JP2007333353A - Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant - Google Patents

Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant Download PDF

Info

Publication number
JP2007333353A
JP2007333353A JP2006168648A JP2006168648A JP2007333353A JP 2007333353 A JP2007333353 A JP 2007333353A JP 2006168648 A JP2006168648 A JP 2006168648A JP 2006168648 A JP2006168648 A JP 2006168648A JP 2007333353 A JP2007333353 A JP 2007333353A
Authority
JP
Japan
Prior art keywords
heat exchanger
laminated structure
channel
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006168648A
Other languages
Japanese (ja)
Inventor
Yutaka Abe
豊 阿部
Yutaka Suzuki
裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YACHIDA KK
University of Tsukuba NUC
Original Assignee
YACHIDA KK
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YACHIDA KK, University of Tsukuba NUC filed Critical YACHIDA KK
Priority to JP2006168648A priority Critical patent/JP2007333353A/en
Publication of JP2007333353A publication Critical patent/JP2007333353A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize a heat exchanger comprising micro scale minute channels for super critical refrigerant having pressure resistance against CO<SB>2</SB>getting under a super critical condition at 80 atmospheres or higher or chlorofluorocarbon refrigerant getting under a super critical condition at 40 atmospheres or higher, materializing high overall heat transfer coefficient, and having short start time as a heat exchanger without increasing friction loss. <P>SOLUTION: Many metal plates 6 having minute channels 3, 5 formed on a surface thereof are joined by using diffused junction to form the heat exchanger having an integrated structure having many minute channels laminated. Consequently, the heat exchanger has a high pressure resistant structure enduring against high pressure, and enables the super critical CO<SB>2</SB>refrigerant to flow at high speed by that, and become a compact structure having heat transfer quantity exceeding that of a former type heat exchanger as the result. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、熱交換器に関し、特に超臨界冷媒を用いたヒートポンプに好適な超臨界冷媒用マイクロチャンネル一体型積層構造熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly, to a microchannel integrated layered structure heat exchanger for a supercritical refrigerant suitable for a heat pump using a supercritical refrigerant.

現在、マイクロガスタービンや燃料電池等を用いたコジェネレーションシステムなど小型分散型のエネルギーシステムの開発が活発に行われており、家庭用や車搭載用に適した小型化の要請が大きく、小型化のための開発が進められている。   Currently, the development of small and distributed energy systems such as cogeneration systems using micro gas turbines and fuel cells is actively underway, and there is a great demand for miniaturization suitable for home use and on-vehicle use. Development for is underway.

従来型の熱交換器では、マイクロガスタービンや燃料電池本体のスケールを大幅に越えるものが用いられており、熱交換器を小型化すると熱交換器の効率が低下し、マイクロガスタービンや燃料電池単体での効率は著しく低下するという問題がある。なお、従来の熱交換器の例としては、プレートを所定の枚数積層して融接して形成するプレート式熱交換器が知られている(特許文献1参照。)。   In conventional heat exchangers, those that greatly exceed the scale of micro gas turbines and fuel cell bodies are used. If the heat exchangers are downsized, the efficiency of the heat exchangers decreases, and micro gas turbines and fuel cells are reduced. There is a problem that the efficiency of a single unit is significantly reduced. As an example of a conventional heat exchanger, a plate-type heat exchanger is known in which a predetermined number of plates are stacked and welded together (see Patent Document 1).

このように、小型のエネルギーシステムでは、効率を向上させるためには、高効率の熱交換器を用いることが必要不可欠であるが、現在の熱交換器では、所望の性能を実現しようとした場合、極めて大型の機器となり、本来の小型のエネルギーシステムとすることができない。   As described above, in order to improve efficiency in a small energy system, it is indispensable to use a high-efficiency heat exchanger. It becomes an extremely large device and cannot be made into an original small energy system.

そのため、微細流路を用いた熱交換器の研究が行われているが、従来の技術では実際のデバイスとした場合、形成された流路接合部からの漏れが生じる。低い圧力条件でしか使用ができず、高圧高流速をかけることができないという問題がある。   For this reason, research on heat exchangers using fine flow paths has been conducted, but leakage from the formed flow path joints occurs when an actual device is used in the conventional technology. There is a problem that it can be used only under low pressure conditions and cannot apply high pressure and high flow velocity.

ところで、伝熱工学の基礎理論としては、流路を小さくするほど均質に加熱・冷却することができるが、流路が微細で短い流路とした場合熱交換可能な熱量は制限を受けることになる。そこで、多数の微細流路に高流速を流すことができれば、交換熱量を増加させ求める効率を得ることができるものと期待される。   By the way, as the basic theory of heat transfer engineering, the smaller the flow path, the more uniformly it can be heated and cooled, but if the flow path is fine and short, the heat exchangeable heat is limited. Become. Therefore, if a high flow rate can be made to flow through a large number of fine flow paths, it is expected that the required efficiency can be obtained by increasing the amount of exchange heat.

この伝熱理論を熱交換器に応用して考えると、小型であっても高効率な熱交換器としては、第1に微細流路を多数有する積層構造であること 第2に高流速を流すことが可能な高耐圧構造であること、が必要条件となる。   When this heat transfer theory is applied to a heat exchanger, a highly efficient heat exchanger, even if it is small, is first a laminated structure having many fine channels. Second, a high flow rate is applied. It is a necessary condition that the structure has a high breakdown voltage.

一方、現在MEMS(マイクロ・エレクトロ・メカニカル・システム 小型電子機械システム)などによって作製されている微細流路構造の熱交換器においては、形成された流路接合部からの漏れによって高圧での使用が不可能であるという問題がある。   On the other hand, in a heat exchanger having a micro-channel structure currently manufactured by MEMS (micro electro mechanical system small electromechanical system), etc., it can be used at high pressure due to leakage from the formed channel junction. There is a problem that it is impossible.

これらの問題を解決するために、本発明者らは、すでに、マイクロガスタービンや燃料電池等を用いたコジェネレーションシステムなど小型分散型エネルギーシステムの実現のために必須の要素である、小型で高効率の熱交換器として、一体型積層構造熱交換器を提案した(特許文献2参照)。   In order to solve these problems, the present inventors have already developed a small, high-priced element that is an essential element for realizing a small distributed energy system such as a cogeneration system using a micro gas turbine or a fuel cell. As an efficient heat exchanger, an integrated laminated heat exchanger has been proposed (see Patent Document 2).

この一体型積層構造熱交換器の概要は、表面に微細流路を形成した多数の金属板を、拡散接合を用いて互いに接合し、微細流路を多数積層した一体構造を有するデバイスとしたものである。
特開2000−356491号公報 特開2005−282951号公報
The outline of this integrated laminated structure heat exchanger is a device with an integrated structure in which a number of metal plates with fine channels formed on the surface are joined together using diffusion bonding, and a number of fine channels are stacked. It is.
JP 2000-356491 A JP 2005-282951 A

ところで、ヒートポンプについては、近年、地球温暖化防止の観点から、フロン等、従来利用されていた冷媒に替えて、COを超臨界状態で冷媒として利用する超臨界CO冷媒利用ヒートポンプが注目されている。 Incidentally, for the heat pump, in recent years, from the viewpoint of preventing global warming, CFC, instead of the conventionally utilized once it was refrigerant, supercritical CO 2 refrigerant Pump utilize CO 2 as a refrigerant in a supercritical state is noticed ing.

しかし、COを超臨界状態とするためにはCOを超臨界圧(80気圧)以上の高圧まで圧縮した状態で利用しなくてはならないので、これを通過させる熱交換器が破壊され、実用化しにくいという問題がある。又、フロン系冷媒を超臨界圧(40気圧)以上まで圧縮した状態で利用するフロン系冷媒ヒートポンプも注目されているが、同様に実用化しにくいという問題がある。 However, since it has to be utilized in a compressed state CO 2 to the supercritical pressure (80 atm) or more high pressure to the CO 2 in a supercritical state, heat exchanger for passing therethrough is destroyed, There is a problem that it is difficult to put into practical use. Also, although a fluorocarbon refrigerant heat pump that uses a fluorocarbon refrigerant compressed to a supercritical pressure (40 atm) or more has been attracting attention, there is also a problem that it is difficult to put into practical use.

本発明者らは、上記特許文献2の一体型積層構造熱交換器の実用化開発を進め、そのために耐圧試験(流量と圧損の関係)、熱通過率試験(流量と熱通過率の関係)、起動試験(定常の動作状態になる時間)等の性能試験を実施している際に、この一体型積層構造熱交換器は、CO又はフロン系冷媒を超臨界圧以上まで圧縮した状態で利用するCO又はフロン系冷媒ヒートポンプの熱交換器としてきわめて有用であるという知見を得た。 The present inventors proceeded with the practical development of the integrated laminated structure heat exchanger of Patent Document 2 described above, and for that purpose, pressure resistance test (relationship between flow rate and pressure loss), heat passage rate test (relationship between flow rate and heat passage rate). When performing a performance test such as a start-up test (time to reach a steady operation state), this integrated laminated structure heat exchanger compresses CO 2 or a fluorocarbon refrigerant to a supercritical pressure or higher. The present inventors have found that it is extremely useful as a heat exchanger for the CO 2 or CFC refrigerant heat pump to be used.

