WO2008023732A1 - Highly pressure-resistant compact heat exchanger, container for occluding hydrogen, and method of producing them - Google Patents

Highly pressure-resistant compact heat exchanger, container for occluding hydrogen, and method of producing them Download PDF

Info

Publication number
WO2008023732A1
WO2008023732A1 PCT/JP2007/066275 JP2007066275W WO2008023732A1 WO 2008023732 A1 WO2008023732 A1 WO 2008023732A1 JP 2007066275 W JP2007066275 W JP 2007066275W WO 2008023732 A1 WO2008023732 A1 WO 2008023732A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
plates
hydrogen
hydrogen storage
heat exchanger
Prior art date
Application number
PCT/JP2007/066275
Other languages
French (fr)
Japanese (ja)
Inventor
Koutarou Matsu
Yasuyuki Ikegami
Original Assignee
Tokyo Braze Co., Ltd.
National University Incoporation Saga University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Braze Co., Ltd., National University Incoporation Saga University filed Critical Tokyo Braze Co., Ltd.
Priority to JP2008530941A priority Critical patent/JPWO2008023732A1/en
Publication of WO2008023732A1 publication Critical patent/WO2008023732A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide

Definitions

  • the present invention relates to various heat exchangers, in particular, heat pumps using natural refrigerants such as CO.
  • the present invention relates to a hydrogen storage container capable of storing and releasing hydrogen and a method for manufacturing the same.
  • This type of heat exchanger has a very high energy efficiency and uses a heat pump system. It replaces the refrigerant, such as chlorofluorocarbon, which destroys the natural environment, with CO as a natural refrigerant.
  • refrigerant such as chlorofluorocarbon
  • FIGS. 30 and 31 the basic structure of the plate heat exchanger according to the invention of Patent Document 3 is shown in FIGS. 30 and 31.
  • FIG. As can be seen from these figures, the natural refrigerant and the fluid to be heated flow through each plate while alternately intersecting each plate.
  • the flow of the natural refrigerant and the fluid to be heated is a flow that diverges in the flow path leading to the inflow locus outlet (hereinafter referred to as “parallel flow”).
  • the hydrogen-absorbing alloy accommodating spaces and the heat medium passages are alternately set between the stacked plate-shaped partition walls, and the transfer between the hydrogen storage alloy and the heat medium is performed via the plate-shaped partition walls.
  • a heat-absorbing type hydrogen storage alloy container has been proposed. Examples thereof include those disclosed in Patent Documents 4 to 6, for example.
  • Patent Document 1 JP 2004-28356 A
  • Patent Document 2 JP 2002-35929 A
  • Patent Document 3 Japanese Patent No. 3605089
  • Patent Document 4 Japanese Patent Laid-Open No. 7-330301
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2006-266350
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2000-170998
  • the heat exchanger must be increased in size, and there is a problem that it cannot be reduced in size and size.
  • natural refrigerant CO works as a high-pressure gas of 8MPa or more, so a heat exchanger is constructed.
  • the thickness of the metal material to be formed has to be increased in order to maintain pressure resistance, and in addition, there is a problem that the heat exchange structure cannot be increased in size.
  • the conventional thin and compact plate fin type heat exchanger shown in Patent Document 2 and Patent Document 3 which is configured by laminating plates and fins, lacks pressure resistance and breaks down the material. Deformation and breakage such as peeling of brazing parts caused no use at all. Further, the structure in which the herringbone plates of Patent Document 2 are stacked has a problem that a sufficient heat exchange rate cannot be obtained. Furthermore, since the flow of the natural refrigerant and the fluid to be heated in the plate-type heat exchanger of Patent Document 3 is a parallel flow, sufficient thermal efficiency cannot be obtained.
  • the present invention has been made paying attention to the above points, and the basic configuration is a high-efficiency plate-type heat exchanger that is not a herringbone structure and has a high withstand voltage and a small size.
  • An object of the present invention is to provide a novel high pressure compact heat exchanger with improved fluid flow in the heat exchanger, a manufacturing method thereof, and a heat exchanger system.
  • the conventional hydrogen storage alloy container has a configuration shown in each of the above-mentioned patent documents, and heat transfer is effectively performed between the hydrogen storage alloy and the heat medium by the form in which the plates are laminated.
  • This is a force that can efficiently transfer heat by ensuring the maximum available area, and can smoothly absorb and release hydrogen in the hydrogen storage alloy, and the working pressure is at least as high as IMPa. Since a certain pressure resistance is required, as shown in Patent Documents 4 and 5, the unit in which the plates are stacked is accommodated in a pressure vessel, or the outer shell plate covering the heat exchanger core is brazed or welded.
  • Patent Document 6 When integrated, a complicated structure with an emphasis on pressure resistance must be adopted, and as shown in Patent Document 6, the alloy container and other members are integrated by welding to form an outer shell as a container. And hydrogen storage alloy After Filling into each container, such as it is necessary to welded capped in the housing opening, Le a manufacturing process that Do and complicated, a ivy problem! / Was.
  • the present invention has been made to solve the above-mentioned problems, and by using the plates in a laminated state, it is possible to achieve both the securing of the pressure resistance, the simplification of the container structure, the miniaturization, and the dullness of the manufacturing process.
  • a hydrogen storage container that can promote good heat transfer between the hydrogen storage alloy and the heat medium, improve the flow state of hydrogen inside and efficiently store and release hydrogen, and manufacture of the container It aims to provide a method.
  • the present invention has the following configuration.
  • (1) At least a rectangular or rectangular metal plate and a metal fin formed by forming a concavo-convex shape on the entire surface of a substantially plate-like body having substantially the same or smaller outer shape as the plate,
  • the plate is formed with an outer peripheral protruding wall in an upright state having a predetermined height substantially the same as the fin height with respect to a portion other than the peripheral edge at a peripheral portion of the plate, and the plate is aligned with the direction of the outer peripheral protruding wall, and
  • Multiple plates are stacked with one fin interposed between them, and the contact portion between the tip of the outer peripheral protrusion wall of each plate and the base end portion of the outer peripheral protrusion wall of the other plate, and the contact portion between the plate and the fin
  • the container body is formed by brazing together and in an airtight state to form a container main body, and the gaps generated between the plates are divided into two sets, one set for each gap.
  • a predetermined heated fluid is circulated in the gap of the other set, and an inlet portion and an outlet portion of the heat medium communicating with the gap of the one set are communicated with the outer surface portion of the container body.
  • One or a plurality of each is disposed, and one or a plurality of inlet / outlet portions of the fluid to be heated communicating with the other set of gaps are disposed.
  • the step (1) is characterized in that a stepped portion is formed at a tip of the outer peripheral protruding wall, and the stepped portion and the contact portion of the outer peripheral protruding wall base end portion and the outer side portion of the other plate are brazed. ) High pressure resistant compact heat exchanger as described.
  • One of the two passages is formed so as to reach the outlet portion without branching from the inlet portion, and the other passage is a passage branching from the inlet portion to the outlet portion.
  • the concavo-convex fins are divided into a desired number in the rectangular metal plate, the arrangement direction of the divided concavo-convex fins, the high-pressure fluid, and the heated fluid.
  • the high pressure-resistant compact heat exchanger as set forth in any one of (1) to (5) V, wherein the angular forces formed by the flow paths are different from each other.
  • An outer shell plate having a substantially plate-like body that is thicker and stronger than the plate and is formed with the inlet portion, the outlet portion, and / or the inlet / outlet portion on the outer side in the stacking direction of the plates to be stacked.
  • the outer shell plate is joined to the container body by brazing to the tip of the outer peripheral protruding wall of another plate adjacent to the outer shell plate or the surface in the stacking direction of the other plate.
  • the high withstand pressure compact heat exchanger according to any one of (1) to (8), which is integrated.
  • the high-pressure natural refrigerant is any one of carbon dioxide, ammonia, a mixture of water and ammonia, isobutane, propane, normal butane, or propylene. Any of the high pressure resistant compact heat exchangers described.
  • notch holes and flow holes that allow fluid to flow to the own stage and other stages are arranged in parallel on the outside of the uneven fins.
  • the guide plate is integrated with the metal plate, and when the plurality of metal plates are laminated, the metal plate is formed with a through hole in the place facing the notch hole and the through hole.
  • the high pressure-resistant compact heat exchanger according to any one of (1) to (9).
  • the uneven fin is formed by one or a combination of an offset type, a flat fin type, a corrugated fin type, a louver type, a perforated type, and the like (1 ) To (9) High pressure resistant compact heat exchanger as described in any one.
  • the plate and the fin are a stainless material having a brazing tensile strength of 52 kgf / mm 2 or more, Thickness is 0.3 mm or more, the joint area of the plate and fin is 4 mm 2 or more per joint, and for brazing, a brazing material with a joint strength of 20 kgf / mm 2 or more is laminated.
  • a high pressure compact heat exchanger characterized in that it is disposed at each contact portion between the plates in the state and between the plates and the fins.
  • a heat exchanger system comprising a plurality of high-pressure-resistant compact heat exchangers as described in (1) to (12) above, or connected in series or in parallel.
  • a plurality of layers are laminated together, brazing materials are disposed at the contact portions of the plates and between the plates and fins, the laminated members are placed in a vacuum heating furnace, and the plates and the plates and fins are heated by heating.
  • At least a rectangular or rectangular metal plate and a metal fin formed by forming a concavo-convex shape on the entire surface of a substantially plate-like body having an outer shape substantially the same as or smaller than the plate.
  • the plate is formed with an outer peripheral protruding wall that is in an upright state at a predetermined height substantially the same as the fin height with respect to a portion other than the peripheral edge at the peripheral portion of the plate, and the plate is aligned with the direction of the outer peripheral protruding wall.
  • a plurality of the fins are stacked in a state of interposing the fins one by one, and the contact portion between the distal end of the outer peripheral protruding wall of each plate and the outer peripheral protruding wall base end portion of the other plate, and the plate and the fin
  • the contact portions of the plates are joined together by brazing in an airtight state to form a container body, and the gaps generated between the plates are divided into two sets, each having the same set, and the gaps in one set are separated.
  • the predetermined heat While the medium is circulated, a predetermined hydrogen storage alloy is accommodated in the gap of the other set, and an inlet portion and an outlet portion of the heat medium connected to the gap of the one set are provided on the outer surface portion of the container body. And a plurality of hydrogen storage alloys, and one or a plurality of hydrogen storage alloys and hydrogen inlet / outlet portions communicating with the other set of gaps.
  • a predetermined ventilation that allows at least hydrogen gas to be ventilated in a gap between the plate and the fin between the stacked plates in a completed state of the container.
  • the material is placed in multiple inserts, and after brazing the plates, between the plates A container for storing hydrogen, which is fixed to the container.
  • the air-permeable material is applied to the plate and / or the fin before laminating the plates, and foamed in the process of heating and temperature rise accompanying brazing.
  • a hydrogen storage container characterized by being made into a predetermined foam material that maintains a porous state in which it can be cooled and hardened and be vented after brazing.
  • the plate has an opening hole communicating with the inlet portion, the outlet portion, or the inlet / outlet portion at an end portion.
  • One or a plurality of holes are drilled, and are disposed so as to be able to abut and braze at both ends of the plate including the vicinity of the opening of the two plates sandwiching the gap.
  • a guide plate provided with one or a plurality of flow holes communicating with the opening hole, the inlet portion, the outlet portion, and / or the inlet / outlet portion; and the guide plate includes a gap between the disposed plates and the flow passage. When the fluid passing through the hole is the same, a part of the guide plate is cut away to allow the flow hole to communicate with the gap.
  • the fin has an offset shape, a flat fin shape, a corrugated fin shape, a louver shape, a perforated shape.
  • the plate and the fin are a stainless material having a brazing tensile strength of 52 kgf / mm 2 or more and having a thickness.
  • the joint area between the plate and fin is 4 mm 2 or more per joint, and for brazing, a brazing material with a joint strength of 20 kgf / mm 2 or more
  • a hydrogen storage container which is disposed at each contact portion between the plate and the fin.
  • a method for producing a hydrogen storage container wherein each member is placed in a heating furnace, and the plates and the contact portions between the plates and the fins are brazed to form an integrally joined state by heating.
  • the metal or alloy constituting the heat exchanger body is a wall thickness of 0. 3 mm or more, excellent tensile strength 52kg / mm 2 or more corrosion resistance And a brazing metal of your choice, such as Cu and Cu alloys, and the joint area of the plate and fin is more than 4 mm 2 per bump, so it is 8MPa of natural refrigerant such as CO.
  • the above high-pressure and high-temperature fluid can be distributed.
  • the heat exchanger main body can use a plurality of metal plates and the uneven fins to be joined to the plates in a desired shape, it can be selected according to the intended use, It can be used for your favorite hot water system.
  • a repetitive heat source can be obtained by a heat pump unit system with a medium cycle.
  • a heat pump unit system with a medium cycle since it has a high pressure resistance effect, a compact flat and small heat exchanger can be provided.
  • the hydrogen storage container and the method for producing the same of the present invention have the following effects.
  • a plurality of plates and fins are alternately combined to form a predetermined number of layers, and the fins and the plates are brazed to form the container body, and between the plates.
  • One of the two gaps formed in the above is a flow path for the heat medium, and the other gap is a housing space for the hydrogen storage alloy, and the hydrogen storage alloy and the heat medium for controlling the reaction heat have the plate and fins.
  • the plate and fins can be joined together to achieve a structure that can withstand high pressures of about lOOMPa, making the container compact and excellent in pressure resistance.
  • the cooling and heating characteristics are improved, the reactivity of cooling and heat dissipation in the hydrogen storage alloy is improved, and the hydrogen storage and release performance by the hydrogen storage alloy is excellent.
  • the ventilation material when a predetermined ventilation material is disposed between the plates and integrated with each member in a brazing process to form a container, the ventilation material is used when the plates are laminated. It is possible to install the ventilation material appropriately and easily only by placing the metal plate between the plates, simplify the container structure and the manufacturing process, and provide hydrogen to the vicinity of the hydrogen storage alloy via the ventilation material. Reaching and releasing can be ensured, and the characteristics of hydrogen injection and discharge such as heat transfer, speed, flow rate, and loss can be improved.
  • the ventilation member made of a material having good heat conductivity is disposed between the plates.
  • the contact between the air-permeable material and the fins and the plate enables effective heat transfer through the air-permeable material in the ripening between the hydrogen-absorbing alloy and the plate, further increasing the heat-transfer performance for the hydrogen-absorbing alloy.
  • the reactivity of cooling and heat dissipation in the hydrogen storage alloy is improved, and the characteristics of hydrogen injection and release are excellent.
  • a foaming material that foams at a high temperature and eventually becomes a porous material is used as a ventilation material, and the foaming material is applied in the manufacturing process, and the brazing heated high temperature When the brazing is completed, a state of functioning as a ventilation material having fine voids is obtained when brazing is completed, so that the hydrogen permeability to the hydrogen storage alloy can be improved as the ventilation material and the ventilation material can be arranged.
  • a manufacturing process can be simplified.
  • a plurality of hydrogen inlet / outlet portions are provided in the container, and the control valve or the control valve and the filter are provided in the inlet / outlet portion serving as the main hydrogen injection / discharge portion.
  • the hydrogen storage alloy that is easy to solidify by installing hydrogen flow devices in the passages to other entrances and exits, and by using these to flow hydrogen or hydrogen and hydrogen storage alloy Improves hydrogen absorption and release reaction characteristics
  • one or a plurality of opening holes are formed in the plate end portion, and one or a plurality of flow holes are formed in the gap between the plate end portions.
  • a high-strength outer shell plate is disposed outside the stacked plates, and the plate is supported from both sides in the stacking direction, so that it can be added to the hydrogen storage alloy. It is possible to surely prevent deformation of the plate that is subjected to a high pressure and to facilitate heat transfer and heat exchange between the hydrogen storage alloy and the heat medium.
  • a plurality of plates and uneven fins are alternately combined to form a predetermined number of stacked layers, and the fins and the plates are brazed to form the container body.
  • FIG. 1 is an exploded perspective view schematically showing the configuration of a plate heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 3 (a) is an illustration showing a metal plate unit 60, and (b) is an illustration showing a metal plate unit 50.
  • FIG. 6 Enlarged cross-sectional view and cross-sectional view taken along line VII-VII showing the relationship between brazing state and thickness of metal plate, offset fin and outer peripheral protruding wall of plate
  • FIG. 7 is an explanatory view showing another example of the shape of the tip of the outer peripheral protruding wall of the plate according to each embodiment of the present invention.
  • FIG. 8 is an exploded perspective view schematically showing the configuration of a plate heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 9 Cross section of the plate heat exchanger shown in Fig. 7.
  • FIG. 10 (a), (b), (c), and (d) are perspective views showing fins of other shapes.
  • FIG. 11 is a perspective view showing the main part of another plate heat exchanger
  • FIG. 12 is a diagram showing the relationship between the flow direction of the liquid and the refrigerant and the arrangement direction of the fins
  • FIG. 14 shows plate and fin filters in a hydrogen storage container according to an eighth embodiment of the present invention. Enlarged cross section and enlarged longitudinal section
  • FIG. 20 is an explanatory view showing a second example of a fluid flow state in the hydrogen storage container according to the eighth embodiment of the present invention.
  • FIG. 21 is an explanatory view showing a third example of a fluid flow state in the hydrogen storage container according to the eighth embodiment of the present invention.
  • FIG. 22 is a cross-sectional view of a hydrogen storage container according to an eighth embodiment of the present invention.
  • FIG. 23 is a sectional view showing another fluid flow state in the hydrogen storage container according to the eighth embodiment of the present invention.
  • FIG. 24 is an explanatory view showing the supply and discharge states of each fluid in the hydrogen storage container according to the eighth embodiment of the present invention.
  • FIG. 28 A diagram showing a state in which a hydrogen ventilation material is installed on the fins in the hydrogen storage container according to the eighth and ninth embodiments of the present invention.
  • FIG. 29 shows a ventilation material arrangement in the hydrogen storage container according to the eighth and ninth embodiments of the present invention. Explanatory drawing which shows the other example of an installation state
  • FIG. 30 is an exploded perspective view schematically showing the configuration of a plate-type heat exchanger according to a conventional example.
  • FIG. 31 is an exploded perspective view of the plate-type heat exchanger shown in FIG.
  • a high temperature hot fluid A high temperature hot fluid
  • 1 is a number of rectangular metal plates
  • 2 is a metal uneven fin disposed in the outer peripheral projection wall la of the metal plate 1
  • 3 is the plate 1 and the plate
  • 4 is the other passage formed between the plate 1 and the fin 2 on the opposite side of the passage 3, and in this passage 4 is a heated fluid B such as cold water or cold air to be heat-exchanged.
  • Circulate. 5 is a guide plate arranged on both sides of the metal plate 1, which allows the flow of the fluid plate A or B alternately to the metal plate 1 of the self-stage and other stages of the metal plate 1 stacked in multiple stages.
