JP7386672B2 - レーザー加工装置及び位相パターンの調整方法 - Google Patents

レーザー加工装置及び位相パターンの調整方法 Download PDF

Info

Publication number
JP7386672B2
JP7386672B2 JP2019207274A JP2019207274A JP7386672B2 JP 7386672 B2 JP7386672 B2 JP 7386672B2 JP 2019207274 A JP2019207274 A JP 2019207274A JP 2019207274 A JP2019207274 A JP 2019207274A JP 7386672 B2 JP7386672 B2 JP 7386672B2
Authority
JP
Japan
Prior art keywords
laser beam
unit
wavefront
zernike
phase pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019207274A
Other languages
English (en)
Other versions
JP2021079394A (ja
Inventor
哲平 野村
篤 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2019207274A priority Critical patent/JP7386672B2/ja
Priority to US17/090,008 priority patent/US12030137B2/en
Priority to KR1020200147768A priority patent/KR20210059622A/ko
Priority to CN202011259115.4A priority patent/CN112809165A/zh
Priority to TW109139682A priority patent/TW202120237A/zh
Publication of JP2021079394A publication Critical patent/JP2021079394A/ja
Application granted granted Critical
Publication of JP7386672B2 publication Critical patent/JP7386672B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/707Auxiliary equipment for monitoring laser beam transmission optics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)

