JP2009066642A - Electromagnetic forming device for thin sheet, and metallic thin sheet for fluid apparatus - Google Patents

Electromagnetic forming device for thin sheet, and metallic thin sheet for fluid apparatus Download PDF

Info

Publication number
JP2009066642A
JP2009066642A JP2007240370A JP2007240370A JP2009066642A JP 2009066642 A JP2009066642 A JP 2009066642A JP 2007240370 A JP2007240370 A JP 2007240370A JP 2007240370 A JP2007240370 A JP 2007240370A JP 2009066642 A JP2009066642 A JP 2009066642A
Authority
JP
Japan
Prior art keywords
thin plate
molding
molding die
chevron
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007240370A
Other languages
Japanese (ja)
Inventor
Hiroaki Miyazaki
裕明 宮崎
Tomokatsu Aizawa
友勝 相澤
Keigo Okagawa
啓悟 岡川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topre Corp
Original Assignee
Topre Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topre Corp filed Critical Topre Corp
Priority to JP2007240370A priority Critical patent/JP2009066642A/en
Publication of JP2009066642A publication Critical patent/JP2009066642A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic forming device for a thin sheet where a groove part and a bearing surface part can be simultaneously formed for only one time at high efficiency and with high precision, and to provide a metallic thin sheet for a fluid apparatus. <P>SOLUTION: In the electromagnetic forming device for a thin sheet comprising: a forming coil; a power source means for energizing the forming coil; and a forming die 2 provided with a forming part at least including a bearing surface, where the forming coil is energized from the power source means in a state where a thin sheet is interposed between the forming coil and the forming die 2, so as to generate electromagnetic force, and the thin sheet is pressed against the forming die 2 by the electromagnetic force, and this is formed, the bottom part of the bearing surface 2a in the forming die 2 is disposed with a plurality of chevron projections 11 whose height is equal to the depth of the bearing surface 2a at equal intervals. For example, a plurality of the chevron projections 11 are arranged so as to be a honeycomb shape. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電磁力を利用して薄板を所望の形状に成形するための電磁成形装置及び該装置によって成形された流体機器用金属製薄板に関するものであって、特に材料の跳ね返りを防いで寸法精度の高い薄板製品を効率良く得るための電磁成形装置及び該装置によって成形された流体機器用金属製薄板に関するものである。   The present invention relates to an electromagnetic forming apparatus for forming a thin plate into a desired shape using electromagnetic force, and a metal thin plate for a fluid device formed by the apparatus, and particularly to prevent the material from rebounding and to be dimensioned. The present invention relates to an electromagnetic forming apparatus for efficiently obtaining a thin plate product with high accuracy and a metal thin plate for fluid equipment formed by the apparatus.

例えば、固体高分子型燃料電池に使用される金属セパレータ等の薄い(板厚0.1〜0.5mm程度)金属薄板製品は、ステンレス鋼やチタン合金等の金属薄板をプレス加工した後、プレス成形品に高耐食性のコーティング等を施すことによって得られるが、これには1本又は複数本の溝部が形成され、この溝部内には反応ガスや生成水等流体が流される。   For example, thin (thickness of about 0.1 to 0.5 mm) metal sheet products such as metal separators used in polymer electrolyte fuel cells are pressed after pressing metal sheets such as stainless steel and titanium alloys. It can be obtained by applying a highly corrosion-resistant coating or the like to the molded product. In this, one or a plurality of grooves are formed, and a fluid such as a reaction gas or generated water flows in the grooves.

又、プレート式熱交換器は、複数の金属製熱交換器プレート間に1次側流体と2次側流体を交互に流して熱交換を行うものであるが、この熱交換プレートは、ステンレス鋼、チタン合金或いは銅等の薄い金属板(板厚0.4〜0.8mm)をプレス加工や液圧バルジ加工等によって得ることができ、これには多数の溝形状が波状に連続して成形されている。   The plate heat exchanger performs heat exchange by alternately flowing a primary fluid and a secondary fluid between a plurality of metal heat exchanger plates. This heat exchange plate is made of stainless steel. A thin metal plate (thickness 0.4 to 0.8 mm) such as titanium alloy or copper can be obtained by pressing or hydraulic bulging, etc. In this, a number of groove shapes are continuously formed in a wave shape. Has been.

ところが、燃料電池用金属セパレータの溝部をプレス加工によって成形すると、金属薄板には絞りや伸びによって内部に歪が発生するため、成形後の燃料電池用金属セパレータに反りや波打ちが発生する。そして、燃料電池用金属セパレータに反りや波打ちが発生すると、集電部が電極板に十分な面圧をもって接触しなかったり、面圧が不均一となり、接触抵抗が大きくなって発電電圧の低下を招いてしまう。又、セパレータを間に挟みながら複数の電極構造体(セル)を積層して燃料電池本体(セルスタック)を組み立てる作業においては、燃料電池用金属セパレータの反りや波打ちを矯正しながら組み立てる必要があるため、作業が煩雑で作業効率が悪い他、ガスシール性が低下するという問題がある。   However, when the groove portion of the fuel cell metal separator is formed by press working, the metal thin plate is distorted inside due to drawing or stretching, and thus the metal separator for fuel cell is warped and wavy. If warpage or undulation occurs in the fuel cell metal separator, the current collector does not contact the electrode plate with sufficient surface pressure, or the surface pressure becomes non-uniform, resulting in increased contact resistance and reduced power generation voltage. I will invite you. Further, in the operation of assembling a fuel cell main body (cell stack) by stacking a plurality of electrode structures (cells) with the separator interposed therebetween, it is necessary to assemble while correcting warpage and undulation of the fuel cell metal separator. For this reason, there are problems that the work is complicated and the work efficiency is low, and the gas sealability is lowered.

又、プレート式熱交換器の熱交換プレートも同様にプレートの溝形状の周囲はシールされるために高い平面度が要求されるが、加工時の歪によって流体の漏れが発生するという問題がある。   Similarly, the heat exchange plate of the plate heat exchanger is also required to have high flatness because the periphery of the groove shape of the plate is sealed, but there is a problem that fluid leakage occurs due to distortion during processing. .

そこで、成形コイルに大電流を瞬時に流して衝撃的な電磁力を発生させ、この電磁力によって金属薄板等の加工を行う電磁成形法が提案されており、この電磁成形法によれば歪みの少ない成形を高速で行うことができる。この電磁成形法は、例えばパイプやシャフトのカシメ、胴部の張り出し成形、フランジ加工等に応用され、主に比較的厚い(板厚1〜2mm程度)アルミニウム材に対して用いられてきた。   Therefore, an electromagnetic forming method has been proposed in which a large current is instantaneously applied to a forming coil to generate a shocking electromagnetic force, and a metal thin plate or the like is processed by this electromagnetic force. Less molding can be performed at high speed. This electromagnetic forming method is applied to, for example, caulking of pipes and shafts, overhang forming of a body portion, flange processing, etc., and has been used mainly for relatively thick (about 1-2 mm plate thickness) aluminum materials.

又、特許文献1には、3次元パターンを有するディッシュを成形する方法として、3次元パターンに対応する形状を有するモールドと、成形コイル装置及び電気放電回路を用いて強いパルス磁力(PMF)を発生させ、このパルス磁力によって平坦な金属プレートを所望の形状に成形するパルス電磁成形装置と方法が提案されている。   In Patent Document 1, as a method of forming a dish having a three-dimensional pattern, a strong pulse magnetic force (PMF) is generated by using a mold having a shape corresponding to the three-dimensional pattern, a forming coil device, and an electric discharge circuit. A pulse electromagnetic forming apparatus and method for forming a flat metal plate into a desired shape by the pulse magnetic force have been proposed.

ところで、前記燃料電池用金属セパレータやプレート式熱交換器の熱交換プレート等の金属薄板成形品においては、薄板の中央に形成された溝部の内部に反応ガスや冷却水等の流体が流されるが、溝部を流れる流体の出入口にはヘッダーと称される流体を分配するための座面部が形成される。   By the way, in the metal sheet molded product such as the fuel cell metal separator and the heat exchange plate of the plate heat exchanger, a fluid such as a reaction gas or cooling water is flowed into a groove formed in the center of the sheet. In addition, a seat surface portion for distributing a fluid called a header is formed at the entrance and exit of the fluid flowing through the groove portion.