本発明は、80気圧以上で超臨界となるCO又は40気圧以上で超臨界状態となるフロン系冷媒に対しても耐圧性を有する構造のヒートポンプの熱交換器としてきわめて有用である超臨界冷媒用の一体型積層構造熱交換器を実現することを課題とする。 INDUSTRIAL APPLICABILITY The present invention is a supercritical refrigerant that is extremely useful as a heat exchanger for a heat pump having a pressure resistance against CO 2 that is supercritical at 80 atmospheres or more or a fluorocarbon refrigerant that is supercritical at 40 atmospheres or more. It is an object of the present invention to realize an integrated laminated structure heat exchanger.

本発明は上記課題を解決するために、複数の金属板のそれぞれに形成された加熱流路と冷却流路が互いに連通しないように、前記複数の金属板が一体の積層構造に形成されてなる一体型積層構造熱交換器であって、前記複数の金属板は、それぞれの表面には加熱流路及び冷却流路のうちの一方が形成されており、該表面に対する裏面には加熱流路及び冷却流路のうちの他方が形成されており、前記加熱流路及び冷却流路の断面寸法は、それぞれ縦及び横寸法が10〜1000μmであることを特徴とする一体型積層構造熱交換器を提供する。   In order to solve the above-mentioned problems, the present invention is such that the plurality of metal plates are formed in an integrated laminated structure so that the heating flow path and the cooling flow path formed in each of the plurality of metal plates do not communicate with each other. In the integrated laminated structure heat exchanger, each of the plurality of metal plates has one of a heating channel and a cooling channel formed on each surface, and a heating channel and a back surface with respect to the surface. The other of the cooling channels is formed, and the cross-sectional dimensions of the heating channel and the cooling channel are 10 to 1000 μm in vertical and horizontal dimensions, respectively. provide.

前記複数の金属板は、拡散接合によって一体の積層構造に形成されており、該積層構造の接合面は、前記金属板と同じ強度を有し、前記加熱流路及び冷却流路に超臨界状態の高圧流体を流すことが可能な耐圧を有する構成とすることが好ましい。   The plurality of metal plates are formed in an integrated laminated structure by diffusion bonding, and the joining surface of the laminated structure has the same strength as the metal plate, and is in a supercritical state in the heating channel and the cooling channel. It is preferable that the structure has a pressure resistance capable of flowing a high-pressure fluid.

前記加熱流路及び冷却流路は、高速で流体が流され、かつ凝縮又は沸騰を伴うことによる熱交換が可能である構成とすることが好ましい。   It is preferable that the heating channel and the cooling channel have a configuration in which a fluid is flowed at a high speed and heat exchange is possible by condensing or boiling.

前記加熱流路又は冷却流路には、80気圧以上で超臨界となる二酸化炭素冷媒又は40気圧以上で超臨界状態となるフロン系冷媒に対しても耐圧性を有する構造である、ヒートポンプに用いられる構成とすることが好ましい。   The heating channel or the cooling channel is used for a heat pump having a pressure resistance against a carbon dioxide refrigerant that becomes supercritical at 80 atmospheres or more or a fluorocarbon refrigerant that becomes a supercritical state at 40 atmospheres or more. It is preferable that the configuration be

前記加熱流路又は冷却流路は、前記加熱流路又は冷却流路は、80気圧以上で超臨界となる二酸化炭素冷媒又は40気圧以上で超臨界状態となるフロン系冷媒の沸騰及び凝縮による熱移動を伴うヒートポンプに使用されるマイクロチャンネル構造を有する構成とすることが好ましい。   The heating channel or cooling channel is a heat generated by boiling and condensation of a carbon dioxide refrigerant that becomes supercritical at 80 atm or higher or a fluorocarbon refrigerant that becomes supercritical at 40 atm or higher. A configuration having a microchannel structure used for a heat pump with movement is preferable.

本発明の一体型積層構造熱交換器は、同じ性能の従来型熱交換器に比べ1/10〜1/100の大きさであり、冷凍空調機器の熱交換器として使用される構成とすることが好ましい。   The integrated laminated structure heat exchanger of the present invention is 1/10 to 1/100 the size of a conventional heat exchanger having the same performance, and is configured to be used as a heat exchanger of a refrigeration air conditioner. Is preferred.

本発明の一体型積層構造熱交換器は、マイクロガスタービン又は燃料電池を用いたコジェネレーションシステムに使用され、廃熱利用のための熱交換器として高効率で利用可能である構成とすることが好ましい。   The integrated laminated structure heat exchanger of the present invention is used in a cogeneration system using a micro gas turbine or a fuel cell, and has a configuration that can be used with high efficiency as a heat exchanger for waste heat utilization. preferable.

本発明の一体型積層構造熱交換器は、縦および横の寸法が10〜1000μmであり、小型分散型エネルギーシステムにおいて使用可能な高性能熱交換を可能とする構成とすることが好ましい。   The integrated laminated structure heat exchanger according to the present invention preferably has a configuration in which the vertical and horizontal dimensions are 10 to 1000 μm and enables high-performance heat exchange that can be used in a small distributed energy system.

本発明は上記課題を解決するために、複数の金属板のそれぞれに形成された加熱流路と冷却流路が互いに連通しないように、前記複数の金属板が積層されて互いに拡散接合し一体の積層構造とされてなる超臨界CO冷媒用一体型積層構造熱交換器であって、前記複数の金属板は、それぞれの表面には加熱流路及び冷却流路のうちの一方が形成されており、該表面に対する裏面には加熱流路及び冷却流路のうちの他方が形成されており、前記加熱流路及び冷却流路の断面寸法は、それぞれ縦及び横寸法がマイクロスケールであり、前記加熱流路又は冷却流路には、超臨界CO冷媒が流されて使用されることを特徴とする超臨界CO冷媒用一体型積層構造熱交換器を提供する。 In order to solve the above-mentioned problems, the present invention is configured such that the plurality of metal plates are laminated and diffusion-bonded to each other so that the heating channel and the cooling channel formed in each of the plurality of metal plates do not communicate with each other. An integrated laminated structure heat exchanger for a supercritical CO 2 refrigerant having a laminated structure, wherein each of the plurality of metal plates has one of a heating channel and a cooling channel formed on each surface. The other of the heating channel and the cooling channel is formed on the back surface with respect to the front surface, and the cross-sectional dimensions of the heating channel and the cooling channel are microscales in the vertical and horizontal dimensions, respectively. A supercritical CO 2 refrigerant-integrated laminated heat exchanger is provided in which a supercritical CO 2 refrigerant is used in a heating channel or a cooling channel.

本発明は上記課題を解決するために、複数の金属板に形成された加熱流路と冷却流路が互いに連通しないように、前記複数の金属板が積層されて互いに拡散接合し一体の積層構造とされてなる超臨界CO冷媒用一体型積層構造熱交換器であって、前記複数の金属板は、それぞれの表面又は裏面に、加熱流路及び冷却流路のうちの一方が形成されており、前記加熱流路及び冷却流路の断面寸法は、それぞれ縦及び横寸法がマイクロスケールであり、前記加熱流路又は冷却流路には、超臨界CO冷媒が流されて使用されることを特徴とする超臨界CO冷媒用一体型積層構造熱交換器を提供する。 In order to solve the above-mentioned problems, the present invention provides an integrated laminated structure in which the plurality of metal plates are laminated and diffusion-bonded to each other so that heating channels and cooling channels formed in the plurality of metal plates do not communicate with each other. In the integrated laminated structure heat exchanger for a supercritical CO 2 refrigerant, the plurality of metal plates each have one of a heating channel and a cooling channel formed on the front surface or the back surface. The cross-sectional dimensions of the heating channel and the cooling channel are microscales in the vertical and horizontal dimensions, respectively, and the supercritical CO 2 refrigerant is used in the heating channel or the cooling channel. An integrated laminated structure heat exchanger for supercritical CO 2 refrigerant is provided.

本発明の超臨界冷媒用一体型積層構造熱交換器は、表面に断面の縦横寸法がマイクロスケールの微細流路が形成された複数の金属板を、拡散接合を用いて一体型の積層構造とすることにより、多数の微細流路(マイクロチャンネル)が互いに連通することなく交叉して積層された構造としたので、次のような効果が生じる。   An integrated laminated structure heat exchanger for a supercritical refrigerant according to the present invention comprises a plurality of metal plates, each having a microscale having a cross-sectional dimension of microscale on the surface, and an integrated laminated structure using diffusion bonding. By doing so, a structure in which a large number of microchannels (microchannels) are crossed and stacked without communicating with each other has the following effects.

(1)高圧な超臨界CO冷媒、超臨界フロン系冷媒を高流速で流すことが可能な高耐圧構造を実現することができる。
(2)交換熱量を増大させ、高い熱交換効率を可能とし、コンパクトな構成とすることができる。
(3)定常状態に立ち上がる起動時間が短い。
(1) A high pressure resistant structure capable of flowing a high-pressure supercritical CO 2 refrigerant or a supercritical chlorofluorocarbon refrigerant at a high flow rate can be realized.
(2) The amount of heat exchange can be increased, high heat exchange efficiency can be achieved, and a compact configuration can be achieved.
(3) The start-up time for rising to a steady state is short.

本発明に係る超臨界冷媒用一体型積層構造熱交換器を実施するための最良の形態を実施例に基づいて図面を参照して説明する。   The best mode for carrying out an integral laminated structure heat exchanger for a supercritical refrigerant according to the present invention will be described based on examples with reference to the drawings.

