KR20210085869A - Heat exchanger manufactured by diffusion bonding for nuclear power plant - Google Patents

Heat exchanger manufactured by diffusion bonding for nuclear power plant Download PDF

Info

Publication number
KR20210085869A
KR20210085869A KR1020190179388A KR20190179388A KR20210085869A KR 20210085869 A KR20210085869 A KR 20210085869A KR 1020190179388 A KR1020190179388 A KR 1020190179388A KR 20190179388 A KR20190179388 A KR 20190179388A KR 20210085869 A KR20210085869 A KR 20210085869A
Authority
KR
South Korea
Prior art keywords
metal plate
heat exchanger
diffusion bonding
grain size
nuclear power
Prior art date
Application number
KR1020190179388A
Other languages
Korean (ko)
Other versions
KR102292766B1 (en
Inventor
이호중
김홍덕
나경환
윤은섭
오승진
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to KR1020190179388A priority Critical patent/KR102292766B1/en
Publication of KR20210085869A publication Critical patent/KR20210085869A/en
Application granted granted Critical
Publication of KR102292766B1 publication Critical patent/KR102292766B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • B23K20/026Thermo-compression bonding with diffusion of soldering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/087Heat exchange elements made from metals or metal alloys from nickel or nickel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The present invention relates to a heat exchanger of a nuclear power plant manufactured by a diffusion bonding method, comprising a first metal plate and a second metal plate that face each other and are bonded. A channel forming a flow path is formed in at least one of the first metal plate and the second metal plate. The first metal plate and the second metal plate are manufactured through steps of: providing a metal plate including the first metal plate and the second metal plate; cold processing the metal plate; and contacting the first metal plate and the second metal plate and bonding through diffusion bonding. Accordingly, an objective of the present invention is to provide the heat exchanger of a nuclear power plant manufactured by a diffusion bonding method in which grain coarsening is reduced.

Description

확산접합방식으로 제조된 원자력발전소의 열교환기{Heat exchanger manufactured by diffusion bonding for nuclear power plant}Heat exchanger manufactured by diffusion bonding for nuclear power plant

본 발명은 결정립 조대화가 감소하는 확산접합방식으로 제조된 원자력발전소의 열교환기에 관한 것이다.The present invention relates to a heat exchanger of a nuclear power plant manufactured by diffusion bonding in which grain coarsening is reduced.

원자로에서 생산된 열을 터빈으로 전달하기 위해서는 각각 1차측 과 2차측으로 구분되어 있는 원자로와 터빈 사이에 열교환기가 필요하다. 다양한 열교환기 중 인쇄형기판형 열교환기는 작은 사이즈에도 높은 열효율을 가질 수 있어 소형화가 중요한 SMR 및 차세대 원전 등의 열교환기에 적용될 예정이다.In order to transfer the heat produced in the nuclear reactor to the turbine, a heat exchanger is required between the reactor and the turbine, which are divided into primary and secondary sides, respectively. Among various heat exchangers, the printed board type heat exchanger can have high thermal efficiency despite its small size, so it will be applied to heat exchangers such as SMR and next-generation nuclear power plants, where miniaturization is important.

사이즈가 작은 열교환기는 정밀한 접합을 위해 확산접합 방식으로 제조될 수 있다.The small size heat exchanger can be manufactured by diffusion bonding for precise bonding.

그런데 확산접합에서는 금속판이 고온에 장기간 노출되는데, 이에 의해 금속판의 결정립이 조대화되고 결정립의 조대화에 의해 열교환기의 인장 특성이 저하되는 문제가 있다.However, in diffusion bonding, the metal plate is exposed to high temperature for a long period of time, thereby coarsening the crystal grains of the metal plate, and there is a problem in that the tensile properties of the heat exchanger are deteriorated due to the coarsening of the crystal grains.

한국특허공개 제2016-0149592호(2016년 12월 28일 공개)Korean Patent Publication No. 2016-0149592 (published on December 28, 2016)

따라서 본 발명의 목적은 결정립 조대화가 감소하는 확산접합방식으로 제조된 원자력발전소의 열교환기를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a heat exchanger for a nuclear power plant manufactured by a diffusion bonding method in which grain coarsening is reduced.