Description

本発明は、レーザー加工装置及び位相パターンの調整方法に関する。
半導体ウエーハのような板状物をチップサイズに分割するために、板状物の分割予定ラインにレーザービームを照射して分割起点となる改質層を形成するレーザー加工方法が知られている(例えば、特許文献1参照)。
しかしながら、上述のようなレーザー加工を行うレーザー加工装置の光学系には、種々の光学部品が用いられているため、レーザー発振器から集光レンズに至るまでの光路で様々な光学的なひずみが生じてしまい、加工装置間で加工結果に差が発生する場合があった。
そこで、チャックテーブルで凹面鏡を保持し、凹面鏡から反射された光を撮像することにより加工点でのスポット形状を把握する技術が提案されている(例えば、特許文献2参照)。しかしながら、特許文献2に示された技術は、スポット形状を把握できても、レーザー発振器や複数の光学素子のどこで光学的な歪みが生じているかがわからないため、歪みの箇所を特定する作業が必要となり時間がかかるという問題があった。
また、波面センサと空間光変調器を用いて波面歪みを補償する技術が提案されている(例えば、特許文献3参照)。
特許第3408805号公報 特開2016-41437号公報 特開2014-236795号公報
しかしながら、特許文献3に示された技術は、集光レンズを通さずに測定しているため、実際の加工点とは異なる可能性があり、装置間の被加工物に照射するレーザービームの機差を完全には補償できない可能性がある。
本願発明は、上記事実に鑑みてなされたものであり、その目的は、加工装置間の被加工物に照射するレーザービームの機差を抑制し、所望の加工結果を得ることが可能なレーザー加工装置及び位相パターンの調整方法を提供することである。
上述した課題を解決し、目的を達成するために、本発明のレーザー加工装置は、被加工物を保持するチャックテーブルと、該チャックテーブルに保持された被加工物にレーザービームを照射するレーザービーム照射ユニットと、制御部と、を備えたレーザー加工装置であって、該レーザービーム照射ユニットは、レーザービームを発振するレーザー発振器と、該レーザー発振器から発振されたレーザービームを集光する集光レンズと、該集光レンズの集光点に焦点を有するように位置付けられ、該レーザービームを反射する反射面が球面となっている凹面鏡と、該レーザー発振器から発振されたレーザービームを該集光レンズへと通過させるとともに、該集光レンズによって集光され、該凹面鏡の反射面で反射した反射光を分岐する分岐手段と、該凹面鏡の反射面で反射し、該分岐手段によって分岐された該反射光を受光して、該レーザービームの位相の空間分布である波面の情報(波面データ)を取得する波面測定ユニットと、を有し、該制御部は、該波面測定ユニットで測定された波面データに基づいて、該レーザー発振器と該集光レンズの間に配設された空間光変調器の表示部に表示させる位相パターンを変更させるとともに、該制御部は、該波面測定ユニットで測定された該レーザービームの位相の空間分布である波面データをゼルニケ多項式近似してゼルニケ係数を算出する算出部と、所定のゼルニケ係数を有する位相パターンを作成し該空間光変調器の表示部に表示させる位相パターン作成部と、該位相パターンに入力するゼルニケ係数と、該ゼルニケ係数が入力された位相パターンが該空間光変調器の表示部に表示されたときに該波面測定ユニットで測定されるレーザービームのゼルニケ係数と、の相関関係を予め記憶しておく記憶部と、を更に含み、該位相パターン作成部は、該記憶部に記憶された相関関係のテーブルに基づいて、該波面測定ユニットで測定されるレーザービームのゼルニケ係数が所望の値となるように、該表示部に表示させる位相パターンに入力するゼルニケ係数を逆算することを特徴とする。
本発明のレーザー加工装置は、被加工物を保持するチャックテーブルと、該チャックテーブルに保持された被加工物にレーザービームを照射するレーザービーム照射ユニットと、制御部と、を備えたレーザー加工装置であって、該レーザービーム照射ユニットは、レーザービームを発振するレーザー発振器と、該レーザー発振器から発振されたレーザービームを集光する集光レンズと、該集光レンズの集光点に焦点を有するように位置付けられ、該レーザービームを反射する反射面が球面となっている凹面鏡と、該レーザー発振器から発振されたレーザービームを該集光レンズへと通過させるとともに、該集光レンズによって集光され、該凹面鏡の反射面で反射した反射光を分岐する分岐手段と、該凹面鏡の反射面で反射し、該分岐手段によって分岐された該反射光を受光して、該レーザービームの位相の空間分布である波面の情報(波面データ)を取得する波面測定ユニットと、を有し、該制御部は、該波面測定ユニットで測定された波面データに基づいて、該レーザー発振器と該集光レンズの間に配設された空間光変調器の表示部に表示させる位相パターンを変更させるとともに、該制御部は、該波面測定ユニットで測定された該レーザービームの位相の空間分布である波面データをゼルニケ多項式近似してゼルニケ係数を算出する算出部と、所定のゼルニケ係数を有する位相パターンを作成し該空間光変調器の表示部に表示させる位相パターン作成部と、該波面測定ユニットにより取得された該波面データの複数のゼルニケ係数のうち任意の一つのゼルニケ係数を変更する変更部と、該波面測定ユニットで測定される波面データが理想の波面データに近付いたか否かを判定する判定部と、を更に含み、前記判定部が該波面測定ユニットで測定される波面データが理想の波面データに近付いたと判定するまで、該レーザー発振器がレーザービームを発振し続けるとともに、該変更部が任意の一つのゼルニケ係数を変更することと、該位相パターン作成部が変更したゼルニケ係数を有する位相パターンを該空間光変調器の該表示部に表示することとを交互に繰り返すとともに、該判定部は、該算出部が算出した波面データの各ゼルニケ係数の値と理想の波面データの各ゼルニケ係数の値との差を算出し、差の総和が予め設定された所定値以下であるか否かで、該波面測定ユニットで測定される波面データが理想の波面データに近付いたか否かを判定することを特徴とする。
本発明のレーザー加工装置は、被加工物を保持するチャックテーブルと、該チャックテーブルに保持された被加工物にレーザービームを照射するレーザービーム照射ユニットと、制御部と、を備えたレーザー加工装置であって、該レーザービーム照射ユニットは、レーザービームを発振するレーザー発振器と、該レーザー発振器から発振されたレーザービームを集光する集光レンズと、該集光レンズの集光点に焦点を有するように位置付けられ、該レーザービームを反射する反射面が球面となっている凹面鏡と、該レーザー発振器から発振されたレーザービームを該集光レンズへと通過させるとともに、該集光レンズによって集光され、該凹面鏡の反射面で反射した反射光を分岐する分岐手段と、該凹面鏡の反射面で反射し、該分岐手段によって分岐された該反射光を受光して、該レーザービームの位相の空間分布である波面の情報(波面データ)を取得する波面測定ユニットと、を有し、該制御部は、該波面測定ユニットで測定された波面データに基づいて、該レーザー発振器と該集光レンズの間に配設された空間光変調器の表示部に表示させる位相パターンを変更させるとともに、該制御部は、該波面測定ユニットで測定された該レーザービームの位相の空間分布である波面データをゼルニケ多項式近似してゼルニケ係数を算出する算出部と、所定のゼルニケ係数を有する位相パターンを作成し該空間光変調器の表示部に表示させる位相パターン作成部と、該波面測定ユニットにより取得された該波面データの複数のゼルニケ係数のうち任意の一つのゼルニケ係数を変更する変更部と、該波面測定ユニットで測定される波面データが理想の波面データに近付いたか否かを判定する判定部と、を更に含み、前記判定部が該波面測定ユニットで測定される波面データが理想の波面データに近付いたと判定するまで、該レーザー発振器がレーザービームを発振し続けるとともに、該変更部が任意の一つのゼルニケ係数を変更することと、該位相パターン作成部が変更したゼルニケ係数を有する位相パターンを該空間光変調器の該表示部に表示することとを交互に繰り返すとともに、該判定部は、該算出部が算出した波面データの各ゼルニケ係数の値と理想の波面データの各ゼルニケ係数の値との差を算出し、選択したゼルニケ係数において理想の係数の値と実際の係数の値の差が所定の値以下であるか否か、及び差の総和が所定値以下であるか否かで、該波面測定ユニットで測定される波面データが理想の波面データに近付いたか否かを判定することを特徴とする。
前記レーザー加工装置において、該凹面鏡は、該チャックテーブルの周縁部に配設されても良い。
本発明の位相パターンの調整方法は、チャックテーブルに保持された被加工物にレーザービームを照射するレーザービーム照射ユニットを備え、該レーザービーム照射ユニットは、レーザービームを発振するレーザー発振器と、該レーザー発振器から発振されたレーザービームを集光する集光レンズと、該集光レンズの集光点に焦点を有するように位置付けられ、該レーザービームを反射する反射面が球面となっている凹面鏡と、該レーザー発振器から発振されたレーザービームを該集光レンズへと通過させるとともに、該集光レンズによって集光され、該凹面鏡の反射面で反射した反射光を分岐する分岐手段と、該凹面鏡の反射面で反射し、該分岐手段によって分岐された該反射光を受光して、該レーザービームの位相の空間分布である波面の情報(波面データ)を取得する波面測定ユニットと、該レーザー発振器と該集光レンズとの間に配設され、該レーザー発振器から発振されたレーザービームの光学的特性を調整する表示部を備える空間光変調器と、を有したレーザー加工装置の該表示部に表示する位相パターンの調整方法であって、所定のゼルニケ係数を有する位相パターンを該空間光変調器の該表示部に表示するゼルニケ係数入力ステップと、該レーザー発振器からレーザービームを発振して、該波面測定ユニットにより波面データを取得するレーザービーム照射ステップと、該波面測定ユニットにより取得された該波面データの複数のゼルニケ係数のうち任意の一つのゼルニケ係数を変更し、変更したゼルニケ係数を有する位相パターンを該空間光変調器の該表示部に表示するゼルニケ係数調整ステップと、を備え、該波面測定ユニットで測定される波面データが理想の波面データに近付くまで、該ゼルニケ係数調整ステップを繰り返すとともに、該位相パターンに入力するゼルニケ係数と、該ゼルニケ係数が入力された位相パターンが該空間光変調器の表示部に表示されたときに該波面測定ユニットで測定されるレーザービームのゼルニケ係数と、の相関関係のテーブルに基づいて、該波面測定ユニットで測定されるレーザービームのゼルニケ係数が所望の値となるように、該表示部に表示させる位相パターンに入力するゼルニケ係数を逆算するゼルニケ係数逆算ステップを備えることを特徴とする。
本願発明は、加工装置間の被加工物に照射するレーザービームの機差を抑制し、所望の加工結果を得ることが可能になるという効果を奏する。
図1は、実施形態1に係るレーザー加工装置の構成例を示す斜視図である。 図2は、図1に示されたレーザー加工装置のレーザービーム照射ユニットの構成を説明する図である。 図3は、図1に示されたレーザー加工装置の算出部が算出した波面測定ユニットで測定されたレーザービームの反射光のゼルニケ係数の一例を示す図である。 図4は、図1に示されたレーザー加工装置の記憶部が記憶した相関関係の一例を示す図である。 図5は、図1に示されたレーザー加工装置が実施する位相パターンの調整方法を説明するフローチャートである。 図6は、図1に示されたレーザー加工装置の波面測定ユニットが所定の値のゼルニケ係数を有する位相パターンを表示部に表示した時のレーザービームの反射光のビームプロファイルの一例を示す図である。 図7は、図6に示されたレーザービームの反射光の波面データである各ゼルニケ係数の値の一例を示す図である。 図8は、図1に示されたレーザー加工装置の位相パターン作成部により図7に示された値から変更されたレーザービームの反射光の波面データである各ゼルニケ係数の値の一例を示す図である。 図9は、図8に示された値のゼルニケ係数を有する位相パターンを表示部に表示した時のレーザービームの反射光のビームプロファイルの一例を示す図である。 図10は、実施形態2に係るレーザー加工装置の構成例を示す斜視図である。 図11は、実施形態2に係る位相パターンの調整方法を説明するフローチャートである。 図12は、実施形態1の変形例に係るレーザー加工装置の構成例を示す斜視図である。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換または変更を行うことができる。
