JP2009255139A - Conical spring and apparatus for forming the same - Google Patents

Conical spring and apparatus for forming the same Download PDF

Info

Publication number
JP2009255139A
JP2009255139A JP2008108436A JP2008108436A JP2009255139A JP 2009255139 A JP2009255139 A JP 2009255139A JP 2008108436 A JP2008108436 A JP 2008108436A JP 2008108436 A JP2008108436 A JP 2008108436A JP 2009255139 A JP2009255139 A JP 2009255139A
Authority
JP
Japan
Prior art keywords
forming
conical spring
mold
molding
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008108436A
Other languages
Japanese (ja)
Inventor
Hiroaki Miyazaki
裕明 宮崎
Takuto Shimojo
拓人 下條
Tomokatsu Aizawa
友勝 相澤
Keigo Okagawa
啓悟 岡川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topre Corp
Original Assignee
Topre Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topre Corp filed Critical Topre Corp
Priority to JP2008108436A priority Critical patent/JP2009255139A/en
Publication of JP2009255139A publication Critical patent/JP2009255139A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for forming a conical spring by which a highly accurate conical spring is obtained at high speed and at low cost by performing helical shearing work without having the slit width and forming of a spring in one process. <P>SOLUTION: In an apparatus 1 for forming a conical spring which is provided with a one-turn coil (formed coil) 5, a power source means for energizing the one-turn coil 5 and a die 2 provided with a forming part 2A, electromagnetic force is generated by making the current flow to the one-turn coil 5 from the power source means in the state where a sheet 3 is interposed between the one-turn coil 5 and the die 2 and the sheet 3 is pressed against the die 2 by the electromagnetic force, and the forming part 2A is made by forming a helical shape into a mortar shape on the die 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電磁力を利用して薄板から円錐バネを成形するための成形装置とこれによって成形される円錐バネに関するものである。   The present invention relates to a forming apparatus for forming a conical spring from a thin plate using electromagnetic force and a conical spring formed thereby.

金属板の加工方法として電磁成形法が提案されているが、この電磁成形法は、成形コイルに大電流を瞬時に流して衝撃的な電磁力を発生させ、この電磁力によって金属板を所定の形状に成形する方法であって、これによれば歪みの少ない成形を高速で行うことができる。この電磁成形法は、例えばパイプやシャフトのカシメ、胴部の張り出し成形、フランジ加工等に応用され、主に板厚1mm〜2mm程度の比較的厚いアルミニウム材に対して用いられてきたが、金属薄板の成形にはあまり利用されていなかった。   An electromagnetic forming method has been proposed as a method for processing a metal plate. In this electromagnetic forming method, a large current is instantaneously applied to a forming coil to generate a shocking electromagnetic force. According to this method, molding with less distortion can be performed at high speed. This electromagnetic forming method is applied to, for example, caulking of pipes and shafts, overhang forming of a body portion, flange processing, etc., and has been used mainly for relatively thick aluminum materials having a plate thickness of about 1 mm to 2 mm. It was not widely used for forming thin plates.

そこで、本出願人は、薄板を電磁成形するための電磁成形装置を先に提案した(特許文献1参照)。この電磁成形装置は、ワンターンコイルの少なくとも電流集中部を平面状とし、該電力集中部における電磁力の発生領域が金型の成形部と該成形部周辺の拘束域との両域となるよう設定したものである。この電磁成形装置によれば、ワンターンコイルの電流集中部は平面状を成すため、該電流集中部に均一な電磁力が発生するとともに、コイルがワンターンであるためにインダクタンスが小さくなり、コイルに周期の短い減衰振動電流が発生する。このため、高い誘導電流が発生し、結果的に電磁力が大きくなり、この大きな電磁力によって薄板が金型の成形部及び該成形部の周辺まで含めて金型に均一に押し付けられて超高速で成形され、均一な溝深さの高品位な成形品が得られる。   Therefore, the present applicant has previously proposed an electromagnetic forming apparatus for electromagnetically forming a thin plate (see Patent Document 1). This electromagnetic forming apparatus is configured so that at least the current concentration portion of the one-turn coil is planar, and the electromagnetic force generation region in the power concentration portion is both the mold forming portion and the restraining region around the forming portion. It is a thing. According to this electromagnetic forming apparatus, since the current concentrated portion of the one-turn coil has a flat shape, a uniform electromagnetic force is generated in the current concentrated portion, and since the coil is one-turn, the inductance is reduced and the coil has a period. A short damped oscillating current is generated. For this reason, a high induced current is generated, and as a result, the electromagnetic force is increased. The large electromagnetic force causes the thin plate to be uniformly pressed to the mold including the molding part of the mold and the periphery of the molding part. A high-quality molded product having a uniform groove depth can be obtained.