상기 본 발명의 목적은 확산접합방식으로 제조된 원자력발전소의 열교환기에 있어서, 서로 마주하며 접합되어 있는 제1금속판과 제2금속판을 포함하며, 상기 제1금속판과 상기 제2금속판 중 적어도 어느 하나에는 유로를 형성하는 채널이 형성되어 있으며, 상기 제1금속판과 상기 제2금속판은, 상기 제1금속판 및 상기 제2금속판을 포함하는 금속판을 마련하는 단계; 상기 금속판을 냉간가공하는 단계; 및 상기 제1금속판과 상기 제2금속판을 접촉시키고 확산접합을 통해 접합하는 단계를 통해 제조된 것에 의해 달성된다.The object of the present invention is a heat exchanger of a nuclear power plant manufactured by a diffusion bonding method, comprising a first metal plate and a second metal plate facing each other and joined, at least one of the first metal plate and the second metal plate providing a metal plate having a channel forming a flow path, wherein the first metal plate and the second metal plate include the first metal plate and the second metal plate; cold working the metal plate; and contacting the first metal plate and the second metal plate and bonding through diffusion bonding.

상기 제1금속판과 상기 제2금속판은, 각각 독립적으로, 스테인리스 스틸강 및 니켈계합금 중 어느 하나로 이루어질 수 있다.The first metal plate and the second metal plate may each independently be made of any one of stainless steel and a nickel-based alloy.

상기 제1금속판 및 상기 제2금속판 중 적어도 어느 하나는, 상기 냉간가공 전에 제1결정립 크기, 상기 냉간가공 후에 제2결정립 크기 및 상기 확산접합 후 제3결정립 크기를 가지며, 상기 제2결정립 크기는 상기 제1결정립 크기보다 작을 수 있다.At least one of the first metal plate and the second metal plate has a first grain size before the cold working, a second grain size after the cold working, and a third grain size after the diffusion bonding, and the second grain size is It may be smaller than the first grain size.

상기 제3결정립 크기는 상기 제1결정립 크기의 100% 내지 150%일 수 있다.The third grain size may be 100% to 150% of the first grain size.

상기 열교환기는 소형모듈형원자로에 사용될 수 있다.The heat exchanger can be used in a small modular reactor.

본 발명에 따르면 결정립 조대화가 감소하는 확산접합방식으로 제조된 원자력발전소의 열교환기가 제공된다.According to the present invention, there is provided a heat exchanger for a nuclear power plant manufactured by a diffusion bonding method in which grain coarsening is reduced.

도 1은 본 발명의 일 실시예에 따른 원자력발전소의 열교환기의 단면도이고,
도 2는 본 발명의 일 실시예에 따른 원자력발전소의 열교환기에 사용된 단일 금속판을 나타낸 것이고,
도 3은은 본 발명의 일 실시예에 따른 원자력발전소의 열교환기의 제조방법에서 공정에 따른 결정립 크기 변화를 나타낸 것이다.
1 is a cross-sectional view of a heat exchanger of a nuclear power plant according to an embodiment of the present invention;
Figure 2 shows a single metal plate used in a heat exchanger of a nuclear power plant according to an embodiment of the present invention,
3 is a diagram illustrating a change in grain size according to a process in a method of manufacturing a heat exchanger of a nuclear power plant according to an embodiment of the present invention.

이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.The present invention will be described in more detail below with reference to the drawings.

첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일 예에 불과하므로 본 발명의 사상이 첨부된 도면에 한정되는 것은 아니다. 또한 첨부된 도면은 각 구성요소 간의 관계를 설명하기 위해 크기와 간격 등이 실제와 달리 과장되어 있을 수 있다.Since the accompanying drawings are only an example shown in order to explain the technical idea of the present invention in more detail, the spirit of the present invention is not limited to the accompanying drawings. In addition, in the accompanying drawings, the size and spacing may be exaggerated differently from reality in order to explain the relationship between each component.

도 1 및 도 2를 참조하여 본 발명의 일 실시예에 따른 원자력발전소의 열교환기에 대해 설명한다. 본 발명에서의 원자력발전소는 특히 소형모듈형원자로(SMR)일 수 있다.A heat exchanger of a nuclear power plant according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2 . The nuclear power plant in the present invention may in particular be a small modular reactor (SMR).

도 1은 본 발명의 일 실시예에 따른 원자력발전소의 열교환기의 단면도이고, 도 2는 본 발명의 일 실시예에 따른 원자력발전소의 열교환기에 사용된 단일 금속판을 나타낸 것이다.1 is a cross-sectional view of a heat exchanger of a nuclear power plant according to an embodiment of the present invention, and FIG. 2 shows a single metal plate used in a heat exchanger of a nuclear power plant according to an embodiment of the present invention.