  • the notch hole 6 and the flow hole 7 through which the fluid A or B passes are arranged in parallel.
  • 51 is a guide plate similar to 5 and has a force S, and there is no flow hole 7 and only a notch hole 6 is provided.
  • This guide and plate 5 and 51 are combined into three types of metal plate units 50, 60 and 70.
  • Reference numeral 8 denotes the lowermost outer shell plate, and 9 denotes the uppermost outer shell plate.
  • the fluid inlets 10 and 11 and the outlets 12 and 13 are integrally provided for each of the fluid bottles and bottles.
  • Reference numeral 14 denotes a hole formed in the metal plate 1 communicating with the cutout hole 6 and the flow hole 7, and 15 denotes a brazing portion formed at a joint portion of each member.
  • the heat exchanger body X is configured.
  • Each member having the above-described configuration is manufactured by a metal material and a brazing process by a method described later.
  • the number of stages of the metal plate 1 is, for example, as shown in FIGS. 2 (a) and 2 (b), the fluid A is 3 stages, and the other fluid B is 4 stages including the lowest plate 8. It is. In this case, metal plate units 50 and 60 are stacked alternately! / (See Fig. 1).
  • One fluid A is a high-pressure and high-temperature fluid using a natural refrigerant such as CO.
  • the multi-stage metal plate unit 50 of path 3 passes through 3a, 3b, 3c of the 50, and the other heated fluid B passes through 4a, 4b, 4c, 4d of multi-stage metal plate unit 60 of the path 4.
  • Both fluid A, B force Heat is exchanged between them.
  • Fluids A and B are both the highest and lowest Through the inlet portions 10 and 11 provided in the outer shell plates 8 and 9, the heat is exchanged through the passages 3 and 4 and led out to the outside through the outlet portions 12 and 13, respectively. At this time, it can be seen that the fluids A and B are not branched in the flow path from the inlet portions 10 and 11 to the outlet portions 12 and 13.
  • One fluid A that has been heat-exchanged and dissipated heat is not shown, but is provided with a heat pump system. After passing through an expansion valve of the circulation circuit ⁇ atmospheric heat exchanger ⁇ compressor, it becomes a high-pressure high-temperature fluid again, according to the present invention. Introduced into the inlet 10 of the heat exchanger body X, it reverses and exhibits the same action
  • the other fluid B having a high temperature after heat exchange becomes hot water and hot air, and is used as indoor heating and air conditioning. If a closed circuit configuration is provided, the other fluid B is dissipated and is introduced again from the inlet 11 of the heat exchanger main body X, and similarly rebounds to exhibit the same action.
  • stainless steel SUS304 SUS27CP (cold rolled stainless steel plate) as the metal of metal plate 1 and offset uneven fin 2
  • Thickness of outer peripheral protruding wall la 0: 0.3 mm or more
  • brazing metal Cu brazing strength 20kg / mm 2 is used, and the brazing strength of the offset fin 2 is one step.
  • the brazing area was 400 per side per plate, and 50% when viewed from the area of the entire plate. This
  • This flat plate type small heat exchanger is not limited to the above-described offset type fin 2, and other shapes of fins as shown in Fig. 10 (a) flat plate fin 2a (b) corrugated Fin 2b (c) Louver fin 2c (d) Perforated fin 2d and other metal plate 1A and uneven as shown in Fig. 11 stacked in upper and lower layers other than shown in this example The same can be applied to the plate type composed of the fins 2.
  • the metal plate 1, the offset fin 2, and the brazing metal described in the embodiments of the present invention can be applied to metals and materials having the same function.
  • the high-pressure heat exchanger of the present embodiment is a heat bond that uses the characteristics of the present invention and uses CO as a refrigerant.
  • Ammonia water / ammonia mixture, isobutane, propane, normolebutane, propylene, etc. that can be used only in a pump 1.
  • the effect is large, compact, and high performance in relation to heat pumps and air-conditioning refrigeration that operate at high pressures above OMPa.
  • high pressure resistance can be used to obtain high system performance and adapt to the heat transfer characteristics in the heat exchanger.
  • System performance can be improved by raising the temperature of the high-temperature side refrigerant.
  • the tip of the outer peripheral protruding wall la of the plate is brought into contact with the outer peripheral protruding wall la base end of the adjacent other plate as shown in FIG.
  • the side surfaces can be brought into contact with each other for brazing.
  • the outer peripheral projection wall la is slightly inclined outward from the vertical with respect to the other parts of the plate, and when each plate is laminated, force is applied in the direction in which the contact state of the plate becomes stronger. The bonding strength between the plates can be increased.
  • a stepped portion is formed at the tip of the outer peripheral protruding wall la so that the stepped portion fits without deviation from the outer peripheral protruding wall la base end of the other plate. May be.
  • FIGS. 8 and 9 Another embodiment of the present invention will be described with reference to FIGS. 8 and 9.
  • the flows of the high-temperature and high-pressure fluid A and the heated fluid B are flows that do not branch in the flow path from the inlet to the outlet (direct flow).
  • Fluid A is a direct flow
  • Fluid B is a parallel flow heat exchanger
  • the basic structure is the same as that of the heat exchanger of the first embodiment, except that the three metal plate units 50 in FIG. It is a heat exchanger of a present Example.
  • fluid B is made of a metal plate unit.
  • FIG. 9 is a cross-sectional view showing the flow inside the heat exchanger, as in FIG.
  • the arrangement direction of the uneven fins 2 in the metal plate units 50, 60, and 70 is changed according to the high-temperature and high-pressure fluid A and the fluid B to be heated. It is a heat exchanger when it is set at 90, 45, and 30 degrees with respect to the direction of flow (see Fig. 12). In this way, it is possible to provide a heat exchanger having various heat exchange rates by changing the angle between the fin arrangement direction and the fluid flow direction.
  • concave and convex fins having various angles with respect to the fluids A and B may be combined. By combining various fins in this way, it is possible to provide a heat exchanger with different heat exchange rates. Further, a heat exchanger system may be constructed by connecting the heat exchangers in series or in parallel.
  • Each metal plate 1 having the above-described configuration, and a guide plate 5 having a concave and convex fin 2, a notch hole 6, and a flow hole 7 are disposed in each metal plate 1, and the upper and lower stages are arranged.
  • a guide plate 5 having a concave and convex fin 2, a notch hole 6, and a flow hole 7 are disposed in each metal plate 1, and the upper and lower stages are arranged.
  • the constituent metals of the constituent members are as follows.
  • Thickness of outer peripheral wall la t 0.3mm or more
  • Thickness t of guide plate 5 Slightly lower than the inner height of the outer peripheral wall la (1.5 mm or less)
  • the brazing metal applied to the joints of these components was a Cu brazing strength of 20 kg / mm2.
  • the assembly of stacked heat exchanger body gradually heat the degree of vacuum in the furnace placed in a vacuum heating furnace as about 10_ 4 torr.
  • it may be used in an inert gas atmosphere such as a vacuum degree is necessary to increase more than necessary Nag 10_ 4 torr even more good tool Ar or He, may be used in combination with both atmosphere.
  • the temperature in the furnace reaches from 840 ° C to 1000 ° C, maintain this temperature for about 25 to 35 minutes, then lower the temperature to make the product.
  • the waste heat utilization power generation apparatus and hot spring water using a heat source of 25 ° C to 120 ° C are used.
  • a high-performance and compact power generation system can be constructed by using it as a heat exchanger for temperature difference power generation system devices such as power generation devices, particularly evaporators and condensers, heaters and regenerators.
  • the conventional equipment has a higher performance than the IMPa when using pure ammonia and water / ammonia mixed fluid in the power generation system apparatus. Therefore, the conventional plate heat exchanger cannot be used.
  • the fin structure in the heat exchanger which is a feature of the present invention, is adapted to the evaporation phenomenon and the condensation phenomenon in the heat exchanger. Therefore, it is possible to construct a higher performance system. In particular, it is possible to increase the efficiency of the system by raising the evaporation temperature and lowering the condensation temperature under the operating conditions given by the use of these inventive devices.
  • Applicable temperature difference power generation systems include the normal Rankine cycle, Carina cycle, and Wafer cycle. Example 6
  • the present invention takes advantage of the fact that it can withstand high pressures compared to conventional heat exchangers, has high heat transfer performance, and can construct a fin structure and flow adapted to heat transfer phenomena in the heat exchanger. High-pressure heat exchanger and high heat transfer other than heat pump system using
  • Example 7 Ground heat cooling and heating system '', ⁇ Gas heat pump '', ⁇ Vehicle air conditioner system '', ⁇ Temperature difference power generation system device '', ⁇ Solar heat utilization heat pump system '', ⁇ Solar heat utilization power generation system '', ⁇ Solar heat utilization '' And ⁇ refrigeration and air conditioning system using ammonia as cooling medium '' and ⁇ refrigeration and air conditioning system using water / ammonia as refrigerant '' It is possible to adapt to “stem”. In addition, the conventional equipment can be installed more compactly than the conventional equipment because of its high heat transfer performance in the desired space. Example 7
  • a heat pump system using CO as a refrigerant using the high-pressure heat exchanger of the present invention is
  • the critical temperature is as low as 31.1 ° C, so it becomes a supercritical state, and heat transfer in the supercritical state is not accompanied by a phase change, so sensible heat In supercritical, there is a quasicritical point where the specific heat suddenly increases and becomes a maximum, and the heat transfer coefficient increases accordingly.
  • a compact and high-performance heat pump system can be constructed. Furthermore, taking advantage of the features of this high-pressure heat exchanger, if this heat exchanger is used, the performance of the entire system can be improved by building a system with higher pressure on the high-pressure side under the required operating conditions. improves.
  • FIG. 14 is an enlarged cross-sectional view of the brazing portion between the plate and the fin in the hydrogen storage container according to the present embodiment
  • FIG. 15 is an explanatory view of the arrangement of the ventilation material in the hydrogen storage container according to the present embodiment.
  • FIG. 17 is an explanatory view of another arrangement example of the ventilation material in the hydrogen storage container according to the present embodiment
  • FIG. 17 is an explanatory view of the arrangement state of the ventilation material on the plate in the hydrogen storage container according to the embodiment
  • FIG. FIG. 19 is an explanatory view showing a first example of a fluid flow state in the hydrogen storage container according to the present embodiment.
  • FIG. 19 is an explanatory view showing a first example of a fluid flow state in the hydrogen storage container according to the present embodiment.
  • FIG. 20 is an explanatory view showing a second example of the fluid flow state in the hydrogen storage container according to the present embodiment
  • FIG. 21 is an explanatory view showing a third example of the fluid flow state in the hydrogen storage container according to the present embodiment
  • FIG. 22 shows a hydrogen storage container according to this embodiment.
  • FIG. 23 is a cross-sectional view showing another fluid flow state in the hydrogen storage container according to the present embodiment
  • FIG. 24 shows a supply / discharge state of each fluid in the hydrogen storage container according to the present embodiment.
  • FIG. 25 is for hydrogen storage according to this embodiment 26 is an explanatory view showing other supply / discharge states of each fluid in the container.
  • FIG. 26 is an explanatory view showing each supply / discharge state of the fluid in the container of the hydrogen storage container according to this embodiment.
  • the hydrogen storage container includes a rectangular metal plate 1 that is stacked and stacked, and a substantially metal plate-like body that has an outer shape smaller than this plate 1.
  • the fins 2 are formed on the entire surface, and the fins 2 are arranged between the plates 1, and the ventilation material 30 is inserted in the gap between the plates 1 and fins 2 between the laminated plates 1. It is the structure provided with.
  • the plate 1 is formed with an outer peripheral protruding wall la in an upright state substantially equal to the height of the fin 2 with respect to a portion other than the periphery at the peripheral portion of the plate, and an opening hole having a predetermined diameter at the end portion.
  • One or a plurality of holes 14 are formed.
  • a plurality of plates 1 are stacked in a state where the directions of the outer peripheral protruding walls la coincide with each other and the fins 2 are interposed one by one.
  • a brazing material is placed at the contact portion between the outer peripheral protruding wall la base end of the plate and each contact portion between the plate 1 and the fin 2, and the contact portions are integrally and airtightly maintained after brazing.
  • the container body 80 is formed by joining the brazed portion 15.
  • each plate 1 forming the container body 80 there is a gap in a state where the fins 2 are accommodated, and this gap is divided into two sets as the same set every other side by side in the plate stacking direction.
  • Each of the gaps 3 in one set serves as a flow path portion of a predetermined heat medium, and the gap 4 in the other set serves as a storage space for the hydrogen storage alloy 40.
  • An inlet portion 10 and an outlet portion 12 of the heat medium communicating with one set of gaps 3 are respectively disposed on the outer surface portion of the container body 80, and communicated with the other set of gaps 4.
  • the hydrogen storage alloy 40 and the hydrogen inlet / outlet portions 11 and 13 are disposed, respectively.
  • the outer surface of the container body 80 is formed with a substantially plate-like body that is thicker and stronger than the plate 1 and has a front entry port 10 and an entrance / exit portion 13 or an exit portion 12 and an entrance / exit portion 11 respectively.
  • Outer shell plates 8, 9 are provided. These outer shell plates 8 and 9 are joined to the entire surface of the outer peripheral protruding wall la of the other plate 1 adjacent thereto by brazing to be integrated with the container body 80 by brazing.
  • the fin 2 is a metal substantially plate-like body having a size substantially coincident with an intermediate portion excluding the end of the plate 1, and each unevenness is formed so as to have an offset fin shape. It is a configuration.
  • the uneven pitch of the fin 2 is set so that the size of the contact surface with the plate 1 is an appropriate ratio to the size of the gap between the plates, and the uneven pitch is 2L1, that is, the fin convex portion or Assuming that the approximate contact length of the concave plate 1 with L1 is L1, the relationship with the fin height L2 is 0.1 ⁇ U / L2 ⁇ 2.
  • the arrangement direction of the unevenness in the fin 2 can be set appropriately at an angle between the arrangement direction and the heat medium flow direction, such as 90 degrees, 45 degrees, or 30 degrees with respect to the heat medium flow direction.
  • Various heat transfer states are obtained depending on the setting.
  • a combination of fins 2 having different angles with respect to the flow direction of the heat medium may be provided for each gap between the plates 1.
  • the ventilation member 30 is a continuous body of a plurality of elongated porous members inserted in the vicinity of the plate 1 and the fins 2 in the gap 4 between the stacked plates 1, and the brazing of the plate 1 It is the structure fixed between the plates 1 through.
  • the material and shape of the air-permeable material 30 are not particularly limited.
  • the metal-sintered nonwoven fabric filter having sufficient air permeability to hydrogen gas, zeolite, ceramic, etc. It is possible to use a tube body or a cylindrical body with fine holes, which meets the desired use conditions.
  • heat transfer is performed through the ventilation member 30 and the heat transfer state with respect to the hydrogen storage alloy 40 is improved. Release characteristics can be improved.
  • the ventilation material 30 has a large number of forces arranged per gap.
  • the arrangement state (series, parallel IJ, or a combination thereof) can be set as appropriate. It can support efficient ventilation for the element storage alloy 40 (see Fig. 18).
  • the ventilation effect can be enhanced by installing ventilation materials along both of the two plates that sandwich the gap (see Fig. 16).
  • the ventilation member 30 is made of a material that does not have good thermal conductivity, as shown in FIG. 29, the upright portion that does not participate in the joining of the fin 2 to the plate 1 If it is arranged along the middle of the minute, the heat transfer state between the heat medium and the hydrogen storage alloy 40 via the plate 1 can be maintained and the good heat transfer state can be maintained without hindering the ventilation member 30.
  • the guide plates 5 and 51 that are sandwiched by the vicinity of the opening hole 14 at the end of the plate 1 are also arranged together with the fins 2 that are sandwiched by the middle part of the plate. (See Fig. 5).
  • the guide plates 5 and 51 are plate-like bodies that can be brought into contact with and brazed to two plates sandwiching the guide plates 5 and 51, and have one or a plurality of flow holes 7 formed therein.
  • the flow holes 7 of the guide plates 5 and 51 communicate with the opening holes 14 of the plate 1 to form the flow path of the heat medium or hydrogen, and the inlet 10, outlet 12, or inlet / outlet 11 of the outer surface of the container body 80. , 13 also communicate with the opening hole 14 respectively. If the guide plate is not provided with the flow hole 7, it can be used as a cutting force for the flow path consisting of the opening hole 14 and the flow hole 7 of another guide plate.
  • the heat medium passes through the inlet portion 10 provided in the outer shell plate 8 and passes through the passages 3a, 3b, 3c, and 3d formed by the gaps 3 between the plates 1. Then, it is led out from the outlet 12 of the outer shell plate 9 (path C).
  • the flow path of the heat medium from the inlet 10 to the outlet 12 has three types of units 50, 60, 70 with different combinations of the plate 1 and the adjacent guide plates 5, 51 (see Figures 3 and 4).
  • the passages 3a, 3b, 3c, 3d can be connected in series or in a parallel state branching along the way (see Figures 9 to 23).
  • the heat flow efficiency through the gap can be increased when the flow rate of the heat medium is constant. Can be improved.
  • the gap 4 on the hydrogen storage alloy 40 side near the heat medium inlet side 4 is made larger than that on the outlet side to increase the filling amount of the hydrogen storage alloy 40.
  • the passages 4a, 4b, 4c, 4d, and 4e formed by the gaps 4 between the plates 1 are also connected in series according to the use conditions of hydrogen and the hydrogen storage alloy.
  • a parallel connection state can be established (see Figures 19 to 23).
  • These passages 4 a, 4 b, 4 c, 4 d, 4 e communicate with an entrance / exit portion 11 provided in the outer shell plate 8 and an entrance / exit portion 13 provided in the other outer shell plate 9.
  • the hydrogen storage alloy is sealed and accommodated in the passages 4a, 4b, 4c, and 4d through one of the inlet / outlet portions 11 and 13, and can exchange heat with the heat medium on the gap 3 side across the plate 1.
  • the passage for storing and releasing hydrogen is connected to both of the two inlet / outlet portions 11 and 13, and hydrogen is injected and released only at the main inlet / outlet portion 11 (see FIG. 24) and others.
  • other entrance / exit parts 13 can also be used to inject and discharge from the two entrance / exit parts 11 and 13 at once (see Fig. 25), increasing the injection and release rate.
  • the characteristics of the hydrogen injection and release reaction can be improved.
  • the inlet 10 for the heat medium and the inlet / outlet 11 to which hydrogen is injected are installed on the opposite side, and the direction in which the heat medium flows through the plate 1 (path C) and the direction in which the hydrogen proceeds (path)
  • path C the direction in which the heat medium flows through the plate 1
  • path C the direction in which the hydrogen proceeds
  • this is not limited to this, and it is not limited to this, but it is a parallel flow relationship in which the heat medium flow direction is the same as the hydrogen flow direction.