〔実施形態1〕
本発明の実施形態1に係るレーザー加工装置を図面に基づいて説明する。まず、レーザー加工装置1の構成を説明する。図1は、実施形態1に係るレーザー加工装置の構成例を示す斜視図である。実施形態1に係る図1に示すレーザー加工装置1は、被加工物200に対してパルス状のレーザービーム21を照射し、被加工物200をレーザー加工する装置である。
(被加工物)
図1に示されたレーザー加工装置1の加工対象である被加工物200は、シリコン、サファイア、ガリウムヒ素などの基板201を有する円板状の半導体ウエーハや光デバイスウエーハ等のウエーハである。被加工物200は、図1に示すように、基板201の表面202に格子状に設定された分割予定ライン203と、分割予定ライン203によって区画された領域に形成されたデバイス204と、を有している。デバイス204は、例えば、IC(Integrated Circuit)、又はLSI(Large Scale Integration)等の集積回路、CCD(Charge Coupled Device)、又はCMOS(Complementary Metal Oxide Semiconductor)等のイメージセンサである。
実施形態1において、被加工物200は、被加工物200の外径よりも大径な円板状でかつ外縁部に環状フレーム206が貼着された粘着テープ207が表面202の裏側の裏面205に貼着されて、環状フレーム206の開口内に支持される。実施形態1において、被加工物200は、分割予定ライン203に沿って個々のデバイス204に分割される。
(レーザー加工装置)
レーザー加工装置1は、図1に示すように、被加工物200を保持面11で保持するチャックテーブル10と、レーザービーム照射ユニット20と、移動ユニット30と、撮像ユニット40と、制御部100とを有する。
チャックテーブル10は、被加工物200を保持面11で保持する。チャックテーブル10は、被加工物200を保持する平坦な保持面11が上面に形成されかつ多数のポーラス孔を備えたポーラスセラミック等から構成された円盤形状の吸着部12と、吸着部12を上面の中央の凹みに嵌め込んで固定する枠体13とを備えた円盤形状である。枠体13の上面は、保持面11と同一平面上に位置し、実施形態1では、チャックテーブル10の周縁部である。チャックテーブル10は、吸着部12が、図示しない真空吸引経路を介して図示しない真空吸引源と接続されている。チャックテーブル10は、保持面11上に載置された被加工物200を吸引保持する。実施形態1では、保持面11は、水平方向と平行な平面である。チャックテーブル10の周囲には、被加工物200を開口内に支持する環状フレーム206を挟持するクランプ部14が複数配置されている。
また、チャックテーブル10は、移動ユニット30の回転移動ユニット34によりZ軸方向と平行な軸心回りに回転される。なお、Z軸方向は、保持面11に対して直交し、鉛直方向と平行な方向である。チャックテーブル10は、回転移動ユニット34とともに、移動ユニット30のX軸移動ユニット31により水平方向と平行なX軸方向に移動されかつY軸移動ユニット32により水平方向と平行でかつX軸方向と直交するY軸方向に移動される。
レーザービーム照射ユニット20は、チャックテーブル10に保持された被加工物200に対して、被加工物200が透過性を有する波長のパルス状のレーザービーム21を照射して、被加工物200の内部に破断起点となる改質層を形成するものである。改質層とは、密度、屈折率、機械的強度やその他の物理的特性が周囲のそれとは異なる状態になった領域のことを意味する。改質層は、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域、およびこれらの領域が混在した領域等である。実施形態では、改質層は、基板201の他の部分よりも機械的な強度が低い。
なお、実施形態1では、レーザービーム照射ユニット20は、被加工物200に対して、被加工物200が透過性を有する波長のレーザービーム21を照射するが、本発明では、被加工物200が吸収性を有する波長のレーザービーム21を照射して、被加工物200をアブレーション加工するものでも良い。実施形態1では、レーザービーム照射ユニット20の一部は、図1に示すように、装置本体2から立設した立設壁3に設けられた移動ユニット30のZ軸移動ユニット33によりZ軸方向に移動される昇降部材4に支持されている。なお、レーザービーム照射ユニット20の構成等は、後ほど説明する。
移動ユニット30は、チャックテーブル10と、レーザービーム照射ユニット20とをX軸方向、Y軸方向、及びZ軸方向に相対的に移動させるものである。なお、X軸方向及びY軸方向は、保持面11と平行な方向である。移動ユニット30は、チャックテーブル10をX軸方向に移動させる加工送り手段であるX軸移動ユニット31と、チャックテーブル10をY軸方向に移動させる割り出し送り手段であるY軸移動ユニット32と、レーザービーム照射ユニット20をZ軸方向に移動させるZ軸移動ユニット33と、チャックテーブル10をZ軸方向と平行な軸心回りに回転する回転移動ユニット34とを備える。
実施形態1では、Y軸移動ユニット32は、レーザー加工装置1の装置本体2上に設置されている。Y軸移動ユニット32は、X軸移動ユニット31を支持した移動プレート15をY軸方向に移動自在に支持している。X軸移動ユニット31は、移動プレート15上に設置されている。X軸移動ユニット31は、チャックテーブル10をZ軸方向と平行な軸心回りに回転する回転移動ユニット34を支持した第2移動プレート16をX軸方向に移動自在に支持している。Z軸移動ユニット33は、立設壁3に設置され、昇降部材4をZ軸方向に移動自在に支持している。
X軸移動ユニット31、Y軸移動ユニット32及びZ軸移動ユニット33は、軸心回りに回転自在に設けられた周知のボールねじ、ボールねじを軸心回りに回転させる周知のパルスモータ、移動プレート15,16をX軸方向又はY軸方向に移動自在に支持するとともに、昇降部材4をZ軸方向に移動自在に支持する周知のガイドレールを備える。
また、レーザー加工装置1は、チャックテーブル10のX軸方向の位置を検出するため図示しないX軸方向位置検出ユニットと、チャックテーブル10のY軸方向の位置を検出するための図示しないY軸方向位置検出ユニットと、レーザービーム照射ユニット20のZ軸方向の位置を検出するZ軸方向位置検出ユニットとを備える。各位置検出ユニットは、検出結果を制御部100に出力する。
撮像ユニット40は、チャックテーブル10に保持された被加工物200を撮像するものである。撮像ユニット40は、チャックテーブル10に保持された被加工物200を撮像するCCD(Charge Coupled Device)撮像素子又はCMOS(Complementary MOS)撮像素子等の撮像素子を備える。実施形態1では、撮像ユニット40は、レーザービーム照射ユニット20の筐体の先端に取り付けられて、レーザービーム照射ユニット20の図2に示す集光レンズ23とX軸方向に並ぶ位置に配置されている。撮像ユニット40は、被加工物200を撮像して、被加工物200とレーザービーム照射ユニット20との位置合わせを行うアライメントを遂行するための画像を得て、得た画像を制御部100に出力する。
制御部100は、レーザー加工装置1の上述した構成要素をそれぞれ制御して、被加工物200に対する加工動作をレーザー加工装置1に実施させるものである。なお、制御部100は、CPU(central processing unit)のようなマイクロプロセッサを有する演算処理装置と、ROM(read only memory)又はRAM(random access memory)のようなメモリを有する記憶装置と、入出力インターフェース装置とを有するコンピュータである。制御部100の演算処理装置は、記憶装置に記憶されているコンピュータプログラムに従って演算処理を実施して、レーザー加工装置1を制御するための制御信号を入出力インターフェース装置を介してレーザー加工装置1の上述した構成要素に出力して、制御部100の機能を実現する。
また、レーザー加工装置1は、加工動作の状態や画像などを表示する液晶表示装置などにより構成される表示ユニット110と、オペレータが加工内容情報などを登録する際に用いる図示しない入力ユニットとを備える。表示ユニット110及び入力ユニットは、制御部100に接続している。入力ユニットは、表示ユニット110に設けられたタッチパネルと、キーボード等の外部入力装置とのうち少なくとも一つにより構成される。
次に、レーザービーム照射ユニット20を説明する。図2は、図1に示されたレーザー加工装置のレーザービーム照射ユニットの構成を説明する図である。レーザービーム照射ユニット20は、図2に示すように、被加工物200を加工するためのレーザービーム21を発振するレーザー発振器22と、レーザー発振器22から発振されたレーザービーム21をチャックテーブル10の保持面11に保持した被加工物200に集光する集光レンズ23と、空間光変調器24と、凹面鏡25と、分岐手段であるビームスプリッタ26と、減衰手段27と、波面測定ユニット28と、複数の光学部品29とを備える。
集光レンズ23は、チャックテーブル10の保持面11とZ軸方向に対向する位置に配置され、レーザー発振器22から発振されたレーザービーム21を透過して、レーザービーム21を集光点211に集光させる。
空間光変調器24は、レーザー発振器22と集光レンズ23との間のレーザービーム21の光路上に配設され、レーザー発振器22から発振されたレーザービーム21の光学的特性を調整し、光学的特性を調整したレーザービーム21を出射する所謂LCOS-SLM(Liquid Crystal on Silicon-Spatial Light Modulator)である。実施形態1では、空間光変調器24は、レーザー発振器22から発振されたレーザービーム21を反射する変調器である。実施形態1において、空間光変調器24が調整するレーザービーム21の光学的特性は、例えば、レーザービーム21の位相、偏波面、振幅、強度、伝搬方向のうちの少なくとも一つである。
実施形態1において、空間光変調器24は、レーザー発振器22から発振されたレーザービーム21が照射され、レーザービーム21を反射する際に光学的特性を調整する表示部241を備え、表示部241で光学的特性を調整させたレーザービーム21をビームスプリッタ26等を介して集光レンズ23に向けて出射する。また、実施形態1において、空間光変調器24の表示部241は、レーザービーム21の光学的特性を調整させるための位相パターンを表示し、レーザービーム21を反射してレーザービーム21の光学的特性を調整する。位相パターンは、制御部100により制御される。空間光変調器24は、表示部241に表示する位相パターンが制御部100により制御されることで、出射するレーザービーム21の光学的特性を調整する。
凹面鏡25は、集光レンズ23とZ軸方向に対向可能な位置に配置され、集光レンズ23とZ軸方向に対向すると、集光レンズ23の集光点211に焦点251を有するように位置づけられることが可能な反射面252を備える。実施形態1では、凹面鏡25は、チャックテーブル10の枠体13内に配設され、反射面252が集光レンズ23とZ軸方向に対向可能な位置に配置されている。実施形態1では、集光レンズ23の集光点211が焦点251に位置するように、Z軸移動ユニット33により集光レンズ23のZ軸方向の位置が調整されることで、反射面252の焦点251が集光レンズ23の集光点211に位置づけられる。反射面252は、球面となっているとともに、Z軸方向に対向する集光レンズ23から出射されたレーザービーム21を集光レンズ23に向けて反射する。
ビームスプリッタ26は、レーザー発振器22から発振されかつ空間光変調器24により光学的特性が調整されたレーザービーム21を集光レンズ23へと通過させる。ビームスプリッタ26は、集光レンズ23によって集光され、凹面鏡25の反射面252で反射して、集光レンズ23を透過したレーザービーム21の反射光212を減衰手段27に向けて反射して、反射光212をレーザービーム21から分岐する。
減衰手段27は、ビームスプリッタ26により反射された反射光212の強度を減衰するためのものである。実施形態1では、減衰手段27は、反射光212の強度を減衰させて、波面測定ユニット28に向けて反射する。減衰手段27は、例えば、ウエッジ基板により構成される。
波面測定ユニット28は、凹面鏡25の反射面252で反射し、ビームスプリッタ26によってレーザービーム21から分岐されて減衰手段27により強度が減衰された反射光212を受光して、レーザービーム21の位相の空間分布である波面の情報500(図2に示し、以下、波面データと記す)を測定し、取得するものである。波面測定ユニット28は、波面データ500として、レーザービーム21の反射光212の波面形状、強度分布、特に、レーザービーム21の反射光212の波面の収差を測定する所謂波面センサである。波面測定ユニット28は、測定して得たレーザービーム21の反射光212の波面データ500を制御部100に出力する。
光学部品29は、レーザー発振器22から出射されたレーザービーム21を被加工物200を加工する加工点又は凹面鏡25へと伝搬するとともに、凹面鏡25の反射面252により反射されたレーザービーム21の反射光212を波面測定ユニット28へと伝搬するものである。実施形態1では、光学部品29は、レーザー発振器22と空間光変調器24との間のレーザービーム21の光路上に設けられたビームエキスパンダ29-1、反射ミラー29-2及び波長板29-3を備える。実施形態1では、ビームエキスパンダ29-1、反射ミラー29-2及び波長板29-3は、レーザー発振器22から空間光変調器24に向かって順に配置されている。また、光学部品29は、空間光変調器24とビームスプリッタ26との間のレーザービーム21の光路上に設けられたリレー光学系29-4と、ビームスプリッタ26と集光レンズ23との間のレーザービーム21の光路上に設けられた反射ミラー29-5とを備えている。
また、実施形態1に係るレーザー加工装置1の制御部100は、図1に示すように、算出部101と、位相パターン作成部102と、記憶部103とを備える。次に、制御部100の各構成要素を説明する。図3は、図1に示されたレーザー加工装置の算出部が算出した波面測定ユニットで測定されたレーザービームの反射光のゼルニケ係数の一例を示す図である。図4は、図1に示されたレーザー加工装置の記憶部が記憶した相関関係の一例を示す図である。
算出部101は、波面測定ユニット28で測定されたレーザービーム21の反射光212の波面データ500をゼルニケ多項式近似して、各ゼルニケ係数を算出するものである。なお、ゼルニケ多項式とは、単位円上で定義された直交多項式である。ゼルニケ係数とは、レーザービーム21の反射光212の波面データ500を近似したゼルニケ多項式により計算された値で、レーザービーム照射ユニット20の光学系の各収差と1対1で対応するものである。算出部101は、波面測定ユニット28で測定されたレーザービーム21の反射光212の波面データ500をゼルニケ多項式で近似し、近似したゼルニケ多項式により図3に示す各ゼルニケ係数を算出して、各ゼルニケ係数を数値化する。なお、図3の横軸は、各ゼルニケ係数を示し、縦軸は、各ゼルニケ係数の値を示している。図3において、ゼルニケ係数「Astig 0_deg」及び「Astig 45_deg」は、非点収差に対応し、ゼルニケ係数「coma X」及び「coma Y」は、コマ収差に対応し、ゼルニケ係数「spherical aberr」は、球面収差に対応する。
記憶部103は、図4に示す相関関係300を予め記憶しておくものである。図4に示す相関関係300は、空間光変調器24の表示部241に表示させる位相パターンに入力するゼルニケ係数の値と、ゼルニケ係数が入力された位相パターンが空間光変調器24の表示部241に表示された時に波面測定ユニット28で測定されるレーザービーム21の反射光212の波面データ500から算出部101が算出したゼルニケ係数の値とを対応付けたものである。図4の横軸は、空間光変調器24の表示部241に表示させる位相パターンに入力するゼルニケ係数の値を示している。図4の縦軸は、ゼルニケ係数が入力された位相パターンが空間光変調器24の表示部241に表示された時に波面測定ユニット28で測定されるレーザービーム21の反射光212の波面データ500から算出部101が算出したゼルニケ係数の値を示している。
記憶部103は、図4に示す相関関係300を各ゼルニケ係数即ち各収差毎に記憶している。即ち、記憶部103は、図4に一例を示す相関関係300をゼルニケ多項式で算出されるゼルニケ係数即ち光学系の収差と同数記憶している。なお、図4に示す相関関係300は、非点収差0°に対応するものである。相関関係300は、空間光変調器24の表示部241に各ゼルニケ係数として所定の値が入力された位相パターンを表示して、レーザー発振器22からレーザービーム21を発振して、波面測定ユニット28で測定されたレーザービーム21の反射光212の波面データ500から算出部101が各ゼルニケ係数の値を算出することで、図4中に横軸で示す表示部241に表示する位相パターンの各ゼルニケ係数の値と、図4中に縦軸で示す波面測定ユニット28が取得した波面データ500から算出部101が算出した各ゼルニケ係数の値とを対応付けて、予め求められ、記憶部103に記憶される。なお、実施形態1では、記憶部103は、相関関係300を各ゼルニケ係数即ち各収差毎に記憶しているが、本発明では、相関関係300を用いて全ての収差を調整しなくてもよい場合、例えば非点収差0°のみ補正したい場合には、非点収差0°に対応する相関関係300のみを記憶しておけばよい。即ち、本発明では、記憶部103は、相関関係300を用いて調整する収差に対応したもののみ記憶すればよく、相関関係300を必ずしも収差と同数記憶していなくてもよい。
位相パターン作成部102は、入力ユニットから入力された所定の値のゼルニケ係数を有する位相パターンを作成し、空間光変調器24の表示部241に作成した位相パターンを表示するものである。位相パターン作成部102は、入力ユニットから入力された各ゼルニケ係数の所定の値を受け付け、全てのゼルニケ係数の値を受け付けると、受け付けた値のゼルニケ係数を有する位相パターンを作成する。位相パターン作成部102は、作成した位相パターンを表示部241に表示する。
また、位相パターン作成部102は、オペレータが入力ユニットを操作して、任意の一つのゼルニケ係数の値を変更し、変更したゼルニケ係数の値を受け付けると、変更された値のゼルニケ係数を有する位相パターンを作成し、表示部241に表示する。また、位相パターン作成部102は、記憶部103に記憶された図4に例示された相関関係300のテーブルに基づいて、波面測定ユニット28で測定されるレーザービーム21の反射光212の各ゼルニケ係数が所望の値となるように、表示部241に表示させる位相パターンに入力するゼルニケ係数を逆算するものでもある。また、位相パターン作成部102は、逆算したゼルニケ係数を有する位相パターンを作成し、表示部241に表示する位相パターンを作成した位相パターンに変更するものである。
なお、記憶部103の機能は、記憶装置により実現される。算出部101及び位相パターン作成部102の機能は、演算処理装置が、記憶装置に記憶されているコンピュータプログラムに従って演算処理を実施することで実現される。
前述したレーザー加工装置1は、オペレータが加工内容情報を制御部100に登録し、粘着テープ207を介してチャックテーブル10の保持面11に被加工物200を載置し、制御部100が入力ユニットからオペレータの加工動作開始指示を受け付けると、登録された加工内容情報に基づいて加工動作を開始する。
加工動作では、レーザー加工装置1は、被加工物200を粘着テープ207を介して、チャックテーブル10の保持面11に吸引保持し、クランプ部14で環状フレーム206をクランプする。次に、移動ユニット30がチャックテーブル10を撮像ユニット40の下方に向かって移動して、撮像ユニット40が被加工物200を撮影する。レーザー加工装置1は、撮像ユニット40が撮像して得た画像に基づいて、アライメントを遂行する。
レーザー加工装置1は、加工内容情報に基づいて、移動ユニット30により、レーザービーム照射ユニット20と被加工物200とを分割予定ライン203に沿って相対的に移動させて、レーザービーム照射ユニット20からパルス状のレーザービーム21を分割予定ライン203に照射する。実施形態1では、レーザー加工装置1は、レーザービーム21を照射して、分割予定ライン203に沿って基板201の内部に改質層を形成する。レーザー加工装置1は、全ての分割予定ライン203に沿って基板201の内部に改質層を形成すると、レーザービーム21の照射を停止して、加工動作を終了する。
レーザー加工装置1は、加工動作の開始前に、以下の位相パターンの調整方法を実施する。次に、位相パターンの調整方法を説明する。図5は、図1に示されたレーザー加工装置が実施する位相パターンの調整方法を説明するフローチャートである。図6は、図1に示されたレーザー加工装置の波面測定ユニットが所定の値のゼルニケ係数を有する位相パターンを表示部に表示した時のレーザービームの反射光のビームプロファイルの一例を示す図である。図7は、図6に示されたレーザービームの反射光の波面データである各ゼルニケ係数の値の一例を示す図である。図8は、図1に示されたレーザー加工装置の位相パターン作成部により図7に示された値から変更されたレーザービームの波面データである各ゼルニケ係数の値の一例を示す図である。図9は、図8に示された値のゼルニケ係数を有する位相パターンを表示部に表示した時のレーザービームの反射光のビームプロファイルの一例を示す図である。
位相パターンの調整方法は、波面測定ユニット28が測定するレーザービーム21の波面データ500を理想の波面データ502(図8に例示する)に近付けることで、空間光変調器24の表示部241に表示させる位相パターンを、加工動作中に加工点において理想の加工結果が得られるレーザービーム21を照射することを可能とする理想の位相パターンに調整する方法である。なお、理想の波面データ502とは、加工動作中に加工点において理想の加工結果が得られるレーザービーム21を波面測定ユニット28が受光して取得される波面データである。なお、理想の波面データ502の各ゼルニケ係数の値は、各ゼルニケ係数の所望の値である。位相パターンの調整方法は、図5に示すように、準備ステップST1と、ゼルニケ係数入力ステップST2と、レーザービーム照射ステップST3と、ゼルニケ係数調整ステップST4と、ゼルニケ係数逆算ステップST6とを備える。
準備ステップST1は、理想の波面データ502の各ゼルニケ係数の値を記憶部103に記憶するとともに、レーザービーム照射ユニット20の集光レンズ23と凹面鏡25の反射面252とを対向させるステップである。実施形態1において、準備ステップST1では、制御部100が、X軸移動ユニット31及びY軸移動ユニット32を制御して、レーザービーム照射ユニット20の集光レンズ23と凹面鏡25の反射面252とをZ軸方向に沿って対向させるとともに、Z軸移動ユニット33を制御して、集光レンズ23の集光点211を反射面252の焦点251に位置付ける。