(特徴)
本発明に係る超臨界冷媒用一体型積層構造熱交換器(以下、単に「熱交換器」という。)の概要は、縦横断面寸法がマイクロスケールの微細(例えば、10〜1000μm)な流路(本発明及び本明細書では「マイクロチャンネル」と言う。)が多数本形成された複数の異種又は同種の金属板を、拡散接合によって積層し一体型積層構造に形成することによって、高い圧力にも耐えることができる高効率の超臨界CO冷媒用一体型積層構造熱交換器である。
(Characteristic)
The outline of the integrated laminated structure heat exchanger for supercritical refrigerant according to the present invention (hereinafter, simply referred to as “heat exchanger”) is a micro-scale flow channel (for example, 10 to 1000 μm) in vertical and horizontal cross-sectional dimensions (for example, 10 to 1000 μm). In the present invention and in the present specification, it is called “microchannel”). A plurality of different or similar metal plates are laminated by diffusion bonding to form an integrated laminated structure, so that even a high pressure can be obtained. It is an integrated laminated heat exchanger for supercritical CO 2 refrigerant that can withstand high efficiency.

そして、この積層構造の接合面は、同種の金属板の場合はその金属板と同じ強度を有し、異種の金属板の場合はそれらのいずれか1つと同じ強度を有するように形成する。   The joint surface of this laminated structure is formed so as to have the same strength as the metal plate in the case of the same kind of metal plate, and the same strength as any one of them in the case of a different kind of metal plate.

本発明は、超臨界CO冷媒や超臨界フロン系冷媒を利用するヒートポンプの熱交換器として組み込まれて使用されるという超臨界冷媒用熱交換器としての用途に特徴があり、これによって、ヒートポンプシステム全体の高効率化を図ることができ、地球環境問題解決の一助となるものである。本発明に係る熱交換器のその特性からみたその構成上の特徴は次の通りである。 The present invention is characterized by its use as a heat exchanger for a supercritical refrigerant that is incorporated and used as a heat exchanger for a heat pump that uses a supercritical CO 2 refrigerant or a supercritical chlorofluorocarbon refrigerant. The efficiency of the entire system can be improved, which helps to solve global environmental problems. The characteristics of the heat exchanger according to the present invention in terms of its characteristics are as follows.

(1)80気圧以上の高圧の超臨界CO冷媒を熱交換器に流した際にでも、耐圧性が必要である。本発明の熱交換器は、互いに交叉する縦横寸法がマイクロスケールの微細な流路を積層して構成されるが、耐圧性がないと、一方の流路に高圧の流体が流れると流路が膨張変形し、この変形により互いに交叉する他方の流路の流れを阻害することとなる。本発明に係る熱交換器は、一方の流路に高圧流体が流れても、互いに交叉する他方の流路の流れを阻害することのない構成である。 (1) Pressure resistance is required even when a high-pressure supercritical CO 2 refrigerant of 80 atm or higher is passed through the heat exchanger. The heat exchanger of the present invention is configured by laminating micro flow channels with micro and vertical dimensions that intersect each other. However, if there is no pressure resistance, the flow channel is formed when a high-pressure fluid flows in one flow channel. It expands and deforms, and this deformation impedes the flow of the other channel that intersects each other. The heat exchanger according to the present invention is configured such that even if a high-pressure fluid flows through one flow path, the flow of the other flow path that intersects each other is not hindered.

(2)超臨界CO冷媒や超臨界フロン系冷媒のような高圧な流体をマイクロスケールの微細流路に流した場合でも、摩擦損失が増大し、熱通過率を低減するが懸念されるが、本発明の熱交換器は、そのような懸念される現象が生じることはなく、高い流動特性、伝熱特性(熱交換量、熱交換率)を備えており、熱交換器としての起動時間も短い構成である。 (2) Even when a high-pressure fluid such as a supercritical CO 2 refrigerant or a supercritical chlorofluorocarbon refrigerant is caused to flow through a micro-scale microchannel, there is a concern that friction loss increases and heat transfer rate is reduced. The heat exchanger of the present invention does not cause such a concern, and has high flow characteristics and heat transfer characteristics (heat exchange amount, heat exchange rate), and the start-up time as a heat exchanger Is also a short configuration.

(構成)
図1は、本発明に係る熱交換器の実施例を説明する図である。図1(a)は、この実施例の熱交換器1の外観を示す斜視図であり、図1(b)はその平面図である。この熱交換器1は、外観の全体構成としては、一体的な矩形構造をしている。
(Constitution)
FIG. 1 is a diagram illustrating an embodiment of a heat exchanger according to the present invention. Fig.1 (a) is a perspective view which shows the external appearance of the heat exchanger 1 of this Example, FIG.1 (b) is the top view. This heat exchanger 1 has an integral rectangular structure as an overall configuration of the appearance.

図1(a)、(b)に示すように流路は、前後方向(縦方向。図の例ではy方向)に延びる流路と左右方向(横方向。図の例ではx方向)に延びる流路があるが、説明の都合上、前後方向(縦方向)に延びる流路を冷却流路(低温の媒体が流れる流路)3とし、左右方向(横方向)に延びる流路を加熱流路(高温の媒体が流れる流路)5とする。   As shown in FIGS. 1A and 1B, the flow path extends in the front-rear direction (longitudinal direction, y direction in the illustrated example) and in the left-right direction (lateral direction, x direction in the illustrated example). Although there are flow paths, for convenience of explanation, the flow path extending in the front-rear direction (longitudinal direction) is referred to as a cooling flow path (flow path through which a low-temperature medium flows) 3, and the flow path extending in the left-right direction (lateral direction) is heated. A path (flow path through which a high-temperature medium flows) is defined as 5.

熱交換器1は、同一平面内に並設された縦及び横の寸法がマイクロスケールの多数の微細(例えば、10〜1000μm)な冷却流路3から成る群(冷却流路群2)と、同一平面内に並設された縦及び横の寸法がマイクロスケールの多数の微細(例えば、10〜1000μm)な加熱流路5から成る群(加熱流路群4)が、上下方向に交互に複数積層された構造となっている。   The heat exchanger 1 includes a group (cooling flow path group 2) composed of a large number of fine (for example, 10 to 1000 μm) cooling flow paths 3 that are arranged in parallel in the same plane and whose vertical and horizontal dimensions are microscales, A plurality of fine heating channels 5 (heating channel groups 4) alternately arranged in the vertical direction are arranged in parallel in the same plane and are composed of a large number of fine (for example, 10 to 1000 μm) heating channels 5 with micro dimensions in the vertical and horizontal dimensions. It has a laminated structure.

図1(a)、(b)において、それぞれの冷却流路群2では、一方向(図の例では矢印y方向)に伸びる多数の微細な冷却流路3がx方向に一定間隔をおいて並設されている。同様に、それぞれの加熱流路群4では、一方向(図の例では矢印x方向)に伸びる多数の微細な加熱流路5がy方向に一定間隔をおいて並設されている。   1 (a) and 1 (b), in each cooling flow path group 2, a large number of fine cooling flow paths 3 extending in one direction (in the direction of the arrow y in the example of the figure) are spaced at regular intervals in the x direction. It is installed side by side. Similarly, in each heating channel group 4, a number of fine heating channels 5 extending in one direction (in the direction of the arrow x in the example in the figure) are arranged in parallel in the y direction at regular intervals.

この実施例の熱交換器1では、冷却流路群2の冷却流路3と加熱流路5群の加熱流路5は、互いにxy方向に伸び、互いに図1(b)に示すように、直交する方向に伸びるように形成されているが、冷却流路群2の多数の冷却流路3と加熱流路群4の多数の加熱流路5とは、互いに交わって連通しないように、上下方向に位置をずらして積層配置されている。   In the heat exchanger 1 of this embodiment, the cooling flow path 3 of the cooling flow path group 2 and the heating flow path 5 of the heating flow path group 5 extend in the xy direction, and as shown in FIG. Although formed so as to extend in an orthogonal direction, the multiple cooling flow paths 3 of the cooling flow path group 2 and the multiple heating flow paths 5 of the heating flow path group 4 are arranged vertically so as not to cross each other and communicate with each other. Laminated and arranged with the position shifted in the direction.

この実施例の熱交換器1では、冷却流路群2の冷却流路3と加熱流路群4の加熱流路5は、図1(b)に示すように、互いに直交する方向に伸びるように形成されているが、これはあくまでも一例であり、冷却流路3と加熱流路5は、互いに直交する方向でなくても、互いにどのような角度で交叉(互いに連通する意味ではない。)するように伸びる構成でもよい。例えば、図1(c)に示すような角度αで交叉して形成されていてもよいし、冷却流路及び加熱流路の出入口さえ配置できれば、互いに平行方向でもよい。要するに、冷却流路3と加熱流路5をそれぞれ流れる冷媒が、互いに平行流、又は対向流となるように、冷却流路3と加熱流路5が伸びている構成としてもよい。   In the heat exchanger 1 of this embodiment, the cooling flow path 3 of the cooling flow path group 2 and the heating flow path 5 of the heating flow path group 4 extend in directions orthogonal to each other as shown in FIG. However, this is merely an example, and the cooling flow path 3 and the heating flow path 5 may cross each other at any angle (not necessarily in communication with each other) even if they are not orthogonal to each other. It may be configured to extend as is. For example, they may be formed so as to intersect with each other at an angle α as shown in FIG. 1C, or may be parallel to each other as long as the cooling channel and the heating channel can be arranged. In short, the cooling flow path 3 and the heating flow path 5 may be extended so that the refrigerants flowing through the cooling flow path 3 and the heating flow path 5 are parallel flow or counter flow.