上記燃料電池用金属セパレータやプレート式熱交換器の熱交換プレート等のように溝部と座面部を併せ持つ金属薄板成形品を電磁成形によって得る場合、座面部において成形途中に材料が成形型底面に衝突して跳ね返る現象が発生し、この跳ね返り現象のために製品の座面部の中央部が窪みとなって残り、所望の形状の製品が得られないという問題があった。   When a metal sheet molded product having both a groove and a seating surface is obtained by electromagnetic forming, such as a fuel cell metal separator or a heat exchanger plate of a plate heat exchanger, the material collides with the mold bottom during molding at the seating surface. As a result of this rebound phenomenon, the center part of the seating surface portion of the product remains a depression, and a product having a desired shape cannot be obtained.

非特許文献1,2には、皿状(平面座形状)の金型を用いた電磁成形について行った実験の結果が報告されている。これらの文献には、皿状の型においてエネルギー(充電電圧)を増大させると跳ね返り現象が発生するとの記載があり、この問題の解決方法として複数回の成形を行うことによって成形形状が改善されたとの報告がなされている。   Non-Patent Documents 1 and 2 report the results of experiments conducted on electromagnetic forming using a dish-shaped (plane seat shape) mold. In these documents, there is a description that a rebound phenomenon occurs when the energy (charging voltage) is increased in a dish-shaped mold, and as a solution to this problem, the molding shape is improved by performing molding a plurality of times. Has been reported.

又、非特許文献1には、溝形状の金型を用いると、エネルギーを大きくしても良好な成形結果が得られたとの報告がなされている。
特表2001−526963号公報 「塑性と加工」vol.19 no.206(1978-3) P.220 「塑性と加工」vol.18 no.194(1977-3) P.197
Non-Patent Document 1 reports that when a groove-shaped mold is used, good molding results are obtained even when the energy is increased.
JP 2001-526963 A `` Plasticity and processing '' vol.19 no.206 (1978-3) P.220 `` Plasticity and processing '' vol.18 no.194 (1977-3) P.197

しかしながら、複数回の成形を行う方法には次のような問題がある。即ち、電磁成形は高速度成形ではあるが、加工前にコンデンサに成形用電荷を充電しなければならず、その充電のための時間を要する。そして、複数回成形は充電と放電(通電)を成形回数分だけ繰り返す必要があるために生産効率が悪いという問題がある。   However, the method of performing molding a plurality of times has the following problems. That is, although electromagnetic forming is high-speed forming, the capacitor must be charged with a forming charge before processing, and it takes time for the charging. In addition, there is a problem in that the production efficiency is poor because the multiple molding needs to repeat charging and discharging (energization) by the number of moldings.

又、複数回成形においては、成形しようとする座面部の深さや面積毎に各回の成形エネルギーが異なるため、複数の異なる座面部が同一の製品内に存在する場合には、各成形エネルギーの大きさや回数等の成形条件の設定が極めて困難である。   In addition, in multiple molding, the molding energy for each round differs depending on the depth and area of the seat surface to be molded. Therefore, if multiple different seat surfaces exist in the same product, the size of each molding energy is large. Setting molding conditions such as the number of sheaths is extremely difficult.

尚、他の成形法として、座面部のみを一般的なプレス加工で成形し、電磁成形と併せて加工する方法や、座面部を別部品として独立して成形し、この座面部を事後的に接合する方法等が考えられるが、何れの方法も生産性、品質、管理等の面で満足な結果を期し難いという問題がある。   In addition, as another molding method, only the seat surface part is formed by general press working and processed together with electromagnetic forming, or the seat surface part is formed independently as a separate part, and this seat surface part is formed afterwards. Although joining methods are conceivable, each method has a problem that it is difficult to achieve satisfactory results in terms of productivity, quality, management, and the like.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、溝部と座面部とを同時に1回で効率良く且つ高精度に成形することができる薄板の電磁成形装置及び流体機器用金属製薄板を提供することにある。   SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and the object of the present invention is for a thin plate electromagnetic forming apparatus and a fluid device capable of forming a groove and a seating surface at the same time efficiently and with high accuracy. It is to provide a metal sheet.

上記目的を達成するため、請求項1記載の発明は、成形コイルと、該成形コイルに通電するための電源手段と、少なくとも座面を含む成形部を備えた成形金型を備え、前記成形コイルと前記成形金型との間に薄板を介在させた状態で前記電源手段から成形コイルに通電して電磁力を発生させ、該電磁力によって前記薄板を前記成形金型に押圧してこれを成形する薄板の電磁成形装置において、前記成形金型の座面底部に、高さが座面深さに等しい複数の山形突起を等間隔に配置したことを特徴とする。   In order to achieve the above object, the invention according to claim 1 comprises a molding coil, a power supply means for energizing the molding coil, and a molding die having a molding part including at least a seating surface, and the molding coil. In a state where a thin plate is interposed between the molding die and the power source, the power supply means energizes the molding coil to generate an electromagnetic force, and the electromagnetic plate is pressed against the molding die by the electromagnetic force to mold the molding coil. The thin plate electromagnetic forming apparatus is characterized in that a plurality of chevron projections having a height equal to the seat surface depth are arranged at equal intervals on the seat surface bottom of the molding die.

請求項2記載の発明は、請求項1記載の発明において、複数の前記山形突起をハニカム状に配置したことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the plurality of chevron protrusions are arranged in a honeycomb shape.

請求項3記載の発明は、請求項1又は2記載の発明において、前記山形突起又は前記座面周縁部の斜面に複数の溝を形成したことを特徴とする。   A third aspect of the invention is characterized in that, in the first or second aspect of the invention, a plurality of grooves are formed on the slope of the chevron protrusion or the peripheral edge of the seating surface.

請求項4記載の発明は、請求項1〜3の何れかに記載の発明において、前記成形金型の座面底部の隣接する前記山形突起同士の間又は前記山形突起と前記座面周縁部の間に、該山形突起よりも高さの低い山形突起又はビード状突起を配置したことを特徴とする。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the angled projections adjacent to each other at the bottom of the seating surface of the molding die or between the angled projections and the peripheral edge of the seating surface. A chevron or bead-like projection having a height lower than that of the chevron is disposed between them.

請求項5記載の流体機器用金属製薄板は、請求項1〜4の何れかに記載の電磁成形装置にて座面形状が成形されたヘッダー部を有して積層構造を成すことを特徴とする。   The metal thin plate for a fluid device according to claim 5 is characterized in that it has a header structure in which a seating surface shape is formed by the electromagnetic forming device according to any one of claims 1 to 4 to form a laminated structure. To do.

請求項6記載の発明は、成形コイルと、該成形コイルに通電するための電源手段と、少なくとも溝形状を含む成形部を備えた成形金型を備え、前記成形コイルと前記成形金型との間に薄板を介在させた状態で前記電源手段から成形コイルに通電して電磁力を発生させ、該電磁力によって前記薄板を前記成形金型に押圧してこれを成形する薄板の電磁成形装置において、前記成形金型の溝形状底部に、高さが溝形状深さよりも低い山形突起又はビード状突起を配置したことを特徴とする。   The invention according to claim 6 includes a molded coil, a power supply means for energizing the molded coil, and a molding die having a molding part including at least a groove shape, and the molding coil and the molding die In an electromagnetic forming apparatus for a thin plate, an electromagnetic force is generated by energizing a forming coil from the power source means with a thin plate interposed therebetween, and the thin plate is pressed against the molding die by the electromagnetic force to form the electromagnetic force. A chevron projection or a bead-shaped projection having a height lower than the groove shape depth is arranged on the groove shape bottom of the molding die.

請求項7記載の発明は、請求項6記載の発明において、前記成形金型の溝周縁部斜面に複数の溝を形成したことを特徴とする。   A seventh aspect of the invention is characterized in that, in the sixth aspect of the invention, a plurality of grooves are formed on a slope of the groove peripheral edge of the molding die.

請求項8記載の流体機器用金属製薄板は、請求項6記載の発明において、請求項6又は7記載の電磁成形装置にて溝形状が成形された流路を有して積層構造を成すことを特徴とする。   The metal thin plate for a fluid device according to claim 8 is the invention according to claim 6, and has a flow path having a groove shape formed by the electromagnetic forming apparatus according to claim 6 or 7 to form a laminated structure. It is characterized by.

請求項1記載の発明によれば、成形金型の座面底部に、高さが座面深さに等しい複数の山形突起を等間隔に配置したため、成形時に座面周辺部と各山形突起の頂部によって薄板材料を拘束することができ、成形の形態が溝成形と同様となって材料の跳ね返り現象の発生が抑えられ、従って、薄板に溝部と座面部とを同時に1回で効率良く且つ高精度に成形することができる。   According to the first aspect of the present invention, since the plurality of chevron protrusions whose height is equal to the seating surface depth are arranged at equal intervals on the seating surface bottom portion of the molding die, The thin plate material can be constrained by the top, and the shape of the molding is the same as that of the groove forming, so that the occurrence of the material rebound phenomenon is suppressed. Therefore, the groove portion and the seating surface portion are simultaneously and efficiently formed on the thin plate at once. It can be molded accurately.

