rate from the second temperature sensor 33 to the outside air, that is, the change in the value of K is caused by the head space 19b being a closed space or a semi-closed space. Since only thermal convection needs to be taken into consideration, it is considered to depend on the attitude of the contact-type internal thermometer 200. However, since the change in the value of K depends on the shape of the head space 19b and the arrangement of the first temperature sensor 32 and the second temperature sensor 33, the change is predicted in advance using a general formula or the like. Is usually difficult.
 そこで、接触式内部温度計200では、あらかじめ、接触式内部温度計200の姿勢とKの値との関係を測定しておき、当該特定値をテーブルとして不揮発性メモリ51に記憶させておく。そして、コントローラ50は、先の実施形態における手順4にて、数4から内部温度Tを求める際に、姿勢センサ52に接触式内部温度計200の姿勢を検出させ、検出された姿勢に対応するKの値を不揮発性メモリ51より読み出し、かかるKを用いて内部温度Tを求める。このようにすることで、接触式内部温度計200の姿勢の変化による測定誤差を補正し、いかなる姿勢においてもより正確な内部温度Tの測定ができるのである。 Therefore, in the contact internal thermometer 200, the relationship between the attitude of the contact internal thermometer 200 and the value of K is measured in advance, and the specific value is stored in the nonvolatile memory 51 as a table. Then, the controller 50, at step 4 in the previous embodiment, when obtaining the internal temperature T B from Equation 4, to detect the posture of the contact type internal thermometer 200 to the attitude sensor 52, corresponding to the detected posture read from the nonvolatile memory 51 the value of K to determine the internal temperature T B using such K. In this way, by correcting the measurement error due to the change in the posture of the contact type internal thermometer 200, it can be more accurate measurement of the internal temperature T B at any position.
 なお、姿勢センサ52により検出される姿勢は、一般に2つの角度の値からなるベクトルとして表現できる。例えば、接触式内部温度計200の姿勢を重力加速度方向に対する角度として検出する場合を考え、接触式内部温度計200に依存する直交座標をX,Y,Z方向としてとり、検出された重力加速度方向をg方向とし、Z方向を測定面20の法線方向に採った場合には、図14に示すように、接触式内部温度計200の姿勢はg方向を示す角度(θ、δ)により表すことができる。ここで、θはベクトルgをXY平面に投影した際のX軸との間の角度、δはベクトルgとXY平面との角度である。 The posture detected by the posture sensor 52 can be generally expressed as a vector composed of two angle values. For example, considering the case where the posture of the contact-type internal thermometer 200 is detected as an angle with respect to the gravitational acceleration direction, the orthogonal coordinates depending on the contact-type internal thermometer 200 are taken as the X, Y, Z directions, and the detected gravitational acceleration direction. Is the g direction and