さらに、この実施例の熱交換器1では、冷却流路3と加熱流路5は、それぞれ直線的に形成されているが、直線でなくても曲線でもよい。但し、流路抵抗が増加すると冷却及び加熱流体を送るポンプに負荷が高まるから、エネルギー損失が多くなるので、これらの点も考慮して、冷却流路3と加熱流路5の形状、構造は設計されるべきである。   Furthermore, in the heat exchanger 1 of this embodiment, the cooling flow path 3 and the heating flow path 5 are each formed linearly, but may be a curved line instead of a straight line. However, since the load on the pump that sends the cooling and heating fluid increases as the flow resistance increases, energy loss increases. Considering these points, the shapes and structures of the cooling flow path 3 and the heating flow path 5 are Should be designed.

図1に示す本発明に係る熱交換器1の構成を、その製作工程も含めて図2、3においてさらに詳細に説明する。本発明に係る熱交換器1は、その表面に微細流路の形成された複数の金属板を拡散接合し一体積層構造としたものである。   The configuration of the heat exchanger 1 according to the present invention shown in FIG. 1 will be described in more detail with reference to FIGS. The heat exchanger 1 according to the present invention has an integral laminated structure in which a plurality of metal plates having fine channels formed on the surface thereof are diffusion bonded.

図2は、熱交換器1の構成要素となる1枚の金属板6(金属の薄板)の構造を説明する図であり、図2(a)は斜視図、図2(b)は正面図、図2(c)は側面図をそれぞれ示す。   FIG. 2 is a view for explaining the structure of one metal plate 6 (metal thin plate) that is a component of the heat exchanger 1, FIG. 2 (a) is a perspective view, and FIG. 2 (b) is a front view. FIG. 2 (c) is a side view.

この図2(a)〜(c)で示すように、金属板6の上面7には縦方向(前後方向)の縦及び横の寸法がマイクロスケールの多数の微細(例えば、10〜1000μm)な流路(説明上、「冷却流路3」とする)が形成されており、金属板6の下面8には横方向(左右方向)の縦及び横の寸法がマイクロスケールの多数の微細(例えば、10〜1000μm)な流路(説明上、「加熱流路5」とする)が形成されている。   As shown in FIGS. 2A to 2C, the upper surface 7 of the metal plate 6 has a large number of fine dimensions (for example, 10 to 1000 μm) in the vertical direction (front-rear direction) of the vertical and horizontal dimensions. A flow path (for the sake of explanation, referred to as “cooling flow path 3”) is formed, and the lower surface 8 of the metal plate 6 has a large number of microscopic scales (for example, vertical and horizontal dimensions) , 10 to 1000 μm) channels (for convenience, referred to as “heating channels 5”) are formed.

図2(a)に示す構造の金属板6を、互いに異なる材質の材料で形成された金属板6、例えば、互いに異なるA、Bという材質の材料でそれぞれ形成された2種類のAタイプ金属板6A、Bタイプ金属板6Bを、それぞれ複数枚、形成して用意する。もちろん同種の金属板でもよいが、この実施例で異種の金属板で説明する。   The metal plate 6 having the structure shown in FIG. 2A is made of a metal plate 6 made of different materials, for example, two types of A-type metal plates made of different materials A and B, respectively. A plurality of 6A and B type metal plates 6B are formed and prepared. Of course, the same type of metal plate may be used, but in this embodiment, a description will be given using different types of metal plates.

図2(d)〜(g)は、熱交換器1の構成要素である金属板6を積層する積層構造を説明する図である。説明を簡単にするために、上下方向に、Aタイプ金属板6AとBタイプ金属板6Bの合計4枚の金属板6を交互に積層する構造について説明する。   2D to 2G are views for explaining a laminated structure in which metal plates 6 that are constituent elements of the heat exchanger 1 are laminated. In order to simplify the description, a structure in which a total of four metal plates 6 of an A type metal plate 6A and a B type metal plate 6B are alternately laminated in the vertical direction will be described.

図2(d)は、積層すべき4枚の金属板6の正面図を示し、図2(e)はその側面図を示す。図2(f)、(g)は、製作される熱交換器1の正面図、側面図を示す。ところで、Aタイプ金属板6とBタイプ金属板6は、材質が互いに異なるが、それぞれの上下の面に形成された流路を含めてその構造は全く同じである。   FIG.2 (d) shows the front view of the four metal plates 6 which should be laminated | stacked, and FIG.2 (e) shows the side view. 2 (f) and 2 (g) show a front view and a side view of the heat exchanger 1 to be manufactured. By the way, although the A-type metal plate 6 and the B-type metal plate 6 are made of different materials, their structures are completely the same including the flow paths formed on the upper and lower surfaces of each.

このような4枚の金属板6を、図2(d)、(e)に示すように、上下に隣接するAタイプ金属板6とBタイプ金属板6の上下の面を交互に表裏を変えて配置し、当接する。例えば、Aタイプの金属板6Aの下面に形成された横方向に延びる加熱流路5に、Bタイプの金属板6Bに形成された横方向に延びる加熱流路5を合致するように、Aタイプの金属板6Aの下面とBタイプの金属板6Bの上面を向き合わせて、当接する。   As shown in FIGS. 2 (d) and 2 (e), the upper and lower surfaces of the A type metal plate 6 and the B type metal plate 6 that are adjacent to each other are alternately turned upside down. Place and abut. For example, the A type metal plate 6 </ b> A is formed so that the laterally extending heating channel 5 formed in the B type metal plate 6 </ b> B matches the laterally extending heating channel 5 formed in the lower surface of the A type metal plate 6 </ b> A. The lower surface of the metal plate 6A and the upper surface of the B type metal plate 6B face each other and come into contact with each other.

このように、Aタイプの金属板6Aの下面にBタイプの金属板6Bの上面を当接した状態で、真空雰囲気中で、加熱しながら加圧すると、互いに異なる材質のAタイプの金属板6AとBタイプの金属板6Bの材料間の界面9で原子拡散が発生し、分子的構造上、あたかも同一材料の様に拡散接合できる。   As described above, when the upper surface of the B-type metal plate 6B is in contact with the lower surface of the A-type metal plate 6A and the pressure is applied while heating in a vacuum atmosphere, the A-type metal plates 6A of different materials are used. And atomic diffusion occurs at the interface 9 between the materials of the B type metal plate 6B, and diffusion bonding can be performed as if they were the same material in terms of molecular structure.

次に、Bタイプの金属板6Bの下面の冷却流路3に、Aタイプの金属板6Aに形成された縦方向に延びる冷却流路3を合致するように、Bタイプの金属板6Bの下面にAタイプの金属板6Aの上面を当接し、同様に拡散接合する。同様にして順次、複数の金属板6の上下隣接するものを拡散接合して積層し、熱交換器1を形成することができる。   Next, the bottom surface of the B type metal plate 6B is aligned with the cooling channel 3 formed on the A type metal plate 6A and the cooling channel 3 on the bottom surface of the B type metal plate 6B. The top surface of the A-type metal plate 6A is brought into contact with and similarly diffusion-bonded. In the same manner, the heat exchanger 1 can be formed by sequentially stacking a plurality of metal plates 6 adjacent to each other by diffusion bonding.

図3(a)は、以上のようにして形成された本発明に係る熱交換器1を熱交換器の筐体10内に装入してパッケージした熱交換器ユニット11を上から見た図である。筐体10の前後には、縦方向(前後方向)の流路用の出入口12が設けられており、筐体10の左右に横方向(左右方向)の流路用の出入口13が設けられている。なお、縦方向(前後方向)及び左右方向の流路は、加熱器を取り付ける装置全体の用途、構造等に合わせて冷却流路3、加熱流路5として適宜、選択される。   FIG. 3A is a top view of the heat exchanger unit 11 in which the heat exchanger 1 according to the present invention formed as described above is inserted and packaged in the housing 10 of the heat exchanger. It is. In front and rear of the housing 10, a vertical direction (front-rear direction) flow path entrance 12 is provided, and on the left and right sides of the housing 10 lateral direction (left and right direction) flow path entrances 13 are provided. Yes. In addition, the flow paths in the vertical direction (front-rear direction) and the left-right direction are appropriately selected as the cooling flow path 3 and the heating flow path 5 according to the use, structure, etc. of the entire apparatus to which the heater is attached.

図3(b)は、図3(a)に示した熱交換器ユニット上方から見て斜めに切断した切断面を示し、その切断面の部分拡大図を図3(c)に示す。図3(b)、(c)に示す、熱交換器ユニット11の切断面には、冷却流路3、加熱流路5として、それぞれ利用される前後方向(縦方向の)流路及び横方向(左右方向)の流路の切り口が示されている。   FIG.3 (b) shows the cut surface cut | disconnected diagonally seeing from the heat exchanger unit upper direction shown to Fig.3 (a), The partial enlarged view of the cut surface is shown in FIG.3 (c). The cut surface of the heat exchanger unit 11 shown in FIGS. 3B and 3C includes a front-rear direction (vertical direction) flow path and a lateral direction used as the cooling flow path 3 and the heating flow path 5, respectively. The cut-out of the (left-right direction) flow path is shown.