  • a plurality of plates 1 are squeezed with fins 2 and guide plates 5 appropriately disposed between each plate 1, and a ventilation member 30 is disposed in the space between plates 1 and fins 2. Then, the assembly is made by stacking and stacking the outer shell plates 8 and 9 on the outermost layer. Thus, the process can be simplified by installing the fins 2 and the ventilation material 30 when the plates 1 are stacked and assembled.
  • the inlet / outlet portions 11 and 13 of the container body 80 are previously provided with an injection valve used for normal hydrogen storage, a vacuum pump for generating a vacuum state in the apparatus and a hydrogen storage alloy injection, and a hydrogen storage alloy. It is assumed that a filter is installed to prevent the loss of water.
  • the hydrogen storage alloy 40 in the form of powder is introduced from the inlet / outlet part 13 side into the gap 4 that has been previously depressurized by the vacuum pump through the inlet / outlet part 11.
  • a filter is disposed at the inlet / outlet portion 11, and the state in which the hydrogen storage alloy 40 is filled and sealed in the gap 4 is obtained without the hydrogen storage alloy 40 flowing out to the vacuum pump side.
  • the encapsulated hydrogen storage alloy 40 is subjected to a predetermined activation process so that hydrogen can be stored and released, thereby functioning as a hydrogen storage container.
  • a hydrogen passage is connected to each of the inlet / outlet portions 11 and 13 together with the container body 80, and the main inlet / outlet portion 11 serving as a hydrogen injection / discharge portion is provided in the inlet / outlet portion 11
  • the control pulp or control valve and filter are installed, the valve is also installed on the inlet / outlet 13 side, and the supply and discharge lines for the heat medium required for hydrogen release and storage are connected to the inlet 10 and outlet 12 It is assumed that a state of functioning as a hydrogen storage container is obtained.
  • hydrogen can travel through the gap between the hydrogen storage alloys 40 and also through the ventilation material S, and hydrogen can be distributed to the entire hydrogen storage alloy 40 in the gap 4 so that the storage can be performed with certainty.
  • the heat medium that took the heat of the hydrogen storage alloy 40 and increased its temperature The outer shell plate 8 is taken out from the outlet 12 to the outside of the container.
  • a high-temperature heat medium is supplied from the inlet 10 to the hydrogen storage alloy 40 that has stored hydrogen.
  • the reaction heat can be quickly given to the hydrogen storage alloy 40 from the heat medium side by heat transfer through the plate 1 and the fin 2, so that the power S can be efficiently released from the hydrogen storage alloy 40.
  • the hydrogen released from the hydrogen storage alloy 40 can travel through the gap between the hydrogen storage alloys 40 and also through the ventilation material 30, and quickly passes through the entrance / exit portions 11 and 13 from the clearance 4. It will be taken out to the outside.
  • the heat medium whose temperature is lowered by applying heat to the hydrogen storage alloy 40 is taken out from the outlet 12 of the outer shell plate 8 to the outside of the container.
  • the force that uses the two inlet / outlet portions 11 and 13 for the storage and release of hydrogen is configured to use one inlet / outlet portion, or three or more inlet / outlet portions are provided.
  • a configuration in which hydrogen is injected can be adopted, and the injection rate can be increased.
  • the force when hydrogen is injected into and discharged from the container, the force is configured to inject and discharge hydrogen in multiple paths using the two inlet / outlet ports 11 and 13. It is also possible to increase the characteristics of the hydrogen injection and release reaction by leaving the other inlet / outlet portions other than the main inlet / outlet portion open for injection without increasing the number of routes.
  • a control valve or a control valve and a filter are installed at the main inlet / outlet portion 11 for mainly injecting and releasing hydrogen, and a passage communicating with the other inlet / outlet portion 13.
  • the actuator is operated with a fluidizing device disposed therein and hydrogen or hydrogen and a hydrogen storage alloy are flowed, the hydrogen storage and release reaction characteristics of the hydrogen storage alloy that is easily solidified can be improved.
  • a large number of plates 1 and fins 2 are alternately combined to form a predetermined number of layers, and plate 1 is brazed together with fins 2.
  • One of the two gaps formed between the plates 1 forming the container body 80 is a heat medium flow path, and the other gap 4 is an accommodation space for the hydrogen storage alloy 40, and the hydrogen storage alloy 40 and its reaction. Since the heat medium that controls the heat is in a state where heat is transferred through the plate 1 and the fin 2, a structure that can withstand the high pressure of coal as much as lOOMPa can be realized by joining the plate 1 and the fin 2. It is possible to make a container that is compact and has excellent pressure resistance performance.
  • the cooling and heating characteristics are improved by the heat transfer, the heat absorption and heat release reactivity of the hydrogen storage alloy 40 is improved, and the hydrogen storage and release performance of the hydrogen storage alloy 40 is excellent.
  • the installation force S of the fins 2 in the container, and the arrangement of the plates 1 between the plates 1 when stacking the plates 1 are extremely easy. Thickness and weight increase can be avoided, and cost can be reduced.
  • FIG. 27 is an explanatory view showing respective states before and after brazing of the ventilation member in the hydrogen storage container according to the present embodiment.
  • the hydrogen storage container according to the present embodiment includes the plate 1, the fins 2, and the ventilation member 31 as in the eighth embodiment.
  • the breathable air-permeable material 30 is disposed between the plates 1 at the time of laminating the plates, it foams when the temperature rises, hardens when cooled and returns to room temperature, and then breathable porous.
  • the foam material 32 that maintains the quality state is used as the ventilation material 31.
  • the foam material 32 to be the ventilation material 31 is applied to the plate 1 and / or the fin 2 before the plate lamination (see Fig. 27 (a)), and foams in the process of heating and temperature rise due to brazing. After brazing, it will cool and harden to maintain a porous state that allows ventilation (see Fig. 27 (b)).
  • the ventilation material 31 obtained from the foam material 32 has fine voids and can increase the hydrogen permeability.
  • the foam material 32 is applied during the manufacturing process, it can function without any problem as the air-permeable material 31 after brazing, and the manufacturing process can be simplified extremely effectively.
  • a ventilation material is provided in a gap between plates in which fins are provided to serve as a storage part for the hydrogen storage alloy.
  • a ventilation material set the filling amount appropriately in consideration of the expansion rate of the hydrogen storage alloy, provide a predetermined ventilation space.
  • the hydrogen storage alloy container may be configured not to use a ventilation material.
  • the fin 2 As shown in Fig. 10, not only this but also a flat fin 2a, corrugated twin 2b, noreno fin 2c, perforated fin 2d, etc.
  • the hydrogen storage / release performance of the hydrogen storage alloy can be optimized in accordance with the operating conditions.
  • Fig. 28 shows a perspective view of a state in which a hydrogen vent is installed on the flat fin 2a.
  • the fin shape particularly the shape of the fin end face located on the inlet side to the gap, can be configured so that the hydrogen storage alloy can easily enter the gap between the fins. The filling rate can be improved.
  • the plate 1 can be provided with a predetermined uneven pattern as long as it does not affect the bonding with the fins 2 and the guide plates 5 and 51. If the concave / convex pattern emphasizes fluid distribution to each part and another concave / convex pattern emphasizes heat exchange efficiency in the central area where the fins 2 are located, the hydrogen storage / release performance can be further improved.
  • the force is such that the hydrogen storage container is used alone for storage and release of hydrogen. It may be configured to be used for storing and releasing hydrogen in a state where a hydrogen storage system is constructed by connecting in series or in parallel.
  • the hydrogen storage container according to each of the eighth and ninth embodiments is not only used as a hydrogen storage container by utilizing its excellent hydrogen storage performance, but also as a high purity hydrogen recovery container. ⁇ I'm going to use it for IJ.

Abstract

A novel highly pressure-resistant compact heat exchanger of plate type, in which fluid flow is improved. A large number of square metal plates (1) and metal corrugated fins (2) with substantially the same outer profile as the metal plates (1) are alternately layered and combined by brazing in a desired number of tiers. A high-pressure high-temperature fluid (A) is caused to flow in one passage (3) formed between a fin (2) and plates (1), and fluid (B), such as gas and liquid, that is to be heated by heat exchange is caused to flow in the other passage (4) facing the passage (3). The passages (3, 4) of heat exchanger bodies are individually connected to each other. An inlet opening and outlet opening for each fluid are formed on the outside of a heat exchanger body, and each of the passages runs from the inlet opening to the outlet opening without branching.

Description

明 細 書  Specification
高耐圧コンパクト熱交換器および水素吸蔵用容器、並びにそれらの製造 方法  High pressure-resistant compact heat exchanger, hydrogen storage container, and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、各種熱交換器、特に自然冷媒、例えば COなどを用いたヒートポンプ等  [0001] The present invention relates to various heat exchangers, in particular, heat pumps using natural refrigerants such as CO.
2  2
に有効な小型の高耐圧コンパクト熱交換器およびその製造方法、並びに熱交換器シ ステム、更に、金属薄板を成形したプレートを複数重ね合せ状態で一体化して得ら れ、水素吸蔵合金を収容して水素の吸蔵 ·放出を可能とする水素吸蔵用容器および その製造方法に関する。  This is a compact, high pressure resistant and compact heat exchanger effective in manufacturing, its manufacturing method, and heat exchanger system. The present invention relates to a hydrogen storage container capable of storing and releasing hydrogen and a method for manufacturing the same.
背景技術  Background art
[0002] この種の熱交換器は、エネルギー効率が極めて高いこともあって、ヒートポンプ方式 が用いられ、し力、も自然環境を破壊するフロンなどの冷媒に代えて自然冷媒の CO  [0002] This type of heat exchanger has a very high energy efficiency and uses a heat pump system. It replaces the refrigerant, such as chlorofluorocarbon, which destroys the natural environment, with CO as a natural refrigerant.
2 を採用し、これによりオゾン破壊係数はゼロとなり、さらに地球温暖化係数も「1」という 環境に優しい熱交換器の開発が盛んになってきている(例えば、特許文献 1参照)。  As a result, the development of environmentally friendly heat exchangers with an ozone depletion coefficient of zero and a global warming potential of “1” has become active (see, for example, Patent Document 1).
[0003] 他方、コンパクトで比較的扁平な小型のプレート型熱交換器も知られている(例え ば、特許文献 2、特許文献 3参照)。特に、特許文献 2の熱交換器では、ヘリングボー ンプレートを積層した構造となっている。  [0003] On the other hand, compact, relatively flat and small plate-type heat exchangers are also known (see, for example, Patent Document 2 and Patent Document 3). In particular, the heat exchanger of Patent Document 2 has a structure in which Herringbone plates are laminated.
[0004] ここで、特許文献 3の発明に係るプレート型熱交換器の基本的な構造を、図 30及 び図 31に示す。これらの図から分かるように、自然冷媒と被加熱流体が各プレートを 交互に交差しながら流れ熱交換が行われている。また、自然冷媒と被加熱流体の流 れは共に、その流入ロカ 流出口に至る流路において分岐する流れ(以下、この流 れを「並行流」と言う)である。  [0004] Here, the basic structure of the plate heat exchanger according to the invention of Patent Document 3 is shown in FIGS. 30 and 31. FIG. As can be seen from these figures, the natural refrigerant and the fluid to be heated flow through each plate while alternately intersecting each plate. In addition, the flow of the natural refrigerant and the fluid to be heated is a flow that diverges in the flow path leading to the inflow locus outlet (hereinafter referred to as “parallel flow”).
[0005] また、水素吸蔵合金を収容して水素吸蔵を行わせる容器としては、従来から、高圧 容器の特性と水素吸蔵合金の特性を活かし、高圧で水素吸蔵合金を使用可能とす るハイブリッド型容器の研究開発が行われている。しかし、高圧に対応する必要から 、そのほとんどが円管式であり、容器内での水素吸蔵合金の占有率が悪ぐかつ注 入及び放出の際の反応熱に伴う伝熱特性が良くない、といった問題があり、さらなる コンパクト化、高伝熱特性等が要求されている。これらの問題を解決するために、近 年、積層状態のプレート状隔壁間に水素腹蔵合金収容空間と熱媒体通路を交互に 設定し、プレート状隔壁を介して水素吸蔵合金と熱媒体間の伝熱を行わせるタイプ の水素吸蔵合金容器が提案されている。その例として、例えば特許文献 4〜6に開示 されるものがある。 [0005] In addition, as a container for storing a hydrogen storage alloy and storing hydrogen, a hybrid type that makes it possible to use a hydrogen storage alloy at a high pressure by taking advantage of the characteristics of a high pressure container and the characteristics of the hydrogen storage alloy. Research and development of containers is underway. However, since it is necessary to cope with high pressure, most of them are of the tube type, the occupation rate of the hydrogen storage alloy in the container is bad, and the heat transfer characteristics accompanying the reaction heat at the time of injection and discharge are not good, There is a problem such as Compactness and high heat transfer characteristics are required. In order to solve these problems, in recent years, the hydrogen-absorbing alloy accommodating spaces and the heat medium passages are alternately set between the stacked plate-shaped partition walls, and the transfer between the hydrogen storage alloy and the heat medium is performed via the plate-shaped partition walls. A heat-absorbing type hydrogen storage alloy container has been proposed. Examples thereof include those disclosed in Patent Documents 4 to 6, for example.
特許文献 1 :特開 2004— 28356号公報  Patent Document 1: JP 2004-28356 A
特許文献 2:特開 2002— 35929号公報  Patent Document 2: JP 2002-35929 A
特許文献 3:特許第 3605089号公報  Patent Document 3: Japanese Patent No. 3605089
特許文献 4:特開平 7 - 330301号公報  Patent Document 4: Japanese Patent Laid-Open No. 7-330301
特許文献 5:特開 2006— 266350号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2006-266350
特許文献 6:特開 2000— 170998号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2000-170998
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] ところで、特許文献 1のような自然冷媒の COを用いると、使用圧力が高くなり、そ [0006] By the way, when natural refrigerant CO as in Patent Document 1 is used, the operating pressure increases, and
2  2
のため熱交換器も大型化ならざるを得ず、小型コンパクト化ができないという問題が あった。  For this reason, the heat exchanger must be increased in size, and there is a problem that it cannot be reduced in size and size.
[0007] すなわち、 自然冷媒の COは 8MPa以上の高圧ガスとして働くので、熱交換器を構  [0007] That is, natural refrigerant CO works as a high-pressure gas of 8MPa or more, so a heat exchanger is constructed.
2  2
成する金属材料の肉厚は、耐圧性を保持させるため、大きくならざるを得ず、その上 、熱交換構造も大型化を避けることができないという問題があった。  The thickness of the metal material to be formed has to be increased in order to maintain pressure resistance, and in addition, there is a problem that the heat exchange structure cannot be increased in size.
[0008] したがって、プレートとフィンとで積層構成される、特許文献 2および特許文献 3に 示される薄型でコンパクトなプレートフィン型の従来構成の熱交換器は、耐圧性に欠 け、材料の破壊、ろう付個処の剥離など変形、破損を生じて、全く使用不可能であつ た。また、特許文献 2のへリングボーンプレートを積層した構造では十分な熱交換率 が得られないという問題もあった。更に、特許文献 3のプレート型熱交換器内の自然 冷媒及び被加熱流体の流れは並行流であるため、十分な熱効率を得ることができな かった。 [0008] Therefore, the conventional thin and compact plate fin type heat exchanger shown in Patent Document 2 and Patent Document 3, which is configured by laminating plates and fins, lacks pressure resistance and breaks down the material. Deformation and breakage such as peeling of brazing parts caused no use at all. Further, the structure in which the herringbone plates of Patent Document 2 are stacked has a problem that a sufficient heat exchange rate cannot be obtained. Furthermore, since the flow of the natural refrigerant and the fluid to be heated in the plate-type heat exchanger of Patent Document 3 is a parallel flow, sufficient thermal efficiency cannot be obtained.
[0009] しかし乍ら、小型化するためには、特許文献 2、特許文献 3で示されるような、構造 が扁平で熱交換率が有効である単純なプレート型構成のものを利用する必要があつ た。 [0009] However, in order to reduce the size, it is necessary to use a simple plate type structure having a flat structure and an effective heat exchange rate as shown in Patent Document 2 and Patent Document 3. Hot It was.
[0010] 本発明は、叙上の点に着目して成されたもので、基本的構成を、ヘリングボーン構 造でない熱効率の良いプレート型の熱交換器を高耐圧、小型に構成し、更に、熱交 換器内の流体の流れを改善した新規な高耐圧コンパクト熱交換器およびその製造方 法、並びに熱交換器システムを提供することを目的とする。  [0010] The present invention has been made paying attention to the above points, and the basic configuration is a high-efficiency plate-type heat exchanger that is not a herringbone structure and has a high withstand voltage and a small size. An object of the present invention is to provide a novel high pressure compact heat exchanger with improved fluid flow in the heat exchanger, a manufacturing method thereof, and a heat exchanger system.
[0011] また、従来の水素吸蔵合金容器は前記各特許文献に示される構成となっており、 プレートを積層させた形態により、水素吸蔵合金と熱媒体との間で伝熱を有効に行 わせられる領域を最大限確保して効率的に熱の授受が行え、水素吸蔵合金におけ る水素の吸蔵 ·放出を円滑化できるものとなっている力、使用圧力が最低でも IMPa と高圧であり、一定の耐圧性を要求されることから、前記特許文献 4、 5に示されるよう に、プレートを積層したユニットを耐圧容器に収容したり、熱交換器コアを覆う外殻板 をブレージング又は溶接で一体化するといつた耐圧性を重視した複雑な構造を採ら ざるを得ず、また、前記特許文献 6に示されるように、合金収容器と他の部材を溶接 により一体化して容器としての外殻を構成する他、水素吸蔵合金を各収容器内に充 填した後、収容口に蓋を被せて溶接する必要があるなど、製造工程が複雑なものとな るとレ、つた課題を有して!/、た。  [0011] Further, the conventional hydrogen storage alloy container has a configuration shown in each of the above-mentioned patent documents, and heat transfer is effectively performed between the hydrogen storage alloy and the heat medium by the form in which the plates are laminated. This is a force that can efficiently transfer heat by ensuring the maximum available area, and can smoothly absorb and release hydrogen in the hydrogen storage alloy, and the working pressure is at least as high as IMPa. Since a certain pressure resistance is required, as shown in Patent Documents 4 and 5, the unit in which the plates are stacked is accommodated in a pressure vessel, or the outer shell plate covering the heat exchanger core is brazed or welded. When integrated, a complicated structure with an emphasis on pressure resistance must be adopted, and as shown in Patent Document 6, the alloy container and other members are integrated by welding to form an outer shell as a container. And hydrogen storage alloy After Filling into each container, such as it is necessary to welded capped in the housing opening, Le a manufacturing process that Do and complicated, a ivy problem! / Was.