열교환기(1)는 판상의 제1금속판(10)과 제2금속판(20)이 교대로 적층되어 형성되어 있다.The heat exchanger 1 is formed by alternately stacking a plate-shaped first metal plate 10 and a second metal plate 20 .

금속판(10, 20)을 제1금속판(10)을 예시로 설명하면, 도 2와 같이 전체적으로 판상 형태이며 일방향으로 따라 길게 연장된 채널(11)이 다수 형성되어 있다.When the metal plates 10 and 20 are described with the first metal plate 10 as an example, as shown in FIG. 2 , a plurality of channels 11 are formed which are generally plate-shaped and extend long in one direction.

채널(11, 21)은 열교환기(1)에서 온수 유로 또는 냉수 유로가 되어 서로 반대방향으로 흐르면서 열교환이 이루어진다.The channels 11 and 21 become a hot water flow path or a cold water flow path in the heat exchanger 1, and heat exchange is performed while flowing in opposite directions.

각 금속판(10, 20)은 매우 얇으며 두께(d1)는 수mm 단위일 수 있으며, 이에 한정되지는 않으나, 1mm 내지 5mm일 수 있다.Each of the metal plates 10 and 20 is very thin and the thickness d1 may be in units of several mm, but is not limited thereto, and may be 1 mm to 5 mm.

금속판(10, 20)은 오스테나이트 스테인리스강 및 니켈계합금으로 제조될 수 있다. 특히 원자력 발전에서 활용할 수 있는 금속 재료인 스테인리스 스틸강 304, 316, 347과 니켈계합금 600, 617, 230으로 제조될 수 있다.The metal plates 10 and 20 may be made of austenitic stainless steel and nickel-based alloy. In particular, it can be manufactured from stainless steel 304, 316, 347, and nickel-based alloy 600, 617, 230, which are metal materials that can be used in nuclear power generation.

제1금속판(10)과 제2금속판(20)은 서로 다른 재질일 수 있으며, 두께가 다를 수도 있다. 또한 열교환기(1)에는 제1금속판(10) 및 제2금속판(20) 외에 다른 채널 형태를 가진 금속판이 추가로 포함될 수 있다.The first metal plate 10 and the second metal plate 20 may be made of different materials and may have different thicknesses. In addition, the heat exchanger 1 may additionally include a metal plate having a different channel shape in addition to the first metal plate 10 and the second metal plate 20 .

본 발명에서는 제1금속판(10)과 제2금속판(20)을 냉간가공한 후에 확산접합을 통해 결합시킨다. 필요에 따라 제1금속판(10)과 제2금속판(20) 중 어느 하나만을 냉간가공한 후 확산접합시킬 수도 있다.In the present invention, after cold working the first metal plate 10 and the second metal plate 20, they are coupled through diffusion bonding. If necessary, only one of the first metal plate 10 and the second metal plate 20 may be cold-worked and then diffusion bonded.

냉간가공은 금속 재료에 추가적인 열을 가하지 않은 상태에서 롤러나 프레스를 이용해 소성변형을 통해 형상을 변형하는 가공법이다. 냉간가공 과정 동안 금속 내 조직이 변형을 받아 조직 내에 결정립이 파괴되고 전위 등이 발생하게 되지만 추가적인 열처리를 가하게 되면 금속 조직이 다시 균질화된다(재결정화). Cold working is a processing method that deforms the shape through plastic deformation using rollers or presses without additional heat applied to the metal material. During the cold working process, the structure in the metal is deformed, and the grains are destroyed and dislocations are generated in the structure.

결정립의 크기는 금속 조직 내의 결정립이 가지는 평균 사이즈를 의미하며, ASTM E112 방법으로 측정할 수 있다.The size of the grains means the average size of grains in the metal structure, and can be measured by the ASTM E112 method.

확산접합은 용가재를 사용하지 않고 열과 압력에 의해 금속을 접합하는 방법이다. 일반적으로 두 금속판을 붙인 상태에서(하중을 가하거나 하가지 않을 수 있음) 진공이나 불활성 가스 분위기에서 용체화 열처리 온도에 노출하면 금속판의 계면에서 결정립 성장에 의해 금속판이 서로 접합된다.Diffusion bonding is a method of joining metals by heat and pressure without using filler metal. In general, when two metal plates are attached (with or without a load applied) and exposed to a solution heat treatment temperature in a vacuum or an inert gas atmosphere, the metal plates are joined to each other by grain growth at the interface of the metal plates.