請求項2記載の発明によれば、複数の山形突起をハニカム状に配置したため、山形突起同士の間隔が最も均等、つまり密となり、座面内の材料を最も効率良く拘束することができ、材料の跳ね返り現象の発生を抑えて薄板に溝部と座面部を高精度に成形することができる。   According to the invention described in claim 2, since the plurality of chevron projections are arranged in a honeycomb shape, the spacing between the chevron projections is the most uniform, that is, dense, and the material in the seating surface can be restrained most efficiently. The groove portion and the seat surface portion can be formed with high accuracy in the thin plate while suppressing the occurrence of the rebound phenomenon.

請求項3記載の発明によれば、成形力が強くなって材料が山形突起や座面周縁部の斜面に衝突しても、該斜面に形成された複数の溝に材料が順次衝突して塑性変形し、運動エネルギーが成形の進行と共に段階的に吸収されるため、材料の跳ね返り現象の発生が効果的に抑えられて薄板に座面部が高精度に成形される。   According to the third aspect of the present invention, even when the molding force becomes strong and the material collides with the angled protrusion or the inclined surface of the peripheral surface of the seating surface, the material sequentially collides with the plurality of grooves formed on the inclined surface and is plastic. Since deformation occurs and kinetic energy is absorbed step by step as the molding proceeds, the occurrence of the material rebound phenomenon is effectively suppressed, and the seat portion is molded with high accuracy on the thin plate.

ところで、山形突起間の配置間隔が或る程度広くなると成形金型の座面底部も広くなり、広くなった座面底部にて材料の跳ね返り現象が発生するが、請求項4記載の発明によれば、成形金型の座面底部の隣接する山形突起同士の間又は山形突起と座面周縁部の間に、該山形突起よりも高さの低い山形突起又はビード状突起を配置したため、成形途中の前記山形突起間の材料が座面底に衝突する前に該低い山形突起又はビード状突起に衝突して塑性変形する。これによって運動エネルギーが吸収されるため、材料の跳ね返りが抑えられて所望の形状の薄板製品を高精度に得ることができる。   By the way, when the arrangement interval between the chevron projections is increased to some extent, the bottom portion of the seating surface of the molding die is widened, and the material rebound phenomenon occurs at the widened bottom portion of the seating surface. For example, a chevron or bead-like projection having a height lower than that of the chevron protrusion is disposed between adjacent chevron protrusions at the bottom of the seating surface of the molding die or between the chevron protrusion and the peripheral edge of the seating surface. Before the material between the chevron protrusions collides with the bottom chevron or bead-like protrusion, the material deforms plastically. Since kinetic energy is absorbed by this, the rebound of material is suppressed and the thin plate product of a desired shape can be obtained with high precision.

請求項5記載の発明によれば、座面部にて成形時の跳ね返りを抑えることができるため、製品精度の高いヘッダー部を有する流体機器用金属製薄板を得ることができる。   According to the fifth aspect of the present invention, since the bounce at the time of molding can be suppressed at the seat surface portion, it is possible to obtain a metal thin plate for a fluid device having a header portion with high product accuracy.

請求項6記載の発明によれば、成形金型の溝形状底部に、高さが溝形状深さよりも低い山形突起又はビード状突起を配置したため、薄板に幅の広い溝部を成形する場合であっても、成形途中の溝内の材料が溝底に衝突する前に該低い山形突起又はビード状突起に衝突して塑性変形する。これによって運動エネルギーが吸収されるため、材料の跳ね返りが抑えられて薄板に所望の形状の溝部を高精度に成形することができる。   According to the sixth aspect of the present invention, since the chevron or bead-shaped protrusion whose height is lower than the groove-shaped depth is arranged at the groove-shaped bottom part of the molding die, the wide groove part is formed on the thin plate. However, before the material in the groove in the middle of molding collides with the bottom of the groove or the bead-shaped protrusion, the material deforms plastically. As a result, kinetic energy is absorbed, so that rebound of the material is suppressed and a groove having a desired shape can be formed on the thin plate with high accuracy.

請求項7記載の発明によれば、成形力が強くなって材料が溝周縁部の斜面に衝突しても、該斜面に形成された複数の溝に材料が順次衝突して運動エネルギーが成形の進行と共に段階的に吸収されるため、材料の跳ね返り現象の発生が効果的に抑えられて薄板に溝形状を高精度に成形することができる。   According to the seventh aspect of the present invention, even if the molding force becomes strong and the material collides with the inclined surface of the groove peripheral portion, the material sequentially collides with the plurality of grooves formed on the inclined surface, and the kinetic energy is formed. Since it is absorbed step by step, the occurrence of the material rebound phenomenon is effectively suppressed, and the groove shape can be formed on the thin plate with high accuracy.

請求項8記載の発明によれば、溝形状部にて成形時の跳ね返りを抑えることができるため、製品精度の高い流路を有する流体機器用金属製薄板を得ることができる。   According to the eighth aspect of the invention, since the rebound at the time of molding can be suppressed by the groove-shaped portion, it is possible to obtain a metal thin plate for a fluid device having a flow path with high product accuracy.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明に係る電磁成形装置の断面図(図2のA−A線断面図)、図2は同電磁成形装置の固定部材を外した状態の平面図、図3は本発明に係る電磁成形装置によって成形された燃料電池用金属セパレータの部分斜視図である。   1 is a cross-sectional view of the electromagnetic forming apparatus according to the present invention (cross-sectional view taken along line AA in FIG. 2), FIG. 2 is a plan view of the electromagnetic forming apparatus with a fixing member removed, and FIG. It is a fragmentary perspective view of the metal separator for fuel cells shape | molded by the electromagnetic shaping | molding apparatus.

本発明に係る電磁成形装置1は、電磁力を利用して薄板を成形する装置であって、例えば図3に示す燃料電池用金属セパレータWに溝部WAと座面部WBとを同時に1回で成形する装置である。   An electromagnetic forming apparatus 1 according to the present invention is an apparatus for forming a thin plate using electromagnetic force. For example, a groove WA and a seating surface WB are simultaneously formed in a metal separator W for a fuel cell shown in FIG. It is a device to do.

而して、図3に示す燃料電池用金属セパレータWの成形に際しては、図1及び図2に示すように、ブロック状の成形金型2の上に被成形材としてのアルミニウム製の薄板3、E字状の金属平板で構成されたワンターンコイル4及び厚さが比較的厚くワンターンコイル4が薄板3から受ける反力に耐え得る適切な強度と剛性を有する矩形平板状の固定部材5を順次積み重ねるとともに、成形金型2と薄板3との間及び薄板3とワンターンコイル4との間にポリイミド製の耐熱シート6、絶縁シート7をそれぞれ介在させる。これらの成形金型2、耐熱シート6、薄板3、絶縁シート7、ワンターンコイル4及び固定部材5は、順次積層され、ワンターンコイル4に発生する電磁力によってその積層構造が崩れないように、図示しない上下方向の拘束手段(例えば、油圧シリンダ機構等)により固定されている。   Thus, when the fuel cell metal separator W shown in FIG. 3 is molded, as shown in FIGS. 1 and 2, an aluminum thin plate 3 as a molding material is formed on the block-shaped molding die 2, A one-turn coil 4 composed of an E-shaped metal flat plate and a rectangular flat plate-like fixing member 5 having a suitable strength and rigidity that can withstand a reaction force that the one-turn coil 4 receives from the thin plate 3 and is relatively thick are sequentially stacked. At the same time, a heat-resistant sheet 6 made of polyimide and an insulating sheet 7 are interposed between the molding die 2 and the thin plate 3 and between the thin plate 3 and the one-turn coil 4, respectively. The molding die 2, the heat-resistant sheet 6, the thin plate 3, the insulating sheet 7, the one-turn coil 4 and the fixing member 5 are sequentially laminated so that the laminated structure is not destroyed by the electromagnetic force generated in the one-turn coil 4. It is fixed by a vertical restraining means (for example, a hydraulic cylinder mechanism).

ところで、上記電磁成形装置1によって成形される図3に示す燃料電池用金属セパレータWの中央部には複数本の溝部WAと、該溝部WA内を流れる流体の出入口であるヘッダーと称される座面部WBが形成される。尚、図3に示す燃料電池用金属セパレータWは、固体高分子燃料電池に使用されるものであって、これらを間に挟みながら複数の電極構造体(セル)を積層して燃料電池本体(セルスタック)が組み立てられる。   By the way, in the central portion of the fuel cell metal separator W shown in FIG. 3 formed by the electromagnetic forming apparatus 1, there are a plurality of groove portions WA and a seat called a header which is an inlet / outlet of a fluid flowing in the groove portion WA. Surface portion WB is formed. The fuel cell metal separator W shown in FIG. 3 is used for a solid polymer fuel cell, and a plurality of electrode structures (cells) are stacked with the fuel cell main body (cell) Cell stack) is assembled.

