JP7392953B2 - 自己キャリブレーションされるdc-dcコンバータ - Google Patents

自己キャリブレーションされるdc-dcコンバータ Download PDF

Info

Publication number
JP7392953B2
JP7392953B2 JP2020527751A JP2020527751A JP7392953B2 JP 7392953 B2 JP7392953 B2 JP 7392953B2 JP 2020527751 A JP2020527751 A JP 2020527751A JP 2020527751 A JP2020527751 A JP 2020527751A JP 7392953 B2 JP7392953 B2 JP 7392953B2
Authority
JP
Japan
Prior art keywords
coupled
output
node
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020527751A
Other languages
English (en)
Other versions
JP2021503871A (ja
JP2021503871A5 (ja
Inventor
シエ ジャンイー
プー ジェンリン
ワン ユー
Original Assignee
テキサス インスツルメンツ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テキサス インスツルメンツ インコーポレイテッド filed Critical テキサス インスツルメンツ インコーポレイテッド
Publication of JP2021503871A publication Critical patent/JP2021503871A/ja
Publication of JP2021503871A5 publication Critical patent/JP2021503871A5/ja
Application granted granted Critical
Publication of JP7392953B2 publication Critical patent/JP7392953B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Description

スイッチドモード電源(SMPS)は、負荷に結合し得るエネルギーストレージ要素(インダクタ/トランス及び/又はコンデンサなど)にスイッチノード/端子を介して結合される1つ又は複数のパワートランジスタをスイッチングすることによって、入力電源から負荷に電力を伝送する。パワートランジスタは、エネルギーストレージ要素を含むか又はエネルギーストレージ要素に結合し得る電力コンバータに含まれ得る。SMPSは、パワートランジスタに1つ又は複数のゲート駆動信号を提供するために、SMPSコントローラを含み得る。
幾つかのSMPS実装において、コントローラ(例えば、SMPSコントローラ、電力コントローラ、電力コンバータコントローラなど)が、電力コンバータに結合され、電力コンバータが受け取る入力信号(Vin)の電圧レベルとは異なる電圧レベルの出力信号(Vout)を生成するように電力コンバータを制御するように構成される。コントローラは、この制御を、電力コンバータのエネルギーストレージ要素を充電する(例えば、エネルギーを蓄積する)ためにエネルギーを伝達するように電力コンバータの少なくとも幾つかのパワートランジスタを、直接又は間接的に(例えば、ゲートドライバなどの1つ又は複数のドライバを介して)、制御する1つ又は複数の制御信号を提供することによって実施する。パワートランジスタが導通状態で動作している期間をTONフェーズと称し、パワートランジスタがTONフェーズで動作する時間量がTONによって定義される。少なくとも幾つかの例において、Vinの電圧レベル、Voutの電圧レベル、電力コンバータの温度、Voutを受け取るために電力コンバータに結合される負荷の特徴、及び/又は、或る状態下で変わり得るその他の様々な特徴の少なくとも幾つかに基づいて、コントローラはTONを決定する。決定されたTONに基づいて、コントローラは、これら1つ又は複数の制御信号を出力して、パワートランジスタに、TONフェーズで動作させるか、又はTONフェーズでの動作を停止させる(例えば、オフタイム(TOFF)フェーズ)。幾つかの例において、この制御は、反対にされて、コントローラが代わりに電力コンバータのためのTOFFを決定し、TONがプログラム値又は設計値(例えば、定数)であるようにされる。TONフェーズにおける動作とTOFFフェーズにおける動作が交互に行われるようにコントローラがパワートランジスタを制御する周波数をスイッチング周波数と称する。
TONが設計定数であり、コントローラがTOFFを制御する幾つかの実装において、電力コンバータの実際のTONは、設計TONを超えることがある。例えば、コントローラ及び電力コンバータ内で、又はこれらの間において(並びに、コントローラ、電力コンバータ、及び、コントローラと電力コンバータの間の単一経路に存在し得る任意のその他の構成要素の間において)、固有及び/又は不可避な遅延が存在し得る。一例として、電力コンバータのパワートランジスタは、TONフェーズからTOFFフェーズへの又はその逆のスイッチングに関連する或るスイッチング遅延を有し得る。他の遅延には、信号伝播遅延、デジタル論理構造のセットアップ及び/又は保持時間、コンパレータ遅延、ゲートドライバ遅延などが含まれ得る。幾つかの例において、ゲートドライバ遅延は、トランジスタのスイッチングオン又はオフの間のトランジスタのゲートの立ち上がり及び/又は立ち下がり時間を示す。そのため、上述のコントローラは、電力コンバータをTONフェーズからTOFFフェーズへ移行させるために時間tに制御信号を出力し得るが、実際には電力コンバータは時間t+xまでTOFFフェーズに移行しないことがある。ここで、xは、コントローラ及び電力コンバータを含むアーキテクチャの信号経路における固有な遅延の量である。この遅延、及び電力コンバータの実際のTONの設計TONからの変動は、電力コンバータの動作に悪影響を及ぼし得る。例えば、設計TONからの変動により、(例えば、電力コンバータのエネルギーストレージ要素が指定値まで完全に充電されない、及び/又は指定値から又は指定値まで完全に放電されないことによって)Voutの値を変更し得るか、或いは電力コンバータのスイッチング周波数を変更し得る。様々な例において、構成要素におけるプロセス変動、温度変化、電力コンバータの負荷などのその他の特徴は、Voutの値、及び/又はコンバータのスイッチング周波数を変更し得る。800キロヘルツ(kHz)よりも大きいスイッチング周波数などの高スイッチング周波数において、固有な遅延の影響はより顕著になり得る。例えば、1.4メガヘルツ(MHz)の設計スイッチング周波数を提供するための設計TONの場合、最大約30%までの実際のスイッチング周波数の変動が、固有の遅延によって引き起こされ得る。幾つかの例において、この変動により、高周波数及び/又は高精度応用環境におけるコントローラ及び電力コンバータの使用が制限される。幾つかの例において、この変動により、電力コンバータの効率がさらに下がり、電力損失の増加及び電力コンバータの動作コストの上昇につながる。さらに他の例において、この変動により、電力コンバータのおおよその実際のスイッチング周波数において電磁干渉が生じ、これは、設計スイッチング周波数から変動すると、電気デバイスによっては機能しないことがあり、その電気デバイスを損傷させ得、或いは動作不能とし得る。
本記載の少なくとも幾つかの態様により、電力コンバータのおおよそ所望のスイッチング周波数が維持されるように自己キャリブレーションを行うように構成されるコントローラが提供される。コントローラによって実施される自己キャリブレーションは、電力コンバータの実際のスイッチング周波数における、設計スイッチング周波数からの変動に関連する悪影響を少なくとも部分的に軽減する。コントローラは、一例において、電力コンバータのコントローラによる制御において固有な遅延に鑑み、所望のスイッチング周波数をおおよそ維持する。少なくとも1つの例において、コントローラは、電力コンバータの実際のスイッチング周波数の基準信号との比較に少なくとも部分的に基づいて一定値TONを生成することによって、所望のスイッチング周波数をおおよそ維持する。例えば、コントローラは、電力コンバータの実際のスイッチング周波数を基準信号と比較し、比較結果に基づいてカウンタを増減し、カウンタの値に従ってTONジェネレータのコンデンサアレイを改変する。少なくとも幾つかの例において、本明細書において記載するコントローラは、Vin、Vout、コントローラを含むシステムに結合される負荷の特性、温度、及び、その他の環境要因とは独立して動作する。
説明される例において、或る回路が、信号を受け取るように構成される入力及び第1のノードに結合される出力を有する第1の周波数・電圧コンバータと、基準クロック信号を受け取るように構成される入力及び第2のノードに結合される出力を有する第2の周波数・電圧コンバータとを含む。幾つかの例において、この回路はさらに、第1のノードと第3のノードの間に結合される第1の電圧源、第2のノードと第4のノードの間に結合される第2の電圧源、第1のノードと第3のノードの間に結合される第1のスイッチ、及び、第2のノードと第4のノードの間に結合される第2のスイッチを含む。幾つかの例において、この回路はさらに、第2のノードに結合される第1の入力と、第3のノードに結合される第2の入力と、出力とを有するコンパレータ、コンパレータの出力に結合される入力及び出力を有する論理回路、並びに、論理回路の出力に結合される入力及び出力を有するカウンタを含む。