냉간가공 후 확산접합을 하면 금속의 결정립 크기를 감소시킬 수 있는데 도 3을 참조하여 상세히 설명한다. Diffusion bonding after cold working can reduce the grain size of the metal, which will be described in detail with reference to FIG. 3 .

도 3의 (a)와 같이 냉간가공을 수행하기 전 제1금속판(10)과 제2금속판(20)은 각각 d11 및 d21의 결정립 크기를 가진다.As shown in (a) of FIG. 3 , the first metal plate 10 and the second metal plate 20 have crystal grain sizes of d11 and d21, respectively, before performing cold working.

도 3의 (b)와 같이 냉간가공을 수행하면 제1금속판(10)와 제2금속판(20)의 결정립은 크기가 감소하여, 각각 d12 및 d22의 결정립 크기를 가진다.When cold working is performed as shown in (b) of FIG. 3 , the crystal grains of the first metal plate 10 and the second metal plate 20 are reduced in size, and have crystal grain sizes of d12 and d22, respectively.

도 3의 (c)와 같이 양 금속판(10, 20)을 접합시키고 이후 확산접합을 수행하면 도 3의 (d)와 같이 제1금속판(10)과 제2금속판(20)의 결정립은 크기가 증가하여, 각각 d13 및 d23의 결정립 크기를 가진다.When both metal plates 10 and 20 are joined as shown in (c) of FIG. 3 and then diffusion bonding is performed, the crystal grains of the first metal plate 10 and the second metal plate 20 are of different sizes as shown in FIG. 3 (d). increasing, having grain sizes of d13 and d23, respectively.

제1금속판(10)의 결정립 크기를 예시로 설명하면, d11은 수십 마이크로 미터 수준이고 냉간가공을 통해 d12는 수 마이크로 미터 수준으로 감소한다. 이후 확산접합을 하면 d13은 다시 수십 마이크로 미터 수준으로 증가한다.If the grain size of the first metal plate 10 is described as an example, d11 is at the level of several tens of micrometers, and d12 is reduced to the level of several micrometers through cold working. After diffusion bonding, d13 increases again to the level of several tens of micrometers.

본 발명에 따르면 냉간가공을 통해 결정립이 감소한 상태에서 확산접합을 수행하기 때문에 최종 결정립의 크기(d13)의 증가가 제한된다.According to the present invention, since diffusion bonding is performed in a state in which grains are reduced through cold working, an increase in the size d13 of the final grains is limited.

구체적으로는 냉간가공 후 결정립의 크기(d12)는 원소재의 결정립 크기(d11)의 20% 내지 50%일 수 있으며, 최종 결정립의 크기(d13)는 원소재의 결정립 크기(d11)의 50 내지 200% 또는 100% 내지 150%일 수 있다.Specifically, the size (d12) of the grains after cold working may be 20% to 50% of the grain size (d11) of the raw material, and the size (d13) of the final grains is 50 to 50% of the grain size (d11) of the raw material 200% or 100% to 150%.

기존 방법에서는 결정립 성장(불연속부 제거)을 위해 확산접합이 높은 온도에서 장시간 수행되어 결정립의 크기가 조대화되는 문제가 있었다.In the existing method, there is a problem in that the size of the grains is coarsened because diffusion bonding is performed at a high temperature for a long time for grain growth (removal of discontinuities).

본 발명에 따르면 냉간가공 후 통해 확산접합을 수행하는데, 냉간가공에 의한 재결정화에 의해 확산접합의 온도와 시간에 노출되어도 도 4의 (d)와 같이 결정립의 불연속부가 제거된다.According to the present invention, diffusion bonding is performed after cold working, and even when exposed to the temperature and time of diffusion bonding by recrystallization by cold working, discontinuous portions of crystal grains are removed as shown in FIG. 4(d).