又、ワンターンコイルの電流集中部は、金型の成形部とその周囲の周辺部の一部を覆い、電磁力は金型の成形部とその周囲の周辺部の一部(拘束部)の双方に亘って均一に作用し、薄板の成形部周辺の拘束部や金型の凸部に接する部分を金型に強く押し付けて拘束するため、その拘束部が金型の成形部側へと引き込まれることがなく、成形部分の薄板の伸びのみで成形されるために歪の発生が殆どなくなり、成形品に反りが殆ど発生せず、平面度の高い高品質な成形品が得られる。   The current-concentrated portion of the one-turn coil covers the molding part of the mold and a part of the peripheral part around it, and the electromagnetic force is applied to both the molding part of the mold and a part of the peripheral part of the periphery (restraint part). Since the part that contacts the constraining part around the molding part of the thin plate and the convex part of the mold is restrained by pressing strongly against the mold, the constraining part is drawn into the molding part side of the mold. Therefore, since the molding is performed only by the elongation of the thin plate of the molding portion, the generation of distortion is almost eliminated, the molded product is hardly warped, and a high-quality molded product with high flatness can be obtained.

他方、特許文献2には、電動タイプライタ等のキーボードに使用される円錐バネの成形方法として、燐青銅等の薄い板体に切削工具やエッチング等によって所定の巻数をもった螺旋状の切込み線を形成し、この切込み線で囲まれた部分を立ち上がらせて円錐バネを切起こし形成する方法が提案されており、これによれば円錐バネとこれを装着する板体とを一体的に構成することができる。   On the other hand, in Patent Document 2, as a method for forming a conical spring used in a keyboard such as an electric typewriter, a spiral cutting line having a predetermined number of turns by a cutting tool or etching on a thin plate body such as phosphor bronze. And the conical spring is raised and formed by raising the portion surrounded by the cut line, and according to this, the conical spring and the plate body on which the conical spring is mounted are integrally configured. be able to.

又、特許文献3には、多数のスプリングとその背設板との一体製造法として、焼入れ前の環状ばね材板に、所定の配列で同一形状の切込みをプレスの打切りによって複数形成するとともに、該切込み部をプレスによって起こして突起を形成した後、ばね材板を焼入れして前記突起又は全体をスプリング化する方法が提案されている。
特開2007−296553号公報 実開昭54−052587号公報 特開昭58−013424号公報
Moreover, in Patent Document 3, as an integrated manufacturing method of a large number of springs and the back plate thereof, a plurality of cuts of the same shape with a predetermined arrangement are formed in the annular spring material plate before quenching by press cutting, A method has been proposed in which the cut portion is raised by a press to form a protrusion, and then a spring material plate is quenched to make the protrusion or the whole spring.
JP 2007-296553 A Japanese Utility Model Publication No. 54-052587 JP 58-013424 A

しかしながら、特許文献2,3において提案された方法では、何れも切込みを入れる剪断工程とバネ形状を形成する成形工程との2工程を必要とするため、工数が増えてコストアップを招くという問題がある。   However, the methods proposed in Patent Documents 2 and 3 both require two steps, a shearing process for cutting and a forming process for forming a spring shape, and thus the problem is that man-hours increase and cost increases. is there.

又、螺旋状の切込み(スリット)の形成に関して、所定の幅を有したスリットの加工はプレス加工やエッチングによって可能であるが、幅の無いスリットの加工は特殊な場合を除きプレス加工では不可能である。特に、特許文献3には、渦巻き状の切込みをプレスの打切りによって形成する方法が開示されているが、具体的なプレス加工方法は開示されていない。尚、渦巻き状のスリットであっても、その幅が広い場合には剪断金型を用いて加工が可能であるが、金型の耐久性等の問題のために現実的ではない。   In addition, regarding the formation of a spiral cut (slit), a slit having a predetermined width can be processed by pressing or etching, but a slit having no width cannot be processed by pressing except in special cases. It is. In particular, Patent Document 3 discloses a method of forming a spiral cut by press cutting, but does not disclose a specific press working method. In addition, even if it is a spiral slit, when the width | variety is wide, it can process using a shear metal mold | die, but it is not realistic because of problems, such as durability of a metal mold | die.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、スリット幅の無い渦巻き状の剪断加工とバネ成形を1工程で行うことによって、寸法精度の高い円錐バネを高速且つ低コストで得ることができる成形装置と該装置によって成形される円錐バネを提供することにある。   The present invention has been made in view of the above problems, and its object is to perform a spiral shearing process without a slit width and a spring forming in one step, so that a conical spring with high dimensional accuracy can be produced at high speed and low speed. It is an object of the present invention to provide a molding device that can be obtained at a low cost and a conical spring molded by the device.

上記目的を達成するため、請求項1記載の発明は、成形コイルと、該成形コイルに通電するための電源手段と、成形部を備えた金型を備え、前記成形コイルと前記金型との間に薄板を介在させた状態で前記電源手段から前記成形コイルに通電して電磁力を発生させ、該電磁力によって前記薄板を前記金型に押圧して円錐バネを成形する成形装置として、前記金型に渦巻き形状をすり鉢状に形成して成る成形部を形成したことを特徴とする。   In order to achieve the above object, an invention according to claim 1 includes a molded coil, a power supply means for energizing the molded coil, and a mold including a molded part, and the molded coil and the mold As a molding apparatus for forming a conical spring by energizing the molding coil from the power supply means with a thin plate interposed therebetween to generate an electromagnetic force and pressing the thin plate against the mold by the electromagnetic force, It is characterized in that a molding part formed by forming a spiral shape in a mortar shape on a mold is formed.