而して、図1に示すように、前記成形金型2の上面の中央部には成形部2Aが形成され、その周囲には平坦な周辺部2Bが形成されている。そして、成形部2Aには、図3に示す燃料電池用金属セパレータWの溝部WAと座面部WB、更に座面部WB内には凹部Waと孔Wbが形成されている。   Thus, as shown in FIG. 1, a molding part 2A is formed at the center of the upper surface of the molding die 2, and a flat peripheral part 2B is formed around it. In the molding portion 2A, a groove portion WA and a seat surface portion WB of the fuel cell metal separator W shown in FIG. 3 are formed, and a recess portion Wa and a hole Wb are formed in the seat surface portion WB.

又、被成形材として薄板3は、説明を簡略化するため導電率が大きい(電気抵抗が小さい)アルミニウム材(例えばA1050)を例に構成されている。例えば、被成形材が導電率の小さいステンレス鋼やチタン合金の場合は、アルミニウム材や銅等の導電率の大きな材料をドライバとしてコイル4と薄板3の間に介在させ、更にコイル4、ドライバ、薄板3の相互間に絶縁シート7を入れて積層させれば良い。   Further, as a material to be molded, the thin plate 3 is configured with an aluminum material (for example, A1050) having a high conductivity (low electric resistance) as an example for the sake of simplicity. For example, when the material to be molded is stainless steel or titanium alloy having low conductivity, a material having high conductivity such as aluminum or copper is interposed between the coil 4 and the thin plate 3 as a driver, and further, the coil 4, driver, What is necessary is just to put the insulating sheet 7 between the thin plates 3 and to laminate them.

前記ワンターンコイル4は、例えば厚さ1.0mmのクロム銅板で構成されており、2本のスリット4aによって前述のように平面視E字状に成形されている。このワンターンコイル4の中央部には幅の狭い電流集中部4Aが形成されており、スリット4aを隔ててその左右には幅の広いリターン部4Bが形成されている。ここで、ワンターンコイル4の電流集中部4Aの長さaは成形金型2と薄板3の長さよりも長く設定されており、幅bは成形金型2の成形部2Aの幅よりも広く設定されている。つまり、ワンターンコイル4の電流集中部4Aは、図1に示すように、金型2の成形部2Aとその周囲の周辺部2Bの一部を上方から覆う大きさを有している。   The one-turn coil 4 is made of, for example, a chrome copper plate having a thickness of 1.0 mm, and is formed in an E shape in plan view by the two slits 4a as described above. A narrow current concentration portion 4A is formed at the center of the one-turn coil 4, and a wide return portion 4B is formed on the left and right sides of the slit 4a. Here, the length a of the current concentrating portion 4A of the one-turn coil 4 is set longer than the length of the molding die 2 and the thin plate 3, and the width b is set wider than the width of the molding portion 2A of the molding die 2. Has been. That is, as shown in FIG. 1, the current concentration portion 4 </ b> A of the one-turn coil 4 has a size that covers a part of the molding portion 2 </ b> A of the mold 2 and the surrounding peripheral portion 2 </ b> B from above.

又、前記固定部材5としては、電気絶縁性の材料、例えば大理石等の石材、ガラスエポキシ樹脂等が用いられる。   The fixing member 5 is made of an electrically insulating material, for example, a stone material such as marble, a glass epoxy resin, or the like.

更に、前記耐熱シート6及び絶縁シート7には、耐熱性と電気絶縁性が高い厚さ0.05mmのポリイミドシートが使用されている。尚、本実施の形態では、耐熱シート6と絶縁シート7に同じ材質のものを用いたが、耐熱シート6には耐熱性の高い他のエンジニアプラスチックを用いることができる。   Furthermore, as the heat-resistant sheet 6 and the insulating sheet 7, a 0.05 mm thick polyimide sheet having high heat resistance and electrical insulation is used. In the present embodiment, the same material is used for the heat-resistant sheet 6 and the insulating sheet 7, but another engineer plastic with high heat resistance can be used for the heat-resistant sheet 6.

ところで、図2に示すように、ワンターンコイル4の電流集中部4Aとその両側のリターン部4Bには電源手段としてのコンデンサ8が接続されており、このコンデンサ8とワンターンコイル4の電流集中部4Aとの間には放電ギャップスイッチ9が直列に接続されている。更に、コンデンサ8には直流高圧電源10が並列に接続されている。尚、本実施の形態では、直流高圧電源10としては定格電圧3000V〜6000Vのものが使用され、コンデンサ8としては容量200μFのものが使用されており、コンデンサ8は直流高圧電源10によって成形の度に充電される。   As shown in FIG. 2, a capacitor 8 serving as a power supply means is connected to the current concentrating portion 4A of the one-turn coil 4 and the return portions 4B on both sides thereof, and the current concentrating portion 4A of the capacitor 8 and the one-turn coil 4 is connected. Discharge gap switch 9 is connected in series between the two. Further, a DC high voltage power supply 10 is connected in parallel to the capacitor 8. In the present embodiment, a DC high voltage power supply 10 having a rated voltage of 3000 V to 6000 V is used, and a capacitor 8 having a capacity of 200 μF is used. Is charged.

次に、以上の構成を有する電磁成形装置1によって図3に示す燃料電池用金属セパレータWを成形する方法について説明する。   Next, a method of forming the fuel cell metal separator W shown in FIG. 3 by the electromagnetic forming apparatus 1 having the above configuration will be described.

図1に示すように、耐熱シート6と成形金型2の上に被成形材として薄板3、絶縁シート7、ワンターンコイル4及び固定部材5を順次積み重ね、これらの積層構造が成形時のワンターンコイル4に発生する電磁力により崩れないように固定した状態、例えば成形金型2を油圧シリンダ機構等により上下方向を固定し、放電ギャップスイッチ9を閉じると、予め充電されていたコンデンサ8からワンターンコイル4へと数10μsec程度の時間で放電する。ワンターンコイル4においては、電流集中部4Aに図2の矢印方向に電流が流れ、この電流は左右のリターン部4Bを逆方向に流れる。   As shown in FIG. 1, a thin plate 3, an insulating sheet 7, a one-turn coil 4, and a fixing member 5 are sequentially stacked on a heat-resistant sheet 6 and a molding die 2 as a material to be molded. 4 is fixed so as not to collapse due to the electromagnetic force generated in 4, for example, when the molding die 2 is fixed in the vertical direction by a hydraulic cylinder mechanism or the like and the discharge gap switch 9 is closed, the pre-charged capacitor 8 is turned into a one-turn coil. 4 is discharged in a time of about several tens of microseconds. In the one-turn coil 4, a current flows through the current concentrating portion 4A in the direction of the arrow in FIG. 2, and this current flows through the left and right return portions 4B in the opposite directions.

ここで、ワンターンコイル4の電流集中部4Aは厚さ1mmの薄い平面状としたため、その断面積が小さく、コイルがワンターンであるためにインダクタンスも小さい。このため、この電流集中部4Aを大電流が衝撃的に流れ、大きな磁界が電流集中部4Aに瞬間的且つ均一に発生し、この磁界によりフレミングの左手の法則に従って図1の矢印方向(下向き)に電磁力が発生する。   Here, since the current concentrating portion 4A of the one-turn coil 4 has a thin planar shape with a thickness of 1 mm, its cross-sectional area is small, and since the coil is one-turn, the inductance is also small. For this reason, a large current shocks through the current concentrating portion 4A, and a large magnetic field is instantaneously and uniformly generated in the current concentrating portion 4A. This magnetic field causes the direction of the arrow (downward) in FIG. Electromagnetic force is generated.

又、ワンターンコイル4の電流集中部4Aは薄い平面状を成し、これに発生する磁界はワンターンコイル4の電流集中部4Aの領域において均一に分布する。従って、ワンターンコイル4に発生する均一な磁界と薄板3に発生する渦電流によって発生する電磁力もワンターンコイル4の電流集中部4Aの領域に亘って均一となる。   Further, the current concentrating portion 4A of the one-turn coil 4 has a thin planar shape, and the magnetic field generated therein is uniformly distributed in the region of the current concentrating portion 4A of the one-turn coil 4. Accordingly, the uniform magnetic field generated in the one-turn coil 4 and the electromagnetic force generated by the eddy current generated in the thin plate 3 are also uniform over the region of the current concentration portion 4A of the one-turn coil 4.