냉간가공을 통해 금속 내에 전위가 생성되고 결정립이 파괴되었다가 확산접합 시 열처리를 통해 재결정이 일어나고 더 열을 가하면 결정립이 성장되게 된다. 이때의 결정립 성장은 금속 전체에서 발생하며 부수적으로 계면에서도 결정립 성장이 일어나 불연속부가 제거되는 것이다.Dislocations are generated in the metal through cold working and grains are destroyed. During diffusion bonding, recrystallization occurs through heat treatment, and when further heat is applied, grains grow. At this time, grain growth occurs in the entire metal and, incidentally, grain growth occurs at the interface, and discontinuities are removed.

재결정이란 냉간가공된 금속판이 높은 온도에 노출되면 원래의 모양으로 회복하려는 성질을 나타낸다. 이 과정에서 전위가 사라지며 파괴되었던 결정립이 다시 생성이 되는데 원래의 사이즈보다 작게 생성된다. 일반적인 확산접합과 같이 고온에 계속 노출되면 결정립이 커지는데 본 발명에서는 냉간가공된 금속판이 고온에 노출되는 시간을 조절하여 원래 금속판의 결정립 크기와 유사하게 또는 크게 증가하지 않게 만들 수 있다.Recrystallization refers to the property of a cold-worked metal sheet to recover to its original shape when exposed to high temperatures. In this process, dislocations disappear and the destroyed crystal grains are regenerated, which is smaller than the original size. As with general diffusion bonding, when the crystal grains are continuously exposed to high temperature, the grain size increases. In the present invention, the crystal grain size of the original metal sheet can be similarly or not greatly increased by controlling the time during which the cold worked metal sheet is exposed to high temperature.

본 발명에 따르면 확산접합 후에도 결정립의 크기 증가가 제한되기 때문에 열교환기(1)의 기계적 강도 확보가 가능하다.According to the present invention, it is possible to secure the mechanical strength of the heat exchanger 1 because the increase in the size of the grains is limited even after diffusion bonding.

전술한 실시예들은 본 발명을 설명하기 위한 예시로서, 본 발명이 이에 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양하게 변형하여 본 발명을 실시하는 것이 가능할 것이므로, 본 발명의 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The above-described embodiments are examples for explaining the present invention, and the present invention is not limited thereto. Those of ordinary skill in the art to which the present invention pertains will be able to practice the present invention with various modifications therefrom, so the technical protection scope of the present invention should be defined by the appended claims.

Claims (5)

확산접합방식으로 제조된 원자력발전소의 열교환기에 있어서,
서로 마주하며 접합되어 있는 제1금속판과 제2금속판을 포함하며,
상기 제1금속판과 상기 제2금속판 중 적어도 어느 하나에는 유로를 형성하는 채널이 형성되어 있으며,
상기 제1금속판과 상기 제2금속판은,
상기 제1금속판 및 상기 제2금속판을 포함하는 금속판을 마련하는 단계;
상기 금속판을 냉간가공하는 단계;
상기 제1금속판과 상기 제2금속판을 접촉시키고 확산접합을 통해 접합하는 단계를 통해 제조된 열교환기.
In the heat exchanger of a nuclear power plant manufactured by diffusion bonding method,
It includes a first metal plate and a second metal plate that face each other and are joined,
A channel forming a flow path is formed in at least one of the first metal plate and the second metal plate,
The first metal plate and the second metal plate,
providing a metal plate including the first metal plate and the second metal plate;
cold working the metal plate;
A heat exchanger manufactured through the steps of bringing the first metal plate into contact with the second metal plate and joining them through diffusion bonding.
제1항에 있어서,
상기 제1금속판과 상기 제2금속판은, 각각 독립적으로, 스테인리스 스틸강 및 니켈계합금 중 어느 하나로 이루어진 열교환기.
According to claim 1,
The first metal plate and the second metal plate are each independently made of any one of stainless steel and nickel-based alloy.
제2항에 있어서,
상기 제1금속판 및 상기 제2금속판 중 적어도 어느 하나는,
상기 냉간가공 전에 제1결정립 크기, 상기 냉간가공 후에 제2결정립 크기 및 상기 확산접합 후 제3결정립 크기를 가지며,
상기 제2결정립 크기는 상기 제1결정립 크기보다 작은 열교환기.
3. The method of claim 2,
At least one of the first metal plate and the second metal plate,
It has a first grain size before the cold working, a second grain size after the cold working, and a third grain size after the diffusion bonding,
The second grain size is smaller than the first grain size heat exchanger.
제3항에 있어서,
상기 제3결정립 크기는 상기 제1결정립 크기의 100% 내지 150%인 열교환기.
4. The method of claim 3,
The third grain size is 100% to 150% of the first grain size heat exchanger.
제4항에 있어서,
상기 열교환기는 소형모듈형원자로에 사용되는 열교환기.
5. The method of claim 4,
The heat exchanger is a heat exchanger used in a small modular reactor.
KR1020190179388A 2019-12-31 2019-12-31 Heat exchanger manufactured by diffusion bonding for nuclear power plant KR102292766B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190179388A KR102292766B1 (en) 2019-12-31 2019-12-31 Heat exchanger manufactured by diffusion bonding for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190179388A KR102292766B1 (en) 2019-12-31 2019-12-31 Heat exchanger manufactured by diffusion bonding for nuclear power plant