請求項2記載の発明は、前記金型の成形部に複数の渦巻き形状を同心円状に形成したことを特徴とする。   The invention according to claim 2 is characterized in that a plurality of spiral shapes are concentrically formed in the molding portion of the mold.

請求項3記載の発明に係る円錐バネは、請求項1又は2記載の成形装置によって成形されることを特徴とする。   A conical spring according to a third aspect of the present invention is formed by the molding device according to the first or second aspect.

本発明によれば、成形装置の成形コイルに電源手段から通電されると、該成形コイルに発生する電磁力が金型の成形部において薄板に対する成形力として作用し、成形部のすり鉢状の段差が刃先となって薄板が成形部の渦巻き形状に沿って剪断されると同時に、薄板の渦巻き形状に剪断された部分がすり鉢状の成形部に沿って立ち上げられて円錐バネとして成形される。このように薄板に対してスリット幅の無い渦巻き状の剪断加工とバネ成形が同時に1工程で行われて所望の円錐バネが成形され、電磁成形によって寸法精度の高い円錐バネを高速且つ低コストで得ることができる。   According to the present invention, when the forming coil of the forming apparatus is energized from the power supply means, the electromagnetic force generated in the forming coil acts as a forming force on the thin plate in the forming part of the mold, and the mortar-like step of the forming part At the same time, the thin plate is sheared along the spiral shape of the forming portion as a cutting edge, and at the same time, the portion of the thin plate sheared into the spiral shape is raised along the mortar-shaped forming portion and formed as a conical spring. Thus, spiral shearing without slit width and spring molding are simultaneously performed on a thin plate in one step to form a desired conical spring, and a conical spring with high dimensional accuracy can be formed at high speed and low cost by electromagnetic molding. Obtainable.

又、金型の成形部に形成されたすり鉢状の段差が刃先となって薄板が渦巻き状に剪断される際、薄板の剪断部には材料のダレが発生するため、成形された円錐バネを圧縮したときに隣り合う剪断部分同士で擦れ合うことがなく、圧縮された円錐バネは平面状を成す。そして、このようにして成形される円錐バネをコネクタ等の電気接点として利用する場合、該円錐バネの伸縮時に、接点となる円錐バネの中央の突起部は該突起部を中心として回転するため、該突起部と相手方の接点との間に摩擦を生じ、この摩擦によって接点の汚れがセルフクリーニング機能によって除去され、両接点が清掃されて接点同士の電気的な接続が安定的になされる。   In addition, when the thin plate is sheared in a spiral shape with a mortar-shaped step formed in the molding part of the mold, the material is sag in the sheared part of the thin plate. When compressed, adjacent shearing portions do not rub against each other, and the compressed conical spring forms a planar shape. And when using the conical spring formed in this way as an electrical contact such as a connector, when the conical spring expands and contracts, the central protrusion of the conical spring that becomes the contact rotates around the protrusion, Friction is generated between the protruding portion and the contact of the other party, and the contamination of the contact is removed by this friction by the self-cleaning function, and both the contacts are cleaned and the electrical connection between the contacts is made stable.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明に係る成形装置の断面図(図2のA−A線断面図)、図2は同成形装置の固定部材を外した状態の平面図、図3は同成形装置の分解斜視図、図4は金型の斜視図、図5は図4のB−B線断面図、図6(a)〜(c)は円錐バネの成形工程を示す部分断面図、図7は円錐バネの斜視図である。   1 is a cross-sectional view of the molding apparatus according to the present invention (cross-sectional view taken along line AA in FIG. 2), FIG. 2 is a plan view of the molding apparatus with a fixing member removed, and FIG. 3 is an exploded perspective view of the molding apparatus. 4 is a perspective view of the mold, FIG. 5 is a cross-sectional view taken along the line BB of FIG. 4, FIGS. 6A to 6C are partial cross-sectional views showing a forming process of the conical spring, and FIG. FIG.

本発明に係る成形装置1は、電磁力を利用して図7に示す円錐バネWを成形する装置であって、図1〜図3に示すように、ブロック状の金型2の上に被成形材としての薄板3、該薄板3よりも導電率が高い金属であるアルミニウムから成る厚さ0.5mmの平板状のドライバ4、E字状の金属平板で構成されたワンターンコイル5及び厚さが比較的厚くワンターンコイル5がドライバ4から受ける反力に耐え得る適切な強度と剛性を有する矩形平板状の固定部材6を順次積み重ねるとともに、薄板3とドライバ4との間及びドライバ4とワンターンコイル5との間にそれぞれポリイミド製の耐熱シート8、絶縁シート9を介在させている。これらの金型2、薄板3、耐熱シート8、ドライバ4、絶縁シート9、ワンターンコイル5及び固定部材6は順次積層され、ワンターンコイル5に発生する電磁力によりドライバ4に発生する反力でその積層構造が崩れないように、図示しない上下方向の拘束手段(例えば、プレス機械のラムとボルスター間)により固定されている。   A forming apparatus 1 according to the present invention is an apparatus for forming a conical spring W shown in FIG. 7 using electromagnetic force, and is placed on a block-shaped mold 2 as shown in FIGS. A thin plate 3 as a molding material, a flat-plate driver 4 having a thickness of 0.5 mm made of aluminum which is a metal having higher conductivity than the thin plate 3, a one-turn coil 5 composed of an E-shaped metal flat plate, and a thickness The rectangular flat plate-shaped fixing members 6 having appropriate strength and rigidity that can withstand the reaction force that the one-turn coil 5 receives from the driver 4 are sequentially stacked, and the thin plate 3 and the driver 4 and between the driver 4 and the one-turn coil. 5, a heat-resistant sheet 8 made of polyimide and an insulating sheet 9 are interposed. These mold 2, thin plate 3, heat-resistant sheet 8, driver 4, insulating sheet 9, one-turn coil 5 and fixing member 6 are sequentially laminated, and the reaction force generated in the driver 4 by the electromagnetic force generated in the one-turn coil 5 To prevent the laminated structure from collapsing, it is fixed by vertical restraining means (not shown) (for example, between the ram and bolster of the press machine).