而して、前述のように大きな電磁力が発生すると、薄板3は、この電磁力を受けて成形金型2に押し付けられ、薄板3の成形金型2の周辺部2Bに対応する部分は拘束されて塑性変形は起こらず、薄板3の成形金型2の成形部2Aに対応する部分は成形部2A内へ張り出し成形され、図3に示すような溝部WAと座面部WBを備えた燃料電池用金属セパレータWが得られる。このとき、成形金型2と薄板3との間、薄板3とワンターンコイル4との間にはそれぞれ耐熱シート6、絶縁シート7が介在しているため、薄板3の成形金型2への溶着とワンターンコイル5から薄板3への電流の短絡が耐熱シート6、絶縁シート7によってそれぞれ確実に防がれる。   Thus, when a large electromagnetic force is generated as described above, the thin plate 3 is pressed against the molding die 2 by receiving this electromagnetic force, and the portion of the thin plate 3 corresponding to the peripheral portion 2B of the molding die 2 is restrained. Thus, plastic deformation does not occur, and a portion of the thin plate 3 corresponding to the molding part 2A of the molding die 2 is formed by projecting into the molding part 2A, and has a groove part WA and a seating surface part WB as shown in FIG. A metal separator W is obtained. At this time, since the heat-resistant sheet 6 and the insulating sheet 7 are interposed between the molding die 2 and the thin plate 3 and between the thin plate 3 and the one-turn coil 4, respectively, the thin plate 3 is welded to the molding die 2. The short circuit of the current from the one-turn coil 5 to the thin plate 3 is reliably prevented by the heat-resistant sheet 6 and the insulating sheet 7 respectively.

而して、本発明に係る電磁成形装置1は、例えば図3に示す燃料電池用金属セパレータWの座面部WBを成形するための成形金型2に特徴を有しており、該成形金型2の成形部2Aの構造についての実施の形態を以下に説明する。   Thus, the electromagnetic forming apparatus 1 according to the present invention is characterized by, for example, a molding die 2 for molding the seating surface portion WB of the fuel cell metal separator W shown in FIG. An embodiment of the structure of the second molded portion 2A will be described below.

<実施の形態1>
図4は本発明の実施の形態1に係る成形型の座面部分の斜視図、図5は図4のB−B線断面図であり、本実施の形態は、成形金型2の座面2a底部に、高さhが座面2aの深さdに等しい(h=d)円錐台状の複数の山形突起11を等間隔にハニカム状に配置したことを特徴とする。
<Embodiment 1>
4 is a perspective view of a seating surface portion of the molding die according to Embodiment 1 of the present invention, FIG. 5 is a cross-sectional view taken along line BB of FIG. 4, and this embodiment is a seating surface of the molding die 2. A plurality of truncated cone-shaped projections 11 having a height h equal to the depth d of the seating surface 2a (h = d) are arranged in a honeycomb shape at equal intervals on the bottom of 2a.

ここで、隣接する山形突起11同士の間隔Pは該山形突起11の高さh(成形金型2の座面2aの深さd)の約3倍以内(P≦3h)に設定され、山形突起11の斜面角度αは45°程度に設定されている。又、山形突起11の頂部の面積は小さいほど座面2a全体に占める山形突起11の比率が小さくなるために製品の機能上は望ましいが、余り小さくすると山形突起11の頂部が鋭利となり、成形時に薄板3の破断を招く可能性があるため、山形突起11の頂部の面積は薄板3の破断を招くことがない程度の大きさに設定される。   Here, the interval P between the adjacent chevron projections 11 is set within about three times (P ≦ 3h) the height h of the chevron projections 11 (depth d of the seating surface 2a of the molding die 2). The slope angle α of the protrusion 11 is set to about 45 °. Further, the smaller the area of the top of the chevron 11 is, the smaller the proportion of the chevron 11 that occupies the entire seating surface 2a. This is desirable for the function of the product. Since there is a possibility that the thin plate 3 may be broken, the area of the top of the chevron 11 is set to a size that does not cause the thin plate 3 to break.

更に、成形金型2においては、座面2aの斜面状の周辺部の形状は直線が望まれるが、各山形突起11から等距離にあることが本発明の効果上好ましいため、座面2aの周縁部の形状は山形突起11の形状に合わせて円弧曲面を連ねた形状とされている。   Further, in the molding die 2, the shape of the peripheral portion of the inclined surface of the seating surface 2 a is desired to be a straight line, but it is preferable for the effect of the present invention to be equidistant from each angled projection 11. The shape of the peripheral portion is a shape in which circular curved surfaces are connected in accordance with the shape of the chevron 11.

而して、本実施の形態によれば、成形金型2の座面2a底部に、高さhが座面2aの深さdに等しい複数の山形突起11を等間隔に配置したため、成形時に座面2aの周辺部と各山形突起11の頂部によって薄板3を拘束することができ、成形の形態が溝成形と同様となって材料の跳ね返り現象の発生が抑えられ、従って、薄板3に図3に示す溝部WAと座面部WBとを同時に1回で効率良く且つ高精度に成形することができる。   Thus, according to the present embodiment, the plurality of chevron projections 11 whose height h is equal to the depth d of the seating surface 2a are arranged at equal intervals on the bottom of the seating surface 2a of the molding die 2. The thin plate 3 can be constrained by the peripheral portion of the seating surface 2a and the top of each chevron 11 and the form of molding is the same as that of groove forming, so that the occurrence of the material rebound phenomenon is suppressed. The groove part WA and the seating surface part WB shown in FIG. 3 can be efficiently and highly accurately formed at one time.

又、本実施の形態では、複数の山形突起11をハニカム状に配置したため、山形突起11同士の間隔Pが最も均等、つまり密となり、座面2a内の材料を最も効率良く拘束することができ、この結果、材料の跳ね返り現象の発生が効果的に抑えられて薄板3の座面部WBを高精度に成形することができる。   Further, in the present embodiment, since the plurality of chevron protrusions 11 are arranged in a honeycomb shape, the distance P between the chevron protrusions 11 is the most uniform, that is, dense, and the material in the seating surface 2a can be restrained most efficiently. As a result, the occurrence of the material rebound phenomenon is effectively suppressed, and the seat surface portion WB of the thin plate 3 can be formed with high accuracy.

以上のように電磁成形によって得られる図3に示す燃料電池用金属セパレータWにおいては、材料の跳ね返り現象の発生が抑えられるために座面部WBには従来発生していた窪みが発生せず、座面部WBは窪みの無い平坦面を構成するが、その平坦面には成形金型2の山形突起11の形状に対応する円錐台状の複数の凹部Waが形成される。この場合、座面部WBの一部には凹部Waの形状に沿って孔Wbが形成され、該座面部WBがヘッダーとして使用されるが、座面部WBに孔Wbを部分的に形成して図示のように凹部Waを残せば、この残った凹部Waが流体を整流する機能を果たし、複数の溝WAに均等な流量を分配すルことができるという効果が得られる。   In the fuel cell metal separator W shown in FIG. 3 obtained by electromagnetic forming as described above, since the occurrence of the material rebound phenomenon is suppressed, the seat surface portion WB does not have a depression that has occurred in the past, and the seat The surface portion WB constitutes a flat surface having no depression, and a plurality of truncated conical recesses Wa corresponding to the shape of the chevron 11 of the molding die 2 are formed on the flat surface. In this case, a hole Wb is formed in a part of the seat surface portion WB along the shape of the recess Wa, and the seat surface portion WB is used as a header, but the hole Wb is partially formed in the seat surface portion WB. If the concave portion Wa is left as described above, the remaining concave portion Wa functions to rectify the fluid, and an effect that an equal flow rate can be distributed to the plurality of grooves WA is obtained.

尚、本実施の形態では、山形突起11として円錐台状のものを採用したが、山形突起11としては任意の形状のものを採用することができ、例えば図6に示す六角錐台状のものも採用することができる。   In the present embodiment, a truncated cone-shaped projection is used as the chevron projection 11, but an arbitrary shape can be employed as the chevron projection 11, for example, a hexagonal frustum-shaped projection shown in FIG. Can also be adopted.

<実施の形態2>
次に、本発明の実施の形態2を図7及び図8に基づいて説明する。
<Embodiment 2>
Next, a second embodiment of the present invention will be described with reference to FIGS.

図7は本発明の実施の形態2に係る成形型の座面部分の斜視図、図8は図7のC−C線断面図であり、本実施の形態においても、前記実施の形態1と同様に、成形金型2の座面2aの底部に、高さが座面2aの深さに等しい円錐台状の複数の山形突起11を等間隔にハニカム状に配置しているが、成形金型2の座面2a底部の隣接する山形突起11同士の間及び山形突起11と座面2aの斜面状周縁部との間に、山形突起11よりも高さの低いビード状突起12を配置している。   FIG. 7 is a perspective view of a seating surface portion of a mold according to Embodiment 2 of the present invention, and FIG. 8 is a cross-sectional view taken along the line CC in FIG. Similarly, a plurality of truncated cone-shaped protrusions 11 whose height is equal to the depth of the seating surface 2a are arranged in a honeycomb shape at equal intervals on the bottom of the seating surface 2a of the molding die 2. A bead-shaped projection 12 having a height lower than that of the chevron projection 11 is disposed between the adjacent chevron projections 11 at the bottom of the seat surface 2a of the mold 2 and between the chevron projection 11 and the inclined peripheral portion of the seat surface 2a. ing.

而して、本実施の形態によれば、前記実施の形態1と同様に薄板3に図3に示す溝部WAと座面部WBとを同時に1回で効率良く且つ高精度に成形することができるが、山形突起11間の配置間隔が或る程度広くなる(P>3h)と成形金型2の座面2a底部も広くなり、広くなった座面2a底部にて材料の跳ね返り現象が発生する可能性がある。   Thus, according to the present embodiment, the groove part WA and the seating surface part WB shown in FIG. 3 can be simultaneously and efficiently formed in the thin plate 3 at the same time in the same manner as in the first embodiment. However, when the arrangement interval between the chevron projections 11 is increased to some extent (P> 3h), the bottom portion of the seating surface 2a of the molding die 2 is also widened, and the material rebound phenomenon occurs at the widened bottom surface of the seating surface 2a. there is a possibility.

然るに、本実施の形態では、成形金型2の座面2a底部の隣接する山形突起11同士の間及び山形突起11と座面2aの斜面状周縁部との間に、山形突起11よりも高さの低いビード状突起12を配置したため、成形途中の山形突起11間の材料が座面2a底部よりも先にビード状突起12に衝突する。そして、衝突した材料は突起形状により塑性変形するために運動エネルギーが吸収され、これによって材料の跳ね返りが抑えられて所望の形状の図3に示すような燃料電池用金属セパレータW等の薄板製品を高精度に得ることができる。   However, in the present embodiment, the height of the projection 2 is higher than that of the chevron 11 between the adjacent chevron 11 on the bottom of the seating surface 2a of the molding die 2 and between the chevron 11 and the inclined peripheral edge of the seat 2a. Since the bead-shaped projections 12 having a low height are arranged, the material between the mountain-shaped projections 11 in the middle of molding collides with the bead-shaped projections 12 before the bottom of the seating surface 2a. The impacted material is plastically deformed due to the protrusion shape, so that the kinetic energy is absorbed, thereby suppressing the rebound of the material, so that a thin plate product such as a fuel cell metal separator W as shown in FIG. It can be obtained with high accuracy.

尚、本実施の形態では、成形金型2の座面2a底部の隣接する山形突起11同士の間及び山形突起11と座面2aの斜面状周縁部との間に、山形突起11よりも高さの低い1本のビード状突起12を配置したが、ビード状突起12は複数であっても良い。更に、ビード状突起12に代えて山形突起11よりも高さの低い山形突起を連続して配置しても良い。   In the present embodiment, it is higher than the chevron 11 between the chevron 11 adjacent to each other at the bottom of the seating surface 2a of the molding die 2 and between the chevron 11 and the inclined peripheral edge of the seat 2a. Although one bead-shaped protrusion 12 having a small height is arranged, a plurality of bead-shaped protrusions 12 may be provided. Further, instead of the bead-shaped projections 12, chevron projections lower in height than the chevron projections 11 may be continuously arranged.

<実施の形態3>
次に、本発明の実施の形態3を図9及び図10に基づいて説明する。
<Embodiment 3>
Next, a third embodiment of the present invention will be described with reference to FIGS.

図9は本発明の実施の形態3に係る成形型の座面部分の斜視図、図10は図9のD−D線断面図である。   9 is a perspective view of a seating surface portion of a mold according to Embodiment 3 of the present invention, and FIG. 10 is a cross-sectional view taken along the line DD of FIG.

本実施の形態においては、前記実施の形態2と同様に、成形金型2の座面2a底部に、高さが座面2aの深さに等しい円錐台状の複数の山形突起11を等間隔にハニカム状に配置するとともに、成形金型2の座面2a底部の隣接する山形突起11同士の間及び山形突起11と座面2aの斜面状周縁部との間に、山形突起11よりも高さの低いビード状突起12を配置しているが、山形突起12の斜面と成形金型2の座面2a周縁部の斜面に複数の溝13を形成したことを特徴としている。   In the present embodiment, similar to the second embodiment, a plurality of truncated cone-shaped protrusions 11 whose height is equal to the depth of the seating surface 2a are equally spaced on the bottom of the seating surface 2a of the molding die 2. In the form of a honeycomb, and higher than the chevron 11 between the chevron 11 adjacent to each other at the bottom of the seating surface 2a of the molding die 2 and between the chevron 11 and the inclined peripheral edge of the seating surface 2a. Although the bead-shaped projection 12 having a small height is arranged, a plurality of grooves 13 are formed on the slope of the chevron 12 and the slope of the peripheral edge of the seating surface 2 a of the molding die 2.

而して、本実施の形態によれば、前記実施の形態2によって得られる効果に加えて次のような効果が更に得られる。   Thus, according to the present embodiment, the following effects can be further obtained in addition to the effects obtained by the second embodiment.

即ち、成形力が強くなって材料が山形突起11と成形金型2の座面2a周縁部の斜面に衝突しても、該斜面に形成された複数の溝13に材料が順次衝突して塑性変形して運動エネルギーが成形の進行と共に段階的に吸収されるため、材料の跳ね返り現象の発生が効果的に抑えられて図3に示すような座面部WBが高精度に成形される。   That is, even if the molding force is increased and the material collides with the angled protrusion 11 and the slope of the peripheral surface of the seating surface 2a of the molding die 2, the material sequentially collides with the plurality of grooves 13 formed on the slope to cause plasticity. Since the deformation and the kinetic energy are absorbed step by step as the molding progresses, the occurrence of the material rebound phenomenon is effectively suppressed, and the seat surface portion WB as shown in FIG. 3 is molded with high accuracy.

以上のように、図9に示す座面2a部分を成形金型2にて電磁成形を行って得られる熱交換器用の熱交換プレートは表面に小さな溝が成形されているため、表面積が増えて熱交換効率が高められるという効果が得られる。   As described above, the heat exchange plate for the heat exchanger obtained by electromagnetically forming the seating surface 2a portion shown in FIG. 9 with the molding die 2 has a small groove formed on the surface, so that the surface area increases. The effect that the heat exchange efficiency is increased is obtained.

尚、本実施の形態において、成形金型11の座面2a底部の隣接する山形突起11同士の間及び山形突起11と座面2aの斜面状周縁部との間に、山形突起11よりも高さの低い2本のビード状突起12と連続的な山形突起14を併設した例を図11に示す。   In the present embodiment, a height higher than the angle protrusion 11 between the adjacent angle protrusions 11 at the bottom of the seating surface 2a of the molding die 11 and between the angle protrusion 11 and the inclined peripheral edge of the seating surface 2a. FIG. 11 shows an example in which two bead-shaped projections 12 and a continuous mountain-shaped projection 14 are provided side by side.

<実施の形態4>
次に、本発明の実施の形態4を図12に基づいて説明する。
<Embodiment 4>
Next, a fourth embodiment of the present invention will be described with reference to FIG.

図12は本発明の実施の形態4に係る成形型の座面部分の斜視図であり、本実施の形態においては、前記実施の形態2と同様に、成形金型2の座面2a底部に、高さが座面2aの深さに等しい円錐台状の複数の山形突起11を等間隔にハニカム状に配置するとともに、前記実施の形態3と同様に山形突起11の斜面と成形金型2の座面2a周縁部の斜面に複数の溝13を形成している。   FIG. 12 is a perspective view of the seating surface portion of the molding die according to the fourth embodiment of the present invention. In this embodiment, the bottom of the seating surface 2a of the molding die 2 is the same as in the second embodiment. A plurality of truncated cone-shaped projections 11 whose height is equal to the depth of the seating surface 2a are arranged in a honeycomb shape at equal intervals, and the slope of the chevron projection 11 and the molding die 2 are the same as in the third embodiment. A plurality of grooves 13 are formed on the slope of the peripheral edge of the seating surface 2a.