次に、本発明の実施例の具体的な仕様例(仕様例1)を挙げると、冷却流路及び加熱流路について、それぞれ、流路断面寸法は縦250μm×横250μm、積層数20枚(1枚に冷却流路又は加熱流路の1つが形成されている場合)、流路長22mm、流路間距離150μm、出入口孔径1/4インチ(冷却流路)、1/4インチ(加熱流路)である。   Next, specific specification examples (specification example 1) of the embodiment of the present invention will be described. Regarding the cooling flow path and the heating flow path, the cross-sectional dimensions of the flow path are 250 μm long × 250 μm wide, and the number of stacked layers is 20 ( When one cooling channel or heating channel is formed on one sheet), channel length is 22 mm, distance between channels is 150 μm, inlet / outlet hole diameter is 1/4 inch (cooling channel), 1/4 inch (heating flow) Road).

さらに、別の仕様例(仕様例2)を挙げると、冷却流路及び加熱流路について、それぞれ、流路断面寸法は縦500μm×横250μm、積層数13又は14枚(1枚に冷却流路又は加熱流路の1つが形成されている場合)、流路長22mm、流路間距離150μm、出入口孔径1/4インチ(冷却流路)、1/4インチ(加熱流路)である。   Furthermore, when another specification example (specification example 2) is given, for the cooling channel and the heating channel, the channel cross-sectional dimensions are 500 μm in length × 250 μm in width, the number of stacked layers is 13 or 14 (one cooling channel) Alternatively, when one of the heating channels is formed), the channel length is 22 mm, the distance between channels is 150 μm, the inlet / outlet hole diameter is 1/4 inch (cooling channel), and 1/4 inch (heating channel).

なお、上記実施例の熱交換器1では、その要素となる金属板6は、上下面にそれぞれ冷却用或いは加熱用の流路を形成したが、金属板の上下いずれかの一面にのみ、縦方向又は横方向の流路を形成した複数の金属板を、縦方向の流路及び横方向の流路が連通することなく交互になるように積層して拡散接合して成る構成としてもよい。   In the heat exchanger 1 of the above-described embodiment, the metal plate 6 as an element has cooling or heating channels formed on the upper and lower surfaces, respectively, but only on one of the upper and lower surfaces of the metal plate. A plurality of metal plates in which a direction or a horizontal flow path is formed may be laminated and diffusion-bonded so that the vertical flow path and the horizontal flow path are alternately communicated with each other.

以上、本発明に係る熱交換器の具体的な構成を説明したが、そのポイントをまとめると、次のようなこととなる。伝熱の基礎理論として、流路を小さくするほど均質に加熱・冷却(伝熱)することができる。熱交換器の伝熱に寄与する流路が短くても、微細流路を多数設ければ、熱交換器として十分な熱通過率を得ることができる。また大量に熱を交換するためには、大流量の流体を流す必要があり、流路において高流速で流体を流すことが必要となる。   The specific configuration of the heat exchanger according to the present invention has been described above. The points are summarized as follows. As the basic theory of heat transfer, heating and cooling (heat transfer) can be performed more uniformly as the flow path is made smaller. Even if the flow path contributing to the heat transfer of the heat exchanger is short, if a large number of fine flow paths are provided, a sufficient heat transmission rate as a heat exchanger can be obtained. Moreover, in order to exchange heat in large quantities, it is necessary to flow a large flow rate fluid, and it is necessary to flow the fluid at a high flow rate in the flow path.

本発明によれば、このような伝熱理論を実際の熱交換器に応用することにより、マイクロスケールの微細流路を多数有する積層構造とし、高流速をかけるために熱交換器自体が高耐圧であることを熱交換器の基本的なコンセプトとした。   According to the present invention, by applying such heat transfer theory to an actual heat exchanger, a laminated structure having a large number of micro-scale fine channels is formed, and the heat exchanger itself has a high pressure resistance in order to apply a high flow rate. This is the basic concept of the heat exchanger.

しかし、微細流路とすることで一本の流路での熱交換は効率的に行われるものの、移動熱量の絶対値は小さい。また、流路接合部からの漏れによって高圧で使用できないなどの問題があるが、本発明では、流路を一体構造で形成することによって、COの超臨界圧である80気圧以上の高い圧力にも耐えることができる微細流路を開発し熱交換器としてデバイス化したものである。 However, although the heat exchange in one flow path is efficiently performed by using a fine flow path, the absolute value of the amount of heat transferred is small. Further, although there is a problem that it cannot be used at a high pressure due to leakage from the flow path joint portion, in the present invention, by forming the flow path as an integral structure, a high pressure of 80 atmospheres or more, which is the supercritical pressure of CO 2. Has been developed as a heat exchanger and developed as a micro flow channel that can withstand heat.

従って、本発明の熱交換器は、
(1)多数の微細流路を積層構造とするとともに、
(2)高流速で流せる、
という構造とすることによって移動熱量の増大を実現している。
Therefore, the heat exchanger of the present invention is
(1) A number of fine flow paths have a laminated structure,
(2) High flow rate
With this structure, the amount of heat transferred is increased.

さらに、このような構造を実現するために、
(3)表面に多数の微細流路の形成された複数の金属板を拡散接合を用いて接合し、一体型積層構造とすることにより、積層された多数の微細な流路(微細な流路群)を有する層が積層され一体化して作製し、
(4)高流速を流すことが可能な高耐圧構造、
を実現している。
Furthermore, in order to realize such a structure,
(3) By joining a plurality of metal plates having a large number of fine channels formed on the surface by diffusion bonding to form an integrated laminated structure, a large number of laminated fine channels (fine channels) Layer) are laminated and integrated,
(4) High pressure resistant structure capable of high flow rate,
Is realized.

そして、その用途は超臨界CO冷媒又は超臨界フロン冷媒用の熱交換器であり、超臨界CO冷媒を利用するヒートポンプに組み込まれて使用される。ここで、本発明における加熱流路及び冷却流路として形成される微細流路は、高速で流体が流され、かつ凝縮又は沸騰を伴うことによる熱交換が可能である。そして、このヒートポンプは、加熱流路又は冷却流路には、80気圧以上で超臨界となる二酸化炭素冷媒又は40気圧以上で超臨界状態となるフロン系冷媒に対しても耐圧性を有する構造である。 The application is a heat exchanger for a supercritical CO 2 refrigerant or a supercritical chlorofluorocarbon refrigerant, which is incorporated in a heat pump that uses the supercritical CO 2 refrigerant. Here, the fine flow channels formed as the heating flow channel and the cooling flow channel in the present invention allow fluid to flow at a high speed and allow heat exchange due to condensation or boiling. The heat pump has a structure that has pressure resistance against a carbon dioxide refrigerant that becomes supercritical at 80 atm or higher or a fluorocarbon refrigerant that becomes supercritical at 40 atm or higher in the heating channel or the cooling channel. is there.

なお、本発明の一体型積層構造熱交換器は、マイクロガスタービン又は燃料電池を用いたコジェネレーションシステムに使用され、廃熱利用のための熱交換器として高効率で利用可能である。   The integrated laminated structure heat exchanger of the present invention is used in a cogeneration system using a micro gas turbine or a fuel cell, and can be used with high efficiency as a heat exchanger for using waste heat.

さらに、本発明の一体型積層構造熱交換器は、縦および横の寸法が10〜1000μmであり、小型分散型エネルギーシステムにおいて使用可能な高性能熱交換を可能とする   Furthermore, the monolithic laminated heat exchanger of the present invention has a vertical and horizontal dimension of 10 to 1000 μm, and enables high performance heat exchange that can be used in a small distributed energy system.

(試験例)
本発明に係る熱交換器が超臨界CO冷媒用の熱交換器として有用であることを確認するためにいくつかの試験を実施したので、その試験例を説明する。
(Test example)
Several tests were conducted to confirm that the heat exchanger according to the present invention is useful as a heat exchanger for supercritical CO 2 refrigerant, and test examples thereof will be described.

耐圧試験:
実施例で説明した本発明の熱交換器(上記仕様例1)を利用し、互いに交叉する微細な冷却用流路及び加熱用流路において、一方の流路には、超臨界CO冷媒を模して高圧の水を流し、これによる他方の流路への耐圧上の影響を調べるために、他方の流路には流量を変えて空気を流してその流量毎の圧損を測定した。
Pressure test:
Using the heat exchanger of the present invention described in the embodiment (specification example 1 above), a supercooling CO 2 refrigerant is placed in one of the fine cooling and heating channels crossing each other. In order to investigate the influence of pressure resistance on the other flow path by flowing high pressure water, air flow was changed in the other flow path, and the pressure loss at each flow rate was measured.

具体的には、本発明の熱交換器の一方の流路にはプランジャポンプによって水への圧力0.1MPa、5MPa、10MPa、15MPaと変えて高圧の水を流し、この各圧力毎に、他方の流路へは、コンプレッサにより流量を適宜変えて空気を流し、各流量毎に他方の流路で発生する流路抵抗による圧損を測定した。   Specifically, high pressure water is flowed into one flow path of the heat exchanger of the present invention by changing the pressure to water by a plunger pump from 0.1 MPa, 5 MPa, 10 MPa, and 15 MPa, and for each pressure, the other The flow rate was appropriately changed by a compressor and air was passed through the flow channel, and the pressure loss due to the flow channel resistance generated in the other flow channel was measured for each flow rate.