ところで、前記金型2の上面の中央部には、図4及び図5に示すように、成形部2Aが形成され、その周囲には平坦な周辺部2Bが形成されている。ここで、成形部2Aには、図7に示す円錐バネWと同形状の渦巻き形状がすり鉢状に形成されている。尚、本実施の形態では、成形部2Aの渦巻き形状の最大外径はφ21mm、螺旋の幅は3mm、段差(1周毎の下りピッチ)は1mm、巻き数は3回、最大深さは3mmに設定されている。又、成形部2Aの渦巻き形状の中心部には、成形時に空気を逃がすための内径φ3mmの円孔2aが形成され、該円孔2aの上端周縁には、電磁成形時の材料の跳ね返りを防ぐために角度45°の円錐面2bが形成されている。   By the way, as shown in FIGS. 4 and 5, a molding part 2A is formed at the center of the upper surface of the mold 2, and a flat peripheral part 2B is formed around the molding part 2A. Here, a spiral shape having the same shape as the conical spring W shown in FIG. 7 is formed in a mortar shape in the molded portion 2A. In the present embodiment, the maximum outer diameter of the spiral shape of the forming portion 2A is 21 mm, the spiral width is 3 mm, the step (downward pitch per round) is 1 mm, the number of turns is 3, and the maximum depth is 3 mm. Is set to In addition, a circular hole 2a having an inner diameter of 3 mm is formed at the center of the spiral shape of the molded part 2A to release air during molding, and the upper end periphery of the circular hole 2a prevents the material from rebounding during electromagnetic molding. For this purpose, a conical surface 2b having an angle of 45 ° is formed.

被成形材として前記薄板3は、導電率が小さい厚さ0.05mm〜0.3mmの燐青銅(JIS C5191P)が使用されている。尚、薄板3としては、厚さ0.05mm〜0.3mmのベリリウム銅(JIS C1720P)を使用することができる。   As the material to be molded, the thin plate 3 is made of phosphor bronze (JIS C5191P) having a small conductivity and a thickness of 0.05 mm to 0.3 mm. As the thin plate 3, beryllium copper (JIS C1720P) having a thickness of 0.05 mm to 0.3 mm can be used.

前記ドライバ4は、導電率の大きな厚さ0.5mmのアルミニウム(Al050)で構成されている。   The driver 4 is made of aluminum (Al050) having a large conductivity and a thickness of 0.5 mm.

又、前記ワンターンコイル5は、全長約270mm、厚さ1.5mmのクロム銅板で構成されており、2本のスリット5aによって前述のように平面視E字状に成形されている。このワンターンコイル5の中央部には幅の狭い電流集中部5Aが形成されており、スリット5aを隔ててその左右には幅の広いリターン部5Bが形成されている。ここで、ワンターンコイル5の電流集中部5Aの長さは金型2と薄板3及びドライバ4の長さよりも長く設定されており、幅は金型2の成形部2Aの幅よりも広く設定されている。つまり、ワンターンコイル5の電流集中部5Aは、図1に示すように、金型2の成形部2Aとその周囲の周辺部2Bの一部を上方から覆う大きさを有している。   The one-turn coil 5 is made of a chrome copper plate having a total length of about 270 mm and a thickness of 1.5 mm, and is formed in an E shape in plan view by the two slits 5a. A narrow current concentration portion 5A is formed at the center of the one-turn coil 5, and a wide return portion 5B is formed on the left and right sides of the slit 5a. Here, the length of the current concentration portion 5A of the one-turn coil 5 is set longer than the lengths of the mold 2, the thin plate 3, and the driver 4, and the width is set wider than the width of the molding portion 2A of the mold 2. ing. That is, as shown in FIG. 1, the current concentration part 5A of the one-turn coil 5 has a size that covers a part of the molding part 2A of the mold 2 and the surrounding peripheral part 2B from above.

更に、前記耐熱シート8及び絶縁シート9には、電気絶縁性と耐熱性が高い厚さ0.05mmのポリイミドシートが使用されている。尚、本実施の形態では、耐熱シート8と絶縁シート9に同じ材質のものを用いたが、耐熱シート8には耐熱性の高い他のエンジニアプラスチックを用いることができる。   Further, as the heat-resistant sheet 8 and the insulating sheet 9, a 0.05 mm thick polyimide sheet having high electrical insulation and heat resistance is used. In the present embodiment, the same material is used for the heat-resistant sheet 8 and the insulating sheet 9, but another engineer plastic with high heat resistance can be used for the heat-resistant sheet 8.

ところで、図2に示すように、ワンターンコイル5の電流集中部5Aとその両側のリターン部5Bには電源手段としてのコンデンサ11が接続されており、このコンデンサ11とワンターンコイル5の電流集中部5Aとの間には放電ギャップスイッチ12が直列に接続されている。更に、コンデンサ11には直流高圧電源10が並列に接続されている。尚、本実施の形態では、直流高圧電源10としては定格電圧3000V〜6000Vのものが使用され、コンデンサ11としては容量400μFのものが使用されており、コンデンサ11は直流高圧電源10によって予め充電されている。   Incidentally, as shown in FIG. 2, a capacitor 11 as a power source is connected to the current concentrating portion 5A of the one-turn coil 5 and the return portions 5B on both sides thereof, and the current concentrating portion 5A of the capacitor 11 and the one-turn coil 5 is connected. The discharge gap switch 12 is connected in series between the two. Further, a DC high voltage power supply 10 is connected to the capacitor 11 in parallel. In the present embodiment, a DC high voltage power supply 10 having a rated voltage of 3000 V to 6000 V is used, and a capacitor 11 having a capacity of 400 μF is used. The capacitor 11 is charged in advance by the DC high voltage power supply 10. ing.

次に、以上の構成を有する成形装置1によって図7に示す円錐バネWを成形する方法について説明する。   Next, a method for forming the conical spring W shown in FIG. 7 by the forming apparatus 1 having the above configuration will be described.

図1に示すように、金型2の上に被成形材として薄板3、耐熱シート8、ドライバ4、絶縁シート9、ワンターンコイル5及び固定部材6を順次積み重ね、これらの積層構造が成形時のワンターンコイル5に発生する電磁力により崩れないように固定した状態、例えば金型2をプレス機械のボルスターに固定し、固定部材6をプレス機械のラムに固定する方法等により上下方向を固定し、図2に示す放電ギャップスイッチ12を閉じると、予め充電されていたコンデンサ11からワンターンコイル5へと10μsec程度の時間で放電する。ワンターンコイル5においては、電流集中部5Aに図2の矢印方向に電流が流れ、この電流は左右のリターン部5Bを逆方向に流れる。   As shown in FIG. 1, a thin plate 3, a heat-resistant sheet 8, a driver 4, an insulating sheet 9, a one-turn coil 5, and a fixing member 6 are sequentially stacked on a mold 2 as a material to be molded. A state in which it is fixed so as not to collapse due to electromagnetic force generated in the one-turn coil 5, for example, the die 2 is fixed to the bolster of the press machine, and the fixing member 6 is fixed to the ram of the press machine, etc. When the discharge gap switch 12 shown in FIG. 2 is closed, the capacitor 11 that has been charged in advance is discharged from the capacitor 11 to the one-turn coil 5 in a time of about 10 μsec. In the one-turn coil 5, a current flows in the current concentrating portion 5A in the direction of the arrow in FIG. 2, and this current flows in the reverse direction in the left and right return portions 5B.

ここで、ワンターンコイル5の電流集中部5Aは厚さ1.5mmの薄い平面状としたため、その断面積が小さく、コイルがワンターンであるためにインダクタンスも小さい。このため、この電流集中部5Aを大電流が衝撃的に流れ、大きな磁界が電流集中部5Aに瞬間的且つ均一に発生し、この磁界は薄板3とドライバ4に交差する。このとき、導電率の高いドライバ4には渦電流が発生し、この渦電流とワンターンコイル5の電流集中部5Aに発生した磁界によりフレミングの左手の法則に従って図1の矢印方向(下向き)に電磁力が発生する。尚、ドライバ4と薄板3との間、ワンターンコイル5とドライバ4との間にはそれぞれ耐熱シート8、絶縁シート9が介在しているため、ワンターンコイル5からドライバ4への電流の短絡、ドライバ4と薄板3との溶着が絶縁シート9、耐熱シート8によってそれぞれ確実に防がれ、ドライバ4に大きな渦電流が発生し、この結果、大きな電磁力が発生する。尚、ドライバ4の材質としては、アルミニウム以外に銅、黄銅、金、銀等の導電率の高いものを用いることができる。   Here, since the current concentrating portion 5A of the one-turn coil 5 has a thin planar shape with a thickness of 1.5 mm, its cross-sectional area is small, and since the coil is one-turn, the inductance is also small. For this reason, a large current flows through the current concentrating portion 5A in an impact, and a large magnetic field is instantaneously and uniformly generated in the current concentrating portion 5A. This magnetic field intersects the thin plate 3 and the driver 4. At this time, an eddy current is generated in the driver 4 having a high conductivity, and the eddy current and the magnetic field generated in the current concentrating portion 5A of the one-turn coil 5 are electromagnetically moved in the arrow direction (downward) in FIG. Force is generated. Since a heat-resistant sheet 8 and an insulating sheet 9 are interposed between the driver 4 and the thin plate 3, and between the one-turn coil 5 and the driver 4, respectively, a short circuit of current from the one-turn coil 5 to the driver 4, 4 and the thin plate 3 are reliably prevented from being welded by the insulating sheet 9 and the heat-resistant sheet 8, respectively, and a large eddy current is generated in the driver 4, and as a result, a large electromagnetic force is generated. As the material of the driver 4, a material having high conductivity such as copper, brass, gold, silver, etc. can be used in addition to aluminum.

又、ワンターンコイル5の電流集中部5Aは薄い平面状を成し、これに発生する磁界はワンターンコイル5の電流集中部5Aの領域において均一に分布する。従って、ワンターンコイル5に発生する均一な磁界とドライバ4に発生する渦電流によって発生する電磁力もワンターンコイル5の電流集中部5Aの領域に亘って均一となる。   Further, the current concentrating portion 5A of the one-turn coil 5 has a thin planar shape, and the magnetic field generated therein is uniformly distributed in the region of the current concentrating portion 5A of the one-turn coil 5. Accordingly, the uniform magnetic field generated in the one-turn coil 5 and the electromagnetic force generated by the eddy current generated in the driver 4 are also uniform over the region of the current concentration portion 5A of the one-turn coil 5.

ここで、ドライバ4に発生する渦電流(電流密度i)と単位面積当たりに働く電磁力fは次式で与えられる。   Here, the eddy current (current density i) generated in the driver 4 and the electromagnetic force f working per unit area are given by the following equations.

roti=−κ(∂B/∂t) … (1)
f=i×B … (2)
ここに、κ:ドライバ(Al)導電率
B:磁束密度
t:時間
而して、前述のように大きな電磁力が発生すると、この電磁力が金型2の成形部2Aにおいて薄板3に対する成形力として作用し、ドライバ4は、薄板3を金型2に押し付ける。すると、図6(a)〜(c)に示すように金型2に形成された成形部2Aのすり鉢状の段差が刃先となって薄板3が成形部2Aの渦巻き形状に沿って順次連続的に剪断されると同時に、薄板3の渦巻き形状に剪断された部分がすり鉢状の成形部2Aに沿って立ち上げられて図7に示す円錐バネWとして成形される。尚、図6(a)〜(c)においては、ドライバ4は図示を省略している。
roti = −κ (∂B / ∂t) (1)
f = i × B (2)
Where κ: driver (Al) conductivity
B: Magnetic flux density
t: Time When a large electromagnetic force is generated as described above, this electromagnetic force acts as a forming force on the thin plate 3 in the forming portion 2A of the mold 2, and the driver 4 applies the thin plate 3 to the mold 2. Press. Then, as shown in FIGS. 6A to 6C, the mortar-shaped step of the molding part 2A formed on the mold 2 becomes the cutting edge, and the thin plate 3 is successively continuous along the spiral shape of the molding part 2A. At the same time, the portion of the thin plate 3 that has been sheared into a spiral shape is raised along the mortar-shaped forming portion 2A to be formed as a conical spring W shown in FIG. In FIGS. 6A to 6C, the driver 4 is not shown.

以上のように、本発明に係る成形装置1によれば、薄板3に対してスリット幅の無い渦巻き状の剪断加工とバネ成形が同時に1工程で行われて所望の円錐バネWが成形されるため、電磁成形によって精度の高い円錐バネWを高速且つ低コストで得ることができる。 又、金型2の成形部2Aに形成されたすり鉢状の段差が刃先となって薄板3が渦巻き状に剪断される際、図6(a)〜(c)に示すように、薄板3の剪断部には材料のダレが発生するため、成形された円錐バネWを圧縮したときに隣り合う剪断部分同士で擦れ合うことがなく、圧縮された円錐バネWは平面状を成す。   As described above, according to the molding apparatus 1 according to the present invention, the spiral spring without slit width and the spring molding are simultaneously performed on the thin plate 3 in one step to form the desired conical spring W. Therefore, a highly accurate conical spring W can be obtained at high speed and low cost by electromagnetic forming. Further, when the thin plate 3 is sheared into a spiral shape with a mortar-shaped step formed in the molding part 2A of the mold 2 as shown in FIGS. 6 (a) to 6 (c), Since the sagging of the material occurs in the shearing portion, the compressed conical spring W has a flat shape without being rubbed between adjacent shearing portions when the shaped conical spring W is compressed.

ところで、以上のように電磁成形によって成形される円錐バネWは、コネクタ等の電気接点としての用途が考えられるが、円錐バネWを電気接点として使用する場合には、該円錐バネWの伸縮時に、接点となる円錐バネWの中央の突起部Waは該突起部Waを中心として回転するため、該突起部Waと相手方の不図示の接点との間に摩擦を生じ、この摩擦によって接点の汚れがセルフクリーニング機能によって除去され、両接点が清掃されて接点同士の電気的な接続が安定的になされるという効果が得られる。   By the way, the conical spring W formed by electromagnetic forming as described above can be used as an electrical contact of a connector or the like. However, when the conical spring W is used as an electrical contact, the conical spring W is expanded and contracted. Since the central projecting portion Wa of the conical spring W serving as a contact rotates about the projecting portion Wa, friction is generated between the projecting portion Wa and a contact (not shown) of the other party, and this friction causes contamination of the contact. Is removed by the self-cleaning function, both contacts are cleaned, and the electrical connection between the contacts is stabilized.