[0012] 一方、従来から、水素吸蔵合金の利用が進むと、水素吸蔵合金が固形化したり、水 素の注入及び放出の性能が低下するという問題があった。通気を確保するための手 段としては、通気材を設置することが前記特許文献 6に提案されているが、波形フィ ンの波間に配置される関係上、その設置が難しぐ容器の製造工程が複雑化すると いう課題を有していた。 [0012] On the other hand, conventionally, as the use of hydrogen storage alloys has progressed, there has been a problem that the hydrogen storage alloys are solidified and the performance of hydrogen injection and discharge is reduced. As a means for ensuring ventilation, it is proposed in Patent Document 6 that a ventilation material is installed. However, due to the arrangement between corrugated fins, it is difficult to install the container. Had the problem of increasing complexity.
[0013] 本発明は前記課題を解消するためになされたもので、プレートを積層状態で用いて 、耐圧強度の確保と、容器構造の簡略化、小型化及び製造工程の単鈍化が両立で き、水素吸蔵合金と熱媒体との間の良好な伝熱を促せると共に、内部における水素 の流れ状態を改善して水素の吸蔵 '放出を効率よく行える水素吸蔵用容器、及び当 該容器の製造方法を提供することを目的とする。  [0013] The present invention has been made to solve the above-mentioned problems, and by using the plates in a laminated state, it is possible to achieve both the securing of the pressure resistance, the simplification of the container structure, the miniaturization, and the dullness of the manufacturing process. , A hydrogen storage container that can promote good heat transfer between the hydrogen storage alloy and the heat medium, improve the flow state of hydrogen inside and efficiently store and release hydrogen, and manufacture of the container It aims to provide a method.
課題を解決するための手段  Means for solving the problem
[0014] 本発明は、上述の目的を達成するため、以下の構成を備えるものである。 [0015] (1)矩形又は方形状の金属製プレートと、当該プレートと略同じ又はより小さい外形 を有する略板状体の全面に凹凸形状を成型されてなる金属製のフィンとを少なくとも 備え、前記プレートが、プレート周縁部に周縁以外の部分に対し前記フィン高さと略 同じ所定高さの起立状態となる外周突壁を形成され、前記プレートが、外周突壁の 向きを一致させ、且つ前記フィンを一つずつ間に介在させる状態で複数重ね合され て積層され、各プレートにおける外周突壁先端と他プレートの外周突壁基端部との 接触部分、及びプレートとフィンとの接触部分をそれぞれろう付により一体に且つ気 密維持状態で接合して容器本体を形成し、前記各プレート間に生じる隙間を一つお きに同じ組として二組に分け、一方の組の各隙間には、所定の熱媒体を流通させる 一方、他方の組の隙間には、所定の被加熱流体を流通させ、前記容器本体の外面 部に、前記一方の組の隙間に連通する前記熱媒体の入口部と出口部とがそれぞれ 一又は複数配設されると共に、前記他方の組の隙間に連通する被加熱流体の出入 口部が一又は複数配設されることを特徴とする高耐圧コンパクト熱交換器。 In order to achieve the above-mentioned object, the present invention has the following configuration. [0015] (1) At least a rectangular or rectangular metal plate and a metal fin formed by forming a concavo-convex shape on the entire surface of a substantially plate-like body having substantially the same or smaller outer shape as the plate, The plate is formed with an outer peripheral protruding wall in an upright state having a predetermined height substantially the same as the fin height with respect to a portion other than the peripheral edge at a peripheral portion of the plate, and the plate is aligned with the direction of the outer peripheral protruding wall, and Multiple plates are stacked with one fin interposed between them, and the contact portion between the tip of the outer peripheral protrusion wall of each plate and the base end portion of the outer peripheral protrusion wall of the other plate, and the contact portion between the plate and the fin The container body is formed by brazing together and in an airtight state to form a container main body, and the gaps generated between the plates are divided into two sets, one set for each gap. , Predetermined heat On the other hand, a predetermined heated fluid is circulated in the gap of the other set, and an inlet portion and an outlet portion of the heat medium communicating with the gap of the one set are communicated with the outer surface portion of the container body. One or a plurality of each is disposed, and one or a plurality of inlet / outlet portions of the fluid to be heated communicating with the other set of gaps are disposed.
[0016] (2)前記外周突壁を垂直から外方に傾斜させ、外周突壁先端内側部と他プレート の外周突壁基端部外側部との接触部分をろう付けすることを特徴とする前記(1)記 載の高耐圧コンパクト熱交換器。  [0016] (2) The outer peripheral protruding wall is inclined outward from the vertical, and the contact portion between the outer peripheral protruding wall tip inner side portion and the outer peripheral protruding wall base end outer portion of the other plate is brazed. The high pressure resistant compact heat exchanger as described in (1) above.
[0017] (3)前記外周突壁先端に段差部分を形成し、前記段差部分と他プレートの外周突 壁基端部及びその外側部の接触部分をろう付けすることを特徴とする前記(1)記載 の高耐圧コンパクト熱交換器。  (3) The step (1) is characterized in that a stepped portion is formed at a tip of the outer peripheral protruding wall, and the stepped portion and the contact portion of the outer peripheral protruding wall base end portion and the outer side portion of the other plate are brazed. ) High pressure resistant compact heat exchanger as described.
[0018] (4)前記両方の通路の一方が前記入口部から分岐せずに前記出口部に至るように 形成され、他方の通路が前記入口部から前記出口部に至るまでに分岐しな!/、通路 であることを特徴とする前記(1)乃至(3) V、ずれか記載の高耐圧コンパクト熱交換器  (4) One of the both passages is formed so as not to branch from the inlet portion to the outlet portion, and the other passage does not branch from the inlet portion to the outlet portion! High pressure-resistant compact heat exchanger according to any one of the above (1) to (3) V, which is a gap
[0019] (5)前記両方の通路の一方が前記入口部から分岐せずに前記出口部に至るように 形成され、他方の通路が前記入口部から前記出口部に至るまでに分岐する通路で あることを特徴とする前記(1)乃至(3)いずれか記載の高耐圧コンパクト熱交換器。 (5) One of the two passages is formed so as to reach the outlet portion without branching from the inlet portion, and the other passage is a passage branching from the inlet portion to the outlet portion. The high pressure-resistant compact heat exchanger according to any one of (1) to (3), wherein
[0020] (6)前記凹凸状のフィンの配列方向が、前記熱媒体体と前記被加熱流体の流路の 方向に対して所望の角度をなすことを特徴とする前記(1)乃至(5)いずれか記載の 高耐圧コンパクト熱交換器。 [0020] (6) The above (1) to (5), wherein the arrangement direction of the uneven fins forms a desired angle with respect to the direction of the flow path of the heating medium and the fluid to be heated. ) High pressure compact heat exchanger.
[0021] (7)前記所望の角度が、 0度乃至 90度のいずれかの角度であることを特徴とする前 記(6)記載の高耐圧コンパクト熱交換器。  [0021] (7) The high withstand pressure compact heat exchanger as described in (6) above, wherein the desired angle is any angle from 0 degrees to 90 degrees.
[0022] (8)前記凹凸状のフィンが、前記方形の金属製プレート内において所望の個数に 分割され、該分割された凹凸状のフィンの配列方向と前記高圧流体と前記被加熱流 体の流路の方向がなす各々の角度力 相互に異なることを特徴とする前記(1)乃至( 5) V、ずれか記載の高耐圧コンパクト熱交換器。  (8) The concavo-convex fins are divided into a desired number in the rectangular metal plate, the arrangement direction of the divided concavo-convex fins, the high-pressure fluid, and the heated fluid. The high pressure-resistant compact heat exchanger as set forth in any one of (1) to (5) V, wherein the angular forces formed by the flow paths are different from each other.
[0023] (9)積層される前記プレートの積層方向外側に、前記プレートより厚く高強度の略 板状体で、且つ前記入口部、出口部、及び/又は出入口部を形成される外殻プレ 一トが積層配設され、当該外殻プレートが、前記外殻プレートに隣接する他のプレー トの外周突壁先端又は他のプレートの積層方向の表面へろう付により接合されて容 器本体に一体化されることを特徴とする前記(1)乃至(8)いずれか記載の高耐圧コ ンパクト熱交換器。  [0023] (9) An outer shell plate having a substantially plate-like body that is thicker and stronger than the plate and is formed with the inlet portion, the outlet portion, and / or the inlet / outlet portion on the outer side in the stacking direction of the plates to be stacked. The outer shell plate is joined to the container body by brazing to the tip of the outer peripheral protruding wall of another plate adjacent to the outer shell plate or the surface in the stacking direction of the other plate. The high withstand pressure compact heat exchanger according to any one of (1) to (8), which is integrated.
[0024] (10)高圧自然冷媒は、二酸化炭素、アンモニア、水とアンモニアの混合物、イソブ タン、プロパン、ノルマルブタン又はプロピレンのいずれかであることを特徴とする前 記(1)乃至(9)いずれか記載の高耐圧コンパクト熱交換器。  [0024] (10) The high-pressure natural refrigerant is any one of carbon dioxide, ammonia, a mixture of water and ammonia, isobutane, propane, normal butane, or propylene. Any of the high pressure resistant compact heat exchangers described.
[0025] (11)多数の方形の金属製プレートの両側で、凹凸状のフィンの外方には、自段お よび他段への流体の流通を可能とする切欠孔および流通孔を並設したガイドプレー トを金属製プレートと一体に備え、かつ複数の金属製プレートの重合積層時、切欠孔 および流通孔に対向する個処の、金属製プレートに流通孔を穿って成ることを特徴と する前記(1)乃至(9)いずれか記載の高耐圧コンパクト熱交換器。  [0025] (11) On both sides of a large number of rectangular metal plates, notch holes and flow holes that allow fluid to flow to the own stage and other stages are arranged in parallel on the outside of the uneven fins. The guide plate is integrated with the metal plate, and when the plurality of metal plates are laminated, the metal plate is formed with a through hole in the place facing the notch hole and the through hole. The high pressure-resistant compact heat exchanger according to any one of (1) to (9).
[0026] (12)凹凸状のフィンは、オフセット型、平板フィン型、波状フィン型、ルーバ型、穴 あき型等の中の一つ又は組合せで形成して成ることを特徴とする前記(1)乃至(9)い ずれか記載の高耐圧コンパクト熱交換器。  [0026] (12) The uneven fin is formed by one or a combination of an offset type, a flat fin type, a corrugated fin type, a louver type, a perforated type, and the like (1 ) To (9) High pressure resistant compact heat exchanger as described in any one.
[0027] (13)前記(1)乃至(12)のいずれかに記載の高耐圧コンパクト熱交換器において、 前記プレート及びフィンは、ろう付可能な引張強度 52kgf/mm2以上のステンレス材 で、厚さが 0. 3mm以上とされ、前記プレートとフィンの接合面積が一接合箇所あたり 4mm2以上であり、また、ろう付用に、接合強度 20kgf/mm2以上のろう材カ 積層 状態のプレート同士及びプレートとフィンとの各接触部分に配設されることを特徴とす る高耐圧コンパクト熱交換器。 [0027] (13) In the high pressure-resistant compact heat exchanger according to any one of (1) to (12), the plate and the fin are a stainless material having a brazing tensile strength of 52 kgf / mm 2 or more, Thickness is 0.3 mm or more, the joint area of the plate and fin is 4 mm 2 or more per joint, and for brazing, a brazing material with a joint strength of 20 kgf / mm 2 or more is laminated. A high pressure compact heat exchanger characterized in that it is disposed at each contact portion between the plates in the state and between the plates and the fins.
[0028] (14)前記(1)乃至(12)レ、ずれか記載の複数の高耐圧コンパクト熱交換器を直列 又は並列に接続したことを特徴とする熱交換器システム。  [0028] (14) A heat exchanger system comprising a plurality of high-pressure-resistant compact heat exchangers as described in (1) to (12) above, or connected in series or in parallel.
[0029] (15)プレート周縁部に当該周縁以外の部分に対し所定高さの起立状態となる外 周突壁を形成される複数の金属製プレートと、当該プレートと略同じ又はより小さい 外形を有する略板状体の全面に凹凸形状を成型されてなる金属製のフィンとを少な くとも使用して、前記プレートを、外周突壁の向きを一致させ且つ前記フィンを間に介 在させる状態で複数積層すると共に、前記プレート同士及びプレートとフィンの各接 触部にはろう材を配置し、積層状態の前記各部材を真空加熱炉内に入れ、加熱によ りプレート同士及びプレートとフィンとの各接触部分をそれぞれろう付処理して一体 接合状態とすることを特徴とする高耐圧コンパクト熱交換器の製造方法。  [0029] (15) A plurality of metal plates formed with an outer peripheral protruding wall in an upright state with respect to a portion other than the peripheral portion at the peripheral portion of the plate, and an outer shape substantially the same as or smaller than the plate. A state in which the plate is aligned with the direction of the outer peripheral protruding wall and the fin is interposed between at least the metal fin formed by forming a concavo-convex shape on the entire surface of the substantially plate-like body having In addition, a plurality of layers are laminated together, brazing materials are disposed at the contact portions of the plates and between the plates and fins, the laminated members are placed in a vacuum heating furnace, and the plates and the plates and fins are heated by heating. A method of manufacturing a high pressure compact heat exchanger, characterized in that each contact part is brazed to form an integrally joined state.
[0030] (16)矩形又は方形状の金属製プレートと、当該プレートと略同じ又はより小さい外 形を有する略板状体の全面に凹凸形状を成型されてなる金属製のフィンとを少なくと も備え、前記プレートが、プレート周縁部に周縁以外の部分に対し前記フィン高さと 略同じ所定高さの起立状態となる外周突壁を形成され、前記プレートが、外周突壁 の向きを一致させ、且つ前記フィンを一つずつ間に介在させる状態で複数重ね合さ れて積層され、各プレートにおける外周突壁先端と他プレートの外周突壁基端部と の接触部分、及びプレートとフィンとの接触部分をそれぞれろう付により一体に且つ 気密維持状態で接合して容器本体を形成し、前記各プレート間に生じる隙間を一つ おきに同じ組として二組に分け、一方の組の各隙間には、所定の熱媒体を流通させ る一方、他方の組の隙間には、所定の水素吸蔵合金を収容し、前記容器本体の外 面部に、前記一方の組の隙間に連連する前記熱媒体の入口部と出口部とがそれぞ れー又は複数配設されると共に、前記他方の組の隙間に連通する水素吸蔵合金及 び水素の出入口部が一又は複数配設されることを特徴とする水素吸蔵用容器。  [0030] (16) At least a rectangular or rectangular metal plate and a metal fin formed by forming a concavo-convex shape on the entire surface of a substantially plate-like body having an outer shape substantially the same as or smaller than the plate. The plate is formed with an outer peripheral protruding wall that is in an upright state at a predetermined height substantially the same as the fin height with respect to a portion other than the peripheral edge at the peripheral portion of the plate, and the plate is aligned with the direction of the outer peripheral protruding wall. In addition, a plurality of the fins are stacked in a state of interposing the fins one by one, and the contact portion between the distal end of the outer peripheral protruding wall of each plate and the outer peripheral protruding wall base end portion of the other plate, and the plate and the fin The contact portions of the plates are joined together by brazing in an airtight state to form a container body, and the gaps generated between the plates are divided into two sets, each having the same set, and the gaps in one set are separated. The predetermined heat While the medium is circulated, a predetermined hydrogen storage alloy is accommodated in the gap of the other set, and an inlet portion and an outlet portion of the heat medium connected to the gap of the one set are provided on the outer surface portion of the container body. And a plurality of hydrogen storage alloys, and one or a plurality of hydrogen storage alloys and hydrogen inlet / outlet portions communicating with the other set of gaps.
[0031] (17)前記(16)に記載の水素吸蔵用容器において、積層される前記プレート間に おけるプレートとフィン間の間隙に、容器完成状態で少なくとも水素気体を通気可能 となる所定の通気材がー又は複数揷入配設され、プレートのろう付を経てプレート間 に固定されることを特徴とする水素吸蔵用容器。 [0031] (17) In the hydrogen storage container according to (16), a predetermined ventilation that allows at least hydrogen gas to be ventilated in a gap between the plate and the fin between the stacked plates in a completed state of the container. The material is placed in multiple inserts, and after brazing the plates, between the plates A container for storing hydrogen, which is fixed to the container.
[0032] (18)前記(17)に記載の水素吸蔵用容器において、前記通気材が、良熱伝導性 材料で形成されることを特徴とする水素吸蔵用容器。  [0032] (18) The hydrogen storage container according to (17), wherein the ventilation member is formed of a heat-conductive material.
[0033] (19)前記(17)に記載の水素吸蔵用容器において、前記通気材が、プレート積層 の前にプレート及び/又はフィンに塗布され、ろう付に伴う加熱、温度上昇の過程で 発泡し、ろう付終了後、冷却硬化して通気可能な多孔質状態を維持する所定の発泡 材とされることを特徴とする水素吸蔵用容器。  [0033] (19) In the hydrogen storage container according to (17), the air-permeable material is applied to the plate and / or the fin before laminating the plates, and foamed in the process of heating and temperature rise accompanying brazing. And a hydrogen storage container characterized by being made into a predetermined foam material that maintains a porous state in which it can be cooled and hardened and be vented after brazing.
[0034] (20)前記(16)乃至(19)のいずれかに記載の水素吸蔵用容器において、前記水 素の出入口部が複数配設され、水素注入及び放出の基幹となる一の出入口部に繋 力 ¾水素通路に制御用バルブ、又は制御用バルブ及びフィルタを設置すると共に、 前記制御用バルブ又は制御用バルブ及びフィルタより前記一の出入口部側の前記 水素通路から分岐して他の出入口部に通じる他の水素通路に、ァクチユエータ又は 流動装置を設置し、水素の吸蔵及び放出の際に前記ァクチユエータ又は流動装置 を動作させて水素、又は水素及び水素吸蔵合金を流動させることを特徴とする水素 吸蔵用容器。  [0034] (20) The hydrogen storage container according to any one of (16) to (19), wherein a plurality of the hydrogen inlet / outlet portions are arranged, and serves as a hydrogen injection / release base ¾ Install a control valve, or a control valve and a filter in the hydrogen passage, and branch out from the hydrogen passage closer to the one inlet / outlet portion than the control valve or the control valve and filter. In another hydrogen passage leading to the section, an actuator or a flow device is installed, and when storing or releasing hydrogen, the actuator or flow device is operated to flow hydrogen or hydrogen and a hydrogen storage alloy. Hydrogen storage container.
[0035] (21)前記(16)乃至(20)のいずれかに記載の水素吸蔵用容器において、前記プ レートが、端部に前記入口部、出口部、又は出入口部に連通する開口孔を一又は複 数穿設され、前記プレート間の隙間に、隙間を挟む二つのプレートにおける前記開 ロ孔近傍部分を含むプレート端部にいずれも当接且つろう付可能として配設され、 前記プレートの開口孔、前記入口部、出口部、及び/又は出入口部に連通する一 又は複数の流通孔を穿設されるガイドプレートを備え、前記ガイドプレートが、配設さ れるプレート間の隙間と前記流通孔に通す流体が同一である場合に、ガイドプレート の一部を切欠かれて流通孔を前記隙間に連通させることを特徴とする水素吸蔵用容  [0035] (21) In the hydrogen storage container according to any one of (16) to (20), the plate has an opening hole communicating with the inlet portion, the outlet portion, or the inlet / outlet portion at an end portion. One or a plurality of holes are drilled, and are disposed so as to be able to abut and braze at both ends of the plate including the vicinity of the opening of the two plates sandwiching the gap. A guide plate provided with one or a plurality of flow holes communicating with the opening hole, the inlet portion, the outlet portion, and / or the inlet / outlet portion; and the guide plate includes a gap between the disposed plates and the flow passage. When the fluid passing through the hole is the same, a part of the guide plate is cut away to allow the flow hole to communicate with the gap.
[0036] (22)前記(16)乃至(21)のいずれかに記載の水素吸蔵用容器において、前記フ インが、フィン形状をオフセット型、平板フィン型、波状フィン型、ルーバ型、穴あき型 のうちの一又は複数の組合せで形成されてなることを特徴とする水素吸蔵用容器。 [0036] (22) In the hydrogen storage container according to any one of (16) to (21), the fin has an offset shape, a flat fin shape, a corrugated fin shape, a louver shape, a perforated shape. A container for storing hydrogen, wherein the container is formed by one or a combination of molds.
[0037] (23)前記(16)乃至(22)の!/、ずれかに記載の水素吸蔵用容器にお!/、て、積層さ れる前記プレートの積層方向外側に、前記プレートより厚く高強度の略板状体で、且 つ前記入口部、出口部、及び/又は出入口部を形成される外殻プレートが積層配 設され、当該外殻プレートが、前記外殻プレートに隣接する他のプレートの外周突壁 先端又は他のプレートの積層方向の表面へろう付により接合されて容器本体に一体 化されることを特徴とする水素吸蔵用容器。 [0037] (23) The hydrogen storage container according to any one of the above (16) to (22)! / An outer shell plate that is thicker and stronger than the plate and that forms the inlet portion, the outlet portion, and / or the inlet / outlet portion is laminated and disposed outside the plate in the stacking direction. The outer shell plate is joined to the tip of the outer peripheral protruding wall of another plate adjacent to the outer shell plate or the surface in the stacking direction of the other plate by brazing, and is integrated with the container body. Container.
[0038] (24)前記(16)乃至(23)のいずれかに記載の水素吸蔵用容器において、前記プ レート及びフィンは、ろう付可能な引張強度 52kgf /mm2以上のステンレス材で、厚 さが 0. 3mm以上とされ、前記プレートとフィンの接合面積が一接合箇所あたり 4mm 2以上であり、また、ろう付用に、接合強度 20kgf/mm2以上のろう材カ 積層状態の プレート同士及びプレートとフィンとの各接触部分に配設されることを特徴とする水素 吸蔵用容器。 [0038] (24) In the hydrogen storage container according to any one of (16) to (23), the plate and the fin are a stainless material having a brazing tensile strength of 52 kgf / mm 2 or more and having a thickness. The joint area between the plate and fin is 4 mm 2 or more per joint, and for brazing, a brazing material with a joint strength of 20 kgf / mm 2 or more And a hydrogen storage container, which is disposed at each contact portion between the plate and the fin.
[0039] (25)プレート周縁部に当該周縁以外の部分に対し所定高さの起立状態となる外 周突壁を形成される複数の金属製プレートと、当該プレートと略同じ又はより小さい 外形を有する略板状体の全面に凹凸形状を成型されてなる金属製のフィンとを少な くとも使用して、前記プレートを、外周突壁の向きを一致させ且つ前記フィンを間に介 在させる状態で複数積層すると共に、前記プレート同士及びプレートとフィンの各接 触部にはろう材を配置し、かつ、水素気体が通気可能となる通気材を所定の位置に 配設し、積層状態の前記各部材を加熱炉内に入れ、加熱によりプレート同士及びプ レートとフィンとの各接触部分をそれぞれろう付処理して一体接合状態とすることを特 徴とする水素吸蔵用容器の製造方法。  [0039] (25) A plurality of metal plates formed with outer peripheral protruding walls that are in a standing state with a predetermined height with respect to a portion other than the peripheral portion at the peripheral portion of the plate, and an outer shape substantially the same as or smaller than the plate. A state in which the plate is aligned with the direction of the outer peripheral protruding wall and the fin is interposed between at least the metal fin formed by forming a concavo-convex shape on the entire surface of the substantially plate-like body having A plurality of layers, and a brazing material is disposed at the contact portions between the plates and between the plate and the fin, and a ventilation material through which hydrogen gas can be ventilated is disposed at a predetermined position. A method for producing a hydrogen storage container, wherein each member is placed in a heating furnace, and the plates and the contact portions between the plates and the fins are brazed to form an integrally joined state by heating.
発明の効果  The invention's effect
[0040] 本発明の高耐圧コンパクト熱交換器によれば、熱交換器本体を構成する金属乃至 合金は、肉厚が 0. 3mm以上で、耐蝕性に優れた引張強度 52kg/mm2以上のもの を用い、かつ、 Cu及び Cu合金などの好みのろう付金属を用い、さらにプレートとフィ ンの接合面積がー凸当たり 4mm2以上であるので、 COのような自然冷媒の 8MPa [0040] According to the high-voltage compact heat exchanger of the present invention, the metal or alloy constituting the heat exchanger body is a wall thickness of 0. 3 mm or more, excellent tensile strength 52kg / mm 2 or more corrosion resistance And a brazing metal of your choice, such as Cu and Cu alloys, and the joint area of the plate and fin is more than 4 mm 2 per bump, so it is 8MPa of natural refrigerant such as CO.
2  2
以上の高圧高熱流体の流通を可能とする。  The above high-pressure and high-temperature fluid can be distributed.
[0041] しかも、熱交換器本体は、複数の金属プレートと、このプレートと接合される凹凸状 フィンは、好みの形状のものを用いることができるので、使用用途に応じて選択して、 好みの給湯システムに利用できる。 [0041] Moreover, since the heat exchanger main body can use a plurality of metal plates and the uneven fins to be joined to the plates in a desired shape, it can be selected according to the intended use, It can be used for your favorite hot water system.
[0042] 更に、熱交換器内の流体の流れが並行流のみであるのとは異なり、熱交換器の流 入口に入った流体が熱交換器内で分岐せずに流出口に至る流れ (以下、この流れ を「直行流」という)であるため、熱交換器の熱交換率は改善されることになる。  [0042] Furthermore, unlike the case where the flow of fluid in the heat exchanger is only a parallel flow, the fluid that has entered the inlet of the heat exchanger flows to the outlet without branching in the heat exchanger ( Hereinafter, this flow is referred to as “direct flow”), so the heat exchange rate of the heat exchanger is improved.
[0043] なお、熱交換後の COのような自然冷媒は、膨張、空気熱交換、コンプレッサの冷  [0043] It should be noted that natural refrigerants such as CO after heat exchange are expanded, air heat exchange, and compressor cooling.
2  2
媒サイクルによるヒートポンプユニットシステムによって反復熱源を得ることができる。 特に、高耐圧効果を有するので、コンパクトな扁平小型の熱交換器を提供できる。  A repetitive heat source can be obtained by a heat pump unit system with a medium cycle. In particular, since it has a high pressure resistance effect, a compact flat and small heat exchanger can be provided.
[0044] 一方、本発明の水素吸蔵用容器及びその製造方法によれば、以下のような効果が ある。 [0044] On the other hand, the hydrogen storage container and the method for producing the same of the present invention have the following effects.
[0045] すなわち、前記(16)の発明によれば、多数のプレート及びフィンを交互に組合せ て所定段数の積層状態とし、フィンごとプレートをろう付して容器本体を形成し、プレ ート間に生じる二組の隙間のうち一方は熱媒体の流路とすると共に、他方の隙間は 水素吸蔵合金の収容空間とし、水素吸蔵合金とその反応熱を制御する熱媒体とがプ レート及びフィンを介して伝熱を行う状態となることにより、プレートとフィンが接合して lOOMPa程度の高圧にも耐え得る構造を実現でき、コンパクトで耐圧性能に優れる 容器とすることが可能な上、フィンを介した伝熱で冷却特性及び加熱特性が良好とな り、水素吸蔵合金における冷却及び放熱の反応性が向上し、水素吸蔵合金による水 素の吸蔵及び放出性能に優れることとなる。また、容器内へのフィンの設置カ、プレ 一ト積層時にプレート間に配置するのみで極めて容易であるため、製造工程を簡略 化でき、且つ耐圧強度を高くしても、各部が肉厚及び重量大となることを避けられ、 低コスト化が図れる。  That is, according to the invention of the above (16), a plurality of plates and fins are alternately combined to form a predetermined number of layers, and the fins and the plates are brazed to form the container body, and between the plates. One of the two gaps formed in the above is a flow path for the heat medium, and the other gap is a housing space for the hydrogen storage alloy, and the hydrogen storage alloy and the heat medium for controlling the reaction heat have the plate and fins. In this state, the plate and fins can be joined together to achieve a structure that can withstand high pressures of about lOOMPa, making the container compact and excellent in pressure resistance. As a result of the heat transfer, the cooling and heating characteristics are improved, the reactivity of cooling and heat dissipation in the hydrogen storage alloy is improved, and the hydrogen storage and release performance by the hydrogen storage alloy is excellent. In addition, it is extremely easy to install fins in the container and between the plates when laminating the plates, so that the manufacturing process can be simplified, and even if the pressure strength is increased, each part is thick and thick. This avoids an increase in weight and can reduce costs.
[0046] 前記(17)の発明によれば、プレート間に所定の通気材を配置し、各部材とまとめて ろう付工程で一体化して容器とすることにより、プレートを積層する際に通気材をプレ ート間に配置するのみで適切且つ容易に通気材の設置が行えることとなり、容器構 造並びに製造工程を簡略化することができると共に、通気材を介して水素吸蔵合金 近傍に対する水素の到達及び離脱を確実なものにでき、伝熱、速度、流量、損失と いった水素の注入及び放出の特性向上が図れる。  [0046] According to the invention of the above (17), when a predetermined ventilation material is disposed between the plates and integrated with each member in a brazing process to form a container, the ventilation material is used when the plates are laminated. It is possible to install the ventilation material appropriately and easily only by placing the metal plate between the plates, simplify the container structure and the manufacturing process, and provide hydrogen to the vicinity of the hydrogen storage alloy via the ventilation material. Reaching and releasing can be ensured, and the characteristics of hydrogen injection and discharge such as heat transfer, speed, flow rate, and loss can be improved.
[0047] 前記(18)の発明によれば、良熱伝導性の材質からなる通気材がプレート間に配設 され、通気材とフィン及びプレートが接触していることにより、水素吸蔵合金とプレート との伝熟において通気材を通じても有効な伝熱を生じさせられることとなり、水素吸蔵 合金に対する伝熱性能がさらに良好となって水素吸蔵合金における冷却及び放熱 の反応性が向上し、水素の注入及び放出の特性が優れたものとなる。 [0047] According to the invention of (18), the ventilation member made of a material having good heat conductivity is disposed between the plates. In addition, the contact between the air-permeable material and the fins and the plate enables effective heat transfer through the air-permeable material in the ripening between the hydrogen-absorbing alloy and the plate, further increasing the heat-transfer performance for the hydrogen-absorbing alloy. As a result, the reactivity of cooling and heat dissipation in the hydrogen storage alloy is improved, and the characteristics of hydrogen injection and release are excellent.
[0048] 前記(19)の発明によれば、通気材として、高温で発泡して最終的に多孔質材とな る発泡材を用い、発泡材を製造過程で塗布し、ろう付の加熱高温化の過程で発泡さ せ、ろう付完了時には微細な空隙を有する通気材として機能する状態が得られること により、通気材として水素吸蔵合金に対する水素の通気性を高められると共に、通気 材配設に係る製造工程の簡素化が図れる。  [0048] According to the invention of (19), a foaming material that foams at a high temperature and eventually becomes a porous material is used as a ventilation material, and the foaming material is applied in the manufacturing process, and the brazing heated high temperature When the brazing is completed, a state of functioning as a ventilation material having fine voids is obtained when brazing is completed, so that the hydrogen permeability to the hydrogen storage alloy can be improved as the ventilation material and the ventilation material can be arranged. Such a manufacturing process can be simplified.
[0049] 前記(20)の発明によれば、容器に水素の出入口部を複数配設し、基幹の水素注 入及び放出部分となる出入口部には制御用バルブ、又は制御用バルブとフィルタ等 を設置する一方、他の出入口部への通路にァクチユエータゃ流動装置を設置し、こ れらを用いて、水素、又は水素と水素吸蔵合金を流動させることにより、固化しやす い水素吸蔵合金における水素の吸蔵及び放出の反応特性を向上させることができる  [0049] According to the invention of the above (20), a plurality of hydrogen inlet / outlet portions are provided in the container, and the control valve or the control valve and the filter are provided in the inlet / outlet portion serving as the main hydrogen injection / discharge portion. On the other hand, in the hydrogen storage alloy that is easy to solidify by installing hydrogen flow devices in the passages to other entrances and exits, and by using these to flow hydrogen or hydrogen and hydrogen storage alloy Improves hydrogen absorption and release reaction characteristics
[0050] 前記(21)の発明によれば、プレート端部に開口孔を一又は複数穿設すると共に、 このプレート端部間の隙間に、一又は複数の流通孔を穿設されたガイドプレートを配 置し、ガイドプレートの一部切欠きで所定の流通孔を隙間に連通させることにより、プ レートの接合強度を高めて容器の耐圧強度を向上させられると共に、ガイドプレート の流通孔配置及び切欠き設定により各プレート間の隙間を所望の連通状態とするこ とができ、隙間を直列する一つの流路としたり、複数並列する流路とすることができ、 所望の使用条件に応じて熱媒体と水素の流れ状態を最適な設定として水素の吸蔵 及び放出の効率を高められることとなる。 [0050] According to the invention of (21), one or a plurality of opening holes are formed in the plate end portion, and one or a plurality of flow holes are formed in the gap between the plate end portions. By arranging a predetermined flow hole in the gap with a notch in the guide plate, the joint strength of the plate can be increased and the pressure resistance of the container can be improved. By setting the notch, the gap between the plates can be in the desired communication state, and the gap can be made into one flow path in series or multiple flow paths in parallel, depending on the desired use conditions The efficiency of hydrogen storage and release can be improved by setting the flow conditions of the heat medium and hydrogen optimally.
[0051] 前記(22)の発明によれば、プレート間に配置されるフィンの形状を変えることにより 、水素吸蔵合金に対する伝熱性能を運転条件に応じたものとすることができ、最適な 容器が得られる。  [0051] According to the invention of (22), by changing the shape of the fins arranged between the plates, the heat transfer performance with respect to the hydrogen storage alloy can be made according to the operating conditions, and the optimum container Is obtained.
[0052] 前記(23)の発明によれば、積層されるプレートの外側に高強度の外殻プレートを 配設し、プレートを積層方向両側から支持することにより、水素吸蔵合金に加えられ る高い圧力を受けることとなるプレートの変形を確実に防止して、水素吸蔵合金と熱 媒体間の伝熱、熱交換を円滑化することができる。 [0052] According to the invention of (23), a high-strength outer shell plate is disposed outside the stacked plates, and the plate is supported from both sides in the stacking direction, so that it can be added to the hydrogen storage alloy. It is possible to surely prevent deformation of the plate that is subjected to a high pressure and to facilitate heat transfer and heat exchange between the hydrogen storage alloy and the heat medium.
[0053] 前記(24)及び(25)の発明によれば、多数のプレート、及び凹凸状のフィンを交互 に組合せて所定段数の積層状態とし、フィンごとプレートをろう付して容器本体を形 成することにより、プレート同士及びプレートとフィンがそれぞれ接合して 30MPa程 度の高圧にも耐え得る構造を実現でき、コンパクトで耐圧性能に優れる容器とするこ とができると共に、容器内へのフィンの設置が、プレート積層時にプレート間に配置 するのみで極めて容易であるため、製造工程を簡略化できる。 [0053] According to the inventions of (24) and (25), a plurality of plates and uneven fins are alternately combined to form a predetermined number of stacked layers, and the fins and the plates are brazed to form the container body. As a result, it is possible to realize a structure that can withstand a high pressure of about 30 MPa by joining the plates to each other and the plate and the fin, making the container compact and excellent in pressure resistance, and providing fins into the container. Since it is extremely easy to install the plate between the plates when stacking the plates, the manufacturing process can be simplified.
図面の簡単な説明  Brief Description of Drawings
[0054] [図 1]本発明の実施例 1に係るプレート型熱交換器の構成を模式的に示した分解斜 視図  FIG. 1 is an exploded perspective view schematically showing the configuration of a plate heat exchanger according to Embodiment 1 of the present invention.
[図 2]図 1に示すプレート型熱交換器の断面図  [Figure 2] Sectional view of the plate heat exchanger shown in Figure 1
[図 3] (a)は金属製プレートユニット 60を、 (b)は金属製プレートユニット 50を示す説 明図  [Fig. 3] (a) is an illustration showing a metal plate unit 60, and (b) is an illustration showing a metal plate unit 50.
[図 4]金属製プレートユニット 70を示す説明図  [Figure 4] Explanatory drawing showing the metal plate unit 70
[図 5]ガイドプレート 5、 51とその断面を示す図  [Fig.5] Diagram showing guide plates 5, 51 and their cross sections
[図 6]金属製プレートとオフセットフィンとプレートの外周突壁とのろう付状態と厚さの 関係を示す拡大断面図及び VII— VII線断面図  [Fig. 6] Enlarged cross-sectional view and cross-sectional view taken along line VII-VII showing the relationship between brazing state and thickness of metal plate, offset fin and outer peripheral protruding wall of plate
[図 7]本発明の各実施形態に係るプレート外周突壁先端部形状の他例を示す説明 図  FIG. 7 is an explanatory view showing another example of the shape of the tip of the outer peripheral protruding wall of the plate according to each embodiment of the present invention.
[図 8]本発明の実施例 2に係るプレート型熱交換器の構成を模式的に示した分解斜 視図  FIG. 8 is an exploded perspective view schematically showing the configuration of a plate heat exchanger according to Embodiment 2 of the present invention.
[図 9]図 7に示すプレート型熱交換器の断面図  [Fig. 9] Cross section of the plate heat exchanger shown in Fig. 7.
[図 10] (a) (b) (c) (d)は、他の形状のフィンを示す斜視図  [FIG. 10] (a), (b), (c), and (d) are perspective views showing fins of other shapes.
[図 11]他のプレート型熱交換器の要部を示す斜視図  FIG. 11 is a perspective view showing the main part of another plate heat exchanger
[図 12]液体並びに冷媒の流れ方向とフィンの配列方向の関係を示す図  FIG. 12 is a diagram showing the relationship between the flow direction of the liquid and the refrigerant and the arrangement direction of the fins
[図 13]高さを 1. 5ミリにしたフィンの図とその拡大図  [Figure 13] Figure of fin with height 1.5 mm and its enlarged view
[図 14]本発明の第 8の実施形態に係る水素吸蔵用容器におけるプレートとフィンのろ う付部分の拡大横断面図及び拡大縦断面図 FIG. 14 shows plate and fin filters in a hydrogen storage container according to an eighth embodiment of the present invention. Enlarged cross section and enlarged longitudinal section
園 15]本発明の第 8の実施形態に係る水素吸蔵用容器における通気材配置説明図 園 16]本発明の第 8の実施形態に係る水素吸蔵用容器における通気材の他の配置 例説明図 15] Arrangement explanatory drawing of the ventilation material in the hydrogen storage container according to the eighth embodiment of the present invention. 16] Other explanatory example of the arrangement of the ventilation material in the hydrogen storage container according to the eighth embodiment of the present invention.
園 17]本発明の第 8の実施形態に係る水素吸蔵用容器におけるプレート上での通気 材配置状態説明図 17] Ventilation material arrangement state explanatory diagram on the plate in the hydrogen storage container according to the eighth embodiment of the present invention
園 18]本発明の第 8の実施形態に係る水素吸蔵用容器におけるプレート上での通気 材の他の配置状態説明図 18] Other arrangement state explanatory drawing of the ventilation material on the plate in the hydrogen storage container according to the eighth embodiment of the present invention
園 19]本発明の第 8の実施形態に係る水素吸蔵用容器における流体流れ状態の第 一例を示す説明図 19] Explanatory drawing showing a first example of the fluid flow state in the hydrogen storage container according to the eighth embodiment of the present invention.
[図 20]本発明の第 8の実施形態に係る水素吸蔵用容器における流体流れ状態の第 二例を示す説明図  FIG. 20 is an explanatory view showing a second example of a fluid flow state in the hydrogen storage container according to the eighth embodiment of the present invention.
[図 21]本発明の第 8の実施形態に係る水素吸蔵用容器における流体流れ状態の第 三例を示す説明図  FIG. 21 is an explanatory view showing a third example of a fluid flow state in the hydrogen storage container according to the eighth embodiment of the present invention.
[図 22]本発明の第 8の実施形態に係る水素吸蔵用容器の断面図  FIG. 22 is a cross-sectional view of a hydrogen storage container according to an eighth embodiment of the present invention.
[図 23]本発明の第 8の実施形態に係る水素吸蔵用容器における他の流体流れ状態 を示す断面図  FIG. 23 is a sectional view showing another fluid flow state in the hydrogen storage container according to the eighth embodiment of the present invention.
[図 24]本発明の第 8の実施形態に係る水素吸蔵用容器における各流体の給排状態 を示す説明図  FIG. 24 is an explanatory view showing the supply and discharge states of each fluid in the hydrogen storage container according to the eighth embodiment of the present invention.
園 25]本発明の第 8の実施形態に係る水素吸蔵用容器における各流体の他の給排 状態を示す説明図 25] Explanatory drawing showing other supply / discharge states of each fluid in the hydrogen storage container according to the eighth embodiment of the present invention
園 26]本発明の第 8の実施形態に係る水素吸蔵用容器の容器内流動状態を生じさ せる各流体給排状態を示す説明図 26] Explanatory drawing showing each fluid supply / discharge state causing the in-vessel flow state of the hydrogen storage container according to the eighth embodiment of the present invention.
園 27]本発明の第 9の実施形態に係る水素吸蔵用容器における通気材のろう付前 後の各状態を示す説明図 27] Explanatory drawing showing each state before and after brazing of the ventilation material in the hydrogen storage container according to the ninth embodiment of the present invention
園 28]本発明の第 8及び第 9の実施形態に係る水素吸蔵用容器におけるフィンに水 素通気材を設置した状態を示す図 28] A diagram showing a state in which a hydrogen ventilation material is installed on the fins in the hydrogen storage container according to the eighth and ninth embodiments of the present invention.
[図 29]本発明の第 8及び第 9の実施形態に係る水素吸蔵用容器における通気材配 設状態の他例を示す説明図 FIG. 29 shows a ventilation material arrangement in the hydrogen storage container according to the eighth and ninth embodiments of the present invention. Explanatory drawing which shows the other example of an installation state
[図 30]従来例に係るプレート型熱交換器の構成を模式的に示した分解斜視図 [図 31]図 30に示すプレ一ト型熱交換器の分解斜視説明図  FIG. 30 is an exploded perspective view schematically showing the configuration of a plate-type heat exchanger according to a conventional example. FIG. 31 is an exploded perspective view of the plate-type heat exchanger shown in FIG.
符号の説明 Explanation of symbols
1 金属製プレート 1 Metal plate
l a 外周突壁 l a Perimeter wall
2 凹凸状フィン 2 Uneven fin
3、 4 隙間 3, 4 Clearance
3a、 3b、 3c、 3d 通路  3a, 3b, 3c, 3d passage
4a、 4b、 4c、 4d、 4e 通路  4a, 4b, 4c, 4d, 4e passage
5 ガイドプレート  5 Guide plate
51 ガイドプレート  51 Guide plate
6 切欠孔  6 Notch hole
7 流通孔  7 Distribution hole
8、 9 外殻プレート  8, 9 outer shell plate
10、 11 流入口部  10, 11 Inlet part
12、 13 流出口部  12, 13 Outlet
14 開口孔  14 Opening hole
30、 31 通気材  30, 31 Ventilation material
32 発泡材  32 Foam
40 水素吸蔵合金  40 Hydrogen storage alloy
50、 60、 70 金属製プレートユニット  50, 60, 70 Metal plate unit
80 容器本体  80 Container body
A 高温熱流体  A high temperature hot fluid
B 被加熱流体  B Heated fluid
C 熱媒体経路  C Heat transfer path
D 水素経路  D Hydrogen pathway
発明を実施するための最良の形態 [0056] 以下に、本発明を実施するための最良の形態を、実施例により詳しく説明する。 実施例 1 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples. Example 1
[0057] 図面において、 1は多数の方形の金属製プレート、 2は前記金属製プレート 1の外 周突壁 la内に配設される金属製の凹凸状のフィン、 3は前記プレート 1と前記フィン 2 との間に形成される一方の通路で、この通路 3は高圧高熱流体 Aが流通する。 4は前 記通路 3と相対向する側のプレート 1とフィン 2との間に形成される他方の通路で、こ の通路 4には熱交換される冷水、冷空気などの被加熱流体 Bが流通する。 5は金属 製プレート 1の両側に配置させたガイドプレートで、多段に積層される金属製プレート 1の自段および他段への流体 A又は Bの交互の金属製プレート 1への流通を可能と する切欠孔 6と、流体 A又は Bを通過させる流通孔 7を並設してある。  In the drawings, 1 is a number of rectangular metal plates, 2 is a metal uneven fin disposed in the outer peripheral projection wall la of the metal plate 1, and 3 is the plate 1 and the plate One passage formed between the fins 2 and the passage 3 through which the high-pressure and high-temperature fluid A flows. 4 is the other passage formed between the plate 1 and the fin 2 on the opposite side of the passage 3, and in this passage 4 is a heated fluid B such as cold water or cold air to be heat-exchanged. Circulate. 5 is a guide plate arranged on both sides of the metal plate 1, which allows the flow of the fluid plate A or B alternately to the metal plate 1 of the self-stage and other stages of the metal plate 1 stacked in multiple stages. The notch hole 6 and the flow hole 7 through which the fluid A or B passes are arranged in parallel.
[0058] 51は 5と同様のガイドプレートである力 S、流通孔 7がなく切欠孔 6のみが設けられて レヽる。このガイド、プレー卜 5、 51の糸且合せ ίこより、金属製プレー卜ユニット 50、 60、 70の 3種類のユニットが構成される。  [0058] 51 is a guide plate similar to 5 and has a force S, and there is no flow hole 7 and only a notch hole 6 is provided. This guide and plate 5 and 51 are combined into three types of metal plate units 50, 60 and 70.
[0059] 8は最下位の外殻プレート、 9は最上位の外殻プレートを示し、流体 Α、 Βのそれぞ れの流入口部 10、 11、流出口部 12、 13を一体で備える。なお、 14は、前記切欠孔 6および流通孔 7と対応して連通する金属製プレート 1に穿った孔、 15は各部材の接 合部に形成されるろう付部を示す。  [0059] Reference numeral 8 denotes the lowermost outer shell plate, and 9 denotes the uppermost outer shell plate. The fluid inlets 10 and 11 and the outlets 12 and 13 are integrally provided for each of the fluid bottles and bottles. Reference numeral 14 denotes a hole formed in the metal plate 1 communicating with the cutout hole 6 and the flow hole 7, and 15 denotes a brazing portion formed at a joint portion of each member.
[0060] これら上記構成により、熱交換器本体 Xが構成される。  [0060] With these configurations, the heat exchanger body X is configured.
[0061] そして、上述した構成の各部材は、後述する方法による金属素材とろう付処理によ り製造される。  [0061] Each member having the above-described configuration is manufactured by a metal material and a brazing process by a method described later.
[0062] まず、上記構成に基づいて作用を説明する。  First, the operation will be described based on the above configuration.
[0063] なお、金属製プレート 1の段数は、例えば図 2の(a)、(b)に示すように、流体 Aは 3 段、他の流体 Bは最下位のプレート 8を含めて 4段である。この場合金属製プレートュ ニット 50、 60が交互に積層されて!/、る(図 1参照)。  [0063] The number of stages of the metal plate 1 is, for example, as shown in FIGS. 2 (a) and 2 (b), the fluid A is 3 stages, and the other fluid B is 4 stages including the lowest plate 8. It is. In this case, metal plate units 50 and 60 are stacked alternately! / (See Fig. 1).
[0064] 一方の流体 Aは、 COなどの自然冷媒を用いた高圧高熱流体であり、流体 Aの通  [0064] One fluid A is a high-pressure and high-temperature fluid using a natural refrigerant such as CO.
2  2
路 3の多段の金属製プレートユニット 50の 3a、 3b、 3cを通り、また、他方の被加熱流 体 Bは、通路 4の多段の金属製プレートユニット 60の 4a、 4b、 4c、 4dを通り、両流体 A、 B力 その間で熱交換される。そして、流体 A、 Bは、いずれも最上位及び最下位 の外殻プレート 8、 9に設けた流入口部 10、 11を経て、前記通路 3、 4を通り流通熱交 換され、それぞれ流出口部 12、 13より外部に導出される。この際、流体 A、 Bは共に 流入口部 10、 11から流出口部 12、 13に至る流路において分岐していないことが分 かる。 The multi-stage metal plate unit 50 of path 3 passes through 3a, 3b, 3c of the 50, and the other heated fluid B passes through 4a, 4b, 4c, 4d of multi-stage metal plate unit 60 of the path 4. , Both fluid A, B force Heat is exchanged between them. Fluids A and B are both the highest and lowest Through the inlet portions 10 and 11 provided in the outer shell plates 8 and 9, the heat is exchanged through the passages 3 and 4 and led out to the outside through the outlet portions 12 and 13, respectively. At this time, it can be seen that the fluids A and B are not branched in the flow path from the inlet portions 10 and 11 to the outlet portions 12 and 13.
[0065] 熱交換されて放熱した一方の流体 Aは、図示しないが、ヒートポンプ方式を備える 循環回路の膨張弁→大気熱熱交換器→圧縮機を経て、再び高圧高熱流体となり、 本発明に係る熱交換器本体 Xの流入口部 10に導入され、反覆して同一作用を呈す  [0065] One fluid A that has been heat-exchanged and dissipated heat is not shown, but is provided with a heat pump system. After passing through an expansion valve of the circulation circuit → atmospheric heat exchanger → compressor, it becomes a high-pressure high-temperature fluid again, according to the present invention. Introduced into the inlet 10 of the heat exchanger body X, it reverses and exhibits the same action
[0066] 他方、熱交換されて高温となった他の流体 Bは、温水、温風となって、室内の暖房、 エアコンとして使用される。なお、閉回路構成を備えれば、放熱された他の流体 Bとな り、再び熱交換器本体 Xの流入口部 11より導入されて、同様に反覆して同一作用を 呈する。 [0066] On the other hand, the other fluid B having a high temperature after heat exchange becomes hot water and hot air, and is used as indoor heating and air conditioning. If a closed circuit configuration is provided, the other fluid B is dissipated and is introduced again from the inlet 11 of the heat exchanger main body X, and similarly rebounds to exhibit the same action.
[0067] ところで、自然冷媒として用いる COを、流体 Aとして用いる時、  [0067] By the way, when CO used as a natural refrigerant is used as fluid A,
2  2
(温度)最高 110°C (流入口 10)  (Temperature) Max 110 ° C (Inlet 10)
(圧力) 14MPa  (Pressure) 14MPa
(流量) 51/min  (Flow rate) 51 / min
流体 Bの被加熱流体として上水を用いて、  Using clean water as the fluid to be heated for fluid B,
(温度)最高 90°C (流入口 11)  (Temperature) Maximum 90 ° C (Inlet 11)
(圧力) 1 · 7MPa  (Pressure) 1 · 7MPa
(流量) 51/min  (Flow rate) 51 / min
の条件を満たすために、特許文献 3に示す従来構成の積層型オフセット型のチタン 製プレート型の熱交換器を用いて流体 Aおよび Bを用いて試験を行った結果、オフ セットフィン、プレートおよびろう付は、流体 Aの圧力が次第に上昇するにつれ、 14M Paで変形が始まり、 25MPa以上での加圧は不可能となったことが判明した。即ち、 オフセットフィンの変形、破損、プレートの変形、ろう付の剥離などが発見された。  In order to satisfy the above conditions, the results of a test using fluids A and B using a laminated offset type titanium plate heat exchanger having a conventional configuration shown in Patent Document 3 showed that offset fins, plates and It was found that brazing began to deform at 14 MPa as the pressure of fluid A gradually increased, and pressurization at 25 MPa or higher became impossible. That is, offset fin deformation, breakage, plate deformation, brazing delamination, etc. were discovered.
[0068] ここで、金属製プレート 1およびオフセット型の凹凸フィン 2の金属として、ステンレス の SUS304 = SUS27CP (冷間圧延ステンレス鋼板)  [0068] Here, stainless steel SUS304 = SUS27CP (cold rolled stainless steel plate) as the metal of metal plate 1 and offset uneven fin 2
[0069] [表 1] (化学成分) (引張強度) [0069] [Table 1] (Chemical composition) (Tensile strength)
重量%  % By weight
[52Kg/mm2] [52Kg / mm 2 ]
オフセッ トフィン 2の材料強度  Material strength of offset fin 2
3. OmmX 0. 5 X 52KgX 800個処 = 62. 40 OKg 3. OmmX 0.5 X 52KgX 800 pieces = 62.40 OKg
Figure imgf000018_0001
Figure imgf000018_0001
[0070] を用い、かつ、 [0070] and
-プレート 1の厚さ t :0. 3mm以上  -Plate 1 thickness t: 0.3 mm or more
1  1
•外周突壁 laの厚さ t :0. 3mm以上  • Thickness of outer peripheral protruding wall la: 0: 0.3 mm or more
2  2
•フィン 2の厚さ t :0. 3mm以上  • Fin 2 thickness t: 0.3 mm or more
3  Three
とすると共に、ろう付金属としては、 Cuろうの強度 20kg/mm2を用い、オフセットフィ ン 2の一段のろう付強度を、 As the brazing metal, Cu brazing strength 20kg / mm 2 is used, and the brazing strength of the offset fin 2 is one step.
4. 2mm X 3. 0mm X 20kg/mnT X 400固処 = 100, 800kgとすることにより、格 段と強度を上げた(図 6参照)。  4. 2mm X 3.0mm X 20kg / mnT X 400 Fixed processing = 100, 800kg, and the strength was remarkably increased (see Fig. 6).
[0071] ろう付面積は、 1プレート 1当り片面 400個処で、プレート全体の面積から見て 50% とした。これにより、 [0071] The brazing area was 400 per side per plate, and 50% when viewed from the area of the entire plate. This
•変形値 42MPa  Deformation value 42MPa
'バースト値 (破壊値) 62MPa  'Burst value (destructive value) 62MPa
という、驚異的な数値、すなわち扁平なプレートタイプの小型熱交換器の性能を向 上できたのである。  This is an amazing figure, that is, the performance of a flat plate-type small heat exchanger.
[0072] なお、この扁平なプレートタイプの小型熱交換器としては、上記オフセット型フィン 2 に係らず、他の形状のフィンとしては図 10に示すような(a)平板フィン 2a (b)波状フ イン 2b (c)ルーバフィン 2c (d)穴あきフィン 2dなどにも適用でき、さらに本実施例 に図示した以外の、上下多段に積層した図 11に示すような、金属プレート 1Aと凹凸 状フィン 2で構成されるプレートタイプのものにも同様に実施できる。 [0072] This flat plate type small heat exchanger is not limited to the above-described offset type fin 2, and other shapes of fins as shown in Fig. 10 (a) flat plate fin 2a (b) corrugated Fin 2b (c) Louver fin 2c (d) Perforated fin 2d and other metal plate 1A and uneven as shown in Fig. 11 stacked in upper and lower layers other than shown in this example The same can be applied to the plate type composed of the fins 2.
[0073] 以上、本発明の実施例に示す上記した金属製プレート 1、オフセットフィン 2および ろう付金属については、同一の機能を呈する金属、材料に適用できることは勿論であ [0073] As described above, the metal plate 1, the offset fin 2, and the brazing metal described in the embodiments of the present invention can be applied to metals and materials having the same function.
[0074] 本実施例の高圧熱交換器は、本発明の特徴を活力、して COを冷媒としたヒートボン [0074] The high-pressure heat exchanger of the present embodiment is a heat bond that uses the characteristics of the present invention and uses CO as a refrigerant.
2  2
プのみでなぐアンモニア、水とアンモニアの混合物、イソブタン、プロパン、ノルマノレ ブタン、プロピレンなどを 1. OMPa以上の高圧で運転を行うヒートポンプや空調冷凍 関係でもその効果は大きぐコンパクトで高性能になる。特に、高耐圧性を活力、して、 高いシステム性能を得ることができるとともに、熱交換器内の伝熱特性に適合できる ため高!/、伝熱性能で蒸発温度を低下させ、凝縮温度あるいは高温側冷媒温度を高 めてシステム性能を向上できる。  Ammonia, water / ammonia mixture, isobutane, propane, normolebutane, propylene, etc. that can be used only in a pump 1. The effect is large, compact, and high performance in relation to heat pumps and air-conditioning refrigeration that operate at high pressures above OMPa. In particular, high pressure resistance can be used to obtain high system performance and adapt to the heat transfer characteristics in the heat exchanger. System performance can be improved by raising the temperature of the high-temperature side refrigerant.
[0075] なお、プレートの外周突壁 la先端は、隣接する他プレートの外周突壁 la基端部に 対し、図 7 (a)に示すように、突合わせるようにして接触させる他、図 6 (a)に示すよう に側面同士を接触させて、ろう付を行うようにすることもできる。この場合、プレート他 部分に対し外周突壁 laは垂直から外方に若干傾斜した状態となっており、各プレー トを積層するとプレートの接触状態がより強固になる方向に力が加わることから、プレ ート間の接合強度を高めることができる。この他、図 7 (b)に示すように、外周突壁 la 先端に段差部分を形成し、この段差部分が他プレートの外周突壁 la基端部とずれな く嵌り合う状態となるようにしてもよい。 [0075] It should be noted that the tip of the outer peripheral protruding wall la of the plate is brought into contact with the outer peripheral protruding wall la base end of the adjacent other plate as shown in FIG. As shown in (a), the side surfaces can be brought into contact with each other for brazing. In this case, the outer peripheral projection wall la is slightly inclined outward from the vertical with respect to the other parts of the plate, and when each plate is laminated, force is applied in the direction in which the contact state of the plate becomes stronger. The bonding strength between the plates can be increased. In addition, as shown in FIG. 7 (b), a stepped portion is formed at the tip of the outer peripheral protruding wall la so that the stepped portion fits without deviation from the outer peripheral protruding wall la base end of the other plate. May be.
実施例 2  Example 2
[0076] 本発明の他の実施例について、図 8及び図 9を参照しながら説明する。  Another embodiment of the present invention will be described with reference to FIGS. 8 and 9.
[0077] 実施例 1の発明では高温高圧流体 A及び被加熱流体 Bの流れは共に、入口から出 口に至る流路で分岐しない流れ(直行流)であったのである力 本実施例においては [0077] In the invention of Example 1, the flows of the high-temperature and high-pressure fluid A and the heated fluid B are flows that do not branch in the flow path from the inlet to the outlet (direct flow).
、流体 Aは直行流であるが流体 Bは並行流である熱交換器である。 , Fluid A is a direct flow, but Fluid B is a parallel flow heat exchanger.
[0078] 図 8に示すように、基本的な構造は実施例 1の熱交換器と同様であるが、図 1の 3つ の金属製プレートユニット 50を金属製プレートユニット 70に置換したものが本実施例 の熱交換器である。 [0078] As shown in FIG. 8, the basic structure is the same as that of the heat exchanger of the first embodiment, except that the three metal plate units 50 in FIG. It is a heat exchanger of a present Example.
[0079] 図 8、図 9に示すように、このような構造とすることで、流体 Bは金属製プレートュニッ ト 60の位置でその流れが分岐し、また合流することが可能となるのである。その結果 、高温高圧流体 Aと効率的に熱交換することができる。 [0079] As shown in FIGS. 8 and 9, with such a structure, fluid B is made of a metal plate unit. The flow branches off at the position of G 60 and can be merged. As a result, heat can be efficiently exchanged with the high-temperature and high-pressure fluid A.
[0080] 図 9は、図 2と同様に、熱交換器の内部の流れを示す断面図である。 FIG. 9 is a cross-sectional view showing the flow inside the heat exchanger, as in FIG.
実施例 3  Example 3
[0081] 本実施例は、実施例 1及び実施例 2の熱交換器において、その金属製プレートュ ニット 50、 60及び 70内の凹凸状フィン 2の配列方向を高温高圧流体 Aと被加熱流体 Bの流れの方向に対して、 90度、 45度及び 30度にした場合の熱交換器である(図 1 2参照)。このように、フィンの配列方向と流体の流れの方向の角度を変化させること で、種々の熱交換率を有する熱交換器を提供することが可能となる。  [0081] In this example, in the heat exchangers of Example 1 and Example 2, the arrangement direction of the uneven fins 2 in the metal plate units 50, 60, and 70 is changed according to the high-temperature and high-pressure fluid A and the fluid B to be heated. It is a heat exchanger when it is set at 90, 45, and 30 degrees with respect to the direction of flow (see Fig. 12). In this way, it is possible to provide a heat exchanger having various heat exchange rates by changing the angle between the fin arrangement direction and the fluid flow direction.
[0082] 更に、同一の金属製プレートユニットにおいて、流体 A、 Bに対し種々の角度を有す る凹凸状フィンを組合わせてもよい。このように種々のフィンを組合わせることにより、 熱交換率の異なる熱交換器を提供することが可能となる。また、上記熱交換器を直 列又は並列に接続して熱交換器システムを構築してもよい。  [0082] Further, in the same metal plate unit, concave and convex fins having various angles with respect to the fluids A and B may be combined. By combining various fins in this way, it is possible to provide a heat exchanger with different heat exchange rates. Further, a heat exchanger system may be constructed by connecting the heat exchangers in series or in parallel.
実施例 4  Example 4
[0083] 以下に、本発明の製造法について、一実施例を説明する。  Hereinafter, an example of the production method of the present invention will be described.
[0084] 上述した構成を備える各金属製プレート 1と、それぞれの金属製プレート 1内に凹 凸状のフィン 2および切欠孔 6、流通孔 7を穿ったガイドプレート 5を配設し、上下段に 積層し、図 2 (a)、(b)の熱交換器本体 Xの原形を構成する。  [0084] Each metal plate 1 having the above-described configuration, and a guide plate 5 having a concave and convex fin 2, a notch hole 6, and a flow hole 7 are disposed in each metal plate 1, and the upper and lower stages are arranged. To form the original shape of the heat exchanger body X in Figs. 2 (a) and 2 (b).
[0085] なお、各構成部材の組成金属は、以下のとおりである。  [0085] The constituent metals of the constituent members are as follows.
[0086] 1.金属製プレート 1およびオフセット型の凹凸状のフィン 2  [0086] 1. Metal plate 1 and offset uneven fin 2
…… SUS304 (冷間圧延ステンレス鋼板 (表 1に示す化学成分)  ...... SUS304 (Cold rolled stainless steel sheet (chemical composition shown in Table 1)
2.金属製プレート 1の厚さ t : 0. 3mm以上  2.Metal plate 1 thickness t: 0.3mm or more
3.外周突壁 laの厚さ t : 0. 3mm以上  3. Thickness of outer peripheral wall la t: 0.3mm or more
2  2
4.フィン 2の厚さ t : 0. 3mm以上  4.Fin 2 thickness t: 0.3 mm or more
3  Three
5.ガイドプレート 5の厚さ t :外周突壁 laの内側の高さより僅かに低い(1. 5mm以  5. Thickness t of guide plate 5: Slightly lower than the inner height of the outer peripheral wall la (1.5 mm or less)
4  Four
上)  Up)
これらの各構成部材の接合部に塗布したろう付金属は、 Cuろうの強度 20kg/mm 2を用いた。 [0087] 斯くして積層された熱交換器本体の組立体を、真空加熱炉に入れて炉内の真空度 を 10_4torr程度として徐々に加熱する。なお、真空度は必要以上に高くする必要は なぐ 10_4torr以上でも良ぐ Arや Heなどの不活性ガス雰囲気で使用しても良いし 、両雰囲気を併用しても良い。炉内の温度が 840°C〜; 1000°Cに至ったところで、こ の温度を約 25分〜 35分維持させてから降温し、製品とする。 The brazing metal applied to the joints of these components was a Cu brazing strength of 20 kg / mm2. [0087] Thus the assembly of stacked heat exchanger body, gradually heat the degree of vacuum in the furnace placed in a vacuum heating furnace as about 10_ 4 torr. Incidentally, it may be used in an inert gas atmosphere such as a vacuum degree is necessary to increase more than necessary Nag 10_ 4 torr even more good tool Ar or He, may be used in combination with both atmosphere. When the temperature in the furnace reaches from 840 ° C to 1000 ° C, maintain this temperature for about 25 to 35 minutes, then lower the temperature to make the product.
実施例 5  Example 5
[0088] 本発明の高圧容器は、純アンモニア及び水/アンモニアの混合流体に対しても耐 食性を有するため、 25°Cから 120°Cの温熱源を利用した廃熱利用発電装置及び温 泉水発電装置などの温度差発電システム装置の構成機器、特に蒸発器及び凝縮器 、加熱器、再生器などの熱交換器として利用することによって、高性能でコンパクトな 発電システムを構築できる。  [0088] Since the high-pressure vessel of the present invention has corrosion resistance against pure ammonia and a mixed fluid of water / ammonia, the waste heat utilization power generation apparatus and hot spring water using a heat source of 25 ° C to 120 ° C are used. A high-performance and compact power generation system can be constructed by using it as a heat exchanger for temperature difference power generation system devices such as power generation devices, particularly evaporators and condensers, heaters and regenerators.
[0089] 従来の機器は、純アンモニア及び水/アンモニアの混合流体を発電システム装置 に用いる場合、 IMPa以上になるので、高性能であるが通常のプレート式熱交換器 は利用できなかった。  [0089] The conventional equipment has a higher performance than the IMPa when using pure ammonia and water / ammonia mixed fluid in the power generation system apparatus. Therefore, the conventional plate heat exchanger cannot be used.
[0090] 本発明の高圧容器を用いることによって、その利用が可能となり、かつ本発明の特 徴である熱交換器内のフィンの構造を熱交換器内の蒸発現象及び凝縮現象に適応 させることによって、より高性能なシステムの構築が可能となる。特に、これらの発明 装置の利用によって与えられた運用条件下において蒸発温度を高め、凝縮温度を 下げることによってシステムの高効率化が可能となる。適応が可能な温度差発電シス テムは、通常のランキンサイクル、カリーナサイクル、ウェハラサイクルなどである。 実施例 6  [0090] By using the high-pressure vessel of the present invention, the utilization thereof becomes possible, and the fin structure in the heat exchanger, which is a feature of the present invention, is adapted to the evaporation phenomenon and the condensation phenomenon in the heat exchanger. Therefore, it is possible to construct a higher performance system. In particular, it is possible to increase the efficiency of the system by raising the evaporation temperature and lowering the condensation temperature under the operating conditions given by the use of these inventive devices. Applicable temperature difference power generation systems include the normal Rankine cycle, Carina cycle, and Wafer cycle. Example 6
[0091] 本発明は、従来の熱交換器と比べると高圧に耐えること、伝熱性能が高いこと、熱 交換器内の伝熱現象に適応したフィン構造および流れが構築できることを活かし、 C oを冷媒として用いたヒートポンプシステム以外に高圧の熱交換器でかつ高い伝熱 [0091] The present invention takes advantage of the fact that it can withstand high pressures compared to conventional heat exchangers, has high heat transfer performance, and can construct a fin structure and flow adapted to heat transfer phenomena in the heat exchanger. High-pressure heat exchanger and high heat transfer other than heat pump system using
2 2
性能を必要とする「地中熱冷暖房システム」、「ガスヒートポンプ」、「車用エアコンシス テム」、「温度差発電システム装置」、「太陽熱利用ヒートポンプシステム」「太陽熱利 用発電システム」「太陽熱利用及び廃熱利用海水淡水化システム」「アンモニアを冷 媒として用いた冷凍空調システム」「水/アンモニアを冷媒として用いた冷凍空調シ ステム」への適応が可能である。また、従来の機器において、所望のスペース内に対 して、伝熱性能が高いために従来の機器よりコンパクトに設置することができる。 実施例 7 `` Ground heat cooling and heating system '', `` Gas heat pump '', `` Vehicle air conditioner system '', `` Temperature difference power generation system device '', `` Solar heat utilization heat pump system '', `` Solar heat utilization power generation system '', `` Solar heat utilization '' And `` refrigeration and air conditioning system using ammonia as cooling medium '' and `` refrigeration and air conditioning system using water / ammonia as refrigerant '' It is possible to adapt to “stem”. In addition, the conventional equipment can be installed more compactly than the conventional equipment because of its high heat transfer performance in the desired space. Example 7
[0092] 本発明の高圧熱交換器を用いた COを冷媒として利用したヒートポンプシステムは  [0092] A heat pump system using CO as a refrigerant using the high-pressure heat exchanger of the present invention is
2  2
、特に本発明の熱交換器の利用に適した高圧側では臨界温度が 31. 1°Cと低いた めに超臨界状態となり、超臨界状態での伝熱は相変化を伴わないため顕熱を利用 することになり、超臨界では比熱が急激に大きくなり極大となる擬臨界点が存在し, 熱伝達係数がこれに伴い大きくなるため、各利用条件に対してこれらの現象に適合 したフィンを用いることによりコンパクトで高性能なヒートポンプシステムが構築できる。 さらに、本高圧熱交換器の特徴を活かし、本熱交換器を利用すれば、所要の運用条 件下で、高圧側の圧力をより高めてシステムを構築することにより、システム全体の性 能が向上する。  In particular, on the high-pressure side suitable for the use of the heat exchanger of the present invention, the critical temperature is as low as 31.1 ° C, so it becomes a supercritical state, and heat transfer in the supercritical state is not accompanied by a phase change, so sensible heat In supercritical, there is a quasicritical point where the specific heat suddenly increases and becomes a maximum, and the heat transfer coefficient increases accordingly. A compact and high-performance heat pump system can be constructed. Furthermore, taking advantage of the features of this high-pressure heat exchanger, if this heat exchanger is used, the performance of the entire system can be improved by building a system with higher pressure on the high-pressure side under the required operating conditions. improves.
実施例 8  Example 8
[0093] なお、本実施例と以下の実施例における水素吸蔵容器及びその製造方法は、上 記した高耐圧熱交換器及びその製造方法を基本としている。  Note that the hydrogen storage container and the manufacturing method thereof in the present example and the following examples are based on the above-described high pressure heat exchanger and the manufacturing method thereof.
[0094] 以下、本発明の第 8の実施形態を図 14乃至図 26に基づいて説明する。 Hereinafter, an eighth embodiment of the present invention will be described with reference to FIGS. 14 to 26.
[0095] 図 14は本実施形態に係る水素吸蔵用容器におけるプレートとフィンのろう付部分 の拡大横断面図、図 15は本実施形態に係る水素吸蔵用容器における通気材配置 説明図、図 16は本実施形態に係る水素吸蔵用容器における通気材の他の配置例 説明図、図 17は本実施形態に係る水素吸蔵用容器におけるプレート上での通気材 配置状態説明図、図 18は本実施形態に係る水素吸蔵用容器におけるプレート上で の通気材の他の配置状態説明図、図 19は本実施形態に係る水素吸蔵用容器にお ける流体流れ状態の第一例を示す説明図、図 20は本実施形態に係る水素吸蔵用 容器における流体流れ状態の第二例を示す説明図、図 21は本実施形態に係る水 素吸蔵用容器における流体流れ状態の第三例を示す説明図、図 22は本実施形態 に係る水素吸蔵用容器の断面図、図 23は本実施形態に係る水素吸蔵用容器にお ける他の流体流れ状態を示す断面図、図 24は本実施形態に係る水素吸蔵用容器 における各流体の給排状態を示す説明図、図 25は本実施形態に係る水素吸蔵用 容器における各流体の他の給排状態を示す説明図、図 26は本実施形態に係る水 素吸蔵用容器の容器内流動状態を生じさせる各流体給排状態を示す説明図であるFIG. 14 is an enlarged cross-sectional view of the brazing portion between the plate and the fin in the hydrogen storage container according to the present embodiment, and FIG. 15 is an explanatory view of the arrangement of the ventilation material in the hydrogen storage container according to the present embodiment. FIG. 17 is an explanatory view of another arrangement example of the ventilation material in the hydrogen storage container according to the present embodiment, FIG. 17 is an explanatory view of the arrangement state of the ventilation material on the plate in the hydrogen storage container according to the embodiment, and FIG. FIG. 19 is an explanatory view showing a first example of a fluid flow state in the hydrogen storage container according to the present embodiment. FIG. 19 is an explanatory view showing a first example of a fluid flow state in the hydrogen storage container according to the present embodiment. 20 is an explanatory view showing a second example of the fluid flow state in the hydrogen storage container according to the present embodiment; FIG. 21 is an explanatory view showing a third example of the fluid flow state in the hydrogen storage container according to the present embodiment; FIG. 22 shows a hydrogen storage container according to this embodiment. FIG. 23 is a cross-sectional view showing another fluid flow state in the hydrogen storage container according to the present embodiment, and FIG. 24 shows a supply / discharge state of each fluid in the hydrogen storage container according to the present embodiment. Explanatory drawing, FIG. 25 is for hydrogen storage according to this embodiment 26 is an explanatory view showing other supply / discharge states of each fluid in the container. FIG. 26 is an explanatory view showing each supply / discharge state of the fluid in the container of the hydrogen storage container according to this embodiment.
Yes
[0096] 前記各図において本実施形態に係る水素吸蔵用容器は、複数重ね合されて積層 される矩形状の金属製プレート 1と、このプレート 1より小さい外形を有する金属製略 板状体の全面に凹凸形状を成型されてなり、各プレート 1間に配置されるフィン 2と、 積層される各プレート 1間におけるプレート 1とフィン 2間の間隙に複数揷入配設され る通気材 30とを備える構成である。  [0096] In each of the above drawings, the hydrogen storage container according to the present embodiment includes a rectangular metal plate 1 that is stacked and stacked, and a substantially metal plate-like body that has an outer shape smaller than this plate 1. The fins 2 are formed on the entire surface, and the fins 2 are arranged between the plates 1, and the ventilation material 30 is inserted in the gap between the plates 1 and fins 2 between the laminated plates 1. It is the structure provided with.
[0097] 前記プレート 1は、プレート周縁部に周縁以外の部分に対しフィン 2高さと略同じ高 さの起立状態となる外周突壁 laを形成され、また、端部には所定径の開口孔 14を一 又は複数穿設されてなる構成である。  [0097] The plate 1 is formed with an outer peripheral protruding wall la in an upright state substantially equal to the height of the fin 2 with respect to a portion other than the periphery at the peripheral portion of the plate, and an opening hole having a predetermined diameter at the end portion. One or a plurality of holes 14 are formed.
[0098] プレート 1は、外周突壁 laの向きを一致させ、且つフィン 2を一つずつ間に介在さ せる状態で複数重ね合されて積層され、各プレート 1における外周突壁 la先端と他 プレートの外周突壁 la基端部との接触部分、及びプレート 1とフィン 2との各接触部 分にろう材を配置し、ろう付処理を経て前記各接触部分を一体に且つ気密維持状態 で接合してろう付部 15となすことで、容器本体 80が形成される。  [0098] A plurality of plates 1 are stacked in a state where the directions of the outer peripheral protruding walls la coincide with each other and the fins 2 are interposed one by one. A brazing material is placed at the contact portion between the outer peripheral protruding wall la base end of the plate and each contact portion between the plate 1 and the fin 2, and the contact portions are integrally and airtightly maintained after brazing. The container body 80 is formed by joining the brazed portion 15.