図4は、この耐圧試験の結果示し、一方の流路に水の圧力を変えて水を流し、その水の圧力毎に、他方の流路に流す空気流量に対する他方の流路に生じる圧損を示すグラフである。この図4から明らかであるが、一方の流路に対して流す水の圧力を、0.1MPa、5MPa、10MPa、15MPaのように変えても、それにより生じる圧損は互いにほぼ差がなく、当然のことであるが、圧損は空気流量に対して増大するのみという結果を得た。   FIG. 4 shows the result of the pressure test, in which water is flowed by changing the pressure of water in one flow path, and for each water pressure, the pressure loss generated in the other flow path with respect to the air flow rate flowing in the other flow path is shown. It is a graph to show. As is apparent from FIG. 4, even if the pressure of water flowing through one flow path is changed to 0.1 MPa, 5 MPa, 10 MPa, and 15 MPa, the resulting pressure loss is not substantially different from each other. However, it was obtained that the pressure loss only increased with respect to the air flow rate.

そして、一方の流路に15MPaの圧力をかけて水を流しても、熱交換器の変形や漏れがないことを目視検査で確認した。この耐圧試験の結果から、高くても10MPa程度で冷凍サイクル内で運用される超臨界CO冷媒にも利用可能であることが実証された。 Then, it was confirmed by visual inspection that there was no deformation or leakage of the heat exchanger even when water was flowed by applying a pressure of 15 MPa to one channel. From the result of this pressure test, it was proved that it can be used for a supercritical CO 2 refrigerant operated in a refrigeration cycle at about 10 MPa at the highest.

熱通過率試験:
実施例で説明した本発明の熱交換器(上記仕様例1)を利用し、互いに交叉する微細流路において、一方の流路には、ポンプにより冷却水(入口温度条件:11.5±1℃)を流量を変えて流し、他方の流路へ加熱水(温度条件:80±1℃)を流量を0.017kg/s、0.025kg/s、0.03kg/sと変えて流し、一方の流路における冷却水が加熱される温度を測定することで、熱交換量を測定した。
Heat transfer rate test:
Using the heat exchanger of the present invention described in the embodiment (specification example 1 above), one of the microchannels crossing each other is cooled by cooling water (inlet temperature condition: 11.5 ± 1). ° C) is allowed to flow at a different flow rate, and heated water (temperature condition: 80 ± 1 ° C) is passed through the other flow path at flow rates of 0.017 kg / s, 0.025 kg / s, and 0.03 kg / s, The amount of heat exchange was measured by measuring the temperature at which the cooling water in one channel was heated.

図5は、この熱通過率試験の結果示し、一方の流路の水の流量に対する該水の熱交換量を示すグラフである。この図5によると、他方の流路の加熱水の流量増加に伴い熱熱交換量が上昇する傾向があり、十分な熱交換量を備えている。なお、実際使用する熱交換器は、上記仕様例1の伝熱面積より大きく設計にされるので、熱交換器として十分利用可能である。   FIG. 5 is a graph showing the results of this heat transfer rate test and showing the heat exchange amount of the water with respect to the flow rate of the water in one flow path. According to FIG. 5, the heat and heat exchange amount tends to increase with an increase in the flow rate of the heating water in the other channel, and a sufficient heat exchange amount is provided. In addition, since the heat exchanger actually used is designed to be larger than the heat transfer area of the above specification example 1, it can be used as a heat exchanger.

従来の熱交換器との熱交換性能の比較試験:
実施例で説明した本発明の熱交換器(上記仕様例1)の熱交換性能を従来品(比較例1、2)と比較するために、上記熱交換量試験と同様な試験方法で、熱交換性能の比較試験を行った。この比較試験では、本発明の熱交換器及び比較例1、2の熱交換器の凝縮器における加熱能力は4.5kW級である。(家庭用のヒートポンプや給湯器等に適した規模である。)
Comparison test of heat exchange performance with conventional heat exchanger:
In order to compare the heat exchange performance of the heat exchanger of the present invention (specification example 1) described in the examples with conventional products (comparative examples 1 and 2), A comparative test of exchange performance was performed. In this comparative test, the heating capacity in the condenser of the heat exchanger of the present invention and the heat exchangers of Comparative Examples 1 and 2 is 4.5 kW class. (The scale is suitable for household heat pumps and water heaters.)

この試験において使用した熱交換器の仕様を図6(a)で示す。一方の流路の水の流量(Kg/s)に対する該水の熱交換器の単位体積あたりの熱交換性能(W/m)量を測定し、その測定結果を図6(b)にグラフで示す。この図6(b)に示すように、従来の比較例1、2に較べて、本発明の熱交換器の熱交換性能(W/m)は、およそ100倍の性能があることが実証された。従って、大幅に熱交換器の小型化が可能である。 The specification of the heat exchanger used in this test is shown in FIG. The amount of heat exchange performance (W / m 3 ) per unit volume of the water heat exchanger with respect to the water flow rate (Kg / s) of one channel is measured, and the measurement result is shown in FIG. It shows with. As shown in FIG. 6 (b), the heat exchange performance (W / m 3 ) of the heat exchanger of the present invention is proved to be about 100 times that of the conventional comparative examples 1 and 2. It was done. Therefore, the heat exchanger can be greatly reduced in size.

起動性試験:
実施例で説明した本発明の熱交換器(上記仕様例1)の定常状態(定常の熱交換の動作状態)となる時間(起動時間)の試験を行った。この試験では、冷却水を予め0.017kg/sで流し、後から加熱水を0.017kg/sで流して、冷却水入口温度(Tcin)、冷却水出口温度(Tcout)及び加熱水入口温度(Thin)と加熱水出口温度(Thout)、並びに定常状態となるまでの時間を計測した。
Startability test:
A test for a time (start-up time) during which the heat exchanger of the present invention described in the example (specification example 1) is in a steady state (operational state of steady heat exchange) was performed. In this test, cooling water was flowed at a rate of 0.017 kg / s in advance, and heating water was flowed at a rate of 0.017 kg / s later, and the cooling water inlet temperature (T cin ), the cooling water outlet temperature (T cout ), and the heating water inlet temperature (T hin) and the heating water outlet temperature (T hout), as well as to measure the time until the steady state.

この起動性試験の結果を図7に示す。計測開始からおよそ8秒後に加熱水を流し始めた。その数秒後(約5秒後)には冷却水出口温度(Tcout)も急上昇しほぼフラットな定常状態となった。この結果から本発明の熱交換器は極めて優れた起動性を持つことが示されている。これは、本発明の熱交換器が、体積0.00005m、質量230gと水の熱容量に対して非常に小さく、定常状態になるまでに必要となる熱量が小さいためであると考えられる。 The results of this startability test are shown in FIG. Approximately 8 seconds after the start of measurement, heating water was started to flow. A few seconds later (about 5 seconds later), the cooling water outlet temperature (T cout ) also increased rapidly and became a substantially flat steady state. From this result, it is shown that the heat exchanger of the present invention has extremely excellent startability. This is considered to be because the heat exchanger of the present invention has a volume of 0.00005 m 3 , a mass of 230 g and a heat capacity of water that is very small and requires a small amount of heat to reach a steady state.

以上の試験結果から、本発明の熱交換器は、15MPa以下では変形、破損は起こらず、15Mpa以上の圧力にも耐え得る可能性が実証された。そして他の形式の熱交換器(比較例1、2)と比較した結果、単位体積あたりの熱交換量(W/m)において、本発明の熱交換器は、100倍程度である。よって、耐圧性、熱交換性及びコンパクト性の諸点のいずれからみても、超臨界CO冷媒用熱交換器としての用途が最適であり、超臨界CO冷媒利用ヒートポンプに組み込み利用可能である。 From the above test results, it was demonstrated that the heat exchanger of the present invention does not deform or break at 15 MPa or less and can withstand a pressure of 15 Mpa or more. As a result of comparison with other types of heat exchangers (Comparative Examples 1 and 2), the amount of heat exchange per unit volume (W / m 3 ) is about 100 times that of the heat exchanger of the present invention. Therefore, the use as a heat exchanger for supercritical CO 2 refrigerant is optimal from the viewpoints of pressure resistance, heat exchange, and compactness, and it can be incorporated into a heat pump using supercritical CO 2 refrigerant.

以上、本発明に係る熱交換器を実施するための最良の形態を実施例に基づいて説明したが、本発明は、特にこのような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内でいろいろな実施例があることはいうまでもない。   The best mode for carrying out the heat exchanger according to the present invention has been described based on the embodiments. However, the present invention is not particularly limited to such embodiments, and is described in the claims. It goes without saying that there are various embodiments within the scope of technical matters.

本発明に係る熱交換器は、小型で耐圧性に富み高効率の熱交換器であるから、超臨界CO冷媒利用ヒートポンプに好適である。さらに、本発明に係る熱交換器は、マイクロガスタービンや燃料電池等を用いたコジェネレーションシステムなどにも小型分散型のエネルギーシステムの一部を構成し、廃熱などを高効率で利用可能である。 Since the heat exchanger according to the present invention is a small, rich pressure-resistant and highly efficient heat exchanger, it is suitable for a heat pump using a supercritical CO 2 refrigerant. Furthermore, the heat exchanger according to the present invention constitutes a part of a small distributed energy system for a cogeneration system using a micro gas turbine, a fuel cell, etc., and can use waste heat with high efficiency. is there.

本発明に係る熱交換器の実施例を説明する図である。It is a figure explaining the Example of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の実施例を説明する図である。It is a figure explaining the Example of the heat exchanger which concerns on this invention. (a)は本発明に係る熱交換器を利用した熱交換器ユニットを上から見た図であり、(b)は(a)で示すものを斜めに切断した図であり、(c)はその部分拡大図である。(A) is the figure which looked at the heat exchanger unit using the heat exchanger which concerns on this invention from the top, (b) is the figure which cut | disconnected diagonally what is shown by (a), (c) is FIG. 本発明に係る熱交換器の耐圧試験の結果を示す図である。It is a figure which shows the result of the pressure | voltage resistant test of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の熱交換量試験の結果を示す図である。It is a figure which shows the result of the heat exchange amount test of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の熱交換性能を比較例との比較試験に関し、(a)はそれぞれの仕様を示し、(b)は試験結果を示す図である。The heat exchange performance of the heat exchanger according to the present invention is related to a comparative test with a comparative example, (a) shows the respective specifications, and (b) shows the test results. 本発明に係る熱交換器の起動時間試験の結果を示す図である。It is a figure which shows the result of the starting time test of the heat exchanger which concerns on this invention.

符号の説明Explanation of symbols

1 熱交換器
2 冷却流路群
3 冷却流路
4 加熱流路群
5 加熱流路
6 金属板
7 金属板の上面
8 金属板の下面
6A Aタイプ金属板
6B Bタイプ金属板
9 金属間の界面
10 熱交換器の筐体
11 熱交換器ユニット
12、13 流路用の出入口
1 heat exchanger
2 Cooling channel group
3 Cooling channel
4 Heating channel group
5 Heating channel
6 Metal plate
7 Top surface of metal plate
8 Lower surface of metal plate
6A A type metal plate
6B B type metal plate
9 Interface between metals
10 Heat exchanger housing
11 Heat exchanger unit
12, 13 Entrance / exit for flow path

Claims (8)

複数の金属板のそれぞれに形成された加熱流路と冷却流路が互いに連通しないように、前記複数の金属板が一体の積層構造に形成されてなる一体型積層構造熱交換器であって、
前記複数の金属板は、それぞれの表面には加熱流路及び冷却流路のうちの一方が形成されており、該表面に対する裏面には加熱流路及び冷却流路のうちの他方が形成されており、
前記加熱流路及び冷却流路の断面寸法は、それぞれ縦及び横寸法が10〜1000μmであることを特徴とする一体型積層構造熱交換器。
An integral laminated structure heat exchanger in which the plurality of metal plates are formed in an integral laminated structure so that the heating channel and the cooling channel formed in each of the plurality of metal plates do not communicate with each other,
Each of the plurality of metal plates has one of a heating channel and a cooling channel formed on each surface, and the other of the heating channel and the cooling channel is formed on the back surface with respect to the surface. And
The cross-sectional dimension of the heating channel and the cooling channel is 10 to 1000 μm in length and width, respectively.
前記複数の金属板は、拡散接合によって一体の積層構造に形成されており、該積層構造の接合面は、前記金属板と同じ強度を有し、前記加熱流路及び冷却流路に超臨界状態の高圧流体を流すことが可能な耐圧を有することを特徴とする請求項1記載の一体型積層構造熱交換器。   The plurality of metal plates are formed in an integrated laminated structure by diffusion bonding, and the joining surface of the laminated structure has the same strength as the metal plate, and is in a supercritical state in the heating channel and the cooling channel. 2. The integrated laminated structure heat exchanger according to claim 1, having a pressure resistance capable of flowing a high-pressure fluid. 前記加熱流路及び冷却流路は、高速で流体が流され、かつ凝縮又は沸騰を伴うことによる熱交換が可能であることを特徴とする請求項2記載の一体型積層構造熱交換器。   3. The integrated laminated structure heat exchanger according to claim 2, wherein the heating channel and the cooling channel allow fluid to flow at high speed and can exchange heat by condensing or boiling. 前記加熱流路又は冷却流路には、超臨界二酸化炭素冷媒又は超臨界フロン系冷媒に対しても耐圧性を有する構造である、ヒートポンプに用いられることを特徴とする請求項2又は3記載の一体型積層構造熱交換器。   The heating channel or the cooling channel is used for a heat pump having a pressure resistance against a supercritical carbon dioxide refrigerant or a supercritical chlorofluorocarbon refrigerant. Integrated laminated heat exchanger. 前記加熱流路又は冷却流路は、超臨界二酸化炭素冷媒又は超臨界フロン系冷媒の蒸発及び凝縮による熱移動を伴うヒートポンプに使用されるマイクロチャンネル構造を有することを特徴とする請求項2、3又は4記載の一体型積層構造熱交換器。   4. The heating channel or the cooling channel has a microchannel structure used for a heat pump accompanied by heat transfer by evaporation and condensation of a supercritical carbon dioxide refrigerant or a supercritical chlorofluorocarbon refrigerant. Or the integral-type laminated structure heat exchanger of 4. 請求項1〜5のいずれかに記載の一体型積層構造熱交換器であって、同じ性能の従来型熱交換器に比べ1/10〜1/100の大きさであり、冷凍空調機器の熱交換器として使用されることを特徴とする請求項2、3又は4記載の一体型積層構造熱交換器。   6. The integrated laminated structure heat exchanger according to any one of claims 1 to 5, which is 1/10 to 1/100 the size of a conventional heat exchanger having the same performance, The integrated laminated structure heat exchanger according to claim 2, 3 or 4, wherein the heat exchanger is used as an exchanger. 請求項1〜6のいずれかに記載の一体型積層構造熱交換器であって、マイクロガスタービン又は燃料電池を用いたコジェネレーションシステムに使用され、廃熱利用のための熱交換器として高効率で利用可能であることを特徴とする一体型積層構造熱交換器。   It is a one-piece | stacked laminated-structure heat exchanger in any one of Claims 1-6, Comprising: It is used for the cogeneration system using a micro gas turbine or a fuel cell, and is highly efficient as a heat exchanger for waste heat utilization An integrated laminated heat exchanger characterized by being usable in 請求項2〜6のいずれかに記載の一体型積層構造熱交換器であって、縦および横の寸法が10〜1000μmであり、小型分散型エネルギーシステムにおいて使用可能な高性能熱交換を可能とすることを特徴とする一体型積層構造熱交換器。   The integrated laminated structure heat exchanger according to any one of claims 2 to 6, wherein the vertical and horizontal dimensions are 10 to 1000 µm, and high-performance heat exchange that can be used in a small distributed energy system is possible. An integrated laminated structure heat exchanger.
JP2006168648A 2006-06-19 2006-06-19 Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant Pending JP2007333353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006168648A JP2007333353A (en) 2006-06-19 2006-06-19 Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168648A JP2007333353A (en) 2006-06-19 2006-06-19 Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant

Publications (1)

Publication Number Publication Date
JP2007333353A true JP2007333353A (en) 2007-12-27

Family

ID=38932985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168648A Pending JP2007333353A (en) 2006-06-19 2006-06-19 Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant

Country Status (1)