尚、以上の実施の形態では、金型2の成形部2Aに単一の渦巻き形状を形成したが、複数の巻き形状を同心円状に形成することによって、図8に示すように二重の螺旋形状を備えた円錐バネW’や図9に示すような三重の螺旋形状を備えた円錐バネW”を成形することができる。   In the above embodiment, a single spiral shape is formed in the molding portion 2A of the mold 2. However, by forming a plurality of winding shapes concentrically, a double spiral is formed as shown in FIG. A conical spring W ′ having a shape or a conical spring W ″ having a triple helical shape as shown in FIG. 9 can be formed.

次に、本発明の更に別形態を図10〜図12に基づいて説明する。   Next, still another embodiment of the present invention will be described with reference to FIGS.

図10は本発明の別形態を示す金型の斜視図、図11は図10のC−C線断面図、図12は本発明の別形態に係る円錐バネの斜視図であり、これらの図においては図4〜図7に示したものと同一要素には同一符合を付しており、以下、それらについての再度の説明は省略する。   10 is a perspective view of a mold showing another embodiment of the present invention, FIG. 11 is a sectional view taken along the line CC of FIG. 10, and FIG. 12 is a perspective view of a conical spring according to another embodiment of the present invention. In FIG. 4, the same elements as those shown in FIGS. 4 to 7 are denoted by the same reference numerals, and the repetitive description thereof will be omitted below.

前記実施の形態において図4及び図5に示す金型2を用いて成形を行うと、図7に示すように薄板3から切り起こされた円錐バネWが得られる。   When molding is performed using the mold 2 shown in FIGS. 4 and 5 in the embodiment, a conical spring W cut and raised from the thin plate 3 is obtained as shown in FIG.

本実施の形態においても、図10及び図11に示すように、金型2の成形部2Aには、図12に示す円錐バネWと同形状の渦巻き形状がすり鉢状に形成されているが、本実施の形態では、すり鉢状の渦巻き形状を前記実施の形態の渦巻き形状よりも深くし、渦巻き形状の外周部に少なくとも1mmの段差が生じるようにした。   Also in the present embodiment, as shown in FIGS. 10 and 11, a spiral shape having the same shape as the conical spring W shown in FIG. 12 is formed in a mortar shape in the molding portion 2 </ b> A of the mold 2. In the present embodiment, the mortar-shaped spiral shape is made deeper than the spiral shape of the above-described embodiment so that a step of at least 1 mm is generated on the outer periphery of the spiral shape.

而して、図10及び図11に示す金型2を用いて電磁成形を行うと、薄板は金型2の成形部2Aに形成された深い渦巻き形状の外周部で剪断されるため、成形される円錐バネWは図12に示すように薄板から分離した独立したものとなる。   Thus, when electromagnetic forming is performed using the mold 2 shown in FIG. 10 and FIG. 11, the thin plate is sheared at the outer periphery of the deep spiral shape formed in the forming portion 2 </ b> A of the mold 2. The conical spring W is independent from the thin plate as shown in FIG.

尚、以上に実施の形態では、金型2に1つの成形部2Aを形成した例について説明したが、成形部2Aを金型2に複数形成すれば、複数の円錐バネを同時に成形することができ、生産性が高められる。又、本発明に係る成形装置を順送り型内に内蔵すれば、大量の円錐バネを高速で成形することができる。   In the above embodiment, the example in which one molding part 2A is formed on the mold 2 has been described. However, if a plurality of molding parts 2A are formed on the mold 2, a plurality of conical springs can be molded simultaneously. And productivity is increased. Further, if the molding apparatus according to the present invention is built in the progressive die, a large number of conical springs can be molded at high speed.

本発明に係る成形装置の断面図(図2のA−A線断面図)である。It is sectional drawing (AA sectional view taken on the line of FIG. 2) of the shaping | molding apparatus which concerns on this invention. 本発明に係る成形装置の固定部材を外した状態の平面図である。It is a top view of the state which removed the fixing member of the shaping | molding apparatus which concerns on this invention. 本発明に係る成形装置の分解斜視図である。It is a disassembled perspective view of the shaping | molding apparatus which concerns on this invention. 本発明に係る成形装置の金型の斜視図である。It is a perspective view of the metal mold | die of the shaping | molding apparatus which concerns on this invention. 図4のB−B線断面図である。It is the BB sectional view taken on the line of FIG. (a)〜(c)は円錐バネの成形工程を示す部分断面図である。(A)-(c) is a fragmentary sectional view which shows the formation process of a conical spring. 本発明に係る円錐バネの斜視図である。It is a perspective view of the conical spring which concerns on this invention. 本発明の別形態に係る円錐バネの斜視図である。It is a perspective view of the conical spring which concerns on another form of this invention. 本発明の別形態に係る円錐バネの斜視図である。It is a perspective view of the conical spring which concerns on another form of this invention. 本発明の別形態を示す金型の斜視図である。It is a perspective view of the metal mold | die which shows another form of this invention. 図10のC−C線断面図である。It is CC sectional view taken on the line of FIG. 本発明の別形態に係る円錐バネの斜視図である。It is a perspective view of the conical spring which concerns on another form of this invention.