他の例において、或るシステムが、電源、負荷、ゲートドライバ、電力コンバータ、第1のコンパレータ、コントローラを含む。幾つかの例において、ゲートドライバは複数の入力及び複数の出力を有する。幾つかの例において、電力コンバータは、ゲートドライバ出力の1つに結合されるゲート端子、電源に結合される第1の端子と第2の端子とを有する第1のトランジスタ、並びに、第1のトランジスタの第2の端子に結合される第1の端子と負荷に結合される第2の端子とを有するエネルギーストレージ要素を含む。幾つかの例において、第1のコンパレータは、電力コンバータに結合される第1の入力、第2の入力、及び、ゲートドライバ入力の1つに結合される出力を有する。幾つかの例において、コントローラは、ゲートドライバ出力の1つに結合される入力と出力とを有するキャリブレーションループ、及び、キャリブレーループの出力に結合される入力と第1のコンパレータの出力に結合される出力とを有するオンタイム(TON)ジェネレータを含む。幾つかの例において、TONジェネレータは、ゲートドライバを制御して第1のトランジスタのゲート端子を介して電力コンバータを制御するためのTONを生成するように構成される。幾つかの例において、キャリブレーループは、ゲートドライバによって第1のトランジスタに提供される信号の周波数を基準クロックの周波数と比較し、ゲートドライバによって第1のトランジスタに提供された信号の周波数の基準クロックの周波数との比較の結果に基づいてカウンタの値を改変し、カウンタの値に基づいてTONジェネレータのタイミング回路に存在する容量値を改変するためTONジェネレータを制御するように構成される。
さらなる例において、或る方法が、TONを生成すること、生成されたTONに従って少なくとも部分的に電力コンバータを制御すること、電力コンバータを制御するため、電力コンバータに提供される少なくとも1つの制御信号にほぼ等しい周波数を有するスイッチング周波数信号を生成すること、スイッチング周波数信号を、スイッチング周波数信号の周波数を表す電圧を有する第1の信号に変換すること、基準クロックを基準クロックの周波数を表す電圧を有する第2の信号を変換すること、第1及び第2の信号をバイアスすること、バイアスされた第1及び第2の信号を比較すること、比較の結果に基づいてカウンタの出力値を改変すること、並びに、カウンタの出力値に基づいてスイッチング周波数信号の周波数を改変するためTONを生成するTONジェネレータのタイマにおける容量値を改変することを含む。
様々な例に従った例示のシステムのブロック図を示す。
様々な例に従った例示のコントローラの概略図を示す。
様々な例に従った例示の信号波形のタイミング図を示す。
様々な例に従った例示の方法のフローチャートを示す。
図1は、様々な例に従った例示のシステム100のブロック図を示す。少なくとも一例において、システム100は、電源105、電力コンバータ110、及びコントローラ115を含む電力システムであり、負荷120に結合するように構成される。電力コンバータ110及びコントローラ115は、少なくとも一例において、電源105をさらに含み得るか又は電源105に結合し得るSMPSの構成要素である。少なくとも一例において、電源105は、任意の適切なエネルギーストレージ技術又は化学組成の電池である。別の例において、電源105は、システム100に直流(DC)信号を適切な電圧レベルで提供し、システム100の少なくとも一部及び/又は負荷120に電力供給するために適切な量の電流を伝搬する任意の他の適切なデバイスである。少なくとも一例において、電力コンバータ110は、降圧型コンバータ、昇圧型コンバータ、昇降圧型コンバータ、ハイブリッドコンバータ、又は任意の他の適切な形態の電力コンバータのいずれかであるが、その範囲は本明細書において限定されない。また、少なくとも一例において、電力コンバータ110は、パワートランジスタ125及びエネルギーストレージ要素130を含む。幾つかの例において、パワートランジスタ125を制御することにより、パワートランジスタ125が電流を導通するように制御されると電力コンバータ110がオンされ、パワートランジスタ125が電流を導通させないように制御されると電力コンバータ110がオフされるように、電力コンバータ110の動作が制御される。少なくとも一例において、パワートランジスタ125がオンされると、エネルギーストレージ要素130が充電され(例えば、エネルギーを蓄積し)、パワートランジスタ125がオフされると、エネルギーストレージ要素130が放電する(例えば、エネルギーを出力する)。少なくとも一例において、エネルギーストレージ要素130はインダクタである。電力コンバータ110を制御するために、少なくとも一例において、コントローラ115は、TONジェネレータ135及びキャリブレーションループ140を含む。様々な例において、コントローラ115はさらに、ゲートドライバ、検出器(例えば、ボトム検出器)、コンパレータ、又はその他の適切な回路要素の1つ又は複数を含むが、その範囲は本明細書において限定されず、いずれも図1に示されていない。
電力コンバータ110及びコントローラ115は、幾つかの例において、電源105に結合される。コントローラ115はさらに、電力コンバータ110に結合され(例えば、少なくともパワートランジスタ125に結合され)、電力コンバータ110は負荷120に結合するように構成される。様々な他の例において、コントローラ115は、1つ又は複数の場所、或いはコントローラ115の所望の動作及び/又は電力コンバータ110のトポロジーに従って任意の他の場所において、電力コンバータ110に結合される。これらの場所は、例えば、電力コンバータ110の出力、電力コンバータ110の感知要素(これは、エネルギーストレージ要素130の端子又はエネルギーストレージ要素130を介する電流フローを表す信号を出力するように構成される構成要素であり得る)などである。例えば、コントローラ115は、電力コンバータ110における電流フローを示す(例えば、エネルギーストレージ要素130を介する電流フローを示す)値を有する感知信号を受け取るように電力コンバータ110の感知要素(図示せず)において電力コンバータ110に結合され得る。幾つかの例において、感知信号は、電力コンバータ110における電流フローを示す(又は電流フローに関係する)電流を有する。別の例において、感知信号は、電力コンバータ110における電流フローを表す電圧を有する。幾つかの例において、感知信号は、コントローラ115が感知信号を受け取る前に減衰される(この場合、本明細書においてコントローラ115及び感知信号に関して記載される例は、コントローラ115及び減衰表示される感知信号に同様に当てはまる)。
システム100の動作の例において、コントローラ115は、電力コンバータ110が電源105から受け取るVinとTONジェネレータ135によって生成されるTONとに少なくとも部分的に基づいてVoutを生成するように電力コンバータ110を制御する。例えば、コントローラ115は、感知信号及び電力コンバータ110のスイッチング周波数に少なくとも部分的に基づいて、パワートランジスタ125を、TON(例えば、TONの立ち上がりエッジ)に従ってオンにし、TON(例えば、TONの立ち下がりエッジ)に従ってエネルギーを導通させるか又はオフにしてエネルギーの導通を停止するように制御することによって、電力コンバータ110を制御する。別の例において、この制御はさらに、Voutに基づいて少なくとも部分的に実施される。様々な例において、コントローラ115はさらに、他の特徴に従って電力コンバータ110を制御する。この特徴には、(感知信号がインダクタ電流以外の信号を表す場合の)電力コンバータ110のインダクタ電流、(例えば、REFに基づく値を有するVoutを提供するように電力コンバータ110をレギュレートするための)受け取った基準値(REF)、又は、電力コンバータ110の制御に用いるための任意の他の適切な基準又は特徴などである。少なくとも幾つかの例において、感知信号の値が予め定義された閾値(例えば、REF)に達したとコントローラ115が判定すると、コントローラ115は動作モードを変更するように電力コンバータ110を制御する。例えば、システム100がピーク電流モードシステムである場合、感知信号の値が増大して予め定義された閾値に達すると、コントローラ115は、電力コンバータ110をオフにするように制御する(例えば、エネルギーの導通を止めるようにパワートランジスタ125を制御する)。システム100がバレー電流モードシステムである場合、感知信号の値が減少して予め定義された閾値に達すると、幾つかの例において、コントローラ115は、電力コンバータ110をオンにするように制御する(例えば、エネルギーの導通を始めるようにパワートランジスタ125を制御する)。
コントローラ115が、一定の(例えば、設計され、事前構成される)TONに従って電力コンバータ110を制御するように構成されると、電力コンバータ110の実際のTONは、コントローラ115の構成要素、電力コンバータ110、及び/又は、コントローラ115と電力コンバータ110との間の信号経路に関連する、1つ又は複数の遅延の結果として変動し得る。これらの遅延により、電力コンバータの実際のTONを、電力コンバータを制御するための制御信号をコントローラ115が生成する一定TONを超えて増加させ得る。実際のTONの変動の結果、一定TONに関連する設計スイッチング周波数以外の電力コンバータ115の実際のスイッチング周波数になる。様々な例において、より詳細に上述したように、実際のスイッチング周波数のこの変動は電力コンバータ110の動作に悪影響を及ぼす。こういった遅延、並びにその結果生じる、実際のTON及びスイッチング周波数の変動を軽減するために、幾つかの例において、コントローラ115は、遅延を補償し、設計スイッチング周波数にほぼ等しい実際のスイッチング周波数を維持するようにTONを改変する。
幾つかの例において、コントローラ115は、TONジェネレータ135及び/又はキャリブレーションループ140を介してTONを改変する。例えば、キャリブレーションループ140は、実際のスイッチング周波数を検出し、実際のスイッチング周波数が設計スイッチング周波数から変化するかどうかを判定する。実際のスイッチング周波数が設計スイッチング周波数から変化する場合、キャリブレーションループ140は、TONを改変するようにTONジェネレータ135を制御する。少なくとも1つの例において、キャリブレーションループ140は、TONジェネレータ135に制御信号を出力することによってTONジェネレータ135を制御する。制御信号は、一例において、TONジェネレータ135のタイマの時定数を改変してTONを改変する。一例において、制御信号は、単一バスラインを介してキャリブレーションループ140によって出力される複数のビットを有するデジタル値である。別の例において、キャリブレーションループ140は、複数の通信ラインを介してTONジェネレータ135に制御信号を出力する。ここで、各通信ラインが運ぶビットは制御信号の全ビットよりも少ない。少なくとも1つの例において、コントローラ115は、実際のスイッチング周波数が設計スイッチング周波数にほぼ等しくなるまで、キャリブレーションループ140の出力に従ってTONを漸次的に改変する。一例において、コントローラ115は、実際のスイッチング周波数が設計スイッチング周波数の10%以内となるまでTONを改変する。別の例において、コントローラ115は、実際のスイッチング周波数が設計スイッチング周波数の5%以内となるまでTONを改変する。さらに別の例において、コントローラ115は、実際のスイッチング周波数が設計スイッチング周波数の2%以内となるまでTONを改変する。