Publications (2)

Publication Number Publication Date
KR20210085869A true KR20210085869A (en) 2021-07-08
KR102292766B1 KR102292766B1 (en) 2021-08-25

Family

ID=76893907

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190179388A KR102292766B1 (en) 2019-12-31 2019-12-31 Heat exchanger manufactured by diffusion bonding for nuclear power plant

Country Status (1)

Country Link
KR (1) KR102292766B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333353A (en) * 2006-06-19 2007-12-27 Univ Of Tsukuba Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant
JP2014190664A (en) * 2013-03-28 2014-10-06 Nisshin Steel Co Ltd Stainless steel heat exchanger component and manufacturing method therefor
KR20160149592A (en) 2015-06-18 2016-12-28 한국원자력연구원 Heat exchanger
JP2019173099A (en) * 2018-03-28 2019-10-10 日鉄日新製鋼株式会社 Stainless steel material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333353A (en) * 2006-06-19 2007-12-27 Univ Of Tsukuba Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant
JP2014190664A (en) * 2013-03-28 2014-10-06 Nisshin Steel Co Ltd Stainless steel heat exchanger component and manufacturing method therefor
KR20160149592A (en) 2015-06-18 2016-12-28 한국원자력연구원 Heat exchanger
JP2019173099A (en) * 2018-03-28 2019-10-10 日鉄日新製鋼株式会社 Stainless steel material

Also Published As

Publication number Publication date
KR102292766B1 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
EP1842616A2 (en) Method for manucacturing a heat exchanger
JP2010207911A (en) Method of manufacturing blade
JP5511917B2 (en) Assembly structure of plate fin type heat exchanger and manufacturing method of plate fin type heat exchanger
EP3176533B1 (en) Cross flow ceramic heat exchanger and method for manufacturing
KR20180017116A (en) Clad plates and manufacturing method thereof
CN107167000A (en) The method of heat-exchangers of the plate type and manufacture heat-exchangers of the plate type
KR102292766B1 (en) Heat exchanger manufactured by diffusion bonding for nuclear power plant
JP2022186860A (en) Heat transport device and manufacturing method for the same
WO2010076160A2 (en) Plate, heat exchanger and method of manufacturing a heat exchanger
CN111001922A (en) Preparation method of large-area, small-allowance and high-bonding-rate explosion composite tube plate
CN211346457U (en) Plate-fin heat exchanger core structure
US11413714B2 (en) Method for producing a brazed plate heat exchanger
CN107946612B (en) High-temperature gas heat exchanger of solid oxide fuel cell
EP0614062A2 (en) Expanded structures
CN206037804U (en) Positioner of heat exchanger board group
JP2009287918A (en) Laminated structure reinforcing method by two-layer brazing
JP3806353B2 (en) Manufacturing method of heat exchanger
JP2006297450A (en) Composite material, plate type heat exchanger, and brazing method for composite material
JP2009066642A (en) Electromagnetic forming device for thin sheet, and metallic thin sheet for fluid apparatus
McNeff et al. Practical challenges and failure modes during fabrication of Haynes 230 micro-pin solar receivers for high temperature supercritical carbon dioxide operation
US20230003464A1 (en) Heat exchanger and manufacturing method thereof
KR20160014932A (en) Honeycomb-shaped border of a disc-type heat exchanger
Elbakhshwan et al. Advancing Diffusion Bonded Compact Heat Exchangers for High Temperature Applications
JP6377914B2 (en) Plate heat exchanger and manufacturing method thereof
KR102681373B1 (en) Annulus heat exchanger for Unmanned Aerial Vehicle

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant