JP7380747B2 - Method for improving productivity of production process with heat exchange process - Google Patents

Method for improving productivity of production process with heat exchange process Download PDF

Info

Publication number
JP7380747B2
JP7380747B2 JP2022070234A JP2022070234A JP7380747B2 JP 7380747 B2 JP7380747 B2 JP 7380747B2 JP 2022070234 A JP2022070234 A JP 2022070234A JP 2022070234 A JP2022070234 A JP 2022070234A JP 7380747 B2 JP7380747 B2 JP 7380747B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat exchange
steam
production process
exchange step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022070234A
Other languages
Japanese (ja)
Other versions
JP2023160120A (en
Inventor
信太郎 森
和義 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2022070234A priority Critical patent/JP7380747B2/en
Priority to PCT/JP2023/007513 priority patent/WO2023203887A1/en
Priority to TW112109401A priority patent/TW202344794A/en
Publication of JP2023160120A publication Critical patent/JP2023160120A/en
Application granted granted Critical
Publication of JP7380747B2 publication Critical patent/JP7380747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/56Boiler cleaning control devices, e.g. for ascertaining proper duration of boiler blow-down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Description

この発明は、蒸気を使用する熱交換工程を含む生産プロセスの生産性を向上させる方法に関する The present invention relates to a method for improving the productivity of a production process including a heat exchange process using steam.

生産工程中に、蒸気や温水による加温、冷水や空気等による冷却を行う工程は産業界の製造プロセスで一般的なものである。 During the production process, heating with steam or hot water and cooling with cold water, air, etc. are common in industrial manufacturing processes.

例えば、化学品の合成による反応釜では、蒸気や温水による加熱工程により重合を促進させ、また、反応を停止させる際には、速やかな冷却のために、冷水や冷媒を導入して冷却を行っている。 For example, in reaction vessels for chemical synthesis, polymerization is accelerated by a heating process using steam or hot water, and when the reaction is stopped, cold water or a refrigerant is introduced for rapid cooling. ing.

この生産工程は、一般に交互に行われ、1回の製造バッチ毎に繰り返されるので、スタート時の昇温時間が長くなるほど、加熱工程が長くなるので製造時間が長くなって生産性が低下する。 This production process is generally performed alternately and repeated for each production batch, so the longer the temperature rise time at the start, the longer the heating process becomes, which lengthens the production time and reduces productivity.

ひとつの製品においても、複数の製造工程を組み合わせて実施することも多いが、一工程の製造時間の遅れが、全体の工程に影響を与えることも多い。 Even for a single product, multiple manufacturing processes are often combined, and a delay in the manufacturing time of one process often affects the entire process.

昇温時間が長くなる事由としては、冷間起動の際、熱交換器内の空気の存在、初期ドレンの滞留による熱交換の阻害の他、もともと限られた熱交換器の容量が律速となり、昇温時間を要する場合などが挙げられる。 Reasons for the longer heating time include the presence of air in the heat exchanger during cold start-up, the obstruction of heat exchange due to the accumulation of initial condensate, and the fact that the originally limited capacity of the heat exchanger becomes rate-limiting. Examples include cases where it takes time to raise the temperature.

一方で、熱交換器自体が炭素鋼等の場合は、工水水質や、蒸気性状によって内面が腐食すれば、その金属酸化物によって、あるいは硬度による内面スケールによる伝熱阻害が昇温時間の遅れをきたして、生産時間そのものが長くなってしまうことがあった。 On the other hand, if the heat exchanger itself is made of carbon steel, etc., if the inner surface corrodes due to the quality of the industrial water or the steam properties, heat transfer may be inhibited by metal oxides or inner scale due to hardness, causing a delay in heating time. As a result, the production time itself sometimes became longer.

また、蒸気凝縮水をボイラ側に回収しているような場合は、冷水が残存していると、それがボイラ側に持ち込まれてボイラのスケールの問題をきたす恐れがある。そのため、冷水から蒸気への切り替え時には初期の凝縮水を一部排出する作業を徹底する必要がある。あるいは、回収自体を見送る場合も多く、熱損失につながってる。 Furthermore, in cases where steam condensed water is collected on the boiler side, if any cold water remains, there is a risk that it will be brought into the boiler side and cause scale problems in the boiler. Therefore, when switching from cold water to steam, it is necessary to thoroughly discharge some of the initial condensed water. Alternatively, there are many cases where recovery itself is postponed, leading to heat loss.

また、多くの化学工業においては、蒸気加熱工程のみならず、前後に、複数工程を有していることから、単に加熱時間の短縮にとどまらず、その短縮状況を把握したうえで、前後の工程の最適化を図る必要性が、全体最適には必要であった。これは、従前は、各工程の作業者が、各々個別に監視しており、全体として情報を把握して、工程全体に反映させる必要があった。 In addition, in many chemical industries, there are not only steam heating processes, but also multiple processes before and after the heating process, so it is not enough to simply shorten the heating time. The need to optimize the system was necessary for overall optimization. Previously, workers in each process had to monitor each process individually, and it was necessary to grasp the information as a whole and reflect it in the entire process.

特許文献1には、蒸気を熱交換器に導入し、該熱交換器内の冷却体に接触させることで液化凝縮する方法において、皮膜性アミン等の状凝縮促進剤を、熱交換器に導入される蒸気に添加することで、状凝縮を促進して凝縮効率を高めることが記載されている。 Patent Document 1 describes a method in which vapor is introduced into a heat exchanger and brought into contact with a cooling body in the heat exchanger to liquefy and condense, in which a droplet -like condensation accelerator such as a film-forming amine is introduced into the heat exchanger. It is described that by adding it to the introduced steam, it promotes droplet condensation and increases the condensation efficiency.

特開2019-158255号公報JP2019-158255A

熱交換器からの空気の排出は、熱交換器にエアーベントを設置し、蒸気弁開度を上げて、熱交換器内部の蒸気圧を上げて、蒸気凝縮水の排出を促進することにより行われるが、熱交換器の有効伝熱面積には限りがあるので、限界がある。 Air is discharged from the heat exchanger by installing an air vent in the heat exchanger and increasing the steam valve opening to increase the steam pressure inside the heat exchanger and promote the discharge of steam condensed water. However, there is a limit because the effective heat transfer area of the heat exchanger is limited.

伝熱面の汚れや錆は総括伝熱係数を低下させる。錆を防止するために熱交換器自体を耐食性のステンレスやチタンに変えたりすることが考えられるが、新たな設備更新が必要であったり、金属自体の熱伝導率が低いため、設置スペースなどの観点で現実的ではない。 Dirt or rust on the heat transfer surface reduces the overall heat transfer coefficient. In order to prevent rust, it is possible to change the heat exchanger itself to corrosion-resistant stainless steel or titanium, but this would require updating new equipment, and the metal itself has low thermal conductivity, so it would be difficult to install the heat exchanger itself due to the low thermal conductivity of the metal itself. Not realistic from that point of view.

伝熱面のスケール生成を防止するために、冷水を水処理することが行われている。蒸気と冷水の交互使用の場合は、切り替えのタイミングによっては熱交換器内に残存した冷水中の硬度成分やシリカが切り替え時に乾燥してスケール化する。これによって、総括伝熱係数が低下して、昇温時間を更に長くしてしまう。 In order to prevent scale formation on heat transfer surfaces, cold water is treated with water. When steam and cold water are used alternately, depending on the timing of switching, hard components and silica in the cold water remaining in the heat exchanger may dry up and form scales at the time of switching. This lowers the overall heat transfer coefficient and further increases the heating time.

熱交換器内に残存する冷水を排水するために、時間をかけてフラッシングすることがある。これは排水量を増加させるうえ、加熱冷却の製造工程の時間が長くなる。 Flushing may take some time to drain the cold water remaining in the heat exchanger. This not only increases the amount of waste water, but also increases the time required for the heating and cooling manufacturing process.

熱交換器を含む生産プロセスにおける生産性を向上させるためには、熱交換器の総括伝熱係数をなるべく大きくすることが重要である。 In order to improve productivity in production processes involving heat exchangers, it is important to increase the overall heat transfer coefficient of the heat exchanger as much as possible.

また、蒸気使用箇所のみならず、その前後の工程を含む全体の工程の進捗度を把握することが全体最適には必要である。 In addition, for overall optimization, it is necessary to grasp the progress of the entire process, including not only the parts where steam is used, but also the processes before and after.

本発明は、熱交換器の総括伝熱係数を大きくし、また、蒸気使用箇所のみならず、その前後の工程を含む全体の工程の進捗度を把握することができる、熱交換工程を有する生産プロセスの生産性向上方法を提供することを課題とする。 The present invention increases the overall heat transfer coefficient of the heat exchanger, and also enables the progress of the entire process, including not only the steam usage area, but also the processes before and after the process, to be grasped. The objective is to provide a method for improving process productivity.

本発明は、次によって上記課題を解決する。 The present invention solves the above problems by the following.

[1] 蒸気を熱源流体とする熱交換器を有した熱交換工程を含む生産プロセスの生産性を向上させる方法であって、
該蒸気を発生させるボイラの給水又は該蒸気に滴状凝縮促進剤を添加して生産プロセスの生産性を向上させる方法において、
滴状凝縮促進剤を添加することによる該熱交換器の昇温時間短縮度を測定して、全体の生産プロセスの調整を行うことを特徴とする熱交換工程を有する生産プロセスの生産性向上方法。
[1] A method for improving the productivity of a production process including a heat exchange process having a heat exchanger using steam as a heat source fluid,
In a method for improving the productivity of a production process by adding a droplet condensation accelerator to the feed water of a boiler that generates the steam or to the steam,
A method for improving the productivity of a production process having a heat exchange step, which comprises adjusting the entire production process by measuring the degree of shortening of the heating time of the heat exchanger by adding a droplet condensation accelerator. .

[2] 前記熱交換器の昇温時間の短縮度は、該熱交換器の冷間起動の際の昇温時間の短縮度であることを特徴とする[1]の熱交換工程を有する生産プロセスの生産性向上方法。 [2] The production having a heat exchange step according to [1], wherein the degree of shortening of the heating time of the heat exchanger is the degree of shortening of the heating time of the heat exchanger during cold startup. How to improve process productivity.

[3] 測定された昇温時間短縮度に基づいて、各工程の稼働状況(作業工数、作業人員、又は投入エネルギー)を調整することを特徴とする[1]又は[2]の熱交換工程を有する生産プロセスの生産性向上方法。 [3] The heat exchange process according to [1] or [2], which is characterized by adjusting the operation status (work man-hours, work personnel, or input energy) of each process based on the measured temperature increase time reduction degree. A method for improving the productivity of a production process.

[4] 滴状凝縮促進剤が揮発性滴状凝縮促進剤であることを特徴とする[1]又は[2]の熱交換工程を有する生産プロセスの生産性向上方法。 [4] The method for improving the productivity of a production process having a heat exchange step according to [1] or [2], wherein the droplet condensation promoter is a volatile droplet condensation promoter.

[5] 前記滴状凝縮促進剤が防食性能を有することを特徴とする[1]又は[2]の熱交換工程を有する生産プロセスの生産性向上方法。 [5] The method for improving the productivity of a production process having a heat exchange step according to [1] or [2], wherein the droplet-like condensation accelerator has anticorrosive properties.

[6] 前記ボイラ給水又は蒸気にpH調整剤又は脱酸素剤を添加することを特徴とする[1]又は[2]の熱交換工程を有する生産プロセスの生産性向上方法。 [6] The method for improving the productivity of a production process having a heat exchange step according to [1] or [2], characterized in that a pH adjuster or an oxygen scavenger is added to the boiler feed water or steam.

[7] 前記熱交換器において、蒸気による熱交換工程と冷水による冷却工程とを行う方法であって、該冷却工程では、滴状凝縮促進剤の撥水性によって熱交換器内に残存する冷水を排出促進させることで溶存固形物の固着によるスケール生成を抑制することを特徴とする[1]又は[2]の熱交換工程を有する生産プロセスの生産性向上方法。 [7] A method of performing a heat exchange step using steam and a cooling step using cold water in the heat exchanger, wherein in the cooling step, the cold water remaining in the heat exchanger is removed by the water repellency of the droplet condensation accelerator. The method for improving the productivity of a production process having a heat exchange step according to [1] or [2], characterized in that scale formation due to adhesion of dissolved solids is suppressed by promoting discharge.

[8] 前記熱交換器からの凝縮水をボイラに回収する場合、凝縮水に含まれるスケール成分がボイラ内でスケール化することを防止するために、ボイラ給水にスケール防止剤を添加することを特徴とする[1]又は[2]の熱交換工程を有する生産プロセスの生産性向上方法。 [8] When recovering the condensed water from the heat exchanger to the boiler, it is recommended to add a scale inhibitor to the boiler feed water in order to prevent scale components contained in the condensed water from forming scales in the boiler. A method for improving the productivity of a production process having a heat exchange step according to [1] or [2].

[9] スケール防止剤がポリアクリル酸塩、ポリマレイン酸塩、及びリン酸塩のいずれか1つ以上であることを特徴とする[8]の熱交換工程を有する生産プロセスの生産性向上方法。 [9] The method for improving productivity of a production process having a heat exchange step according to [8], wherein the scale inhibitor is any one or more of polyacrylate, polymaleate, and phosphate.

[10] 滴状凝縮促進剤が、オレイルアミン、オクタデシルアミン、オレイルプロパンジアミン、アゼライン酸とその塩、サルコシン誘導体、ポリソルベートのいずれか1つ以上であることを特徴とする[1]又は[2]の熱交換工程を有する生産プロセスの生産性向上方法。 [10] The droplet condensation promoter of [1] or [2], wherein the droplet-like condensation accelerator is any one or more of oleylamine, octadecylamine, oleylpropanediamine, azelaic acid and its salts, sarcosine derivatives, and polysorbates. A method for improving the productivity of a production process that includes a heat exchange process.

[11] 前記熱交換器への蒸気の供給ラインに、過熱蒸気中に水を噴霧する減温器を備えており、滴状凝縮促進剤の撥水性によって噴霧水由来の溶存固形物の固着によるスケール生成を抑制することを特徴とする[1]又は[2]の熱交換工程を有する生産プロセスの生産性向上方法。 [11] The steam supply line to the heat exchanger is equipped with a desuperheater that sprays water into the superheated steam. The method for improving productivity of a production process having a heat exchange step according to [1] or [2], characterized in that scale formation is suppressed.

本発明によれば、蒸気を熱源流体として使用する熱交換工程を含む生産プロセスにおいて、加熱蒸気側に滴状凝縮促進剤を存在させることで、対象設備の冷間起動時間の短縮のみならず、金属酸化物や冷水中のスケール成分の付着防止により、該蒸気による加熱効率を向上・維持させることができる。 According to the present invention, in a production process including a heat exchange step that uses steam as a heat source fluid, by providing a droplet condensation accelerator on the heated steam side, it not only shortens the cold startup time of the target equipment, but also By preventing the adhesion of metal oxides and scale components in cold water, the heating efficiency of the steam can be improved and maintained.

また、複数工程の全体最適を図ることで、生産性の最大化を図ることができる。 Furthermore, productivity can be maximized by optimizing the entire process of multiple processes.

本発明方法における滴状凝縮促進剤の添加箇所の説明図である。It is an explanatory view of the addition point of the droplet condensation accelerator in the method of the present invention. 本発明方法における滴状凝縮促進剤の添加箇所の説明図である。It is an explanatory view of the addition point of the droplet condensation accelerator in the method of the present invention. 比較例における滴状凝縮促進剤の添加箇所の説明図である。It is an explanatory view of the addition point of the droplet condensation accelerator in a comparative example. 反応釜の昇温状況を示すグラフである。It is a graph showing the temperature increase status of the reaction vessel. 生産プロセスの一例を示すブロック図である。It is a block diagram showing an example of a production process.