図2は、様々な例に従った例示のコントローラ200の概略図を示す。少なくとも1つの例において、コントローラ200は、図1を参照して上述したシステム100のコントローラ115として実装される。
幾つかの例において、コントローラ200は、TONジェネレータ202、コンパレータ204、ゲートドライバ206、検出器208、及びキャリブレーションループ210の少なくとも幾つかを含むか又はこれらに結合するように構成される。コントローラ200の少なくとも1つの例は、同じ半導体ダイ上の及び/又は同じ構成要素パッケージにおける、TONジェネレータ202、コンパレータ204、ゲートドライバ206、検出器208、キャリブレーションループ210の少なくとも幾つかの態様を含み、他の例において、TONジェネレータ202、コンパレータ204、ゲートドライバ206、検出器208、及び/又はキャリブレーションループ210の少なくとも幾つか、及び/又はこれらの幾つかの構成要素が、個別に製作され、共に結合するように構成される。従って、ゲートドライバ206を含むように図示されているが、少なくとも1つの例において、コントローラ200は、ゲートドライバ206を含まず、その代わりにゲートドライバ206に結合するように構成される。
少なくとも1つの例において、TONジェネレータ202は、コンデンサ212A、212B、・・・、212N、トランジスタ124、スイッチ216A、216B、・・・、216N、コンデンサ218、及び抵抗220の任意の1つ又は複数を含むか、又はこれらに結合するように構成される。幾つかの例において、スイッチ216A、216B、・・・、216Nの各々は、例えば、電界効果トランジスタ(FET)(例えば、金属酸化物FET(MOSFET))、バイポーラ接合トランジスタ(BJT)、及び/又は、リレーなどの機械構造など、任意の適切な技術又はスイッチングを行うのに適切なアーキテクチャに従って実装される。幾つかの例において、コンデンサ218はノード222と接地ノード224との間に結合され、抵抗220はノード226とノード222との間に結合され、トランジスタ214は、ドレイン端子においてノード222に、ソース端子において接地ノード224に、ゲート端子においてゲートドライバ206の出力に結合される。また、スイッチ216A、216B、・・・、216Nの各々は、ノード222と、対応するコンデンサ212A,212B、・・・、212Nの第1の端子との間に結合されるか、又はこれらを結合するように構成され、対応するコンデンサ212A,212B、・・・、212Nの各々の第2の端子が、接地ノード224に結合されるか、又は接地ノード224を結合するように構成される。幾つかの例において、スイッチ216A、216B、・・・、216Nの各々は、それぞれの制御端子において、キャリブレーションループ210の信号出力(例えば、信号ライン252)に結合されるか、又はキャリブレーションループ210の信号出力を結合するように構成される。他の例において、スイッチ216A、216B、・・・、216Nの1つ又は複数が、キャリブレーションループ210の複数の出力の1つに結合されるか、又は複数の出力の1つを結合するように構成される。例えば、少なくとも1つのアーキテクチャにおいて、スイッチ216A、216B、・・・、216Nの各々は、それぞれの制御端子において、キャリブレーションループ210の、どの他のスイッチ216A、216B、・・・、216Nも結合されないか又は結合しないように構成される固有の出力に結合されるか又は固有の出力を結合するように構成される。このような例において、スイッチ216A、216B、・・・、216Nの各々は、スイッチ216A、216B・・・、216Nの各々がキャリブレーションループ210の出力の1つの固有のビットを受け取るように、それぞれの制御端子においてキャリブレーションループ210の固有の出力に結合されるか又は固有の出力を結合するように構成される。
上述の記載は、コンデンサ212A,212B、・・・、212N及びスイッチ216A、216B、・・・、216N(例えば、スイッチドコンデンサアレイ)を含むか又はそれらに結合するように構成されるとしたが、他の例において、TONジェネレータ202は、その代わりに、プログラマブル及び/又は選択可能な容量値を有する1つ又は複数の電気構成要素を含むか又はそれらに結合するように構成される。例えば、コンデンサ212A,212B、・・・、212N及びスイッチ216A、216B、・・・、216Nを省き、受け取った信号(例えば、キャリブレーションループ210の出力など)に基づいてノード222と接地ノード224との間に存在する容量値の変動を許容する1つ又は複数の可変コンデンサ、1つ又は複数のデジタル的に調整されるコンデンサ、及び/又は任意の他の構成要素或いは構成要素の組合せによってこれらのコンデンサ及びスイッチが置き換えられてもよい。
幾つかの例において、ノード222(これは、例えば、TONジェネレータ202の出力として機能し得る)が、コンパレータ204の第2の入力に結合されるか又は第2の入力を結合するように構成され、コンパレータ204の第1の入力が、ノード226に直接又は間接的に結合されるか又はノード226に結合するように構成される。少なくとも幾つかの例において、ノード226に存在する値は、電力コンバータ228を制御するためにコントローラ200が結合されるか又は結合するように構成される電力コンバータ228(これは図1のシステム100の電力コンバータ110に対応し得る)に存在する電圧及び/又は電流を表す。したがって、ノード226は、電力コンバータ228のハイサイドトランジスタ254のソース端子、電力コンバータ228のインダクタ256の端子、或いは電力コンバータ228の任意の他の適切な端子、ノード、又は構成要素などにおいて、電力コンバータ228に結合するように構成される。少なくとも1つの例において、ノード226をハイサイドトランジスタ254のソース端子に結合し、ハイサイドトランジスタ254がそのソース端子とドレイン端子の間で(例えば、TONフェーズの間)導通すると、電源206の出力(例えば、Vin)のおおよその値を有する信号が得られる。ノード226に存在する値が任意の適切な手段に従って提供され得、その範囲は本明細書において限定されない。
コントローラ200の少なくとも幾つかの例はさらに、ノード226に存在する信号をスケーリングし(例えば、信号の値を小さくし)、その後、スケーリングされた信号がコンパレータ204の第1の入力に提供されるように、ノード226とコンパレータ204の第1の入力との間に結合される回路要素(図示せず)を含む。この回路要素は、ノード226に存在する信号をスケーリングするための任意の適切な回路要素とし得、その範囲は本明細書において限定されるものではなく、少なくとも1つの例において、抵抗ラダー及び1つ又は複数のフィルタ(例えば、抵抗-コンデンサローパスフィルタ)を含む。コンパレータ204の出力及び検出器208の出力が、各々、ゲートドライバ206の入力に結合される。様々な例において、ゲートドライバ206は出力を含み、その少なくとも幾つかが、電力コンバータ228に結合され、電力コンバータ228を制御するように構成される。例えば、ゲートドライバ206は出力を含み、その少なくとも幾つかが、(例えば、少なくともハイサイドトランジスタ254及びローサイドトランジスタ258において)電力コンバータ228のトランジスタのそれぞれのゲート端子に結合するように構成される。様々な例において、電力コンバータ228のトランジスタのそれぞれのゲート端子に結合するように構成されるゲートトランジスタ206の複数の出力が、電力コンバータ228のアーキテクチャに基づいて変動し得る。例えば、電力コンバータ228の幾つかのアーキテクチャが、電力コンバータ228の意図される機能又は動作に基づいて、電力コンバータ228の他のアーキテクチャよりも多くの又は少ないトランジスタを含み得る。少なくとも幾つかの例において、ゲートドライバ206の少なくとも1つの出力(例えば、電力コンバータ228のハイサイドトランジスタ254のゲート端子に結合されるか又は結合するように構成されるゲートドライバ206の出力など)が、キャリブレーションループ210の入力に結合されるか又は結合するように構成される。理解を簡潔にするために図2において降圧型コンバータとして図示されるが、電力コンバータ228は、降圧型コンバータに限定されず、電力コンバータアーキテクチャの任意の形態とし得る。
少なくとも1つの例において、キャリブレーションループ210は、パルス幅変調(PWM)ジェネレータ230、第1の周波数-電圧コンバータ232、基準クロックジェネレータ234、第2の周波数-電圧コンバータ236、電圧源238、スイッチ240、電圧源242、スイッチ244、コンパレータ246、論理回路248、及びカウンタ250の少なくとも幾つかを含むか、又はそれらに結合するように構成される。少なくとも幾つかの例において、PWMジェネレータ230は、キャリブレーションループ210の入力端子(図示せず)(例えば、上述したように、ゲートドライバ206から入力が受け取られる端子)と第1の周波数・電圧コンバータ232の入力との間に結合されるか又は結合するように構成され、第1の周波数・電圧コンバータ232の出力がノード254に結合される。さらに他の例において、PWMジェネレータ230が省かれ、第1の周波数・電圧コンバータ232の入力がゲートドライバ206からの入力を直接受け取る。
幾つかの例において、基準クロックジェネレータ234は、キャリブレーションループ210内で、及び/又は、キャリブレーションループ210の外であるがコントローラ200内で実装され、基準クロックジェネレータ234の任意の適切なアプローチ及び/又はアーキテクチャに従って基準クロックを生成すし、その範囲は本明細書において限定されない。基準クロックジェネレータ234は、キャリブレーションループ210及び/又はコントローラ200の外部の構成要素(図示せず)から受け取る基準クロックを表すが、他の例において、基準クロックジェネレータ234は、基準クロックを生成し、コントローラ200及び/又はキャリブレーションループ210に(例えば、コントローラ200及び/又はキャリブレーションループ210の基準クロック入力端子を介して)基準クロックを提供し得る。少なくとも幾つかの例において、基準クロックは、コントローラ200による電力コンバータ228の(例えば、TONジェネレータ202及び/又はゲートドライバ206を少なくとも部分的に経由する)制御のための所望のスイッチング周波数とほぼ等しい周波数を有する信号である。基準クロックジェネレータ234の(又は、基準クロックジェネレータ234がキャリブレーションループ210又はコントローラ200内に含まれない場合に基準クロックが受け取られる端子における)出力が、第2の周波数-電圧コンバータ236の入力に結合され、第2の周波数・電圧コンバータ236の出力がノード258に結合される。