符号の説明Explanation of symbols

1 成形装置
2 金型
2A 金型の成形部
2B 金型の周辺部
2a 金型の円孔
2b 金型の円錐面
3 薄板
4 ドライバ
5 ワンターンコイル(成形コイル)
5A ワンターンコイルの電流集中部
5B ワンターンコイルのリターン部
5a ワンターンコイルのスリット
6 固定部材
8 耐熱シート
9 絶縁シート
10 直流高圧電源(電源手段)
11 コンデンサ
12 放電ギャップスイッチ
W 円錐バネ
Wa 円錐バネの突起部
DESCRIPTION OF SYMBOLS 1 Molding device 2 Mold 2A Mold molding part 2B Mold peripheral part 2a Mold circular hole 2b Mold conical surface 3 Thin plate 4 Driver 5 One-turn coil (molded coil)
5A One-turn coil current concentration part 5B One-turn coil return part 5a One-turn coil slit 6 Fixing member 8 Heat-resistant sheet 9 Insulating sheet 10 DC high-voltage power supply (power supply means)
11 Capacitor 12 Discharge gap switch W Conical spring Wa Conical spring protrusion

Claims (3)

成形コイルと、該成形コイルに通電するための電源手段と、成形部を備えた金型を備え、前記成形コイルと前記金型との間に薄板を介在させた状態で前記電源手段から前記成形コイルに通電して電磁力を発生させ、該電磁力によって前記薄板を前記金型に押圧して円錐バネを成形する成形装置であって、
前記金型に渦巻き形状をすり鉢状に形成して成る成形部を形成したことを特徴とする円錐バネの成形装置。
A molding coil, a power supply means for energizing the molding coil, and a mold having a molding portion, and the molding from the power supply means with a thin plate interposed between the molding coil and the mold. A molding device that energizes a coil to generate electromagnetic force, and presses the thin plate against the mold by the electromagnetic force to form a conical spring,
An apparatus for forming a conical spring, wherein a forming portion is formed by forming a spiral shape in a mortar shape on the mold.
前記金型の成形部に複数の渦巻き形状を同心円状に形成したことを特徴とする請求項1記載の円錐バネの成形装置。   The conical spring molding apparatus according to claim 1, wherein a plurality of spiral shapes are formed concentrically in the molding portion of the mold. 請求項1又は2記載の成形装置によって成形されることを特徴とする円錐バネ。   A conical spring formed by the forming apparatus according to claim 1.
JP2008108436A 2008-04-18 2008-04-18 Conical spring and apparatus for forming the same Pending JP2009255139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008108436A JP2009255139A (en) 2008-04-18 2008-04-18 Conical spring and apparatus for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108436A JP2009255139A (en) 2008-04-18 2008-04-18 Conical spring and apparatus for forming the same

Publications (1)

Publication Number Publication Date
JP2009255139A true JP2009255139A (en) 2009-11-05

Family

ID=41383249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108436A Pending JP2009255139A (en) 2008-04-18 2008-04-18 Conical spring and apparatus for forming the same

Country Status (1)

Country Link
JP (1) JP2009255139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223996A (en) * 2015-06-03 2016-12-28 中村 ゆりえ Probe pin
WO2021232518A1 (en) * 2020-05-18 2021-11-25 华中科技大学 Electromagnetic manufacturing method and forming device for mesoscale panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223996A (en) * 2015-06-03 2016-12-28 中村 ゆりえ Probe pin
WO2021232518A1 (en) * 2020-05-18 2021-11-25 华中科技大学 Electromagnetic manufacturing method and forming device for mesoscale panel

Similar Documents

Publication Publication Date Title
JP2007296553A (en) Apparatus for electromagnetically forming sheet
US7954357B2 (en) Driver plate for electromagnetic forming of sheet metal
KR101951823B1 (en) Punch processing method for laminated iron core and method for manufacturing laminated iron core
KR101253689B1 (en) Stator core and method for manufacturing same
JP2016525453A (en) Metal forming equipment
JP2010265503A (en) Nearly columnar powder compact and powder molding die device
JP2011183441A (en) Press forming method
CN111558646B (en) Electromagnetic manufacturing method and forming device for mesoscale plate
JP2009255139A (en) Conical spring and apparatus for forming the same
JP2007026810A (en) Manufacturing method and shaping method of passage forming material, passage forming material of metal separator for fuel cell, and forming die
CN102237728A (en) Stator structure without stator end plate and pressing ring
JP2016517802A (en) Mold parts for press machines
JP4300050B2 (en) Method and apparatus for manufacturing motor coil
JP2007135314A (en) Manufacturing method for rotor laminated iron core
CN105903798A (en) Die apparatus and manufacturing method of metal product using die apparatus
JP2006136896A (en) Method and apparatus for manufacturing fin
JP2006159232A (en) Method for forming cross section of sheet metal in press-working method
JP3400437B2 (en) Side curved type laminated core and method of manufacturing the same
JP3842146B2 (en) Manufacturing method of laminated iron core
JP2007326105A (en) Press forming die and press forming method
US11931787B2 (en) Method and system for forming protrusions, and method for manufacturing metal component having protrusions
JP4397420B2 (en) Method for manufacturing ignition coil iron core
KR101470728B1 (en) Electric added molding apparatus and forming method
JP2005103582A (en) Method for producing extrusion-formed product
JPH07124659A (en) Production of specially shaped laminated product by sheet press punching and press device for forming rib

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101019

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101020