また、準備ステップST1では、制御部100が、オペレータの入力ユニットの操作を受け付けて、理想の波面データ502の各ゼルニケ係数の値を記憶部103に記憶する。
ゼルニケ係数入力ステップST2は、所定の値のゼルニケ係数を入力し、入力された所定の値のゼルニケ係数を有する位相パターンを表示部241に表示するステップである。ゼルニケ係数入力ステップST2では、制御部100が、オペレータの入力ユニットの操作を受け付けて、所定の値の各ゼルニケ係数を記憶する。なお、実施形態1において、所定の値は、任意の値である。ゼルニケ係数入力ステップST2では、位相パターン作成部102が全てのゼルニケ係数の値を受け付けると、受け付けた値のゼルニケ係数を有する位相パターンを作成する。ゼルニケ係数入力ステップST2では、位相パターン作成部102は、作成した位相パターンを表示部241に表示する。
レーザービーム照射ステップST3は、レーザー発振器22からレーザービーム21を発振して、ゼルニケ係数入力ステップST2で入力された所定の値のゼルニケ係数を有する位相パターンにより光学的特性が調整されたレーザービーム21を凹面鏡25の反射面252に照射し、波面測定ユニット28により波面データ500を取得するステップである。レーザービーム照射ステップST3では、位相パターン作成部102がゼルニケ係数入力ステップST2で作成した位相パターンを表示部241に表示した状態で、レーザー発振器22からレーザービーム21を発振して、レーザー発振器22から発振されたレーザービーム21を空間光変調器24、ビームスプリッタ26及び集光レンズ23等を介して凹面鏡25の反射面252に照射する。反射面252に照射されるレーザービーム21の光学的特性は、位相パターン作成部102が作成して表示部241に表示した位相パターンにより調整されている。
レーザービーム照射ステップST3では、反射面252で反射されたレーザービーム21の反射光212は、ビームスプリッタ26により減衰手段27に向けて反射されて波面測定ユニット28に受光される。レーザービーム照射ステップST3では、波面測定ユニット28が受光したレーザービーム21の反射光212の波面データ500を取得し、取得した波面データ500を制御部100に出力する。レーザービーム照射ステップST3では、制御部100の算出部101が、波面測定ユニット28が取得した波面データ500をゼルニケ多項式近似して、各ゼルニケ係数の値を算出して、数値化し、図3に示す波面データ500を表示ユニット110に表示する。なお、レーザー発振器22は、位相パターンの調整方法を終了するまで、以降、所定の繰り返し周波数でレーザービーム21を発振する。
ゼルニケ係数調整ステップST4は、波面測定ユニット28により取得された波面データ500の複数のゼルニケ係数のうち任意の一つのゼルニケ係数の値を変更し、変更した値のゼルニケ係数を有する位相パターンを表示部241に表示するステップである。ゼルニケ係数調整ステップST4では、オペレータが表示ユニット110に表示された波面データ500を確認して、入力ユニットを操作して波面データ500の複数のゼルニケ係数のうち任意の一つのゼルニケ係数の値を変更し、変更した値を入力する。ゼルニケ係数調整ステップST4では、制御部100の位相パターン作成部102が、変更されたゼルニケ係数の値を受け付けると、変更した値のゼルニケ係数を有する位相パターンを作成し、表示部241に表示する。
ゼルニケ係数調整ステップST4では、波面測定ユニット28が変更した値のゼルニケ係数を有する位相パターンにより光学的特性が調整されたレーザービーム21の反射光212を受光し、受光したレーザービーム21の反射光212の波面データ500を取得する。ゼルニケ係数調整ステップST4では、算出部101が波面データ500の各ゼルニケ係数の値を算出して、制御部100が表示ユニット110に取得した波面データ500の各ゼルニケ係数の値を表示する。なお、波面測定ユニット28が取得した波面データ500を算出部101がゼルニケ多項式近似して算出された各ゼルニケ係数では、値を変更したゼルニケ係数以外のゼルニケ係数も値が変化することとなる。
オペレータが、表示ユニット110に表示された波面データ500の各ゼルニケ係数の値が所望の値に近付いているか否かを判定する(ステップST5)。オペレータが、表示ユニット110に表示された波面データ500の各ゼルニケ係数の値が所望の値に近付いていないと判定すると、波面データ500の各ゼルニケ係数の値の調整が概ね終了していないと判定(ステップST5:No)して、ゼルニケ係数調整ステップST4に戻る。なお、各ゼルニケ係数の値が所望の値に近付くと、図7に示すように、波面測定ユニット28が取得した波面データ501が理想の波面データ502に近付いたものになる。
オペレータが、表示ユニット110に表示された波面データ501の各ゼルニケ係数の値が所望の値に近付いたと判定すると、波面データ501の各ゼルニケ係数の値の調整が概ね終了したと判定(ステップST5:Yes)して、ゼルニケ係数逆算ステップST6に進む。
このように、ゼルニケ係数調整ステップST4では、まず、任意の一つのゼルニケ係数の値が所望の値になるように調整されると、波面測定ユニット28が取得した波面データ500を算出部101がゼルニケ多項式近似して算出された各ゼルニケ係数では、変更したゼルニケ係数以外のゼルニケ係数も変動が生じることとなる。そこで、実施形態1に係る位相パターンの調整方法は、ゼルニケ係数調整ステップST4を繰り返すことで、波面測定ユニット28により取得されたレーザービーム21の各ゼルニケ係数の値が記憶部103に記憶された理想の波面データ502の各ゼルニケ係数の値に近付くまで、任意のゼルニケ係数を一つずつ調整することと、波面測定ユニット28がレーザービーム21の反射光212の波面データ500を取得することを繰り返す。こうして、実施形態1に係る位相パターンの調整方法は、波面測定ユニット28により取得された波面データ500が理想の波面データ502に近付くまでゼルニケ係数調整ステップST4を繰り返すこととなる。なお、図6に示すビームプロファイル401は、波面測定ユニット28が図7に示す波面データ501を取得した際に副次的に取得したものである。
ゼルニケ係数逆算ステップST6は、制御部100が、相関関係300のテーブルに基づいて、波面測定ユニット28で測定される反射光212の各ゼルニケ係数の値が、理想の波面データ502の各ゼルニケ係数の値即ち所望の値となるように、位相パターンに入力する各ゼルニケ係数の値を逆算するステップである。具体的には、ゼルニケ係数逆算ステップST6では、オペレータが入力ユニットを操作して値を調整するゼルニケ係数を選択し、選択されたゼルニケ係数を制御部100が受け付けると、位相パターン作成部102が、図7に示されたゼルニケ係数の値が概ね調整された波面データ501の選択された収差に対応するゼルニケ係数の値の所望の値との差を算出し、所望の値との差を図4に一例を示す相関関係300の縦軸に入力する。
ゼルニケ係数逆算ステップST6では、位相パターン作成部102は、所望の値との差と対応する横軸の値を算出し、この横軸の値を理想の波面データ502の各ゼルニケ係数の値であると算出する。ゼルニケ係数逆算ステップST6では、位相パターン作成部102は、位相パターンに入力する選択されたゼルニケ係数の値を、算出した図4の横軸の値に変更して、位相パターンの調整方法を終了する。
例えば、ゼルニケ係数逆算ステップST6では、位相パターン作成部102は、非点収差0°が選択された際に、図8に示すように、非点収差0°に対応するゼルニケ係数の所望の値が「0」である時には、図7に示された非点収差0°に対応するゼルニケ係数の値が「-0.037」であるので、非点収差0°に対応するゼルニケ係数の所望の値との差を「+0.037」と算出する。
位相パターン作成部102は、図4に示された相関関係300縦軸のゼルニケ係数の値に「+0.037」を入力し、縦軸の「+0.037」に対応した横軸のゼルニケ係数の値「0.65」を算出する。こうして、ゼルニケ係数逆算ステップST6では、位相パターン作成部102は、理想の波面データ502の非点収差0°に対応するゼルニケ係数の値即ち所望の値を算出する。ゼルニケ係数逆算ステップST6では、位相パターン作成部102は、位相パターンに入力する非点収差0°に対応するゼルニケ係数の値を、図4に示された相関関係300を用いて算出した値「0.65」に変更する。
前述したように、位相パターン作成部102が記憶部103に記憶された相関関係300に基づいて、波面測定ユニット28により取得されるレーザービーム21の各ゼルニケ係数の値が理想の波面データ502のゼルニケ係数の値になると、位相パターンの調整方法を終了する。なお、ゼルニケ係数逆算ステップST6により位相パターンが調整されたレーザービーム21の反射光212を受光した波面測定ユニット28は、図8に示す理想の波面データ502を取得するとともに、副次的に、図9に示すビームプロファイル402を取得し、制御部100に出力する。レーザー加工装置1は、位相パターン作成部102が変更した値の各ゼルニケ係数を有する位相パターンを表示部241に表示して、前述した加工動作を実施する。
なお、実施形態1に係る位相パターンの調整方法は、ゼルニケ係数調整ステップST4を繰り返す際に、全てのゼルニケ係数を順に一つずつ値を調整しても良く、必ずしも全てのゼルニケ係数を順に一つずつ値を調整しなくても良い。また、実施形態1に係る位相パターンの調整方法は、ゼルニケ係数調整ステップST4を繰り返す際に、各ゼルニケ係数を一度のみ値を調整しても良く、各ゼルニケ係数を複数回、値を調整しても良い。
また、実施形態1に係る位相パターンの調整方法は、ゼルニケ係数逆算ステップST6において値が逆算されるゼルニケ係数が、ゼルニケ係数調整ステップST4を繰り返す回数よりも少ないのが望ましく、例えば、1つ又は2つであるのが望ましい。
以上説明したように、実施形態1に係るレーザー加工装置1は、レーザービーム21の反射光212を分岐するビームスプリッタ26と、ビームスプリッタ26により分岐されたレーザービーム21の反射光212を受光する波面測定ユニット28と、算出部101とを備えているので、加工点におけるレーザービーム21の波面データ500,501,502、即ち、レーザー加工装置1の全ての光学系を通ったレーザービーム21の波面データ500,501,502のゼルニケ係数を算出することができ、レーザービーム21の波面データ500,501,502を数値として扱えることができる。その結果、レーザー加工装置1は、レーザービーム21の波面データ500,501,502の定量的な測定が可能となる。
また、実施形態1に係るレーザー加工装置1は、記憶部103に記憶された相関関係300に基づいて、波面測定ユニット28により取得されるレーザービーム21の各ゼルニケ係数の値が、理想の波面データ502の各ゼルニケ係数の値となるように、表示部241に表示させる位相パターンに入力するゼルニケ係数の値を逆算する位相パターン作成部102を備えている。このために、レーザー加工装置1は、反射光212の波面データ500に基づいて空間光変調器24の表示部241に表示する位相パターンを変更することができ、理想の波面データ502のレーザービーム21を加工点に形成することが可能となり、レーザー加工装置1間の被加工物200に照射するレーザービーム21の機差を抑制できるという効果を奏する。
よって、レーザー加工装置1は、レーザー加工装置1間の被加工物200に照射するレーザービーム21の機差を抑制し、所望の加工結果を得ることが可能となるという効果を奏する。
また、レーザー加工装置1は、波面測定ユニット28が集光レンズ23を通るとともに、被加工物200を透過して裏面205等で反射することなく凹面鏡25の反射面252で反射した反射光212を受光する。その結果、レーザー加工装置1は、レーザービーム照射ユニット20の全ての光学系を通りかつレーザービーム照射ユニット20の光学系以外の物品を通っていない(通ることが規制された)レーザービーム21の波面データ500を取得する。その結果、レーザー加工装置1は、レーザービーム照射ユニット20のレーザービーム21の波面データ500の定量的な測定を正確に行うことが可能となる。
実施形態1に係る位相パターンの調整方法は、波面測定ユニット28で取得される波面データ500が理想の波面データ502に近付くまで、ゼルニケ係数調整ステップST4を繰り返すので、レーザー加工装置1間の被加工物200に照射するレーザービーム21の機差を抑制することができるという効果を奏する。
また、実施形態1に係る位相パターンの調整方法は、相関関係300のテーブルに基づいて、波面測定ユニット28で取得されるレーザービーム21のゼルニケ係数が所望の値となるように、表示部241に表示させる位相パターンに入力するゼルニケ係数を逆算するゼルニケ係数逆算ステップST6を備えるので、理想の波面データ502のレーザービーム21を加工点に形成することが可能となるという効果を奏する。
〔実施形態2〕
本発明の実施形態2に係るレーザー加工装置及び位相パターンの調整方法を図面に基づいて説明する。図10は、実施形態2に係るレーザー加工装置の構成例を示す斜視図である。図11は、実施形態2に係る位相パターンの調整方法を説明するフローチャートである。なお、図10及び図11は、実施形態1と同一部分に同一符号を付して説明を省略する。
実施形態2に係るレーザー加工装置1-2は、図10に示すように、制御部100が変更部104と、判定部105とを備え、ゼルニケ係数調整ステップST4を変更部104即ち制御部100が実行し、ステップST5を判定部105即ち制御部100が実行すること以外、実施形態1と同じである。
変更部104は、波面測定ユニット28により取得された波面データ500の複数のゼルニケ係数のうち任意の一つのゼルニケ係数を変更するものである。判定部105は、波面測定ユニット28で測定される波面データ500が理想の波面データ502に近付いたか否かを判定するものである。変更部104及び判定部105の機能は、演算処理装置が、記憶装置に記憶されているコンピュータプログラムに従って演算処理を実施することで実現される。
なお、実施形態2に係るレーザー加工装置1-2の制御部100の位相パターン作成部102は、実施形態1と同様に、所定の値のゼルニケ係数を有する位相パターンを作成し、空間光変調器24の表示部241に作成した位相パターンを表示するものである。位相パターン作成部102は、入力ユニットから入力された各ゼルニケ係数の所定の値を受け付け、全てのゼルニケ係数の値を受け付けると、受け付けた値のゼルニケ係数を有する位相パターンを作成する。位相パターン作成部102は、作成した位相パターンを表示部241に表示する。また、実施形態2に係る位相パターン作成部102は、変更部104が任意の一つのゼルニケ係数の値を変更すると、変更された値のゼルニケ係数を有する位相パターンを作成し、表示部241に表示する。
実施形態2に係る位相パターンの調整方法のゼルニケ係数調整ステップST4は、図11に示すように、ゼルニケ係数選択ステップST41と、ゼルニケ係数変更ステップST42とを備える。ゼルニケ係数選択ステップST41は、変更部104が波面測定ユニット28により取得された波面データ500の複数のゼルニケ係数のうち任意の一つのゼルニケ係数を選択するステップである。
実施形態2において、ゼルニケ係数選択ステップST41では、算出部101が算出した波面測定ユニット28により取得された波面データ500の複数のゼルニケ係数のうち理想の波面データ502のゼルニケ係数の値との差が最も大きなゼルニケ係数を任意の一つのゼルニケ係数として選択する。なお、ゼルニケ係数選択ステップST41では、差が最も大きなゼルニケ係数を任意の一つのゼルニケ係数として選択するに限らず、本発明は、加工に最も影響を与えるゼルニケ係数を任意の一つのゼルニケ係数として選択しても良い。
ゼルニケ係数変更ステップST42は、変更部104が選択した任意の一つのゼルニケ係数の値を変更するステップである。実施形態2において、ゼルニケ係数変更ステップST42では、変更部104が選択した任意の一つのゼルニケ係数を、理想の波面データ502のゼルニケ係数の値に変更する。すると、ゼルニケ係数変更ステップST42では、制御部100の位相パターン作成部102が、変更されたゼルニケ係数の値を有する位相パターンを作成し、表示部241に表示する。
ゼルニケ係数変更ステップST42では、波面測定ユニット28が変更した値のゼルニケ係数を有する位相パターンにより光学的特性が調整されたレーザービーム21の反射光212を受光し、受光したレーザービーム21の反射光212の波面データ500を取得する。ゼルニケ係数変更ステップST42では、算出部101が波面データ500の各ゼルニケ係数の値を算出して、制御部100が表示ユニット110に取得した波面データ500の各ゼルニケ係数の値を表示する。
制御部100の判定部105が、算出部101が算出した波面データ500の各ゼルニケ係数の値が所望の値に近付いているか否かを判定して、波面測定ユニット28で測定され算出部101が算出した波面データ500が理想の波面データ502に近付いたか否かを判定する(ステップST5)。実施形態2において、判定部105は、算出部101が算出した波面データ500の各ゼルニケ係数の値と理想の波面データ502の各ゼルニケ係数の値との差を算出し、差の総和を算出し、算出した差の総和が予め設定された所定値を超えていると判定すると、波面測定ユニット28で測定された波面データ500が理想の波面データ502に近付いていないと判定(ステップST5:No)して、ゼルニケ係数選択ステップST41に戻る。こうして、実施形態2に係るレーザー加工装置1-2は、判定部105が波面測定ユニット28で測定される波面データ500,501が理想の波面データ502に近付いたと判定するまで、レーザー発振器22がレーザービーム21を発振し続けるとともに、変更部104が任意の一つのゼルニケ係数を変更することと、位相パターン作成部102が変更したゼルニケ係数を有する位相パターンを空間光変調器24の表示部241に表示することとを交互に繰り返す。
なお、ステップST5では、ゼルニケ係数の理想の波面データ502のゼルニケ係数との差の総和に基づいて判定するに限らず、本発明は、選択したゼルニケ係数において、理想の係数の値と実際の係数の値の差が所定の値以下で、かつ、差の総和が所定値以下であるか否かで判定しても良い。この場合、選択したゼルニケ係数において、理想の係数の値と実際の係数の値の差が所定の値以下でかつ差の総和が所定値以下であると波面測定ユニット28で測定された波面データ501が理想の波面データ502に近付いたと判定し、理想の係数の値と実際の係数の値の差が所定の値を超え又は差の総和が所定値を超えていると波面測定ユニット28で測定された波面データ501が理想の波面データ502に近付いていないと判定する。
実施形態2において、判定部105は、算出した差の総和が予め設定された所定値以下であると判定すると、波面測定ユニット28で測定された波面データ501が理想の波面データ502に近付いたと判定(ステップST5:Yes)して、ゼルニケ係数逆算ステップST6に進む。実施形態2において、ゼルニケ係数逆算ステップST6では、制御部100の位相パターン作成部102が、理想の波面データ502のゼルニケ係数との値の差が最も大きなゼルニケ係数を値を調整するゼルニケ係数として選択し、図4に一例を示す相関関係300を用いて、実施形態1と同様に値を調整する。
実施形態2に係るレーザー加工装置1-2及び位相パターンの調整方法は、実施形態1と同様に、ビームスプリッタ26と、波面測定ユニット28と、算出部101とを備えているので、加工点におけるレーザービーム21の波面データ500,501,502、即ち、レーザー加工装置1の全ての光学系を通ったレーザービーム21の波面データ500,501,502のゼルニケ係数を算出することができ、レーザービーム21の波面データ500,501,502の定量的な測定が可能となる。
また、実施形態2に係るレーザー加工装置1-2は、判定部105が波面測定ユニット28で測定される波面データ500,501が理想の波面データ502に近付いたと判定するまで、レーザー発振器22がレーザービーム21を発振し続けるとともに、変更部104が任意の一つのゼルニケ係数を変更することと、位相パターン作成部102が変更したゼルニケ係数を有する位相パターンを空間光変調器24の表示部241に表示することとを交互に繰り返すので、理想の波面データ502のレーザービーム21を加工点に形成することが可能となり、レーザー加工装置1-2間の被加工物200に照射するレーザービーム21の機差を抑制できるという効果を奏する。
〔変形例〕
本発明の実施形態1及び実施形態2の変形例に係るレーザー加工装置を図面に基づいて説明する。図12は、実施形態1及び実施形態2の変形例に係るレーザー加工装置の構成例を示す斜視図である。なお、図12は、実施形態1と同一部分に同一符号を付して説明を省略する。
変形例に係るレーザー加工装置1-1は、図12に示すように、第2移動プレート16上の所定の位置に凹面鏡25を配設しておき、準備ステップST1においてレーザービーム照射ユニット20の集光レンズ23を第2移動プレート16上の凹面鏡25の反射面252とZ軸方向に対向すること以外、実施形態1と同じである。
変形例に係るレーザー加工装置1-1は、ビームスプリッタ26と、波面測定ユニット28と、算出部101と、位相パターン作成部102とを備えているので、レーザービーム21の波面データ500,501,502の定量的な測定が可能となるとともに、反射光212の波面データ500,501,502に基づいて空間光変調器24の表示部241に表示する位相パターンを変更することができ、理想の波面データ502のレーザービーム21を加工点に形成することが可能となり、レーザー加工装置間の被加工物200に照射するレーザービーム21の機差を抑制できる。よって、レーザー加工装置1-1は、実施形態1と同様に、レーザー加工装置1間の被加工物200に照射するレーザービーム21の機差を抑制し、所望の加工結果を得ることが可能となるという効果を奏する。なお、本発明において、図12に示す変形例に係るレーザー加工装置1-1は、実施形態2と同様に、制御部100が変更部104と判定部105とを備えても良い。
なお、本発明は、上記実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。例えば、本発明のレーザー加工装置1,1-1及び位相パターンの調整方法は、ゼルニケ係数逆算ステップST6を値を逆算するゼルニケ係数を変更しながら複数回繰り返しても良く、ゼルニケ係数調整ステップST4を実施することなく、ゼルニケ係数逆算ステップST6を複数回繰り返しても良い。また、本発明では、実施形態1に係るレーザー加工装置1の位相パターンの調整方法は、ゼルニケ係数調整ステップST4及びステップST5を実施形態2と同様に行っても良い。
1,1-1,1-2 レーザー加工装置
10 チャックテーブル
20 レーザービーム照射ユニット
21 レーザービーム
22 レーザー発振器
23 集光レンズ
24 空間光変調器
25 凹面鏡
26 ビームスプリッタ(分岐手段)
28 波面測定ユニット
100 制御部
101 算出部
102 位相パターン作成部
103 記憶部
104 変更部
105 判定部
200 被加工物
211 集光点
212 反射光
241 表示部
251 焦点
252 反射面
300 相関関係
401,402 ビームプロファイル
500,501 波面データ(位相の空間分布である波面の情報)
502 理想の波面データ
ST2 ゼルニケ係数入力ステップ
ST3 レーザービーム照射ステップ
ST4 ゼルニケ係数調整ステップ
ST6 ゼルニケ係数逆算ステップ

Claims (5)

  1. 被加工物を保持するチャックテーブルと、
    該チャックテーブルに保持された被加工物にレーザービームを照射するレーザービーム照射ユニットと、
    制御部と、
    を備えたレーザー加工装置であって、
    該レーザービーム照射ユニットは、
    レーザービームを発振するレーザー発振器と、
    該レーザー発振器から発振されたレーザービームを集光する集光レンズと、
    該集光レンズの集光点に焦点を有するように位置付けられ、該レーザービームを反射する反射面が球面となっている凹面鏡と、
    該レーザー発振器から発振されたレーザービームを該集光レンズへと通過させるとともに、該集光レンズによって集光され、該凹面鏡の反射面で反射した反射光を分岐する分岐手段と、
    該凹面鏡の反射面で反射し、該分岐手段によって分岐された該反射光を受光して、該レーザービームの位相の空間分布である波面の情報(波面データ)を取得する波面測定ユニットと、を有し、
    該制御部は、該波面測定ユニットで測定された波面データに基づいて、該レーザー発振器と該集光レンズの間に配設された空間光変調器の表示部に表示させる位相パターンを変更させるとともに、
    該制御部は、
    該波面測定ユニットで測定された該レーザービームの位相の空間分布である波面データをゼルニケ多項式近似してゼルニケ係数を算出する算出部と、
    所定のゼルニケ係数を有する位相パターンを作成し該空間光変調器の表示部に表示させる位相パターン作成部と、
    該位相パターンに入力するゼルニケ係数と、該ゼルニケ係数が入力された位相パターンが該空間光変調器の表示部に表示されたときに該波面測定ユニットで測定されるレーザービームのゼルニケ係数と、の相関関係を予め記憶しておく記憶部と、を更に含み、
    該位相パターン作成部は、該記憶部に記憶された相関関係のテーブルに基づいて、該波面測定ユニットで測定されるレーザービームのゼルニケ係数が所望の値となるように、該表示部に表示させる位相パターンに入力するゼルニケ係数を逆算することを特徴とするレーザー加工装置。
  2. 被加工物を保持するチャックテーブルと、
    該チャックテーブルに保持された被加工物にレーザービームを照射するレーザービーム照射ユニットと、
    制御部と、
    を備えたレーザー加工装置であって、
    該レーザービーム照射ユニットは、
    レーザービームを発振するレーザー発振器と、
    該レーザー発振器から発振されたレーザービームを集光する集光レンズと、
    該集光レンズの集光点に焦点を有するように位置付けられ、該レーザービームを反射する反射面が球面となっている凹面鏡と、
    該レーザー発振器から発振されたレーザービームを該集光レンズへと通過させるとともに、該集光レンズによって集光され、該凹面鏡の反射面で反射した反射光を分岐する分岐手段と、
    該凹面鏡の反射面で反射し、該分岐手段によって分岐された該反射光を受光して、該レーザービームの位相の空間分布である波面の情報(波面データ)を取得する波面測定ユニットと、を有し、
    該制御部は、該波面測定ユニットで測定された波面データに基づいて、該レーザー発振器と該集光レンズの間に配設された空間光変調器の表示部に表示させる位相パターンを変更させるとともに、
    該制御部は、
    該波面測定ユニットで測定された該レーザービームの位相の空間分布である波面データをゼルニケ多項式近似してゼルニケ係数を算出する算出部と、
    所定のゼルニケ係数を有する位相パターンを作成し該空間光変調器の表示部に表示させる位相パターン作成部と、
    該波面測定ユニットにより取得された該波面データの複数のゼルニケ係数のうち任意の一つのゼルニケ係数を変更する変更部と、
    該波面測定ユニットで測定される波面データが理想の波面データに近付いたか否かを判定する判定部と、を更に含み、
    前記判定部が該波面測定ユニットで測定される波面データが理想の波面データに近付いたと判定するまで、該レーザー発振器がレーザービームを発振し続けるとともに、該変更部が任意の一つのゼルニケ係数を変更することと、該位相パターン作成部が変更したゼルニケ係数を有する位相パターンを該空間光変調器の該表示部に表示することとを交互に繰り返すとともに、
    該判定部は、該算出部が算出した波面データの各ゼルニケ係数の値と理想の波面データの各ゼルニケ係数の値との差を算出し、差の総和が予め設定された所定値以下であるか否かで、該波面測定ユニットで測定される波面データが理想の波面データに近付いたか否かを判定するレーザー加工装置。
  3. 被加工物を保持するチャックテーブルと、
    該チャックテーブルに保持された被加工物にレーザービームを照射するレーザービーム照射ユニットと、
    制御部と、
    を備えたレーザー加工装置であって、
    該レーザービーム照射ユニットは、
    レーザービームを発振するレーザー発振器と、
    該レーザー発振器から発振されたレーザービームを集光する集光レンズと、
    該集光レンズの集光点に焦点を有するように位置付けられ、該レーザービームを反射する反射面が球面となっている凹面鏡と、
    該レーザー発振器から発振されたレーザービームを該集光レンズへと通過させるとともに、該集光レンズによって集光され、該凹面鏡の反射面で反射した反射光を分岐する分岐手段と、
    該凹面鏡の反射面で反射し、該分岐手段によって分岐された該反射光を受光して、該レーザービームの位相の空間分布である波面の情報(波面データ)を取得する波面測定ユニットと、を有し、
    該制御部は、該波面測定ユニットで測定された波面データに基づいて、該レーザー発振器と該集光レンズの間に配設された空間光変調器の表示部に表示させる位相パターンを変更させるとともに、
    該制御部は、
    該波面測定ユニットで測定された該レーザービームの位相の空間分布である波面データをゼルニケ多項式近似してゼルニケ係数を算出する算出部と、
    所定のゼルニケ係数を有する位相パターンを作成し該空間光変調器の表示部に表示させる位相パターン作成部と、
    該波面測定ユニットにより取得された該波面データの複数のゼルニケ係数のうち任意の一つのゼルニケ係数を変更する変更部と、
    該波面測定ユニットで測定される波面データが理想の波面データに近付いたか否かを判定する判定部と、を更に含み、
    前記判定部が該波面測定ユニットで測定される波面データが理想の波面データに近付いたと判定するまで、該レーザー発振器がレーザービームを発振し続けるとともに、該変更部が任意の一つのゼルニケ係数を変更することと、該位相パターン作成部が変更したゼルニケ係数を有する位相パターンを該空間光変調器の該表示部に表示することとを交互に繰り返すとともに、
    該判定部は、該算出部が算出した波面データの各ゼルニケ係数の値と理想の波面データの各ゼルニケ係数の値との差を算出し、選択したゼルニケ係数において理想の係数の値と実際の係数の値の差が所定の値以下であるか否か、及び差の総和が所定値以下であるか否かで、該波面測定ユニットで測定される波面データが理想の波面データに近付いたか否かを判定するレーザー加工装置。
  4. 該凹面鏡は、
    該チャックテーブルの周縁部に配設されていることを特徴とする、請求項1から請求項3のうちいずれか一項に記載のレーザー加工装置。
  5. チャックテーブルに保持された被加工物にレーザービームを照射するレーザービーム照射ユニットを備え、
    該レーザービーム照射ユニットは、
    レーザービームを発振するレーザー発振器と、
    該レーザー発振器から発振されたレーザービームを集光する集光レンズと、
    該集光レンズの集光点に焦点を有するように位置付けられ、該レーザービームを反射する反射面が球面となっている凹面鏡と、
    該レーザー発振器から発振されたレーザービームを該集光レンズへと通過させるとともに、該集光レンズによって集光され、該凹面鏡の反射面で反射した反射光を分岐する分岐手段と、
    該凹面鏡の反射面で反射し、該分岐手段によって分岐された該反射光を受光して、該レーザービームの位相の空間分布である波面の情報(波面データ)を取得する波面測定ユニットと、
    該レーザー発振器と該集光レンズとの間に配設され、該レーザー発振器から発振されたレーザービームの光学的特性を調整する表示部を備える空間光変調器と、を有したレーザー加工装置の該表示部に表示する位相パターンの調整方法であって、
    所定のゼルニケ係数を有する位相パターンを該空間光変調器の該表示部に表示するゼルニケ係数入力ステップと、
    該レーザー発振器からレーザービームを発振して、該波面測定ユニットにより波面データを取得するレーザービーム照射ステップと、
    該波面測定ユニットにより取得された該波面データの複数のゼルニケ係数のうち任意の一つのゼルニケ係数を変更し、変更したゼルニケ係数を有する位相パターンを該空間光変調器の該表示部に表示するゼルニケ係数調整ステップと、を備え、
    該波面測定ユニットで測定される波面データが理想の波面データに近付くまで、該ゼルニケ係数調整ステップを繰り返すとともに、
    該位相パターンに入力するゼルニケ係数と、該ゼルニケ係数が入力された位相パターンが該空間光変調器の表示部に表示されたときに該波面測定ユニットで測定されるレーザービームのゼルニケ係数と、の相関関係のテーブルに基づいて、該波面測定ユニットで測定されるレーザービームのゼルニケ係数が所望の値となるように、該表示部に表示させる位相パターンに入力するゼルニケ係数を逆算するゼルニケ係数逆算ステップを備えることを特徴とする位相パターンの調整方法。
JP2019207274A 2019-11-15 2019-11-15 レーザー加工装置及び位相パターンの調整方法 Active JP7386672B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019207274A JP7386672B2 (ja) 2019-11-15 2019-11-15 レーザー加工装置及び位相パターンの調整方法
US17/090,008 US12030137B2 (en) 2019-11-15 2020-11-05 Laser processing apparatus and method of adjusting phase pattern
KR1020200147768A KR20210059622A (ko) 2019-11-15 2020-11-06 레이저 가공 장치 및 위상 패턴의 조정 방법
CN202011259115.4A CN112809165A (zh) 2019-11-15 2020-11-12 激光加工装置以及相位图案的调整方法
TW109139682A TW202120237A (zh) 2019-11-15 2020-11-13 雷射加工裝置及相位圖案的調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019207274A JP7386672B2 (ja) 2019-11-15 2019-11-15 レーザー加工装置及び位相パターンの調整方法

Publications (2)

Publication Number Publication Date
JP2021079394A JP2021079394A (ja) 2021-05-27
JP7386672B2 true JP7386672B2 (ja) 2023-11-27

Family

ID=75853202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019207274A Active JP7386672B2 (ja) 2019-11-15 2019-11-15 レーザー加工装置及び位相パターンの調整方法

Country Status (4)

Country Link
JP (1) JP7386672B2 (ja)
KR (1) KR20210059622A (ja)
CN (1) CN112809165A (ja)
TW (1) TW202120237A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084694A1 (ja) * 2022-10-21 2024-04-25 株式会社ニコン 光学装置、光加工装置、光加工方法、および補正部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034723A (ja) 2007-08-03 2009-02-19 Hamamatsu Photonics Kk レーザ加工方法、レーザ加工装置及びその製造方法
JP2013088432A (ja) 2011-10-14 2013-05-13 Canon Inc 光学波面パラメータを推定する装置および方法
JP2017159333A (ja) 2016-03-10 2017-09-14 浜松ホトニクス株式会社 レーザ光照射装置及びレーザ光照射方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408805B2 (ja) 2000-09-13 2003-05-19 浜松ホトニクス株式会社 切断起点領域形成方法及び加工対象物切断方法
JP6040103B2 (ja) 2013-06-06 2016-12-07 浜松ホトニクス株式会社 補償光学システムの対応関係特定方法、補償光学システム、および補償光学システム用プログラム
JP6328521B2 (ja) 2014-08-18 2018-05-23 株式会社ディスコ レーザー光線のスポット形状検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034723A (ja) 2007-08-03 2009-02-19 Hamamatsu Photonics Kk レーザ加工方法、レーザ加工装置及びその製造方法
JP2013088432A (ja) 2011-10-14 2013-05-13 Canon Inc 光学波面パラメータを推定する装置および方法
JP2017159333A (ja) 2016-03-10 2017-09-14 浜松ホトニクス株式会社 レーザ光照射装置及びレーザ光照射方法

Also Published As

Publication number Publication date
KR20210059622A (ko) 2021-05-25
JP2021079394A (ja) 2021-05-27
US20210146482A1 (en) 2021-05-20
CN112809165A (zh) 2021-05-18
TW202120237A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
JP7336977B2 (ja) レーザービームのスポット形状の補正方法
US7295305B2 (en) Method and its apparatus for inspecting a pattern
US10864598B2 (en) Evaluation jig and evaluation method for height position detection unit of laser processing apparatus
JP2019063828A (ja) レーザ加工装置及び出力確認方法
JP7285636B2 (ja) 板状物の加工方法
JP7386672B2 (ja) レーザー加工装置及び位相パターンの調整方法
US10471536B2 (en) Reflective detection method and reflectance detection apparatus
CN112091412B (zh) 反射率测量装置和激光加工装置
US12030137B2 (en) Laser processing apparatus and method of adjusting phase pattern
US11577339B2 (en) Optical axis adjusting method for laser processing apparatus
CN113798663A (zh) 激光加工装置的检查方法
JP7450413B2 (ja) レーザー加工装置およびレーザー加工装置の調整方法
TW202110562A (zh) 雷射加工裝置之光軸確認方法
JP7333502B2 (ja) 亀裂検出装置
JP7266430B2 (ja) レーザー加工装置
JP7274989B2 (ja) 光軸調整ジグおよびレーザー加工装置の光軸確認方法
CN115837512A (zh) 激光加工装置
KR101892576B1 (ko) 복수의 3차원 레이저 스캐너의 캘리브레이션 방법 및 이를 이용한 레이저 가공 장치
JP2003107398A (ja) 投光光学系装置及び微小突起物検査装置
JP2024021699A (ja) チップの製造方法
JP2021041445A (ja) レーザー加工装置
JP2020142289A (ja) レーザー加工装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231114

R150 Certificate of patent or registration of utility model

Ref document number: 7386672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150