本発明の一態様の生産性向上方法は、蒸気を熱源流体とする熱交換器を有した熱交換工程を含む生産プロセスの生産性を向上させる方法であって、該蒸気を発生させるボイラの給水又は該蒸気に滴状凝縮促進剤を添加して生産プロセスの生産性を向上させる方法において、滴状凝縮促進剤を添加することによる該熱交換器の昇温時間短縮度を測定して、全体の生産プロセスの調整を行うことを特徴とする。 A method for improving productivity according to one aspect of the present invention is a method for improving the productivity of a production process including a heat exchange step having a heat exchanger using steam as a heat source fluid, the method comprising supplying water to a boiler that generates the steam. Alternatively, in a method of improving the productivity of the production process by adding a droplet condensation accelerator to the steam, the degree of reduction in heating time of the heat exchanger due to the addition of the droplet condensation accelerator is measured, and the overall It is characterized by adjusting the production process.

本発明が適用される熱交換器の材質としては特に制限はなく、用いる滴状凝縮促進剤により撥水皮膜の形成で滴状凝縮を実現できるような材質であればよく、例えば、軟鋼、低合金鋼、合金鋼、銅、銅合金、チタン、チタン合金、アルミニウム、アルミニウム合金などが挙げられる。 The material of the heat exchanger to which the present invention is applied is not particularly limited, and may be any material that can realize droplet condensation by forming a water-repellent film with the droplet condensation accelerator used, such as mild steel, low Examples include alloy steel, alloy steel, copper, copper alloy, titanium, titanium alloy, aluminum, aluminum alloy, and the like.

本発明では、滴状凝縮促進剤は、熱交換器に導入される蒸気又はこの蒸気を発生させるボイラの給水に添加される。蒸気に滴状凝縮促進剤を添加する場合における添加箇所の好適例を図1,2に示す。 In the present invention, the droplet condensation promoter is added to the steam that is introduced into the heat exchanger or to the feed water of the boiler that generates this steam. 1 and 2 show preferred examples of locations where the droplet-like condensation accelerator is added to the steam.

図1では、ボイラ1からの蒸気が配管2を通って蒸気ヘッダ3に導入される。蒸気ヘッダ3内の蒸気が、配管4を通って熱交換器5に供給され、また配管6を通って熱交換器7に供給される。さらに、蒸気ヘッダ3内の蒸気は、配管8を通って蒸気ヘッダ10に供給される。蒸気ヘッダ10内の蒸気は、配管11を通って熱交換器12に供給され、また配管13を通って熱交換器14に供給される。 In FIG. 1, steam from a boiler 1 is introduced into a steam header 3 through a pipe 2. Steam in the steam header 3 is supplied to a heat exchanger 5 through piping 4 and to a heat exchanger 7 through piping 6. Furthermore, the steam in the steam header 3 is supplied to the steam header 10 through the piping 8. Steam in the steam header 10 is supplied to a heat exchanger 12 through piping 11 and to a heat exchanger 14 through piping 13.

配管8から配管15が分岐している。配管15はさらに別の蒸気ヘッダや蒸気使用機器(図示略)に接続されている。配管15はブローラインとして使用されることもある。 A pipe 15 branches from the pipe 8. The pipe 15 is further connected to another steam header or steam using equipment (not shown). Piping 15 may also be used as a blow line.

図1では、配管4,6,11,13に滴状凝縮促進剤の添加部4a,6a,11a,13aが設けられている。 In FIG. 1, pipes 4, 6, 11, and 13 are provided with droplet-like condensation accelerator addition parts 4a, 6a, 11a, and 13a.

図2では、配管4,6及び配管8(ただし配管15の分岐部よりも下流側)に滴状凝縮促進剤の添加部4a,6a,8aが設けられている。 In FIG. 2, droplet-like condensation accelerator addition parts 4a, 6a, and 8a are provided in the pipes 4 and 6 and the pipe 8 (but downstream of the branch part of the pipe 15).

図3は比較例を示すものであり、配管2及び配管8(ただし配管15の分岐部よりも下流側)に滴状凝縮促進剤の添加部2a,8aが設けられている。図3では、配管15へ分岐して流れる蒸気にも滴状凝縮促進剤が含まれることになる。そのため、図1,2のように、熱交換器に供給される蒸気にのみ滴状凝縮促進剤を添加することが好ましい。 FIG. 3 shows a comparative example, in which droplet-like condensation accelerator addition parts 2a and 8a are provided in the pipe 2 and the pipe 8 (but downstream of the branch part of the pipe 15). In FIG. 3, the steam that branches and flows into the pipe 15 also contains the droplet condensation accelerator. Therefore, as shown in FIGS. 1 and 2, it is preferable to add the droplet condensation accelerator only to the steam supplied to the heat exchanger.

本発明の一態様では、熱交換器の昇温時間の短縮は、該熱交換器の冷間起動の際の昇温時間の短縮である。 In one aspect of the present invention, the reduction in the heating time of the heat exchanger is the reduction in the heating time during cold startup of the heat exchanger.

昇温時間改善の評価方法の一例として、反応釜への適用事例を下記に示す。 As an example of an evaluation method for improving heating time, an example of application to a reaction vessel is shown below.

反応釜は、釜の中の製造物に、蒸気で間接的に熱を加える設備であり、ジャケット式と呼ばれる構造が多い。反応釜では、通常、設定温度に到達するまでジャケット内に蒸気を流し続けて加温する。 A reaction vessel is a device that indirectly applies heat to the product inside the vessel using steam, and many have a structure called a jacket type. In a reaction vessel, steam is usually continued to flow into the jacket until the set temperature is reached.

この蒸気又は蒸気を発生させるボイラの給水に滴状凝縮促進剤を添加することにより、高い総括伝熱係数が得られ、その結果、図4の通り、設定温度に到達するまでの時間が短縮される。多くの場合、反応釜に昇温過程を記録するシステムが設置されているため、同じ製造品を同量製造する場合には、この加熱時間の短縮分をモニタリングすることが可能である。この昇温時間の短縮度に基づいて、前後の工程の最適化し、生産性を向上させることができる。 By adding a droplet condensation accelerator to this steam or the feed water of the boiler that generates the steam, a high overall heat transfer coefficient can be obtained, resulting in a shorter time to reach the set temperature, as shown in Figure 4. Ru. In many cases, a system is installed in the reaction vessel to record the temperature increase process, so it is possible to monitor the reduction in heating time when producing the same product in the same quantity. Based on the degree of shortening of the heating time, it is possible to optimize the steps before and after the process and improve productivity.

また、別例として、過熱蒸気中に水を噴霧し、水が蒸発することで蒸気中の熱を吸収し、飽和蒸気温度に近い蒸気を発生させる減温器が使用される場合があるが、滴状凝縮促進剤の撥水性によって熱交換器内に堆積する噴霧水由来の溶存固形物の固着によるスケール生成を抑制することができる。 In addition, as another example, a desuperheater may be used that sprays water into superheated steam and absorbs the heat in the steam as the water evaporates, generating steam close to the saturated steam temperature. The water repellency of the droplet-like condensation accelerator can suppress scale formation due to adhesion of dissolved solids derived from spray water that accumulate in the heat exchanger.

蒸気加熱工程の前後に複数工程がある場合は、各工程での作業時間、中間原料在庫、投入エネルギーと加熱短縮時間を演算して、フィードバック制御することで、全体最適を計ることができる。例えば、各工程の稼働状況(例えば、作業工数、作業人員、投入エネルギーなど)を調整することができる。 If there are multiple processes before and after the steam heating process, overall optimization can be achieved by calculating the working time, intermediate raw material inventory, input energy, and heating shortening time for each process and performing feedback control. For example, it is possible to adjust the operating status of each process (eg, number of work hours, number of workers, input energy, etc.).

図5は、並行して進行する製造工程A1,A2,A3を備えた生産プロセスのフロー図である。なお、製造工程A1,A2,A3を経て製品が製造される。製造工程A3は、加熱用熱交換器と冷却用熱交換器とを備えている。加熱用熱交換器には蒸気が供給され、凝縮水は回収されるか又は排出される。冷却用熱交換器にはチラーからの冷水が循環通水される。上記の蒸気又はこの蒸気発生用のボイラへの給水に滴状凝縮促進剤が添加される。 FIG. 5 is a flow diagram of a production process with manufacturing steps A1, A2, and A3 proceeding in parallel. Note that the product is manufactured through manufacturing steps A1, A2, and A3. The manufacturing process A3 includes a heating heat exchanger and a cooling heat exchanger. The heating heat exchanger is supplied with steam and the condensed water is recovered or discharged. Cold water from the chiller is circulated through the cooling heat exchanger. A droplet condensation accelerator is added to the steam described above or to the feed water to the boiler for generating this steam.

例えば、図5において、製造工程A1の単位時間当たりの製造量、あるいは製造工程A2の単位時間当たりの製造量のキャパシティーを超えて製造工程A3の生産性を向上させても、並行して進行する製造工程A1,A2の生産性がそのままではプロセス全体としての生産性を向上させることはできない。そこで、製造工程A1,A2における中間製造品の在庫量と製造工程A3の生産性向上度合いをモニタリングしながら、工程A1,A2,A3への作業人員配分の見直し、工程A1,A2の製造機器へのエネルギー投入量を増加させるなどのフィードバック制御を行うことで、プロセス全体の生産性を向上させることが可能となる。 For example, in FIG. 5, even if the productivity of manufacturing process A3 is improved beyond the capacity of manufacturing process A1's production volume per unit time or manufacturing process A2's capacity of manufacturing volume per unit time, the manufacturing process will proceed in parallel. If the productivity of manufacturing steps A1 and A2 remains unchanged, the productivity of the entire process cannot be improved. Therefore, while monitoring the inventory amount of intermediate products in manufacturing processes A1 and A2 and the degree of productivity improvement in manufacturing process A3, we reviewed the allocation of workers to processes A1, A2, and A3, and changed the manufacturing equipment for processes A1 and A2. By performing feedback control such as increasing the amount of energy input, it is possible to improve the productivity of the entire process.

本発明において、滴状凝縮促進剤は、適用対象の金属表面に撥水性をもたせるものであってよく、蒸気系統で揮発性を有するものが好ましい。滴状凝縮促進剤としては、オレイルアミン、オクタデシルアミン、オレイルプロパンジアミン、アゼライン酸とその塩、サルコシン誘導体、ポリソルベートのいずれか1つ以上が例示されるが、これに限定されない。 In the present invention, the droplet-like condensation accelerator may be one that imparts water repellency to the metal surface to which it is applied, and is preferably one that is volatile in a steam system. Examples of the droplet condensation promoter include, but are not limited to, any one or more of oleylamine, octadecylamine, oleylpropanediamine, azelaic acid and its salts, sarcosine derivatives, and polysorbate.

これらの滴状凝縮促進剤は1種のみを用いてもよく、2種以上を混合して用いてもよい。 These droplet-like condensation accelerators may be used alone or in combination of two or more.

滴状凝縮促進剤の添加量は、熱交換器における滴状凝縮の促進効果が得られる程度であればよく、滴状凝縮促進剤の種類や熱交換器の形式等によっても異なるが、通常、水換算の蒸気量に対して0.001~10mg/L、特に0.01~2.0mg/L程度とすることが好ましい。 The amount of the droplet condensation accelerator to be added is sufficient as long as the effect of promoting droplet condensation in the heat exchanger can be obtained, and although it varies depending on the type of the droplet condensation accelerator and the type of the heat exchanger, usually, It is preferably about 0.001 to 10 mg/L, particularly about 0.01 to 2.0 mg/L, based on the amount of steam calculated as water.

滴状凝縮促進剤は間欠添加でも連続添加でもよいが、熱交換器内の冷却体表面に凝縮による撥水皮膜を安定に維持する観点からは、連続添加とすることが好ましい。 The droplet-like condensation accelerator may be added intermittently or continuously, but from the viewpoint of stably maintaining a water-repellent film due to condensation on the surface of the cooling body in the heat exchanger, continuous addition is preferable.

滴状凝縮促進剤は、水の他、メタノール、エタノール、イソプロパノール等の溶媒に溶解させて蒸気又は給水に添加してもよいが、乳化剤を用いて水性エマルジョンとし、これを蒸気又は給水に添加してもよい。 The droplet condensation accelerator may be dissolved in a solvent such as methanol, ethanol, isopropanol, etc. in addition to water and added to the steam or feed water, but it is also possible to make an aqueous emulsion using an emulsifier and add this to the steam or feed water. You can.

本発明の一態様では、滴状凝縮促進剤として揮発性があるものを用いて、ボイラ給水、熱交換器前蒸気、あるいはその両方に添加してもよい。 In one aspect of the invention, a volatile droplet condensation promoter may be used and added to boiler feed water, pre-heat exchanger steam, or both.

本発明の一態様では、熱交換器の腐食による金属酸化物の付着を防止することも並行して行う。熱交換器の腐食防止方法としては、加熱蒸気を発生させるボイラ系統に防食性能のある滴状凝縮促進剤、pH調整剤及び脱酸素剤のいずれか1つ以上を使用する方法が好適である。 In one aspect of the present invention, prevention of metal oxide deposition due to corrosion of the heat exchanger is also performed in parallel. A suitable method for preventing corrosion of a heat exchanger is to use one or more of a droplet condensation accelerator, a pH adjuster, and an oxygen scavenger that have anticorrosive properties in a boiler system that generates heated steam.

本発明の一態様では、蒸気による熱交換と冷水による冷却を別々の工程で行う熱交換器において、滴状凝縮促進剤の撥水性によって熱交換器内に残存する冷水を排出促進させる。これにより、溶存固形物の固着によるスケール生成を抑制することができる。なお、スケール成分としては、冷水中の硬度、シリカ、鉄、銅、亜鉛のいずれか一つ以上が例示される。 In one aspect of the present invention, in a heat exchanger that performs heat exchange with steam and cooling with cold water in separate steps, the water repellency of the droplet condensation accelerator promotes discharge of cold water remaining in the heat exchanger. Thereby, scale formation due to adhesion of dissolved solids can be suppressed. In addition, as a scale component, any one or more of the hardness in cold water, silica, iron, copper, and zinc is illustrated.

本発明の一態様では、熱交換器からの凝縮水を回収してボイラ用水として用いる場合に、排出される凝縮水に含まれるスケール成分がボイラ内でスケール化することを防止するため、ボイラ給水にスケール防止剤を好ましくはスケール成分防止の等量以上の添加量にて添加する。スケール防止剤としては、ポリアクリル酸塩、ポリマレイン酸塩、リン酸塩のいずれか一つ以上が例示される。 In one aspect of the present invention, when condensed water from a heat exchanger is recovered and used as boiler water, boiler feed water is A scale inhibitor is preferably added in an amount equal to or more than the amount required to prevent scale components. Examples of the scale inhibitor include any one or more of polyacrylates, polymaleates, and phosphates.

本発明の一態様において、過熱蒸気中に水を噴霧し、水が蒸発することで蒸気中の熱を吸収し、飽和蒸気温度に近い蒸気を発生させる減温器が設置されている場合、滴状凝縮促進剤の撥水性によって熱交換器内に堆積する噴霧水由来の溶存固形物の固着によるスケール生成を抑制することで減温器の清掃頻度の低減することができる。 In one aspect of the present invention, if a desuperheater is installed, which sprays water into the superheated steam and absorbs the heat in the steam as the water evaporates, generating steam close to the saturated steam temperature, The water repellency of the condensation accelerator suppresses scale formation due to adhesion of dissolved solids derived from spray water that accumulates inside the heat exchanger, thereby reducing the frequency of cleaning the attemperator.