従って、本実施の形態によれば、前記実施の形態1によって得られる効果に加えて前記実施の形態3と同様の効果が得られる。即ち、成形力が強くなって材料が山形突起11と成形金型2の座面2a周縁部の斜面に衝突しても、該斜面に形成された複数の溝13に材料が順次衝突して衝撃エネルギーが成形の進行と共に段階的に吸収されるため、材料の跳ね返り現象の発生が効果的に抑えられて図3に示すような座面部WBが高精度に成形される。   Therefore, according to the present embodiment, the same effect as in the third embodiment can be obtained in addition to the effect obtained in the first embodiment. That is, even if the molding force becomes strong and the material collides with the slope of the chevron 11 and the peripheral surface of the seating surface 2a of the molding die 2, the material collides sequentially with the plurality of grooves 13 formed on the slope and the impact. Since energy is absorbed step by step with the progress of molding, the occurrence of the material rebound phenomenon is effectively suppressed, and the seat portion WB as shown in FIG. 3 is molded with high accuracy.

<実施の形態5>
次に、本発明の実施の形態5を図13及び図14に基づいて説明する。
<Embodiment 5>
Next, a fifth embodiment of the present invention will be described with reference to FIGS.

図13は本発明の実施の形態5に係る成形型の溝部分の斜視図、図14は図13のE−E線断面図であり、本実施の形態は、薄板3に溝部WAを形成するため、成形金型2の溝2bの溝底部2cに溝2bの深さより低いビード状突起12を配置するとともに、溝2bの周縁部の斜面に複数の溝13を形成したことを特徴としている。   13 is a perspective view of a groove portion of a molding die according to Embodiment 5 of the present invention, FIG. 14 is a cross-sectional view taken along the line EE of FIG. 13, and in this embodiment, the groove portion WA is formed in the thin plate 3. Therefore, a feature is that a bead-shaped projection 12 lower than the depth of the groove 2b is disposed on the groove bottom 2c of the groove 2b of the molding die 2 and a plurality of grooves 13 are formed on the inclined surface of the peripheral edge of the groove 2b.

ところで、成形金型2の溝2bが広い場合(溝幅が溝深さの3倍より大きい場合)には、溝底部2cにて材料の跳ね返り現象が発生する可能性がある。   By the way, when the groove 2b of the molding die 2 is wide (when the groove width is larger than three times the groove depth), a material rebound phenomenon may occur at the groove bottom 2c.

然るに、本実施の形態では、成形金型2の溝底部2cに溝2bの深さより低いビード状突起12を配置したため、成形途中の溝2b内の材料が溝底部2cよりも先にビード状突起12に衝突する。そして、衝突した材料はビード状突起12により塑性変形して運動エネルギーが吸収されるため、材料の跳ね返りが抑えられて薄板3に所望の形状の溝WAを高精度に形成することができる。   However, in the present embodiment, since the bead-shaped projections 12 lower than the depth of the groove 2b are arranged on the groove bottom portion 2c of the molding die 2, the material in the groove 2b in the middle of the molding is a bead-shaped projection before the groove bottom portion 2c. 12 hits. The impacted material is plastically deformed by the bead-shaped protrusion 12 and the kinetic energy is absorbed, so that the material bounce is suppressed and the groove WA having a desired shape can be formed in the thin plate 3 with high accuracy.

尚、本実施の形態では、成形金型2の溝底部2cに溝2bの深さより低いビード状突起12を配置したが、ビード状突起12に代えて溝2bの深さより低い連続する山形突起を配置しても良い。   In the present embodiment, the bead-shaped protrusion 12 lower than the depth of the groove 2b is disposed on the groove bottom 2c of the molding die 2. However, instead of the bead-shaped protrusion 12, continuous chevron protrusions lower than the depth of the groove 2b are provided. It may be arranged.

又、本実施の形態で成形されたプレート式熱交換器の熱交換プレートは表面積が増えるために実施の形態3と同様に熱交換効率が高められるという効果が得られる。   In addition, since the heat exchange plate of the plate type heat exchanger formed in the present embodiment has an increased surface area, the effect of improving the heat exchange efficiency as in the third embodiment can be obtained.

尚、本発明に係る電磁成形装置によって成形される薄板の用途は、燃料電池用金属セパレータ又はプレート式熱交換器用の熱交換プレートのみに限定される訳ではなく、座面形状又は溝形状を備えた金属製薄板を複数積層し、薄板間に流体を流して使用される流体機器用金属製薄板全般に広げられる。   The use of the thin plate formed by the electromagnetic forming apparatus according to the present invention is not limited to the metal separator for a fuel cell or the heat exchange plate for a plate heat exchanger, but has a seat surface shape or a groove shape. It is possible to spread a wide range of metal thin plates for fluid equipment used by laminating a plurality of thin metal plates and flowing a fluid between the thin plates.

本発明に係る電磁成形装置の断面図(図2のA−A線断面図)である。It is sectional drawing (the AA sectional view taken on the line of FIG. 2) of the electromagnetic forming apparatus which concerns on this invention. 本発明に係る電磁成形装置の固定部材を外した状態の平面図である。It is a top view in the state where the fixing member of the electromagnetic forming device concerning the present invention was removed. 本発明に係る電磁成形装置によって成形された燃料電池用金属セパレータの部分斜視図である。It is a fragmentary perspective view of the metal separator for fuel cells shape | molded by the electromagnetic forming apparatus which concerns on this invention. 本発明の実施の形態1に係る成形型の座面部分の斜視図である。It is a perspective view of the seat surface part of the shaping | molding die concerning Embodiment 1 of this invention. 図4のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 本発明の実施の形態1の変形例に係る成形型の座面部分の斜視図である。It is a perspective view of the seat surface part of the shaping | molding die which concerns on the modification of Embodiment 1 of this invention. 本発明の実施の形態2に係る成形型の座面部分の斜視図である。It is a perspective view of the seating surface part of the shaping | molding die concerning Embodiment 2 of this invention. 図7のC−C線断面図である。It is CC sectional view taken on the line of FIG. 本発明の実施の形態3に係る成形型の座面部分の斜視図である。It is a perspective view of the seat surface part of the shaping | molding die concerning Embodiment 3 of this invention. 図9のD−D線断面図である。FIG. 10 is a sectional view taken along line D-D in FIG. 9. 本発明の実施の形態3の変形例に係る成形型の座面部分の斜視図である。It is a perspective view of the seat surface part of the shaping | molding die which concerns on the modification of Embodiment 3 of this invention. 本発明の実施の形態4に係る成形型の座面部分の斜視図である。It is a perspective view of the seat surface part of the shaping | molding die concerning Embodiment 4 of this invention. 本発明の実施の形態5に係る成形型の溝部分の斜視図である。It is a perspective view of the groove part of the shaping | molding die which concerns on Embodiment 5 of this invention. 図13のE−E線断面図である。It is the EE sectional view taken on the line of FIG.

符号の説明Explanation of symbols

1 電磁成形装置
2 成形金型
2A 成形金型の成形部
2B 成形金型の周辺部
2a 成形金型の座面
2b 成形金型の溝
2c 成形金型の溝底部
3 薄板
4 ワンターンコイル(成形コイル)
4A ワンターンコイルの電流集中部
4B ワンターンコイルのリターン部
4a ワンターンコイルのスリット
5 固定部材
6 耐熱シート
7 絶縁シート
8 コンデンサ
9 放電ギャップスイッチ
10 直流高圧電源(電源手段)
11 山形突起
12 ビード状突起
13 溝
14 山形突起
W 燃料電池用金属セパレータ
WA 燃料電池用金属セパレータの溝部
WB 燃料電池用金属セパレータの座面部
Wa 座面部の凹部
Wb 座面部の孔
d 成形金型の座面深さ
h 山形突起の高さ
P 山形突起の間隔
α 山形突起の斜面角度
DESCRIPTION OF SYMBOLS 1 Electromagnetic forming apparatus 2 Molding die 2A Molding part 2B Peripheral part of molding die 2a Seating surface of molding die 2b Groove of molding die 2c Groove bottom part of molding die 3 Thin plate 4 One-turn coil (molding coil )
4A One-turn coil current concentration part 4B One-turn coil return part 4a One-turn coil slit 5 Fixing member 6 Heat-resistant sheet 7 Insulation sheet 8 Capacitor 9 Discharge gap switch 10 DC high-voltage power supply (power supply means)
DESCRIPTION OF SYMBOLS 11 Angle projection 12 Bead-shaped projection 13 Groove 14 Angle projection W Metal separator for fuel cells WA Groove portion of metal separator for fuel cell WB Seat surface portion of metal separator for fuel cell Wa Concavity of seat surface portion Wb Hole of seat surface portion d Mold mold Bearing surface depth h Height of chevron protrusion P Spacing of chevron protrusion α Slope angle of chevron protrusion