the Z direction is the normal direction of the measurement surface 20, as shown in FIG. 14, the attitude of the contact-type internal thermometer 200 is represented by angles (θ, δ) indicating the g direction. be able to. Here, θ is an angle between the vector g and the X axis when the vector g is projected onto the XY plane, and δ is an angle between the vector g and the XY plane.
 そこで、接触式内部温度計200の姿勢とKの値との関係は、この2つの角度の値(θ、δ)に対するK(又は、第1の温度センサ32から外気への熱伝達率及び第2の温度センサ33から外気への熱伝達率)の値を示す2次元テーブルとして表現することができる。そのような表の一例を図15に示した。かかる表中、Kθ,δとして表されているのは、当該姿勢におけるKの実測値である。また、θ、δの単位は度となっている。なお、図15に示した表において、θ、δの測定間隔は5°となっているが、これをどのようにするかは任意である。また、表中に記憶する値は、Kθ,δの直接の値ではなく、任意のK、例えば、θ=δ=0°におけるKの値に対する係数であってもよい。この場合、コントローラ50は、かかる係数の値を不揮発性メモリ51から読み出し、Kの値に乗じて内部温度Tを求めることになる。 Therefore, the relationship between the attitude of the contact-type internal thermometer 200 and the value of K is K (or the heat transfer rate from the first temperature sensor 32 to the outside air and the first value for the two angle values (θ, δ). 2 can be expressed as a two-dimensional table indicating the value of the heat transfer rate from the temperature sensor 33 to the outside air. An example of such a table is shown in FIG. In this table, what is represented as Kθ, δ is an actual measurement value of K in the posture. The units of θ and δ are degrees. In the table shown in FIG. 15, the measurement intervals of θ and δ are 5 °, but how to do this is arbitrary. Further, the value stored in the table is not a direct value of Kθ, δ , but may be a coefficient for an arbitrary K, for example, the value of K at θ = δ = 0 °. In this case, the controller 50 reads the value of such coefficient from nonvolatile memory 51, thereby determining the internal temperature T B is multiplied by the value of K.
 以上説明した実施形態に示した具体的な構成は例示として示したものであり、本明細書にて開示される発明をこれら具体例の構成そのものに限定するものではない。当業者はこれら開示された実施形態に種々の変形、例えば、各部材あるいはその部分の形状や数、配置等を適宜変更してもよく、本明細書にて開示される発明の技術的範囲は、そのようになされた変形をも含むものと理解すべきである。 The specific configurations shown in the embodiments described above are shown as examples, and the invention disclosed in this specification is not limited to the configurations of these specific examples. Those skilled in the art may appropriately modify various modifications to the disclosed embodiments, for example, the shape, number, arrangement, etc. of each member or part thereof, and the technical scope of the invention disclosed in this specification is It should be understood to include such modifications.

Claims (13)

  1.  第1の温度センサの放熱面における熱抵抗と第2の温度センサの放熱面における熱抵抗の1でない比Kを求める工程と、
     前記第1の温度センサの吸熱面及び前記第2の温度センサの吸熱面を測定対象物の被測定面に熱的に接触させる工程と、
     定常状態において前記第1の温度センサの温度である第1の温度Tと前記第2の温度センサの温度である第2の温度Tを測定する工程と、
     前記第1の温度センサ及び前記第2の温度センサの周囲の温度である環境温度Tを測定する工程と、
     定常状態における前記第1の温度T、前記第2の温度T、前記環境温度T及び前記比Kより前記測定対象物の内部温度Tを算出する工程と、を有する内部温度測定方法。
    Determining a ratio K that is not 1 between the thermal resistance of the heat dissipation surface of the first temperature sensor and the thermal resistance of the heat dissipation surface of the second temperature sensor;
    Thermally contacting the endothermic surface of the first temperature sensor and the endothermic surface of the second temperature sensor with the surface to be measured of the measurement object;
    Measuring a first temperature T 1 that is the temperature of the first temperature sensor and a second temperature T 2 that is the temperature of the second temperature sensor in a steady state;
    A step of measuring environmental temperature T e which is a temperature around the first temperature sensor and said second temperature sensor of,
    Internal temperature measurement method comprising the steps of: calculating a first temperature T 1, the second temperature T 2, the internal temperature T B of the measurement object from the environment temperature T e and the ratio K in the steady state, the .
  2.  前記内部温度Tを算出する工程は、次式
    Figure JPOXMLDOC01-appb-M000001
    により内部温度Tを算出する請求項1記載の内部温度測定方法。
    The step of calculating the internal temperature T B, the following equation
    Figure JPOXMLDOC01-appb-M000001
    Internal temperature measuring method according to claim 1, wherein calculating the internal temperature T B by.
  3.  測定対象物の被測定面に接触する第1の接触面と熱的に結合される吸熱面と、周囲に熱を放散する放熱面を有する第1の温度センサと、
     前記測定対象物の前記被測定面に接触する第2の接触面と熱的に結合される吸熱面と、周囲に熱を放散する放熱面を有し、放熱についての熱抵抗が前記第1の温度センサと異なる第2の温度センサと、
     前記第1の温度センサ及び前記第2の温度センサの周囲の温度である環境温度を測定する環境温度センサと、
     前記第1の温度センサの放熱面における熱抵抗と第2の温度センサの放熱面における熱抵抗又はその比を記憶する熱抵抗比記憶部と、を有する接触式内部温度計。
    A first temperature sensor having a heat absorbing surface thermally coupled to a first contact surface that contacts the surface to be measured of the measurement object, and a heat radiating surface that dissipates heat in the surroundings;
    A heat-absorbing surface thermally coupled to a second contact surface that contacts the surface to be measured of the object to be measured; and a heat-dissipating surface that dissipates heat in the surroundings. A second temperature sensor different from the temperature sensor;
    An environmental temperature sensor for measuring an environmental temperature that is an ambient temperature of the first temperature sensor and the second temperature sensor;
    The contact-type internal thermometer which has the thermal resistance in the thermal radiation surface of a said 1st temperature sensor, and the thermal resistance ratio memory | storage part which memorize | stores the thermal resistance in the thermal radiation surface of a 2nd temperature sensor, or its ratio.
  4.  前記第1の温度センサ及び前記第2の温度センサの少なくとも一方の放熱面には、凹凸構造、放熱板、放熱フィン、断熱材の少なくともいずれかが設けられる請求項3に記載の接触式内部温度計。 The contact-type internal temperature according to claim 3, wherein at least one of a concavo-convex structure, a heat radiating plate, a heat radiating fin, and a heat insulating material is provided on at least one heat radiating surface of the first temperature sensor and the second temperature sensor. Total.
  5.  前記第1の温度センサ及び前記第2の温度センサの少なくとも一方は、前記吸熱面においてFPC(フレキシブルプリント基板)に実装され、前記FPCに設けられ、前記吸熱面の一部分を露出する開口に充填された伝熱性接着剤を介して前記第1の接触面及び前記第2の接触面のいずれかに熱的に結合される請求項3又は4に記載の接触式内部温度計。 At least one of the first temperature sensor and the second temperature sensor is mounted on an FPC (flexible printed circuit board) on the heat absorption surface, and is provided in the FPC, and is filled in an opening that exposes a part of the heat absorption surface. The contact-type internal thermometer according to claim 3 or 4, wherein the contact-type internal thermometer is thermally coupled to either the first contact surface or the second contact surface through a heat conductive adhesive.
  6.  前記第1の温度センサ及び前記第2の温度センサの少なくとも一方は、前記吸熱面と直交する面において当該面と平行に配置されたFPCに実装され、前記吸熱面は直接又は伝熱性接着剤を介して前記第1の接触面及び前記第2の接触面のいずれかに熱的に結合される請求項3又は4に記載の接触式内部温度計。 At least one of the first temperature sensor and the second temperature sensor is mounted on an FPC arranged parallel to the surface in a plane orthogonal to the heat absorption surface, and the heat absorption surface is directly or thermally conductive adhesive. The contact-type internal thermometer according to claim 3 or 4, wherein the contact-type internal thermometer is thermally coupled to any one of the first contact surface and the second contact surface via a contact.
  7.  前記第1の温度センサ及び前記第2の温度センサの少なくとも一方は、前記吸熱面と平行に配置されたFPCに設けられた開口に挿入され、前記吸熱面と直交する面において前記FPCに実装され、前記吸熱面は直接又は伝熱性接着剤を介して前記第1の接触面及び前記第2の接触面のいずれかに熱的に結合される請求項3又は4に記載の接触式内部温度計。 At least one of the first temperature sensor and the second temperature sensor is inserted into an opening provided in the FPC arranged in parallel with the heat absorption surface, and is mounted on the FPC on a surface orthogonal to the heat absorption surface. The contact-type internal thermometer according to claim 3 or 4, wherein the endothermic surface is thermally coupled to either the first contact surface or the second contact surface directly or via a heat conductive adhesive. .
  8.  前記第1の温度センサ及び前記第2の温度センサの少なくとも一方は、前記放熱面においてFPCに実装され、前記FPCには前記放熱面の一部分を露出する開口が設けられる請求項3又は4に記載の接触式内部温度計。 The at least one of the first temperature sensor and the second temperature sensor is mounted on the FPC at the heat dissipation surface, and the FPC is provided with an opening for exposing a part of the heat dissipation surface. Contact type internal thermometer.
  9.  前記第1の温度センサ、前記第2のセンサ及び前記環境温度センサは外光及び外部気流を遮蔽する共通の遮蔽空間内に配置され、
     前記遮蔽空間を強制的に換気する換気機構を有する請求項3乃至8のいずれかに記載の接触式内部温度計。
    The first temperature sensor, the second sensor, and the environmental temperature sensor are arranged in a common shielding space that shields external light and external airflow,
    The contact-type internal thermometer according to claim 3, further comprising a ventilation mechanism that forcibly ventilates the shielding space.
  10.  前記換気機構は、気流制御構造を含み、
     前記気流制御構造は、前記第1の温度センサに作用する気流の量と前記第2の温度センサに作用する気流の量を異ならしめる構造である請求項9に記載の接触式内部温度計。
    The ventilation mechanism includes an airflow control structure,
    The contact-type internal thermometer according to claim 9, wherein the airflow control structure is configured to make the amount of airflow acting on the first temperature sensor different from the amount of airflow acting on the second temperature sensor.
  11.  さらに、前記第1の温度センサ及び前記第2の温度センサの姿勢を検知する工程を有し、
     前記測定対象物の内部温度Tを算出する工程は、さらに検知された前記姿勢に基いて内部温度Tを算出する請求項1又は2に記載の内部温度測定方法。
    And a step of detecting postures of the first temperature sensor and the second temperature sensor,
    Step of calculating the internal temperature T B of the object to be measured, the internal temperature measuring method according to claim 1 or 2 for calculating the internal temperature T B based on the posture that is further detected.
  12.  前記比Kを求める工程は、前記第1の温度センサ及び前記第2の温度センサの姿勢に応じた前記比Kの値又は前記比Kの値に対する係数を求める工程を含む請求項11に記載の内部温度測定方法。 The step of obtaining the ratio K includes a step of obtaining a value of the ratio K or a coefficient with respect to the value of the ratio K according to postures of the first temperature sensor and the second temperature sensor. Internal temperature measurement method.
  13.  さらに、姿勢センサを有し、
     前記熱抵抗比記憶部は、姿勢センサにより検出された姿勢の値に応じた前記熱抵抗比の値又は、前記熱抵抗比の値に対する係数を記憶する請求項3~8のいずれかに記載の接触式内部温度計。

     
    Furthermore, it has an attitude sensor,
    9. The thermal resistance ratio storage unit according to claim 3, wherein the thermal resistance ratio value according to a posture value detected by a posture sensor or a coefficient for the thermal resistance ratio value is stored. Contact type internal thermometer.

PCT/JP2014/058185 2013-03-28 2014-03-25 Internal temperature measurement method and contact type internal temperature gauge WO2014157138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508512A JP5956063B2 (en) 2013-03-28 2014-03-25 Internal temperature measurement method and contact-type internal thermometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-070496 2013-03-28
JP2013070496 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157138A1 true WO2014157138A1 (en) 2014-10-02

Family

ID=51624109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058185 WO2014157138A1 (en) 2013-03-28 2014-03-25 Internal temperature measurement method and contact type internal temperature gauge

Country Status (2)

Country Link
JP (1) JP5956063B2 (en)
WO (1) WO2014157138A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131309A (en) * 2016-01-26 2017-08-03 Kddi株式会社 Pulse measuring device
US10750951B1 (en) * 2016-02-25 2020-08-25 Verily Life Sciences Llc Core temperature measurement using asymmetric sensors
US10980434B2 (en) 2016-01-28 2021-04-20 Kddi Corporation Pulsebeat measurement apparatus
CN113465755A (en) * 2020-03-31 2021-10-01 北京振兴计量测试研究所 Indirect test method for steady-state radiation temperature
WO2022064552A1 (en) * 2020-09-23 2022-03-31 日本電信電話株式会社 Temperature estimation method, temperature estimation program, and temperature estimation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020238060B2 (en) * 2019-03-14 2022-01-06 Biodata Bank, Inc. Temperature Sensor Unit and Body Core Thermometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372464A (en) * 2001-04-11 2002-12-26 Omron Corp Electronic clinical thermometer
JP2011027619A (en) * 2009-07-28 2011-02-10 Toyama Sangyo Kk Temperature measurement system and temperature measuring method, temperature control system of elution tester using the same, and temperature control method
JP2012098037A (en) * 2010-10-29 2012-05-24 Seiko Epson Corp Temperature measurement device and temperature measurement method
JP2012237670A (en) * 2011-05-12 2012-12-06 Wakayama Univ Thermometer and manometer provided with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372464A (en) * 2001-04-11 2002-12-26 Omron Corp Electronic clinical thermometer
JP2011027619A (en) * 2009-07-28 2011-02-10 Toyama Sangyo Kk Temperature measurement system and temperature measuring method, temperature control system of elution tester using the same, and temperature control method
JP2012098037A (en) * 2010-10-29 2012-05-24 Seiko Epson Corp Temperature measurement device and temperature measurement method
JP2012237670A (en) * 2011-05-12 2012-12-06 Wakayama Univ Thermometer and manometer provided with the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131309A (en) * 2016-01-26 2017-08-03 Kddi株式会社 Pulse measuring device
US10952626B2 (en) 2016-01-26 2021-03-23 Kddi Corporation Pulsebeat measurement apparatus
US10980434B2 (en) 2016-01-28 2021-04-20 Kddi Corporation Pulsebeat measurement apparatus
US10750951B1 (en) * 2016-02-25 2020-08-25 Verily Life Sciences Llc Core temperature measurement using asymmetric sensors
CN113465755A (en) * 2020-03-31 2021-10-01 北京振兴计量测试研究所 Indirect test method for steady-state radiation temperature
CN113465755B (en) * 2020-03-31 2022-07-08 北京振兴计量测试研究所 Indirect test method for steady-state radiation temperature
WO2022064552A1 (en) * 2020-09-23 2022-03-31 日本電信電話株式会社 Temperature estimation method, temperature estimation program, and temperature estimation device

Also Published As

Publication number Publication date
JPWO2014157138A1 (en) 2017-02-16
JP5956063B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP5956063B2 (en) Internal temperature measurement method and contact-type internal thermometer
JP5844200B2 (en) Contact type internal thermometer
US20100121217A1 (en) Device for measuring core temperature
WO2015088024A1 (en) Internal temperature sensor
WO2013145968A1 (en) Contact type internal temperature instrument
US11867568B2 (en) Body-mountable temperature monitor accounting for ambient conditions
JP2008076144A (en) Electronic thermometer
JP2016170017A (en) Internal temperature measurement device and sensor package
TW201226870A (en) Electric thermometer and fabricating method thereof
WO2016143518A1 (en) Temperature difference measuring apparatus
KR20230085144A (en) Aerosol generating device with through-holes for heat dissipation
US11828662B2 (en) Electronic device
JP2013210326A (en) Contact internal thermometer
US11920966B2 (en) Flow rate sensor device
JP2015190938A (en) contact internal thermometer
CN215414054U (en) Wearable electronic equipment
JP2015190937A (en) contact internal thermometer
JP3173862U (en) Mercury-free non-electronic thermometer with support structure
JP5864336B2 (en) Contact type internal thermometer
JP2015190936A (en) contact internal thermometer
JP2022163591A (en) Clinical thermometer for mask, mask with clinical thermometer, and attachment of clinical thermometer for mask
JP2013210323A (en) Contact internal thermometer
JP2022026274A (en) Thermometer installed at door
JP6743712B2 (en) Infrared sensor mounting member
WO2022064630A1 (en) Measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773363

Country of ref document: EP

Kind code of ref document: A1