Country Link
JP (1) JP2007333353A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638661A (en) * 1991-07-15 1994-02-15 Kanebo Ltd Inverting device for arranging randomly supplied face of noodle ball in one direction
CN101865573A (en) * 2010-06-28 2010-10-20 吴植仁 Internal heat exchanger for transcritical CO2 refrigerating system and manufacturing method
CN101900459A (en) * 2010-06-28 2010-12-01 吴植仁 Micro-channel parallel flow heat exchanger
KR101080236B1 (en) 2011-06-13 2011-11-08 한국기계연구원 Micro channel heat exchanger
CN102313401A (en) * 2011-10-18 2012-01-11 杭州沈氏换热器有限公司 Microchannel heat exchanger
JP2012030776A (en) * 2010-07-30 2012-02-16 Res Inst Of Natl Defence Cooling device for fluid, flight vehicle having the same, and cooling method for fluid
JP2012117759A (en) * 2010-12-01 2012-06-21 Furukawa-Sky Aluminum Corp Heat exchanger and method for manufacturing the same
WO2012176258A1 (en) * 2011-06-20 2012-12-27 熱技術開発株式会社 Carbon dioxide supply/recovery apparatus for supercritical carbon dioxide gas turbine and method for regulating amount of carbon dioxide introduced
KR101233346B1 (en) 2010-10-28 2013-02-20 주식회사 코헥스 Micro Heat Exchanger Using Clad Metal Bonding and Manufacturing Method Thereof
JP2013521465A (en) * 2010-03-02 2013-06-10 ヴェロシス インコーポレイテッド Welding and laminating apparatus, method of manufacturing the apparatus, and method of using
TWI472419B (en) * 2012-12-28 2015-02-11 Metal Ind Res & Dev Ct Method for manufacturing a heat exchanger
JP2015142916A (en) * 2008-09-30 2015-08-06 フォースト・フィジックス・リミテッド・ライアビリティ・カンパニーForced Physics LLC Method and apparatus for control of fluid temperature and flow
JP2015158315A (en) * 2014-02-24 2015-09-03 株式会社富士通ゼネラル Macro flow passage heat exchanger
JP2015169221A (en) * 2014-03-05 2015-09-28 日立オートモティブシステムズメジャメント株式会社 Gas filling device
JP2015197134A (en) * 2014-03-31 2015-11-09 日立オートモティブシステムズメジャメント株式会社 Gas filling device
CN106839832A (en) * 2017-01-23 2017-06-13 中国科学技术大学 A kind of bend flow channel heat exchanger in the thermodynamic cycle for supercritical fluid
JP2020012562A (en) * 2018-07-13 2020-01-23 三菱重工サーマルシステムズ株式会社 Microchannel heat exchanger and refrigeration cycle device
JP2020012563A (en) * 2018-07-13 2020-01-23 三菱重工サーマルシステムズ株式会社 Microchannel heat exchanger and refrigeration cycle device
KR20210085869A (en) * 2019-12-31 2021-07-08 한국수력원자력 주식회사 Heat exchanger manufactured by diffusion bonding for nuclear power plant
WO2021162035A1 (en) 2020-02-10 2021-08-19 ダイキン工業株式会社 Heat exchanger and heat pump system having same
WO2023203887A1 (en) * 2022-04-21 2023-10-26 栗田工業株式会社 Method for improving productivity of production process including heat exchange step
US11988460B2 (en) 2017-05-30 2024-05-21 Shell Usa, Inc. Method of using an indirect heat exchanger and facility for processing liquefied natural gas comprising such heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164066A (en) * 2000-11-22 2002-06-07 Mitsubishi Heavy Ind Ltd Stacked heat exchanger
JP2005241049A (en) * 2004-02-24 2005-09-08 Calsonic Kansei Corp Heat exchanger
JP2005282951A (en) * 2004-03-30 2005-10-13 Institute Of Tsukuba Liaison Co Ltd Heat exchanger having integrated laminate structure
JP2005326068A (en) * 2004-05-13 2005-11-24 Daikin Ind Ltd Plate for heat exchanger and heat exchanger
JP2006038277A (en) * 2004-07-23 2006-02-09 Sanyo Electric Co Ltd Solar power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164066A (en) * 2000-11-22 2002-06-07 Mitsubishi Heavy Ind Ltd Stacked heat exchanger
JP2005241049A (en) * 2004-02-24 2005-09-08 Calsonic Kansei Corp Heat exchanger
JP2005282951A (en) * 2004-03-30 2005-10-13 Institute Of Tsukuba Liaison Co Ltd Heat exchanger having integrated laminate structure
JP2005326068A (en) * 2004-05-13 2005-11-24 Daikin Ind Ltd Plate for heat exchanger and heat exchanger
JP2006038277A (en) * 2004-07-23 2006-02-09 Sanyo Electric Co Ltd Solar power generation system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638661A (en) * 1991-07-15 1994-02-15 Kanebo Ltd Inverting device for arranging randomly supplied face of noodle ball in one direction
JP2015142916A (en) * 2008-09-30 2015-08-06 フォースト・フィジックス・リミテッド・ライアビリティ・カンパニーForced Physics LLC Method and apparatus for control of fluid temperature and flow
US10232455B2 (en) 2010-03-02 2019-03-19 Velocys, Inc. Welded, laminated apparatus, methods of making, and methods of using the apparatus
JP2013521465A (en) * 2010-03-02 2013-06-10 ヴェロシス インコーポレイテッド Welding and laminating apparatus, method of manufacturing the apparatus, and method of using
CN101865573A (en) * 2010-06-28 2010-10-20 吴植仁 Internal heat exchanger for transcritical CO2 refrigerating system and manufacturing method
CN101900459A (en) * 2010-06-28 2010-12-01 吴植仁 Micro-channel parallel flow heat exchanger
JP2012030776A (en) * 2010-07-30 2012-02-16 Res Inst Of Natl Defence Cooling device for fluid, flight vehicle having the same, and cooling method for fluid
KR101233346B1 (en) 2010-10-28 2013-02-20 주식회사 코헥스 Micro Heat Exchanger Using Clad Metal Bonding and Manufacturing Method Thereof
JP2012117759A (en) * 2010-12-01 2012-06-21 Furukawa-Sky Aluminum Corp Heat exchanger and method for manufacturing the same
KR101080236B1 (en) 2011-06-13 2011-11-08 한국기계연구원 Micro channel heat exchanger
WO2012176258A1 (en) * 2011-06-20 2012-12-27 熱技術開発株式会社 Carbon dioxide supply/recovery apparatus for supercritical carbon dioxide gas turbine and method for regulating amount of carbon dioxide introduced
JPWO2012176258A1 (en) * 2011-06-20 2015-02-23 熱技術開発株式会社 Carbon dioxide supply and recovery device for supercritical carbon dioxide gas turbine and method for adjusting carbon dioxide filling amount
CN102313401A (en) * 2011-10-18 2012-01-11 杭州沈氏换热器有限公司 Microchannel heat exchanger
TWI472419B (en) * 2012-12-28 2015-02-11 Metal Ind Res & Dev Ct Method for manufacturing a heat exchanger
JP2015158315A (en) * 2014-02-24 2015-09-03 株式会社富士通ゼネラル Macro flow passage heat exchanger
JP2015169221A (en) * 2014-03-05 2015-09-28 日立オートモティブシステムズメジャメント株式会社 Gas filling device
JP2015197134A (en) * 2014-03-31 2015-11-09 日立オートモティブシステムズメジャメント株式会社 Gas filling device
CN106839832A (en) * 2017-01-23 2017-06-13 中国科学技术大学 A kind of bend flow channel heat exchanger in the thermodynamic cycle for supercritical fluid
US11988460B2 (en) 2017-05-30 2024-05-21 Shell Usa, Inc. Method of using an indirect heat exchanger and facility for processing liquefied natural gas comprising such heat exchanger
JP7105641B2 (en) 2018-07-13 2022-07-25 三菱重工サーマルシステムズ株式会社 Microchannel heat exchanger and refrigeration cycle equipment
JP2020012562A (en) * 2018-07-13 2020-01-23 三菱重工サーマルシステムズ株式会社 Microchannel heat exchanger and refrigeration cycle device
JP2020012563A (en) * 2018-07-13 2020-01-23 三菱重工サーマルシステムズ株式会社 Microchannel heat exchanger and refrigeration cycle device
JP7145667B2 (en) 2018-07-13 2022-10-03 三菱重工サーマルシステムズ株式会社 Microchannel heat exchanger and refrigeration cycle equipment
KR102292766B1 (en) * 2019-12-31 2021-08-25 한국수력원자력 주식회사 Heat exchanger manufactured by diffusion bonding for nuclear power plant
KR20210085869A (en) * 2019-12-31 2021-07-08 한국수력원자력 주식회사 Heat exchanger manufactured by diffusion bonding for nuclear power plant
WO2021162035A1 (en) 2020-02-10 2021-08-19 ダイキン工業株式会社 Heat exchanger and heat pump system having same
US11619427B2 (en) 2020-02-10 2023-04-04 Daikin Industries, Ltd. Heat exchanger and heat pump system having same
WO2023203887A1 (en) * 2022-04-21 2023-10-26 栗田工業株式会社 Method for improving productivity of production process including heat exchange step
JP7380747B2 (en) 2022-04-21 2023-11-15 栗田工業株式会社 Method for improving productivity of production process with heat exchange process

Similar Documents

Publication Publication Date Title
JP2007333353A (en) Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant
US8826663B2 (en) Heat exchanger
CA2195859C (en) Microcomponent sheet architecture
US6415860B1 (en) Crossflow micro heat exchanger
EP2321605B1 (en) Microscale heat or heat and mass transfer system
EP2706318A1 (en) Heat exchanger and refrigeration cycle device provided with same
JP2005315459A (en) Heat exchanger
GB2511654A (en) Plate-type heat exchanger and refrigeration cycle equipment including this heat exchanger
WO2008023732A1 (en) Highly pressure-resistant compact heat exchanger, container for occluding hydrogen, and method of producing them
JP4561305B2 (en) Heat exchanger
JP2005282951A (en) Heat exchanger having integrated laminate structure
JP2002048359A (en) Air conditioner
JP2010117126A (en) Heat exchanger having integrated stacking structure
EP3352367B1 (en) Thermoelectric power generation device
JP2008170090A (en) Brazed plate for heat transfer, and heat exchanger using the same
JP4710869B2 (en) Air conditioner
Ding et al. Measurement of friction factor for R134a and R12 through microchannels
JP6934609B2 (en) Heat exchanger and freezing system using it
Brooks et al. Mesoscale combustor/evaporator development
JP5721611B2 (en) Heat pump equipment
KR101818521B1 (en) 2-phase fluid supplying apparatus and method for micro channel heat exchanger
JP7471844B2 (en) Evaporator
Jung et al. Chemically etched cryogenic micro structure heat exchanger
JP2009270761A (en) Countercurrent plate fin type heat exchanger and air cycle refrigeration system for container
Determan et al. A microscale monolithic absorption heat pump

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110517