1 ボイラ
3,10 蒸気ヘッダ
5,7,12,14 熱交換器
1 Boiler 3,10 Steam header 5,7,12,14 Heat exchanger

Claims (11)

蒸気を熱源流体とする熱交換器を有した熱交換工程を含む生産プロセスの生産性を向上させる方法であって、
該生産プロセスは、並行して進行する複数の製造工程を備えており、一部の製造工程(A3)は、ボイラからの蒸気を熱源とした加熱用熱交換器を備えており、
該ボイラの給水又は該ボイラからの蒸気に滴状凝縮促進剤を添加して生産プロセスの生産性を向上させる方法において、
滴状凝縮促進剤を添加することによる該製造工程(A3)の該加熱用熱交換器の昇温時間短縮度を測定し、該製造工程(A3)の該加熱用熱交換器の昇温時間短縮度に基づいて各製造工程への作業人員配分と、該製造工程(A3)以外の製造工程の製造機器へのエネルギー投入量制御を行うことを特徴とする熱交換工程を有する生産プロセスの生産性向上方法。
A method for improving the productivity of a production process including a heat exchange step having a heat exchanger using steam as a heat source fluid, the method comprising:
The production process includes a plurality of manufacturing steps that proceed in parallel, and some of the manufacturing steps (A3) are equipped with a heating heat exchanger using steam from a boiler as a heat source,
A method for improving the productivity of a production process by adding a droplet condensation accelerator to the feed water of the boiler or the steam from the boiler,
The degree of shortening of the heating time of the heating heat exchanger in the manufacturing process (A3) by adding the droplet condensation accelerator is measured, and the heating time of the heating heat exchanger in the manufacturing process (A3) is measured. Production of a production process having a heat exchange process characterized by allocating workers to each manufacturing process based on the degree of shortening and controlling the amount of energy input to manufacturing equipment for manufacturing processes other than the manufacturing process (A3). How to improve your sex.
前記熱交換器の昇温時間の短縮度は、該熱交換器の冷間起動の際の昇温時間の短縮度であることを特徴とする請求項1の熱交換工程を有する生産プロセスの生産性向上方法。 The production process having a heat exchange step according to claim 1, wherein the degree of reduction in the temperature increase time of the heat exchanger is the degree of decrease in the temperature increase time during cold startup of the heat exchanger. How to improve your sex. 滴状凝縮促進剤が揮発性滴状凝縮促進剤であることを特徴とする請求項1又は2の熱交換工程を有する生産プロセスの生産性向上方法。 3. The method for improving productivity of a production process having a heat exchange step according to claim 1 or 2, wherein the droplet-like condensation promoter is a volatile droplet-like condensation promoter. 前記滴状凝縮促進剤が防食性能を有することを特徴とする請求項1又は2の熱交換工程を有する生産プロセスの生産性向上方法。 3. The method for improving productivity of a production process having a heat exchange step according to claim 1 or 2, wherein the droplet-like condensation accelerator has anti-corrosion performance. 前記ボイラ給水又は蒸気にpH調整剤又は脱酸素剤を添加することを特徴とする請求項1又は2の熱交換工程を有する生産プロセスの生産性向上方法。 3. The method for improving productivity of a production process having a heat exchange step according to claim 1 or 2, characterized in that a pH adjuster or an oxygen scavenger is added to the boiler feed water or steam. 前記熱交換器において、蒸気による熱交換工程と冷水による冷却工程とを行う方法であって、該冷却工程では、滴状凝縮促進剤の撥水性によって熱交換器内に残存する冷水を排出促進させることで溶存固形物の固着によるスケール生成を抑制することを特徴とする請求項1又は2の熱交換工程を有する生産プロセスの生産性向上方法。 In the heat exchanger, a heat exchange step using steam and a cooling step using cold water are performed, and in the cooling step, the water repellency of the droplet condensation accelerator promotes discharge of cold water remaining in the heat exchanger. 3. The method for improving productivity in a production process having a heat exchange step according to claim 1, wherein scale formation due to fixation of dissolved solids is suppressed by this. 前記熱交換器からの凝縮水をボイラに回収する場合、凝縮水に含まれるスケール成分がボイラ内でスケール化することを防止するために、ボイラ給水にスケール防止剤を添加することを特徴とする請求項1又は2の熱交換工程を有する生産プロセスの生産性向上方法。 When the condensed water from the heat exchanger is recovered to the boiler, a scale inhibitor is added to the boiler feed water in order to prevent scale components contained in the condensed water from forming scales in the boiler. A method for improving productivity of a production process comprising the heat exchange step according to claim 1 or 2. スケール防止剤がポリアクリル酸塩、ポリマレイン酸塩、及びリン酸塩のいずれか1つ以上であることを特徴とする請求項の熱交換工程を有する生産プロセスの生産性向上方法。 8. The method for improving productivity of a production process having a heat exchange step according to claim 7 , wherein the scale inhibitor is any one or more of polyacrylate, polymaleate, and phosphate. 滴状凝縮促進剤が、オレイルアミン、オクタデシルアミン、オレイルプロパンジアミン、アゼライン酸とその塩、サルコシン誘導体、ポリソルベートのいずれか1つ以上であることを特徴とする請求項1又は2の熱交換工程を有する生産プロセスの生産性向上方法。 3. The heat exchange step according to claim 1 or 2, wherein the droplet-like condensation accelerator is one or more of oleylamine, octadecylamine, oleylpropanediamine, azelaic acid and its salts, sarcosine derivatives, and polysorbates. How to improve productivity in production processes. 前記熱交換器への蒸気の供給ラインに、過熱蒸気中に水を噴霧する減温器を備えており、滴状凝縮促進剤の撥水性によって噴霧水由来の溶存固形物の固着によるスケール生成を抑制することを特徴とする請求項1又は2の熱交換工程を有する生産プロセスの生産性向上方法。 The steam supply line to the heat exchanger is equipped with a desuperheater that sprays water into the superheated steam, and the water repellency of the droplet condensation accelerator prevents scale formation due to the adhesion of dissolved solids derived from the sprayed water. 3. The method for improving productivity of a production process having a heat exchange step according to claim 1 or 2, wherein the heat exchange step is suppressed. 前記製造工程(A3)は、冷水が通水される冷却用熱交換器を備えていることを特徴とする請求項1又は2の熱交換工程を有する生産プロセスの生産性向上方法。 3. The method for improving productivity of a production process having a heat exchange step according to claim 1 or 2, wherein the manufacturing step (A3) includes a cooling heat exchanger through which cold water is passed.
JP2022070234A 2022-04-21 2022-04-21 Method for improving productivity of production process with heat exchange process Active JP7380747B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022070234A JP7380747B2 (en) 2022-04-21 2022-04-21 Method for improving productivity of production process with heat exchange process
PCT/JP2023/007513 WO2023203887A1 (en) 2022-04-21 2023-03-01 Method for improving productivity of production process including heat exchange step
TW112109401A TW202344794A (en) 2022-04-21 2023-03-14 Method for improving productivity of production process including heat exchange step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022070234A JP7380747B2 (en) 2022-04-21 2022-04-21 Method for improving productivity of production process with heat exchange process

Publications (2)

Publication Number Publication Date
JP2023160120A JP2023160120A (en) 2023-11-02
JP7380747B2 true JP7380747B2 (en) 2023-11-15

Family

ID=88419760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022070234A Active JP7380747B2 (en) 2022-04-21 2022-04-21 Method for improving productivity of production process with heat exchange process

Country Status (3)

Country Link
JP (1) JP7380747B2 (en)
TW (1) TW202344794A (en)
WO (1) WO2023203887A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333353A (en) 2006-06-19 2007-12-27 Univ Of Tsukuba Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant
JP2016521345A (en) 2013-06-07 2016-07-21 イノエン インコーポレイテッド Heat exchanger for cooking equipment
JP2017004449A (en) 2015-06-16 2017-01-05 株式会社日立製作所 Start-stop schedule creation device and start-stop schedule optimization system
JP2017507243A (en) 2014-02-12 2017-03-16 栗田工業株式会社 Use of phosphotartaric acid and its salts for water treatment in water transfer systems.
JP2019158255A (en) 2018-03-14 2019-09-19 栗田工業株式会社 Method for condensing steam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333353A (en) 2006-06-19 2007-12-27 Univ Of Tsukuba Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant
JP2016521345A (en) 2013-06-07 2016-07-21 イノエン インコーポレイテッド Heat exchanger for cooking equipment
JP2017507243A (en) 2014-02-12 2017-03-16 栗田工業株式会社 Use of phosphotartaric acid and its salts for water treatment in water transfer systems.
JP2017004449A (en) 2015-06-16 2017-01-05 株式会社日立製作所 Start-stop schedule creation device and start-stop schedule optimization system
JP2019158255A (en) 2018-03-14 2019-09-19 栗田工業株式会社 Method for condensing steam

Also Published As

Publication number Publication date
WO2023203887A1 (en) 2023-10-26
TW202344794A (en) 2023-11-16
JP2023160120A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
Kazi Fouling and fouling mitigation on heat exchanger surfaces
RU2350876C2 (en) Apparatus for handling corrosive substances
JPS6036310A (en) Process and device for recovering heat from concentrated sulfuric acid
TWI589731B (en) Surface passivation method for fouling reduction
JP7380747B2 (en) Method for improving productivity of production process with heat exchange process
Nesta et al. Fouling mitigation by design
JP2006242553A (en) Heat transfer tube, heat exchanger for supplying hot water, and heat pump water heater
Antar et al. The impact of fouling on performance evaluation of multi-zone feedwater heaters
EP2455514A1 (en) Method for treating iron-based metal surface which is exposed to superheated steam
JP4305440B2 (en) Anticorrosive for reducing erosion and corrosion and method for reducing the same
JP5034483B2 (en) Anticorrosive for reducing erosion and corrosion
EP0706415B1 (en) Multi-cell heating system
AU2006201746B2 (en) Improved Multi-Cell Heating System
JPH09176872A (en) Corrosion suppression of metal in water system and suppressing method of silica based scale
JP2005232966A (en) Combined cycle power generation plant and its starting method
JP2008150684A5 (en)
JP6766090B2 (en) Exhaust heat recovery boiler and cleaning method
Ezuber et al. A review of corrosion failures in shell and tube heat exchangers: roots and advanced counteractive
EP0250382A2 (en) Metallic heat exchanger used in the forced-circulation process for the evaporation of phosphoric acid
CN215592659U (en) System for heating concentrated wastewater by using waste heat of flue gas
CN116792958A (en) Device parameter adjusting method and device, electronic device and storage medium
KR200345270Y1 (en) The steam separator of drier steam line in continuous galvanizing line
EP3017259A1 (en) Shell and tube heat exchanger arrangement
KR200346864Y1 (en) Strip drier steam recovery structure of continous galvanizing line
Barletta et al. Crude overhead system design considerations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7380747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150