Claims (8)

成形コイルと、該成形コイルに通電するための電源手段と、少なくとも座面を含む成形部を備えた成形金型を備え、前記成形コイルと前記成形金型との間に薄板を介在させた状態で前記電源手段から成形コイルに通電して電磁力を発生させ、該電磁力によって前記薄板を前記成形金型に押圧してこれを成形する薄板の電磁成形装置において、
前記成形金型の座面底部に、高さが座面深さに等しい複数の山形突起を等間隔に配置したことを特徴とする薄板の電磁成形装置。
A state in which a molding coil, power supply means for energizing the molding coil, and a molding die having a molding part including at least a seating surface are provided, and a thin plate is interposed between the molding coil and the molding die In the electromagnetic forming apparatus for a thin plate, an electromagnetic force is generated by energizing the molding coil from the power source means, and the thin plate is pressed against the molding die by the electromagnetic force to form the electromagnetic force.
A thin plate electromagnetic forming apparatus, wherein a plurality of chevron projections having a height equal to a seating surface depth are arranged at equal intervals on a seating surface bottom portion of the molding die.
複数の前記山形突起をハニカム状に配置したことを特徴とする請求項1記載の薄板の電磁成形装置。   The thin plate electromagnetic forming apparatus according to claim 1, wherein the plurality of chevron protrusions are arranged in a honeycomb shape. 前記山形突起又は前記座面周縁部の斜面に複数の溝を形成したことを特徴とする請求項1又は2記載の薄板の電磁成形装置。   The thin plate electromagnetic forming apparatus according to claim 1, wherein a plurality of grooves are formed on the slope of the chevron protrusion or the peripheral edge of the seat surface. 前記成形金型の座面底部の隣接する前記山形突起同士の間又は前記山形突起と前記座面周縁部の間に、該山形突起よりも高さの低い山形突起又はビード状突起を配置したことを特徴とする請求項1〜3の何れかに記載の薄板の電磁成形装置。   A chevron projection or a bead-like projection having a height lower than that of the chevron projection is disposed between the chevron projections adjacent to each other at the bottom of the seating surface of the molding die or between the chevron projection and the periphery of the seating surface. The electromagnetic forming apparatus for a thin plate according to any one of claims 1 to 3. 請求項1〜4の何れかに記載の電磁成形装置にて座面形状が成形されたヘッダー部を有して積層構造を成すことを特徴とする流体機器用金属製薄板。   A metal thin plate for a fluid device, comprising a header portion having a seat shape formed by the electromagnetic forming apparatus according to any one of claims 1 to 4 to form a laminated structure. 成形コイルと、該成形コイルに通電するための電源手段と、少なくとも溝形状を含む成形部を備えた成形金型を備え、前記成形コイルと前記成形金型との間に薄板を介在させた状態で前記電源手段から成形コイルに通電して電磁力を発生させ、該電磁力によって前記薄板を前記成形金型に押圧してこれを成形する薄板の電磁成形装置において、
前記成形金型の溝形状底部に、高さが溝形状深さよりも低い山形突起又はビード状突起を配置したことを特徴とする薄板の電磁成形装置。
A state in which a molding coil, power supply means for energizing the molding coil, and a molding die having a molding part including at least a groove shape are provided, and a thin plate is interposed between the molding coil and the molding die In the electromagnetic forming apparatus for a thin plate, an electromagnetic force is generated by energizing the molding coil from the power source means, and the thin plate is pressed against the molding die by the electromagnetic force to form the electromagnetic force.
An electromagnetic forming apparatus for a thin plate, wherein a chevron projection or a bead-shaped projection having a height lower than the groove shape depth is arranged at the groove shape bottom of the molding die.
前記成形金型の溝周縁部斜面に複数の溝を形成したことを特徴とする請求項6記載の薄板の電磁成形装置。   The thin plate electromagnetic forming apparatus according to claim 6, wherein a plurality of grooves are formed on a slope of the peripheral edge of the groove of the molding die. 請求項6又は7記載の電磁成形装置にて溝形状が成形された流路を有して積層構造を成すことを特徴とする流体機器用金属製薄板。   A metal thin plate for a fluid device having a flow path having a groove shape formed by the electromagnetic forming apparatus according to claim 6 or 7 to form a laminated structure.
JP2007240370A 2007-09-18 2007-09-18 Electromagnetic forming device for thin sheet, and metallic thin sheet for fluid apparatus Pending JP2009066642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240370A JP2009066642A (en) 2007-09-18 2007-09-18 Electromagnetic forming device for thin sheet, and metallic thin sheet for fluid apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240370A JP2009066642A (en) 2007-09-18 2007-09-18 Electromagnetic forming device for thin sheet, and metallic thin sheet for fluid apparatus

Publications (1)

Publication Number Publication Date
JP2009066642A true JP2009066642A (en) 2009-04-02

Family

ID=40603457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240370A Pending JP2009066642A (en) 2007-09-18 2007-09-18 Electromagnetic forming device for thin sheet, and metallic thin sheet for fluid apparatus

Country Status (1)

Country Link
JP (1) JP2009066642A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103831339A (en) * 2014-03-18 2014-06-04 华中科技大学 Electromagnetic forming tooling method
CN105728541A (en) * 2016-04-28 2016-07-06 华中科技大学 Coil-free electromagnetic-pulse forming device and method of metal plates
JP2020047441A (en) * 2018-09-18 2020-03-26 トヨタ自動車株式会社 Manufacturing method of separator for fuel cell
CN113899653A (en) * 2020-12-28 2022-01-07 国家珠宝检测中心(广东)有限责任公司 Low-purity gold quantitative detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103831339A (en) * 2014-03-18 2014-06-04 华中科技大学 Electromagnetic forming tooling method
CN103831339B (en) * 2014-03-18 2016-01-20 华中科技大学 A kind of electro-magnetic forming method for tooling
CN105728541A (en) * 2016-04-28 2016-07-06 华中科技大学 Coil-free electromagnetic-pulse forming device and method of metal plates
CN105728541B (en) * 2016-04-28 2017-08-18 华中科技大学 A kind of coil electromagnetic pulse forming device and method of sheet metal
JP2020047441A (en) * 2018-09-18 2020-03-26 トヨタ自動車株式会社 Manufacturing method of separator for fuel cell
JP7021037B2 (en) 2018-09-18 2022-02-16 トヨタ自動車株式会社 Manufacturing method of separator for fuel cell
CN113899653A (en) * 2020-12-28 2022-01-07 国家珠宝检测中心(广东)有限责任公司 Low-purity gold quantitative detection method
CN113899653B (en) * 2020-12-28 2022-09-13 国家珠宝检测中心(广东)有限责任公司 Low-purity gold quantitative detection method

Similar Documents

Publication Publication Date Title
JP2007296553A (en) Apparatus for electromagnetically forming sheet
EP1221754B1 (en) Generator stator cooling design with concavity surfaces
CA2279152C (en) Multiple uneven plate, multiple uneven plate bending mold, multiple uneven plate manufacturing method and separator using multiple uneven plate
US7954357B2 (en) Driver plate for electromagnetic forming of sheet metal
JP2006228533A (en) Molding method of separator for fuel cell and separator shape correcting device
JP2009066642A (en) Electromagnetic forming device for thin sheet, and metallic thin sheet for fluid apparatus
JP2006318863A (en) Separator for fuel cell
JP2011113806A (en) Separator for fuel cell and method of manufacturing the same
US11161197B2 (en) Joined structure and joining method
JP2013501310A (en) Batteries with stacks of bipolar battery individual cells
US10886191B2 (en) Heat transfer plate
CN109996638B (en) Magnetic pulse brazing method for lamination of thin sheets
CN113333561A (en) Electromagnetic forming device and method based on conductive channel
EP3286791B1 (en) Method for producing kiss cut fluid flow field plates
JP5980110B2 (en) Diffusion bonding jig and diffusion bonding method
US9897418B2 (en) Electric reactive armour
JP2019114515A (en) Manufacturing installation for separator for fuel cell and manufacturing method for separator for fuel cell
US20150311540A1 (en) Method for producing fluid flow field plates
JP2015191731A (en) Battery holder for battery module and manufacturing method therefor
JP2006127948A (en) Fuel cell stack
CN112846475B (en) Preparation method of liquid cooling plate
JP2009255139A (en) Conical spring and apparatus for forming the same
US20230318004A1 (en) Method for manufacturing fuel cell stack and method for manufacturing joint separator
CN115138970B (en) Fuel cell bipolar plate and welding method thereof
CN220439737U (en) Battery module and battery pack