電圧源238及びスイッチ240の各々は、ノード258とノード260の間に結合され、電圧源242及びスイッチ244の各々は、ノード254とノード256の間に結合される。スイッチ240及びスイッチ244の各々は、幾つかの例において、例えば、FET(例えば、MOSFET)、BJT、及び/又は、リレーなどの機械構造などのスイッチングを行うのに適切な任意の適切な技術又はアーキテクチャに従って実装される。少なくとも1つの例において、スイッチ240は、(図2にφ1として図示される)第1のパルス幅変調信号をスイッチ240の制御端子において受け取るように構成され、スイッチ244は、(図2にφ2として図示される)第2のパルス幅変調信号をスイッチ244の制御端子において受け取るように構成される。第1及び第2のパルス幅変調信号は、キャリブレーションループ210及び/又はコントローラ200内、又はこれらの外において実装される、任意の適切な構成要素から受け取られ得、その範囲は本明細書において限定されない。少なくとも1つの例において、電圧源238は、電圧源238の正端子がノード258に結合されるか又は結合するように構成され、電圧源238の負端子がノード260に結合されるか又は結合するように構成されるように方向付けられる。少なくとも1つの例において、電圧源242は、電圧源242の正端子がノード256に結合されるか又は結合するように構成され、電圧源242の負端子がノード254に結合されるか又は結合するように構成されるように方向付けられる。幾つかの例において、電圧源238、スイッチ240、電圧源242、及びスイッチ244は、(例えば、電圧源238の値、電圧源242の値、及び/又は、スイッチ240及びスイッチ244のスイッチングを介して)不感帯(例えば、トラップゾーン)を設定し、この不感帯は、スイッチング周波数が不感帯に包含される範囲に存在するように本記載に従ってキャリブレーションされた後、不感帯に包含される範囲外でスイッチング周波数が変動することを防止する。
コンパレータ246は、第1の入力端子においてノード260に、第2の入力端子においてノード256に、結合されるか又は結合するように構成される。コンパレータ246はさらに、出力端子において論理回路248の入力端子に結合されるか又は結合するように構成される。論理回路248は、出力においてカウンタ250の入力に結合される。カウンタ250は、幾つかの例において、スイッチ240が受け取った(図2にφ1delayとして図示される)第1のパルス幅変調信号の遅延版を受け取るように構成される。第1のパルス幅変調信号の遅延版は、幾つかの例において、カウンタ250の計数動作の前にコンパレータ246及び/又は論理回路248の処理時間を補償するために、1つ又は複数の直列接続インバータに第1のパルス幅変調信号を通過させて第1のパルス幅変調信号を遅延させることによって遅延される。例えば、第1のパルス幅変調信号の遅延版の各立ち上がりエッジ(あるいは各立ち下りエッジ)において、カウンタ250は値1だけカウントアップ又はダウンし得る。少なくとも幾つかの例において、カウンタ250の出力が、スイッチ216A、216B、・・・、216Nのうちの1つ又は複数のスイッチの制御端子にカウンタ250の出力を提供するために信号ライン252が結合する、キャリブレーションループ210の出力端子(図示せず)に、結合されるか、又は結合するように構成される。幾つかの例において、その代わりに、カウンタ250は、スイッチ244が受け取る第2のパルス幅変調信号の遅延版を受け取り、第1のパルス幅変調信号に関して上述した動作と実質的に同様に動作するように構成される。
様々な例において、論理回路248は、本明細書において記載される、処理、動作、及び/又は制御を行うための任意の適切な回路要素を含み、その範囲は本記載によって限定されない。例えば、様々な実装形態において、論理回路248は、1つ又は複数のデジタル論理ゲート、1つ又は複数のデータストレージ要素及び/又は遅延要素、及び/又は、本明細書において記載される動作を行うための任意の他の適切な回路要素を含む。
同様に、様々な例において、第1の周波数-電圧コンバータ232及び第2の周波数-電圧コンバータ236は、各々、本明細書において記載される、処理、動作、及び/又は制御を行うための任意の適切な回路要素を含み、その範囲は本記載によって限定されない。例えば、様々な実装形態において、第1の周波数-電圧コンバータ232及び第2の周波数-電圧コンバータ236は、各々、1つ又は複数のデジタル論理ゲート、1つ又は複数のフィルタ(例えば、抵抗-コンパレータローパスフィルタ)、1つ又は複数の信号ジェネレータ(例えば、PWMジェネレータ)、及び/又は、本明細書において記載される動作を行うための任意の他の適切回路要素を含む。
コントローラ200の動作の少なくとも1つの例において、キャリブレーションループ210は、基準クロックにほぼ等しいスイッチング周波数で電力コンバータ228を制御するようにTONジェネレータ202を制御するため、TONを生成してゲートドライバ206を制御するように構成される。コンデンサ218及び抵抗220は、ゲートドライバ206を制御するためのTONを生成するためのタイミング回路を形成する。TONは、幾つかの例において、抵抗220の抵抗値にコンデンサ218の容量値を乗算したものと等価である。例えば、抵抗220の抵抗値及びコンデンサ218の容量値に基づいて、ノード222に存在する電圧は、コンデンサ218が充電されるにつれゆっくりと増加し得る。ノード222に存在する電圧がノード226に存在する電圧に関する閾値を超えると(例えば、ノード222に存在する電圧がノード226に存在する電圧を超えると)、コンパレータ204の出力が、論理ハイ信号の出力から論理ロー信号の出力に切り替わる。少なくとも幾つかの例において、論理ロー信号を出力するコンパレータ204は、電力コンバータ228がTONフェーズで動作していないことを示し、例えば、TONジェネレータ202の出力に少なくとも部分的に基づいて、TONフェーズで動作するように電力コンバータ228を制御することをゲートドライバ206に示す。少なくとも幾つかの例において、ゲートドライバ206はさらに、検出器208の出力に少なくとも部分的に基づいて電力コンバータ228を制御する。例えば、検出器208がボトム検出器であり、フィードバック信号(FB)(例えば、1つ又は複数の構成要素を介して、スケーリングされるか、感知されるか、検出されるか、又は他の方式で相互作用を受けるなどの、Vout又はVoutを表す信号)が、Voutに対する所望の電圧値又はVoutに対する所望の電圧値を表す信号に対する所望の電圧値を示すREFよりも小さく下がると、検出器208は、電力コンバータ228の出力が電力コンバータ228の出力に対する所望の電圧値より小さいことを示す出力をゲートドライバ206に提供する。幾つかの例において、検出器208のこの出力は、ゲートドライバ206を少なくとも部分的に制御してTONフェーズで動作するように電力コンバータ228を制御するためのトリガとして機能する。例えば、ゲートドライバ206は、コンパレータ204の出力に基づいて、検出器208の出力に基づいて、又はコンパレータ204の出力と検出器208の出力との組合せに基づいて、電力コンバータ228を制御し得る。検出器208はボトム検出器を参照して上述されるが、幾つかの例において、代わりに、検出器208はピーク検出器である。検出器208がピーク検出器であり、FBがREFを超える場合、検出器208は、上述したように、電力コンバータ228の出力が電力コンバータ228の出力に対する所望の電圧値より大きいことを示すゲートドライバ206への出力を提供し、ゲートドライバ206は電力コンバータ228を制御する。
ゲートドライバ206は、任意の適切な制御方法及び/又はゲートドライバ206のアーキテクチャに従って電力コンバータ228を制御し、その範囲は本明細書において限定されない。少なくとも1つの例において、コンパレータ204及び/又は検出器208の出力に基づいて、ゲートドライバ206は、TONフェーズで動作するように電力コンバータ228を制御する。ゲートドライバ206は、1つ又は複数のゲート制御信号を、電力コンバータ228に、例えば、電力コンバータ228のトランジスタのそれぞれのゲート端子に送信して、これらのトランジスタにそれらのそれぞれのソース端子とドレイン端子の間でエネルギーを伝達させるか又はさせないことによって、TONフェーズで動作するように電力コンバータ228を制御する。幾つかの例において、ゲートドライバ206の出力がさらに、ゲートドライバ206が電力コンバータ228を制御している(例えば、エネルギーを伝達させるか又は伝達させないように電力コンバータ228のハイサイドトランジスタ254を制御している)周波数をキャリブレーションループ210が監視し得るように、キャリブレーションループ210に提供される。さらに他の例において、ゲートドライバ206の出力が、トランジスタ214の動作を制御するためにトランジスタ214のゲート端子に提供される。例えば、ゲートドライバ206は、ノード222を接地ノード224にショートさせてTONジェネレータ202をクリアにするか又はリセットする(例えば、コンデンサ218、及び/又は、コンデンサ212A,212B、・・・、212Nの少なくともいくつかを放電させる)ようにトランジスタ214を制御する。幾つかの例において、ゲートドライバ206は、ゲートドライバ206が電力コンバータ228のハイサイドトランジスタ254を制御してそのそれぞれのソース端子とドレイン端子の間で電流が伝達されなくなるのとほぼ同時に、トランジスタ214がそのそれぞれのソース端子とドレイン端子の間で電流を伝達させるのに十分な制御信号を提供する。また、ゲートドライバ206は、電力コンバータ228の出力の値が電力コンバータ228の出力に対する所望の電圧値に対して不十分であることを示す信号を検出器208がゲートドライバ206に提供するのとほぼ同時に、トランジスタ214がそのそれぞれのソース端子とドレイン端子の間で電流を伝達させるには不十分な制御信号を提供する。
ゲートドライバ206から受け取ったゲート制御信号に基づいて、キャリブレーションループ210は、ゲートドライバ206が電力コンバータ228を制御している周波数を監視し、TONジェネレータ202のスイッチ216A、216B、・・・、216Nの少なくとも幾つかを制御するための(例えば、信号ライン252を介して提供される)制御信号を改変する。例えば、PWMジェネレータ230は、ゲートドライバ206からゲート制御信号を受け取り、ゲートドライバ206が電力コンバータ228を制御している周波数を表すPWMスイッチング周波数信号(例えば、PWM信号)を生成する。幾つかの例において、基準クロックジェネレータ234は、スイッチング周波数の所望の近似値を表す近似値を有する基準クロックを生成する。他の例において、基準クロックジェネレータ234は、別の構成要素から基準クロックが受け取られる端子を表す。第1の周波数・電圧コンバータ232は、スイッチング周波数信号を、ノード254に存在しスイッチング周波数信号の周波数を表す電圧を有する新たな信号に変換し、第2の周波数-電圧コンバータ236は、基準クロックを、ノード258に存在し基準クロックの周波数を表す電圧を有する新たな信号に変換する。第1の周波数-電圧コンバータ232及び第2の周波数-電圧コンバータ236は、それぞれ、任意の適切な手段に従って及び任意の適切な回路アーキテクチャに従ってスイッチング周波数信号及び基準クロックを新たな信号に変換し、その範囲は本明細書において限定されない。
幾つかの例において、電圧源238は、基準クロックからのスイッチング周波数の変動の上限を設定するようにノード258をバイアスし、電圧源242は、基準クロックからのスイッチング周波数の変動の下限を設定するようにノード254をバイアスする。例えば、基準クロックからのスイッチング周波数の変動が±5%になるように、電圧源238は第2の周波数-電圧コンバータ236の出力よりも約5%高い値を有する電圧でノード258をバイアスし、電圧源242は第2の周波数-電圧コンバータ236の出力よりも約5%低い値を有する電圧でノード254をバイアスする。様々な例において、電圧源238及び/又は電圧源242の一方又は両方の電圧の値を変えることによって、基準クロックに対するスイッチング周波数の上限及び下限が設定される。例えば、電圧源238の電圧の値を増大させることによって、基準クロックに対するスイッチング周波数の上限が増大され、電圧源238の電圧の値を低下させることによって、基準クロックに対するスイッチング周波数の上限が低減される。同様に、(a)電圧源242の電圧の値を増大させることによって、基準クロックに対するスイッチング周波数の下限が増大され、電圧源242の電圧の値を低下させることによって、基準クロックに対するスイッチング周波数の下限が低減される。
スイッチ240はノード258をノード260に選択的に結合し、第2のスイッチ244はノード254をノード256に選択的に結合する。スイッチ240は、スイッチ240が受け取る第1のパルス幅変調信号によって決定されるレートでノード258をノード260に選択的に結合する。少なくとも幾つかの例において、第1のパルス幅変調信号は50%デューティサイクル信号である。スイッチ244は、第2のスイッチ244が受け取る第2のパルス幅変調信号によって決定されるレートでノード254をノード256に選択的に結合する。少なくとも幾つかの例において、第2のパルス幅変調信号は50%デューティサイクル信号である。他の例において、第1のパルス幅変調信号及び第2のパルス幅変調信号は、各々、スイッチ240とスイッチ244を切り替えることによりコンパレータ246が受け取る入力の値が変わる前に、少なくともコンパレータ246(及び、任意選択で論理回路248)による処理のための十分な時間を可能にする任意の適切なデューティサイクルを有する。
少なくとも1つの例において、コンパレータ246は、ノード260及び256に存在する信号の値を比較し、ノード260に存在する信号の値がノード256に存在する信号の値を超えるかどうかを示す比較結果を出力する。幾つかの例において、ノード258をノード260に選択的に結合するスイッチ240及びノード254をノード256に選択的に結合する第2のスイッチ255により、単一のコンパレータ246が(及び、幾つかの例において、論理回路248の動作との組合せで)2つの個別のコンパレータとして機能的に動作し得るが、2つの個別のコンパレータ間で固有に生じるプロセス不整合はない。このようにして、本明細書において記載されるキャリブレーションを行う際にコンパレータ不整合を考慮しないですむことによって、キャリブレーションループ210の効率及び精度が増大される。
例えば、スイッチ240及びスイッチ244を上述のデューティサイクルで切り替えることに基づいて、コンパレータ246は第1のフェーズ(例えば、第1のコンパレータとしての動作に対応する)及び第2のフェーズ(例えば、第2のコンパレータとしての動作に対応する)で動作する。第1のフェーズの間、スイッチ240は閉じており、スイッチ244は開いている。第1のフェーズの間、ノード260に存在する信号の値は、ノード258に存在する信号の値とほぼ同じであり、ノード256に存在する信号の値は、ノード254に存在する信号の値に電圧源242の値を加えたものとほぼ等しい。また、第1のフェーズの間、コンパレータ246は、スイッチング周波数が基準クロックの周波数より高い(例えば、電圧源242によって設定される、基準クロックの基準周波数に対する上限の外)かどうかを判定する。第2のフェーズの間、スイッチ240は開いており、スイッチ244は閉じている。第2のフェーズの間、ノード260に存在する信号の値は、ノード258に存在する信号の値から電圧源238の値を減算したものとほぼ同じであり、ノード256に存在する信号の値は、ノード254に存在する信号の値とほぼ等しい。また、第2のフェーズの間、コンパレータ246は、スイッチング周波数が基準クロックの周波数よりも小さ(例えば、電圧源238によって設定される、基準クロックの基準周波数に対する下限の外)かどうかを判定する。
比較の結果に基づいて、論理回路248はカウンタ250を制御するための制御信号を生成する。例えば、コンパレータ246が、スイッチング周波数が基準クロックの周波数より大きくないことを第1のフェーズの間に示し、スイッチング周波数が基準クロックの周波数より小さくないと第2のフェーズの間に判定すると、論理回路248は、スイッチング周波数が電圧源238及び電圧源242によって設定される、基準クロックの周波数に対する上限及び下限内にあることを示す信号を出力する。スイッチング周波数が基準クロックの周波数より大きいことをコンパレータ246が第1のフェーズの間に示すと、論理回路248は、カウンタの計数値を減少させるようにカウンタ250を制御する信号をカウンタ250に出力する。スイッチング周波数が基準クロックの周波数より小さいことをコンパレータ246が第2のフェーズの間に示すと、論理回路248は、カウンタの計数値を増加させるようにカウンタ250を制御する信号をカウンタ250に出力する。
少なくとも幾つかの例において、上述したように、カウンタ250は、正及び負の両方向に計数を行い得る(例えば、アップ/ダウンカウンタ)。論理回路248の出力に基づいて、第1のパルス幅変調信号の遅延版(又は、例えば、第1のパルス幅変調信号の遅延版の代わりにカウンタ250が受け取る任意の他のクロック信号)の立ち上がりエッジで、カウンタ250は、内部に記憶された値を増加又は減少させ、内部に記憶された値を信号ライン252に出力する。少なくとも1つの例において、カウンタ250の出力は、ビット(例えば、Q<5:0>と表される6ビット)を有するデジタル値である。幾つかの例においてコントローラ200の初期化の際、正及び負の方向の移動のための余裕をもたらすために、Qはその最大値の約半分の値から始まる。様々な例において、コントローラ200は、Qが任意の適切な及び/又は所望の数のビットを有するように、例えば、TONジェネレータ202のノード222と接地ノード224の間に存在する容量値を制御する際の粒度の所望の度合いに少なくとも部分的に基づいて、改変され得る。
少なくとも1つの例において、信号ライン252を介して提供されるカウンタ250の出力に基づいて、スイッチ216A、216B、・・・、216Nの1つ又は複数が、コンデンサ212A,212B、・・・、212Nの1つ又は複数の対応するコンデンサをノード222に結合する(又はノード222から結合解除する)ように切り替わる。例えば、カウンタ250の出力の値が増大すると、スイッチ216A、216B、・・・、216Nの1つ又は複数が、コンデンサ212A,212B、・・・、212Nの1つ又は複数の対応するコンデンサをノード222に結合するように切り替わる。カウンタ250の出力の値が低下すると、スイッチ216A、216B、・・・、216Nの1つ又は複数が、コンデンサ212A,212B、・・・、212Nの1つ又は複数の対応するコンデンサをノード222から結合解除するように切り替わる。ノード222と接地ノード224との間に存在する容量値は、ノード222と接地ノード224との間に結合されるコンデンサ212A,212B、・・・、212N及びコンデンサ218の容量値の合計にほぼ等しい。ノード222と接地ノード224との間に結合される容量値を改変することによって、TON時間が増大又は低減される。例えば、ノード222と接地ノード224との間に結合される容量値を増大させることによって、TONが増大される。ノード222と接地ノード224との間に結合される容量値を低下させることによって、TONが低減される。
他の例において、スイッチ216A、216B、・・・、216Nの状態はカウンタ250の出力に基づいて変更されない。例えば、カウンタ250の出力に変化が生じない場合、及び/又は、スイッチング周波数が電圧源238及び第2の電圧源242によって基準クロックに対して設定される、基準クロックに対する上下限内にある場合、スイッチ216A、216B、・・・、216Nの状態はカウンタ250の出力に基づいて変更されない。スイッチ216A、216B、・・・、216Nの状態と、その結果得られるノード222と接地ノード224の間の容量値とに基づいて、コントローラ200は、上述したように電力コンバータ228を制御するようにゲートドライバ206を制御し続ける。
図3は、様々な例に従った例示の信号波形のタイミング図300を示す。少なくとも1つの例において、図300は、図1のシステム100及び/又は図2のコントローラ200に存在する少なくとも幾つかの信号を表す。
図300において、電力コンバータのトランジスタ(ハイサイドトランジスタなど)の端子における電圧を示す制御信号(SW)、ビット(上述の信号Q<5:0>など)を有するデジタル制御信号を生成するカウンタのカウンタ出力(COUNT)、SWの周波数(FREQ)を表現するもの、SWの所望の周波数(FREQ_REF)を表現するもの、及び、FREQをFREQ_REFにほぼロックすることを示す信号(FREQ_LOCKED)が図示されている。
幾つかの例において、SWは電力コンバータのハイサイドトランジスタを制御するための制御信号である。他の例において、SWは、電力コンバータのトランジスタの端子(例えば、ソース端子)に存在する電圧を表す。幾つかの例において、COUNTは、FREQ_REFに対するFREQの値に基づいてカウントアップ及び/又はカウントダウンするカウンタが出力する生成された制御信号である。例えば、図3に図示されるように、FREQがFREQ_REFより大きいとき、COUNTはFREQがFREQ_REFとほぼ等しくなるまでカウントダウンされる。逆に、図3には示さないが、FREQがFREQ_REFより小さいとき、COUNTはFREQがFREQ_REFとほぼ等しくなるまでカウントアップされる。少なくとも幾つかの例において、COUNTはTONに関係する。例えば、COUNTは、TONの時間期間を直接又は間接的に制御するTONジェネレータを制御するために用いられ得る。図3に示されるように、FREQがFREQN+2からFREQN+1に、そしてFREQNに低下することに対応して、COUNTがCODE<N+2>からCODE<N+1>に、そしてCODE<N>に低下するにつれて、TONは、TON1の第1のTON時間からTON2の第2のTON時間及びTON3の第3のTON時間に増大する(例えば、FREQが減少する)。ここで、TON2はTON1より大きく、TON3はTON2より大きい。図示しないが、COUNTが増大すると、TONは低下する(例えば、FREQは増加する)。FREQがFREQ_REFにほぼ等しい場合(又は少し後で、処理遅延の後など)、FREQ_LOCKEDは小さな値から大きな値に移行する。
様々な例において、SWは、図2のノード226に存在する信号に対応し、電圧対時間で表される。COUNTは、図2のカウンタ250の、図2の信号ライン252上に存在する出力に対応し、デジタルビット対時間で表される。FREQは、SW(例えば、図2のPWMジェネレータ回路230による出力、及び/又は、図2のノード254に存在する信号)の周波数を表し、電圧対時間で表される。FREQ_REFは、図2のノード258に存在する信号を表し、電圧対時間で表される。FREQ_LOCKEDは、図2の論理回路248の出力を表し、電圧対時間で表される。
図4は、様々な例に従った例示の方法400のフローチャートを示す。幾つかの実施形態において、方法400は電力コンバータを制御する方法を図示する。したがって、少なくとも幾つかの例において、方法400の少なくとも幾つかの態様が、図2のコントローラ200及び/又は図1のコントローラ115などのコントローラによって実装される。少なくとも幾つかの例において、方法400は、電力コンバータを制御するように構成されるコントローラにおいてTONの自己キャリブレーションを少なくとも部分的に実装する。
動作405において、TONが生成される。少なくとも幾つかの例において、(例えば、TONジェネレータの)抵抗-コンデンサタイマなどのタイミング回路に基づいて、TONが生成される。様々な例において、RCタイマは、スイッチドコンデンサアレイ、プログラマブルコンデンサ、可変コンデンサ、チューナブルコンデンサ、又は2つのノード間に存在する容量値を変動させる能力を有する任意の他の要素を含む。
動作410において、生成されたTONに従って電力コンバータが少なくとも部分的に制御される。幾つかの例において、生成されたTONに少なくとも部分的に基づいてそれ自体が制御されるゲートドライバが、電力コンバータを制御する。様々な例において、ゲートドライバはさらに、電力コンバータに存在する信号の値(例えば、電力コンバータの出力信号、電力コンバータのインダクタ電流信号の値など)を示すか又は表す、1つ又は複数の信号に従って制御される。ゲートドライバは、幾つかの例において、1つ又は複数の信号を生成し、生成された信号を電力コンバータのトランジスタのゲート端子に提供することによって、電力コンバータを制御する。
動作415において、ゲートドライバによって生成され提供される1つ又は複数の制御信号の少なくとも1つにほぼ等しい周波数を有するスイッチング周波数信号が生成される。動作420において、スイッチング周波数信号は、スイッチング周波数信号の周波数を表す電圧を有する信号に変換され、基準クロックが基準クロックの周波数を表す電圧を有する信号に変換される。動作425において、動作420において生成された信号がバイアスされる。幾つかの例において、このバイアスによって、基準クロックの周波数(及びそれに対応して基準クロックの周波数を表す電圧を有する信号の値)からのスイッチング周波数信号の周波数(及びそれに対応してスイッチング周波数信号の周波数を表す電圧を有する信号の値)の変動のための上限及び下限が定義される。幾つかの例において、バイアスは、動作420において生成された信号にDCバイアスを導入することによって成される。幾つかの例において、バイアス値は事前設定され変化しないが、他の例において、バイアス値は、プログラム可能であり、及び/又は、基準クロックの周波数からのスイッチング周波数信号の周波数の許容し得る変動のための上限及び下限を変えるように可変である。
動作430において、バイアスされた信号は比較されて、スイッチング周波数信号の周波数が基準クロックの周波数からの許容し得る変動のための上下限内かどうかが判定される。スイッチング周波数信号の周波数が基準クロックの周波数からの許容し得る変動のための上下限内である場合、コントローラは、現在用いられているパラメータに従って電力コンバータを制御し続ける。
動作435において、スイッチング周波数信号の周波数が、基準クロックの周波数からの許容し得る変動のための上下限内でない場合、比較の結果に基づいてカウンタが出力を改変する。例えば、スイッチング周波数信号の周波数が基準クロックの周波数より高い場合、カウンタは出力値を減少させる。スイッチング周波数信号の周波数が基準クロックの周波数より低い場合、カウンタは出力値を増加させる。
動作440において、カウンタによって生成された出力値に基づいてRCタイマにおける容量値が改変されて、スイッチング周波数信号の周波数が改変される。例えば、カウンタによって生成された出力値が増大すると、RCタイマにおける容量値が増大される。カウンタによって生成された出力値が低下すると、RCタイマにおける容量値が低減される。様々な例において、カウンタによって生成される出力値に基づいて1つ又は複数のスイッチを切り替えること、カウンタによって生成された出力値に基づいてチューナブルコンデンサを調節すること、カウンタによって生成された出力値に基づいて可変コンデンサをプログラムすること、又は、カウンタによって生成されたる出力値に基づいてRCタイマにおける容量値を改変するための任意の他の適切なプロセスによって、RCタイマにおける容量値が改変される。
方法400の動作は、本明細書において記載され、参照数字が付されるが、方法400は、本明細書に記載されない付加的な動作を含み得、及び/又は、本明細書に記載される動作の任意の1つ又は複数が、1つ又は複数の副動作を含み得、及び/又は、本明細書に記載される動作の任意の1つ又は複数は省かれ得、及び/又は、本明細書に記載される動作の任意の1つ又は複数が、本明細書に記載されるものとは異なる順で(例えば、逆順で、実質的に同時に、又は重複して)成され得、これらすべて本記載の範囲内に含まれる。
本記載において、「結合する」という用語は、間接的又は直接的な有線又は無線の接続を意味する。そのため、第1のデバイス、要素、又は構成要素が、第2のデバイス、要素、又は構成要素に結合する場合、その結合は、直接結合を介するもの、或いは、他のデバイス、要素、又は構成要素、及び接続を介する間接結合を介するものであり得る。同様に、第1の構成要素又は場所と第2の構成要素又は場所との間で結合されるデバイス、要素、構成要素が、直接接続を介し得、或いは、他のデバイス、要素、又は構成要素、及び/又は結合を介する間接接続を介し得る。或るタスク又は機能を行うように「構成される」デバイスが、その機能を行うように製造者によって製造時に構成され(例えば、プログラムされ及び/又は有線接続され)得、及び/又は、その機能を及び/又は他の付加的な又は代替の機能を行うように製造後にユーザによって構成可能(又は再構成可能)とされ得る。こういった構成は、デバイスのファームウェア及び/又はソフトウェアプログラミングを介して、又は、ハードウェア構成要素の構築及び/又はレイアウト、並びにデバイスの相互接続を介して、又はこれらの組合せによって成され得る。また、或る構成要素を含むように本明細書に記載される回路又はデバイスが、代わりに、記載された回路要素又はデバイスを形成するためそれらの構成要素に結合されるように構成され得る。例えば、1つ又は複数の半導体要素(トランジスタなど)、1つ又は複数の受動要素(抵抗、コンデンサ、及び/又はインダクタなど)、及び/又は、1つ又は複数のソース(電圧及び/又は電流源など)を含むように本明細書に記載される構造が、代わりに、単一の物理的デバイス(例えば、半導体ダイ及び/又は集積回路(IC)パッケージ)内の半導体要素のみを含み得、エンドユーザ及び/又は第三者などによって、記載された構造を製造時又は製造後に形成するために、受動要素及び/又はソースの少なくとも幾つかに結合するように構成され得る。
或る構成要素が、特定のプロセス技術(MOSFET、n型MOSFET(NMOS)、p型MOSFET(PMOS)など)のものとして本明細書に記載されるが、これらの構成要素は、他のプロセス技術の構成要素に交換され得(例えば、MOSFETをバイポーラ接合トランジスタ(BJT)で置き換える、NMOSをPMOSで置き換える、又はその逆など)、置換された構成要素を含む回路を再構成することで、構成要素の置換以前に利用可能な機能性に少なくとも部分的に類似する所望の機能性が提供され得る。また、本記載において、「接地電圧電位」という語句は、シャーシ接地、アース接地、浮遊接地、仮想接地、デジタル接地、共通接地、及び/又は、本記載の教示に適用可能な又は適切な、接地接続の任意のその他の形態を含む。本明細書において特に断らない限り、値に先立つ「約」、「ほぼ」、「実質的に」という用語は、当該値の±10%を意味する。
特許請求の範囲内で、記載した実施形態における改変が可能であり、他の実施形態が可能である。

Claims (20)

  1. 回路であって、
    信号を受け取るように構成される入力と第1のノードに結合される出力とを有する第1の周波数-電圧コンバータ
    基準クロック信号を受け取るように構成される入力と第2のノードに結合される出力とを有する第2の周波数-電圧コンバータ
    前記第1のノード第3のノードとの間に結合される第1の電圧源
    前記第2のノード第4のノードとの間に結合される第2の電圧源
    前記第1のノード前記第3のノードとの間に結合される第1のスイッチ
    前記第2のノード前記第4のノードとの間に結合される第2のスイッチ
    前記第のノードに結合される第1の入力、前記第3のノードに結合される第2の入力、出力を有するコンパレータ
    前記コンパレータの出力に結合される入力と出力とを有する論理回路
    前記論理回路の出力に結合される入力と、出力とを有するカウンタ
    を含む、回路。
  2. 請求項1に記載の回路であって、
    オンタイム(TON)ジェネレータであって
    ゲートドライバに結合するように構成されるゲート端子と、第5のノードに結合される第1の端子と、接地ノードに結合される第2の端子とを有するトランジスタ
    前記第5のノード前記接地ノードとの間に結合されるコンデンサ
    第6のノード前記第5のノードとの間に結合される抵抗
    前記第5のノード前記接地ノードとの間に結合される可変容量要素であって、前記カウンタの出力に結合される制御端子を有する、前記可変容量要素
    を含む、前記オンタイム(TON)ジェネレータを更に含む、回路。
  3. 請求項2に記載の回路であって、
    前記可変容量要素がスイッチドコンデンサアレイを含み、前記スイッチドコンデンアレイのスイッチの制御端子が前記カウンタの出力に結合される、回路。
  4. 請求項2に記載の回路であって、
    電力コンバータの出力を表す信号を受け取るように構成される第1の入力と、基準信号を受け取るように構成される第2の入力と、出力とを有する検出器
    前記電力コンバータに結合するように構成される第1の入力と、前記第5のノードに結合される第2の入力と、出力とを有する第2のコンパレータ
    を更に含み、
    前記ゲートドライバ、前記第2のコンパレータの出力に結合される第1の入力と、前記検出器の出力に結合される第2の入力と、前記電力コンバータ前記第1の周波数-電圧コンバータの入力に結合するように構成される第1の出力と、前記電力コンバータに結合するように構成される第2の出力と、前記トランジスタのゲート端子に結合される第3の出力とを有する、回路。
  5. 請求項1に記載の回路であって、
    前記第2の周波数-電圧コンバータの入力に結合される出力を有する基準クロックジェネレータをに含む、回路。
  6. 請求項1に記載の回路であって、
    電力コンバータスイッチング制御信号を受け取るように構成される入力と前記第1の周波数-電圧コンバータの入力に結合される出力とを有するパルス幅変調(PWM)ジェネレータをに含む、回路。
  7. 請求項1に記載の回路であって、
    第1周波数-電圧コンバータの入力に前記信号として提供される電力コンバータスイッチング制御信号を受け取るように構成される入力を有する電力コンバータをに含む、回路。
  8. 請求項1に記載の回路であって、
    前記第1の周波数-電圧コンバータが、電力コンバータに結合するように構成されるゲートドライバから前記信号を受け取るように構成される、回路。
  9. システムであって、
    電源
    負荷
    複数の入力複数の出力を有するゲートドライバ
    電力コンバータであって、
    前記ゲートドライバ出力の1つに結合されるゲート端子と、前記電源に結合される第1の端子と、第2の端子とを有する第1のトランジスタ
    前記第1のトランジスタの第2の端子に結合される第1の端子と、前記負荷に結合される第2の端子とを有するエネルギーストレージ要素
    前記電力コンバータに結合される第1の入力と、第2の入力と、前記ゲートドライバ入力の1つに結合される出力とを有する第1のコンパレータ
    を含む前記電力コンバータ
    コントローラであって、
    前記ゲートドライバ出力の1つに結合される入力と出力とを有するキャリブレーションループ
    前記キャリブレーションループの出力に結合される入力と前記第1のコンパレータの出力に結合される出力とを有するオンタイム(TON)ジェネレータ
    を含む前記コントローラ
    を含み、
    前記TONジェネレータが、前記第1のトランジスタのゲート端子を介して前記電力コンバータを制御して前記ゲートドライバを制御するためのTONを生成するように構成され、
    前記キャリブレーションループが、
    前記ゲートドライバによって前記第1のトランジスタに提供される信号の周波数を基準クロックの周波数と比較し、
    前記ゲートドライバによって前記第1のトランジスタに提供される前記信号の周波数と前記基準クロックの周波数との前記比較の結果に基づいてカウンタの値を改変し、
    前記カウンタの値に基づいて前記TONジェネレータのタイミング回路に存在する容量値を改変するように前記TONジェネレータを制御する、
    ように構成される、システム。
  10. 請求項9に記載のシステムであって、
    前記キャリブレーションループが、
    前記ゲートドライバ出力の1つに結合される入力と、出力とを有するPWMジェネレータ
    前記PWMジェネレータの出力に結合される入力第1のノードに結合される出力を有する第1の周波数-電圧コンバータ
    基準クロック受け取るように構成される入力と、第2のノードに結合される出力とを有する第2の周波数-電圧コンバータ
    前記第1のノード第3のノードとの間に結合される第1の電圧源
    前記第2のノード第4のノードとの間に結合される第2の電圧源
    前記第1のノード前記第3のノードとの間に結合される第1のスイッチ
    前記第2のノード前記第4のノードとの間に結合される第2のスイッチ
    前記第のノードに結合される第1の入力と、前記第3のノードに結合される第2の入力と、出力とを有する第2のコンパレータ
    前記第2のコンパレータの出力に結合される入力と、出力とを有する論理回路
    前記論理回路の出力に結合される入力と、前記TONジェネレータに結合される出力とを有する前記カウンタ
    を含む、システム。
  11. 請求項9に記載のシステムであって、
    前記TONジェネレータが、
    前記ゲートドライバ出力の1つに結合されるゲート端子と、第5のノードに結合される第1の端子と、接地ノードに結合される第2の端子とを有する第2のトランジスタ
    前記第5のノード前記接地ノードとの間に結合されるコンデンサ
    前記電力コンバータ前記第5のノードとの間に結合される抵抗
    前記第5のノードと前記接地ノードとの間に結合される可変容量要素であって、前記カウンタ出力に結合される制御端子を有する、前記可変容量要素
    を含む、システム。
  12. 請求項11に記載のシステムであって、
    前記可変容量要素がスイッチドコンデンサアレイを含み、前記スイッチドコンデンアレイのスイッチの制御端子が前記カウンタ出力に結合される、システム。
  13. 請求項9に記載のシステムであって、
    前記ゲートドライバ入力の1つに結合される出力と、前記電力コンバータの出力を表す信号を受け取るように構成される第1の入力と、基準信号を受け取るように構成される第2の入力とを有する検出器をに含む、システム。
  14. 請求項9に記載のシステムであって、
    前記キャリブレーションループが、前記ゲートドライバによって前記第1のトランジスタに提供される信号の周波数を基準クロックの周波数と比較するようにに構成され、
    前記比較が、
    前記ゲートドライバによって前記第1のトランジスタに提供された前記信号の周波数を表す電圧値を有する第1の信号を生成
    前記基準クロックの周波数を表す電圧値を有する第2の信号を生成
    前記ゲートドライバによって前記第1のトランジスタに提供された前記信号の周波数の上側及び下側変動限界を前記基準クロックの周波数にして設定するため前記第1の信号前記第2の信号をバイアス
    前記バイアスされた第1及び第2の信号を比較する
    ことによってなされる、システム。
  15. 請求項9に記載のシステムであって、
    前記キャリブレーションループが、前記ゲートドライバによって前記第1のトランジスタに提供される前記信号の周波数が前記基準クロックの周波数より小さいとき前記カウンタの値を増加させ、前記ゲートドライバによって前記第1のトランジスタに提供される前記信号の周波数が前記基準クロックの周波数より大きいとき前記カウンタの値を減少させることによって、前記カウンタの値を改変するように更に構成される、システム。
  16. 請求項9に記載のシステムであって、
    前記キャリブレーションループが、前記カウンタの値が低減するときに前記タイミング回路における前記容量値を低減させ、前記カウンタの値が増大するときに前記タイミング回路における前記容量値を増大させることによって、前記TONジェネレータの前記タイミング回路に存在する前記容量値を改変するように前記TONジェネレータを制御するように更に構成される、システム。
  17. 方法であって、
    オンタイム(TON)を生成すること
    前記生成されたTONに従って少なくとも部分的に電力コンバータを制御すること
    前記電力コンバータを制御するため前記電力コンバータに提供される少なくとも1つの制御信号にほぼ等しい周波数を有するスイッチング周波数信号を生成すること
    前記スイッチング周波数信号を前記スイッチング周波数信号の前記周波数を表す電圧を有する第1の信号に変換すること
    基準クロックを前記基準クロックの周波数を表す電圧を有する第2の信号に変換すること
    前記第1及び第2の信号をバイアスすること
    前記バイアスされた第1及び第2の信号を比較すること
    前記比較の結果に基づいてカウンタの出力値を改変すること
    前記カウンタの出力値に基づいて前記スイッチング周波数信号の周波数を改変するようにTONを生成するTONジェネレータのタイマにおける容量値を改変すること
    を含む、方法。
  18. 請求項17に記載の方法であって、
    前記比較の結果に基づいてカウンタの出力値を改変することが、
    前記スイッチング周波数信号の周波数が前記基準クロックの周波数より小さいとき前記カウンタの出力値を増加させることと
    前記スイッチング周波数信号の周波数が前記基準クロックの周波数より大きいとき前記カウンタの出力値を減少させることと、
    を含む、方法。
  19. 請求項17に記載の方法であって、
    前記TONジェネレータのタイマにおける容量値を改変することが、
    前記カウンタの出力値が減少するときに前記タイマに存在する前記容量値を減少させることと、
    前記カウンタの出力値が増大するときに前記タイマに存在する前記容量値を増大させることと、
    を含む、方法。
  20. 請求項17に記載の方法であって、
    前記TONジェネレータのタイマにおける容量値を改変することが、前記カウンタの出力値に基づいて前記スイッチング周波数信号の周波数を改変して、環境変数とは無関係に前記電力コンバータの制御の周波数を較正する、方法。
JP2020527751A 2017-11-17 2018-11-19 自己キャリブレーションされるdc-dcコンバータ Active JP7392953B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762587789P 2017-11-17 2017-11-17
US62/587,789 2017-11-17
US16/032,718 2018-07-11
US16/032,718 US10432092B2 (en) 2017-11-17 2018-07-11 Self-calibrated DC-DC converter
PCT/US2018/061796 WO2019099994A1 (en) 2017-11-17 2018-11-19 Self-calibrated dc-dc converter

Publications (3)

Publication Number Publication Date
JP2021503871A JP2021503871A (ja) 2021-02-12
JP2021503871A5 JP2021503871A5 (ja) 2021-12-23
JP7392953B2 true JP7392953B2 (ja) 2023-12-06

Family

ID=66533433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020527751A Active JP7392953B2 (ja) 2017-11-17 2018-11-19 自己キャリブレーションされるdc-dcコンバータ

Country Status (5)

Country Link
US (2) US10432092B2 (ja)
EP (1) EP3711152A4 (ja)
JP (1) JP7392953B2 (ja)
CN (1) CN111316549B (ja)
WO (1) WO2019099994A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037931B2 (ja) * 2017-12-20 2022-03-17 Fdk株式会社 スイッチング電源
CN115176405A (zh) * 2020-04-02 2022-10-11 德州仪器公司 具有模拟接通时间延长控制的切换转换器
CN112019189A (zh) * 2020-09-10 2020-12-01 电子科技大学 一种针对电动汽车多模块的emi滤波器通用设计方法
US11804769B2 (en) * 2020-12-30 2023-10-31 Texas Instruments Incorporated Power converter control
KR102326448B1 (ko) * 2021-06-29 2021-11-15 (주)더스탠다드 안정적으로 출력 고전압을 모니터링하는 비가역적 전기천공 시스템
CN114264863B (zh) * 2022-01-04 2023-08-22 超旸半导体(上海)有限公司 一种dc/dc变换器用限流值检测方法及检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136307A (ja) 2006-11-28 2008-06-12 Thine Electronics Inc コンパレータ方式dc−dcコンバータ
JP2010081749A (ja) 2008-09-26 2010-04-08 Fujitsu Microelectronics Ltd Dc−dcコンバータの制御回路、およびdc−dcコンバータの制御方法
JP2010246192A (ja) 2009-04-01 2010-10-28 Fujitsu Semiconductor Ltd 電源装置、電源装置の制御回路、電源装置の制御方法
US20110068759A1 (en) 2009-09-24 2011-03-24 Yueh-Lung Kuo Switching Regulator for Fixing Frequency

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU873369A1 (ru) 1979-01-18 1981-10-15 Предприятие П/Я М-5113 Измерительный орган частоты дл регул тора возбуждени электрической машины
JP2000287439A (ja) * 1999-01-26 2000-10-13 Toyota Autom Loom Works Ltd Dc/dcコンバータおよびその制御回路
US6133797A (en) * 1999-07-30 2000-10-17 Motorola, Inc. Self calibrating VCO correction circuit and method of operation
US6583610B2 (en) * 2001-03-12 2003-06-24 Semtech Corporation Virtual ripple generation in switch-mode power supplies
US6980034B2 (en) * 2002-08-30 2005-12-27 Cadence Design Systems, Inc. Adaptive, self-calibrating, low noise output driver
DE102005015992B4 (de) * 2005-04-07 2011-09-15 Texas Instruments Deutschland Gmbh DC-DC-Wandler
US7548047B1 (en) * 2005-05-03 2009-06-16 Marvell International Ltd. Pulse width modulated buck voltage regulator with stable feedback control loop
US7439716B2 (en) * 2006-09-12 2008-10-21 Semiconductor Components Industries, L.L.C. DC-DC converter and method
JP4787712B2 (ja) * 2006-10-02 2011-10-05 日立コンピュータ機器株式会社 Pwm信号生成回路およびそれを備えた電源装置
JP4638856B2 (ja) * 2006-10-04 2011-02-23 ザインエレクトロニクス株式会社 コンパレータ方式dc−dcコンバータ
US7791324B2 (en) * 2007-03-30 2010-09-07 Intersil Americas Inc. Switching regulator without a dedicated input current sense element
TWI342675B (en) * 2007-09-26 2011-05-21 Univ Nat Taiwan Phase-locked loop and method with frequency calibration
US7898343B1 (en) * 2007-12-21 2011-03-01 Rf Micro Devices, Inc. Frequency-locked loop calibration of a phase-locked loop gain
US7982550B1 (en) * 2008-07-01 2011-07-19 Silicon Laboratories Highly accurate temperature stable clock based on differential frequency discrimination of oscillators
JP5634028B2 (ja) 2009-03-05 2014-12-03 スパンション エルエルシー Dc−dcコンバータの制御回路、dc−dcコンバータ、dc−dcコンバータの制御方法
US8228098B2 (en) * 2009-08-07 2012-07-24 Freescale Semiconductor, Inc. Pulse width modulation frequency conversion
DE102010013353A1 (de) * 2010-03-30 2011-10-06 Texas Instruments Deutschland Gmbh Schaltwandler-Steuerschaltung
US8008956B1 (en) * 2010-05-18 2011-08-30 Kwangwoon University Industry-Academic Collaboration Foundation Frequency synthesizer and high-speed automatic calibration device therefor
EP2656493A4 (en) * 2010-12-20 2017-10-25 California Institute of Technology Low-to-medium power single chip digital controlled dc-dc regulator for point-of-load applications
US10007286B2 (en) * 2011-01-24 2018-06-26 Sunrise Micro Devices, Inc. Switching regulator overload detector
US8773099B2 (en) * 2011-08-03 2014-07-08 Semtech Corporation Methods to reduce output voltage ripple in constant on-time DC-DC converters
US8710873B2 (en) * 2012-06-30 2014-04-29 Infineon Technologies Austria Ag System and method for a driver circuit with a referenced control signal
US9077242B2 (en) * 2012-09-27 2015-07-07 Semiconductor Components Industries, Llc Converter and method which remains biased for operation in the pulse frequency modulation mode and pulse width modulation mode
US9705403B2 (en) * 2013-02-23 2017-07-11 Texas Instruments Incorporated Apparatus and method for selective and adaptive slope compensation in peak current mode controlled power converters
US9160229B2 (en) * 2013-03-14 2015-10-13 Texas Instruments Incorporated DC-DC converter
JP2014193004A (ja) * 2013-03-27 2014-10-06 Panasonic Corp Dc/dcコンバータ
JP2015097460A (ja) 2013-11-15 2015-05-21 株式会社東芝 Dc−dcコンバータ
US9685868B2 (en) * 2015-02-10 2017-06-20 Dialog Semiconductor (Uk) Limited Synchronous rectifier for buck converter without the need for a comparator
CN205249160U (zh) * 2015-06-17 2016-05-18 意法半导体研发(深圳)有限公司 电子设备
US9537383B1 (en) * 2015-07-14 2017-01-03 Allegro Microsystems, Llc Switching regulator with controllable dead time and quick start
CN105048811B (zh) 2015-08-17 2017-06-09 西安交通大学 Dc‑dc变换器的导通时间校正定频跨周期控制器及方法
US9941789B2 (en) * 2015-11-02 2018-04-10 Infineon Technologies Ag Feedforward circuit for DC-to-DC converters with digital voltage control loop
US10126792B2 (en) * 2015-11-03 2018-11-13 Texas Instruments Incorporated Power converter load current control
US20180340803A1 (en) * 2017-05-25 2018-11-29 Renesas Electronics Corporation Detection system, sensor and microcomputer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136307A (ja) 2006-11-28 2008-06-12 Thine Electronics Inc コンパレータ方式dc−dcコンバータ
JP2010081749A (ja) 2008-09-26 2010-04-08 Fujitsu Microelectronics Ltd Dc−dcコンバータの制御回路、およびdc−dcコンバータの制御方法
JP2010246192A (ja) 2009-04-01 2010-10-28 Fujitsu Semiconductor Ltd 電源装置、電源装置の制御回路、電源装置の制御方法
US20110068759A1 (en) 2009-09-24 2011-03-24 Yueh-Lung Kuo Switching Regulator for Fixing Frequency

Also Published As

Publication number Publication date
US11356020B2 (en) 2022-06-07
CN111316549B (zh) 2023-06-30
EP3711152A4 (en) 2021-01-13
JP2021503871A (ja) 2021-02-12
US20190379289A1 (en) 2019-12-12
WO2019099994A1 (en) 2019-05-23
US20190157976A1 (en) 2019-05-23
US10432092B2 (en) 2019-10-01
CN111316549A (zh) 2020-06-19
EP3711152A1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP7392953B2 (ja) 自己キャリブレーションされるdc-dcコンバータ
US11418119B2 (en) Wide switching frequency range switched mode power supply control topology
CN106664020B (zh) 用于多相位降压转换器电路的共享式自举电容器及方法
US8310216B2 (en) Synchronous rectifier control for synchronous boost converter
CN101548252B (zh) 具有滞后控制的功率转换器
CN101753024B (zh) 用于改进调压器的瞬态响应的pwm时钟发生系统和方法
US9013165B2 (en) Switching regulator including a configurable multi-mode PWM controller implementing multiple control schemes
TWI483528B (zh) 直流對直流轉換器電路及偵測直流對直流轉換器電路內之零電流交跨的偵測電路和方法以及其電源供應器控制器、電源供應器、系統
US10554127B2 (en) Control circuit and control method for multi-output DC-DC converter
TWI704758B (zh) 用於不帶輸出電壓偏移的零esr輸出電容器之穩定接通時間開關調節器以及其控制電路及方法
US7777460B2 (en) Multi-phase converter with improved current sharing
TW201325053A (zh) 開關模式電源及其斜率補償信號產生電路和控制方法
WO2018223348A1 (en) Non-inverting buck-boost converter control
EP2973971A2 (en) Systems and methods for 100 percent duty cycle in switching regulators
US10056819B1 (en) Predicting the timing of current phases of a DC-DC converter
EP3010151B1 (en) Method and apparatus for a buck converter with pulse width modulation and pulse frequency modulation mode
EP3973631A1 (en) Multiple dithering profile signal generation
US11677323B2 (en) Progressive power converter drive
US9590508B2 (en) Control apparatus, and control method for buck-boost power supply with two primary switches
US20230318442A1 (en) Battery surge reduction based on early warning signal
WO2020146970A1 (en) Power converter with multi-mode timing control
US11258363B2 (en) Switched mode power supply control topology
US11552555B2 (en) Circuit electromagnetic interference control
CN111987906A (zh) 宽切换频率范围切换模式电力供应器控制拓扑

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211115

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20211116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7392953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150