[0099] 容器本体 80をなす各プレート 1間には、それぞれフィン 2が収容された状態の隙間 が生じており、この隙間ばプレート積層方向に並んだ一つおきに同じ組として二組に 分けられ、一方の組の各隙間 3は、所定の熱媒体の流路部分とされ、他方の組の隙 間 4は、水素吸蔵合金 40の収容空間とされる。  [0099] Between each plate 1 forming the container body 80, there is a gap in a state where the fins 2 are accommodated, and this gap is divided into two sets as the same set every other side by side in the plate stacking direction. Each of the gaps 3 in one set serves as a flow path portion of a predetermined heat medium, and the gap 4 in the other set serves as a storage space for the hydrogen storage alloy 40.
[0100] 前記容器本体 80の外面部には、一方の組の隙間 3に連通する前記熱媒体の入口 部 10と出口部 12とがそれぞれ配設されると共に、他方の組の隙間 4に連通する水素 腹蔵合金 40及び水素の出入口部 11、 13がそれぞれ配設される。  [0100] An inlet portion 10 and an outlet portion 12 of the heat medium communicating with one set of gaps 3 are respectively disposed on the outer surface portion of the container body 80, and communicated with the other set of gaps 4. The hydrogen storage alloy 40 and the hydrogen inlet / outlet portions 11 and 13 are disposed, respectively.
[0101] なお、この容器本体 80の外面部には、プレート 1より厚く高強度の略板状体で、前 記入口部 10と出入口部 13、又は出口部 12と出入口部 11をそれぞれ形成される外 殻プレート 8、 9が配設される。この外殻プレート 8、 9と、これらと隣接する他のプレー ト 1の外周突壁 laの先端又は基端部側の表面全面とがろう付により接合されて容器 本体 80に一体化される。 [0102] 前記フィン 2は、前記プレート 1の端部を除いた中間部分に略一致する大きさの金 属製略板状体で、オフセット型のフィン形状となるよう各凹凸を成型されてなる構成で ある。フィン 2の凹凸のピッチは、プレート 1との接触面の大きさがプレート間の隙間の 大きさに対し適切な割合となるよう設定されており、凹凸のピッチを 2L1、すなわち、 フィン凸部又は凹部のプレート 1とのおおよその接触長さを L1とすると、フィン高さ L2 との関係は、 0. 1 < U/L2 < 2とされる。 [0101] The outer surface of the container body 80 is formed with a substantially plate-like body that is thicker and stronger than the plate 1 and has a front entry port 10 and an entrance / exit portion 13 or an exit portion 12 and an entrance / exit portion 11 respectively. Outer shell plates 8, 9 are provided. These outer shell plates 8 and 9 are joined to the entire surface of the outer peripheral protruding wall la of the other plate 1 adjacent thereto by brazing to be integrated with the container body 80 by brazing. [0102] The fin 2 is a metal substantially plate-like body having a size substantially coincident with an intermediate portion excluding the end of the plate 1, and each unevenness is formed so as to have an offset fin shape. It is a configuration. The uneven pitch of the fin 2 is set so that the size of the contact surface with the plate 1 is an appropriate ratio to the size of the gap between the plates, and the uneven pitch is 2L1, that is, the fin convex portion or Assuming that the approximate contact length of the concave plate 1 with L1 is L1, the relationship with the fin height L2 is 0.1 <U / L2 <2.
[0103] このフィン 2における凹凸の配列方向は、熱媒体の流れ方向に対して、 90度、 45 度、又は 30度など、配列方向と熱媒体流れ方向との角度を適宜設定でき、この角度 設定に応じて種々の伝熱状態が得られる。この他、プレート 1間の隙間ごとに、熱媒 体流れ方向に対する角度の異なるフィン 2を配置する組合せとしてもよい。このように 種々のフィン 2を組合わせることにより、容器各部における熱媒体の温度に対応させ て伝熱状態を最適化することが可能となる。  [0103] The arrangement direction of the unevenness in the fin 2 can be set appropriately at an angle between the arrangement direction and the heat medium flow direction, such as 90 degrees, 45 degrees, or 30 degrees with respect to the heat medium flow direction. Various heat transfer states are obtained depending on the setting. In addition, a combination of fins 2 having different angles with respect to the flow direction of the heat medium may be provided for each gap between the plates 1. By combining various fins 2 in this way, it is possible to optimize the heat transfer state according to the temperature of the heat medium in each part of the container.
[0104] 前記通気材 30は、積層される前記プレート 1間の隙間 4におけるプレート 1やフィン 2の近傍に複数揷入配設される細長い多孔質材の連続体であり、プレート 1のろう付 を経てプレート 1間に固定される構成である。  [0104] The ventilation member 30 is a continuous body of a plurality of elongated porous members inserted in the vicinity of the plate 1 and the fins 2 in the gap 4 between the stacked plates 1, and the brazing of the plate 1 It is the structure fixed between the plates 1 through.
[0105] この通気材 30の材質及び形状は、特に限定されるものではなぐ前記多孔質材の 連続体以外に、水素気体に対する十分な通気性を備える、金属焼結不織布フィルタ ゃゼオライト、セラミックなどの微細な孔の開いた管体や円筒体など、所望の使用条 件に合致するものを利用することができる。特に、良熱伝導性を有する材質で構成さ れるものを用いた場合には、通気材 30を介しても伝熱が行われ、水素吸蔵合金 40 に対する伝熱状態が良好となり、水素の吸蔵及び放出の特性を向上させることがで きる。  [0105] The material and shape of the air-permeable material 30 are not particularly limited. In addition to the continuum of the porous material, the metal-sintered nonwoven fabric filter having sufficient air permeability to hydrogen gas, zeolite, ceramic, etc. It is possible to use a tube body or a cylindrical body with fine holes, which meets the desired use conditions. In particular, when a material composed of a material having good thermal conductivity is used, heat transfer is performed through the ventilation member 30 and the heat transfer state with respect to the hydrogen storage alloy 40 is improved. Release characteristics can be improved.
[0106] 通気材 30は、一隙間あたりに多数配置される力 その配置状態(直列、並歹 IJ、又は それらの複合組合わせ)は適宜設定でき、使用条件に応じた通気材配置として、水 素吸蔵合金 40に対する効率的な通気に対応できる(図 18参照)。特に、隙間を挟む 二つのプレートの一方だけでなく両方にそれぞれ沿って通気材を設置することで(図 16参照)、通気効果を高めることができる。また、通気材 30が良熱伝導性を有しない 材質の場合、図 29に示すように、フィン 2のプレート 1との接合に関与しない起立部 分の中間に沿って配設するようにすれば、プレート 1を介した熱媒体と水素吸蔵合金 40間の伝熱を通気材 30が阻害することもなぐ良好な伝熱状態を維持できる。 [0106] The ventilation material 30 has a large number of forces arranged per gap. The arrangement state (series, parallel IJ, or a combination thereof) can be set as appropriate. It can support efficient ventilation for the element storage alloy 40 (see Fig. 18). In particular, the ventilation effect can be enhanced by installing ventilation materials along both of the two plates that sandwich the gap (see Fig. 16). In addition, when the ventilation member 30 is made of a material that does not have good thermal conductivity, as shown in FIG. 29, the upright portion that does not participate in the joining of the fin 2 to the plate 1 If it is arranged along the middle of the minute, the heat transfer state between the heat medium and the hydrogen storage alloy 40 via the plate 1 can be maintained and the good heat transfer state can be maintained without hindering the ventilation member 30.
[0107] 前記プレート間の隙間 3、 4には、プレート中間部分に挟まれるフィン 2と共に、プレ ート 1端部の前記開口孔 14近傍部分に挟まれる状態となるガイドプレート 5、 51も配 設される(図 5参照)。このガイドプレート 5、 51は、これを挟む二つのプレートに当接 且つろう付可能とされる板状体であり、一又は複数の流通孔 7を穿設される構成であ る。ガイドプレート 5、 51の流通孔 7は、プレート 1の開口孔 14と連通して前記熱媒体 又は水素の流路をなし、容器本体 80外面部の入口部 10、出口部 12、又は出入口 部 11、 13にも、開口孔 14と共にそれぞれ連通することとなる。ガイドプレートに流通 孔 7を設けない場合は、開口孔 14や他のガイドプレートの流通孔 7からなる流路の仕 切りとして用いること力 Sでさる。  [0107] In the gaps 3 and 4 between the plates, the guide plates 5 and 51 that are sandwiched by the vicinity of the opening hole 14 at the end of the plate 1 are also arranged together with the fins 2 that are sandwiched by the middle part of the plate. (See Fig. 5). The guide plates 5 and 51 are plate-like bodies that can be brought into contact with and brazed to two plates sandwiching the guide plates 5 and 51, and have one or a plurality of flow holes 7 formed therein. The flow holes 7 of the guide plates 5 and 51 communicate with the opening holes 14 of the plate 1 to form the flow path of the heat medium or hydrogen, and the inlet 10, outlet 12, or inlet / outlet 11 of the outer surface of the container body 80. , 13 also communicate with the opening hole 14 respectively. If the guide plate is not provided with the flow hole 7, it can be used as a cutting force for the flow path consisting of the opening hole 14 and the flow hole 7 of another guide plate.
[0108] そして、ガイドプレート 5、 51は、これが配設されるプレート間の隙間 3、 4と流通孔 7 に通す流体が同一である場合に、その一部を切欠かれて流通孔と隙間とを連通させ 、各隙間に熱媒体又は水素を通過可能としている。プレート間の隙間 3、 4と流通孔 7 に通す流体が異なる場合は、流通孔 7はその隙間に連通せず、流通孔 7は流体を隙 間側に進ませずにそのまま流通孔 7を通過させるのみとなるため、積層されるプレー ト 1間の隙間の各組ごとに熱媒体又は水素(水素吸蔵合金)の交互の流入が可能と なる。  [0108] Then, when the fluid passing through the gaps 3 and 4 between the plates on which the guide plates 5 and 51 are disposed and the flow holes 7 are the same, a part of the guide plates 5 and 51 is cut away so that the flow holes and the gaps are separated. The heat medium or hydrogen can pass through each gap. If the fluids that pass through the gaps 3 and 4 between the plates and the flow holes 7 are different, the flow holes 7 do not communicate with the gaps, and the flow holes 7 pass through the flow holes 7 without moving the fluid to the gaps. Therefore, the heat medium or hydrogen (hydrogen storage alloy) can be alternately introduced into each set of gaps between the stacked plates 1.
[0109] 容器本体 80において、熱媒体は、外殻プレート 8に設けた入口部 10を経て、プレ ート 1間の各隙間 3のなす通路 3a、 3b、 3c、 3dを通り、熱交換の後、外殻プレート 9 の出口部 12より外部に導出される(経路 C)。入口部 10から出口部 12に至る熱媒体 の流路は、プレート 1と隣接するガイドプレート 5、 51との組合わせを異ならせた三種 類のユニット 50、 60、 70 (図 3、 4参照)の選択に応じて、各通路 3a、 3b、 3c、 3dを直 列に繋げた状態としたり、途中で分岐する並列状態とすることができる(図 9〜図 23 参照)。このうち、各通路 3a、 3b、 3c、 3dを直列に繋げた状態では、熱媒体流量一 定の場合、隙間を流れる流速を速くすることができることから、水素吸蔵合金 40側と の熱交換効率を向上させられる。そして、この場合には、熱媒体入口側寄りの水素吸 蔵合金 40側の隙間 4厚さを出口側寄りに比べ大きくして水素吸蔵合金 40の充填量 を増やしたり、熱媒体入口側寄りの隙間 4に対する水素吸蔵合金 40の充填率を出口 側寄りに比べ高めたりして、熱媒体が分岐しない流れであることに伴って生じる流れ 方向の温度勾配に適切に対応させるのが好ましい。 [0109] In the container main body 80, the heat medium passes through the inlet portion 10 provided in the outer shell plate 8 and passes through the passages 3a, 3b, 3c, and 3d formed by the gaps 3 between the plates 1. Then, it is led out from the outlet 12 of the outer shell plate 9 (path C). The flow path of the heat medium from the inlet 10 to the outlet 12 has three types of units 50, 60, 70 with different combinations of the plate 1 and the adjacent guide plates 5, 51 (see Figures 3 and 4). Depending on the selection, the passages 3a, 3b, 3c, 3d can be connected in series or in a parallel state branching along the way (see Figures 9 to 23). Of these, when the passages 3a, 3b, 3c, 3d are connected in series, the heat flow efficiency through the gap can be increased when the flow rate of the heat medium is constant. Can be improved. In this case, the gap 4 on the hydrogen storage alloy 40 side near the heat medium inlet side 4 is made larger than that on the outlet side to increase the filling amount of the hydrogen storage alloy 40. Or increase the filling rate of the hydrogen storage alloy 40 in the gap 4 near the inlet side of the heat medium as compared with the outlet side, and the temperature gradient in the flow direction that occurs when the heat medium does not branch It is preferable to make it correspond appropriately.
[0110] 同様に、プレート 1間の各隙間 4のなす通路 4a、 4b、 4c、 4d、 4eについても、水素 及び水素吸蔵合金の使用条件に応じて、直列に繋げた状態としたり、途中で分岐す る並列接続状態とすることができる(図 19〜図 23参照)。これら通路 4a、 4b、 4c、 4d 、 4eは、外殻プレート 8に設けた出入口部 11と他方の外殻プレート 9に設けた出入口 部 13と連通する。水素吸蔵合金は、これら出入口部 11、 13の一方を経て通路 4a、 4 b、 4c、 4dに封入、収容され、プレート 1を隔てた隙間 3側の熱媒体と熱交換可能とさ れる。一方、水素の吸蔵'放出用の通路は二つの出入口部 11、 13のいずれにも接 続されており、水素の注入、放出は、基幹となる出入口部 11のみで行う(図 24参照) 他、基幹となる出入口部 1 1以外の他の出入口部 13も用いて、二箇所の出入口部 11 、 13から一度に注入、放出することもでき(図 25参照)、その注入、放出速度を増大 させて水素注入及び放出の反応の特性を向上させられる。  [0110] Similarly, the passages 4a, 4b, 4c, 4d, and 4e formed by the gaps 4 between the plates 1 are also connected in series according to the use conditions of hydrogen and the hydrogen storage alloy. A parallel connection state can be established (see Figures 19 to 23). These passages 4 a, 4 b, 4 c, 4 d, 4 e communicate with an entrance / exit portion 11 provided in the outer shell plate 8 and an entrance / exit portion 13 provided in the other outer shell plate 9. The hydrogen storage alloy is sealed and accommodated in the passages 4a, 4b, 4c, and 4d through one of the inlet / outlet portions 11 and 13, and can exchange heat with the heat medium on the gap 3 side across the plate 1. On the other hand, the passage for storing and releasing hydrogen is connected to both of the two inlet / outlet portions 11 and 13, and hydrogen is injected and released only at the main inlet / outlet portion 11 (see FIG. 24) and others. In addition to the main entrance / exit part 11, other entrance / exit parts 13 can also be used to inject and discharge from the two entrance / exit parts 11 and 13 at once (see Fig. 25), increasing the injection and release rate. Thus, the characteristics of the hydrogen injection and release reaction can be improved.
[0111] なお、熱媒体の入口部 10と水素の注入される出入口部 11が反対側に設置され、プ レート 1を隔てて熱媒体の流れる向き(経路 C)と水素の進行する向き(経路 D)とがち ようど向流の関係をなす設定(図 22、 23参照)となっているが、これに限らず、熱媒体 の流れる向きと水素の進行する向きを同じとする並流の関係が得られるように設定す ることあでさる。  [0111] The inlet 10 for the heat medium and the inlet / outlet 11 to which hydrogen is injected are installed on the opposite side, and the direction in which the heat medium flows through the plate 1 (path C) and the direction in which the hydrogen proceeds (path) However, this is not limited to this, and it is not limited to this, but it is a parallel flow relationship in which the heat medium flow direction is the same as the hydrogen flow direction. Set it so that
[0112] 次に、本実施の形態に係る水素吸蔵用容器の製造方法について説明する。  [0112] Next, a method for manufacturing a hydrogen storage container according to the present embodiment will be described.
[0113] 複数のプレート 1を、それぞれのプレート 1間にフィン 2やガイドプレート 5を適切に 配置して挾み、また、プレート 1とフィン 2間の空隙部分に通気材 30を配設した状態 で、重ね合せて積層し、最外層には外殻プレート 8、 9を組合わせて、容器本体となる 組立体を構成する。こうしてプレート 1を積層して組立てる際にフィン 2や通気材 30を 設置することで、工程を簡素化することができる。 [0113] A plurality of plates 1 are squeezed with fins 2 and guide plates 5 appropriately disposed between each plate 1, and a ventilation member 30 is disposed in the space between plates 1 and fins 2. Then, the assembly is made by stacking and stacking the outer shell plates 8 and 9 on the outermost layer. Thus, the process can be simplified by installing the fins 2 and the ventilation material 30 when the plates 1 are stacked and assembled.
[0114] 積層で得られた容器本体の組立体を、真空加熱炉に入れて炉内を所定の真空度 状態(例えば、 10— 4torr程度)として徐々に加熱する。なお、 Arや Heなどの一又は 複数の不活性ガス雰囲気中での加熱でもかまわない。炉内の温度が 840°C〜; 1000 °Cに到達したら、この温度を維持してろう付を進行させる。約 25分〜 35分経過した 後に降温し、ろう付を完了すれば、一体の容器本体 80が得られることとなる。 [0114] The assembly of the container body obtained in lamination, a predetermined degree of vacuum state was placed in a vacuum heating furnace in the furnace (e.g., 10 about 4 torr) gradually heated as. Note that heating in an inert gas atmosphere such as Ar or He may be used. Temperature in the furnace is 840 ° C or higher; 1000 When reaching ° C, maintain this temperature and proceed with brazing. If the temperature is lowered after about 25 to 35 minutes and brazing is completed, an integrated container body 80 can be obtained.
[0115] 続いて、本実施の形態に係る水素吸蔵用容器内への水素吸蔵合金の封入につい て説明する。あらかじめ、容器本体 80の出入口部 11、 13には、通常の水素吸蔵用 途に利用されている注入用のバルブ、装置内の真空状態生成用及び水素吸蔵合金 注入用の真空ポンプ、水素吸蔵合金の流失を防ぐフィルタ等が設置されているもの とする。 [0115] Next, the sealing of the hydrogen storage alloy in the hydrogen storage container according to the present embodiment will be described. The inlet / outlet portions 11 and 13 of the container body 80 are previously provided with an injection valve used for normal hydrogen storage, a vacuum pump for generating a vacuum state in the apparatus and a hydrogen storage alloy injection, and a hydrogen storage alloy. It is assumed that a filter is installed to prevent the loss of water.
[0116] 粉体の水素吸蔵合金 40は、あらかじめ出入口部 11を経て真空ポンプにより減圧さ れた隙間 4に対し、出入口部 13側から導入される。出入口部 11にはフィルタが配設 されており、真空ポンプ側に水素吸蔵合金 40が流出することはなぐ確実に隙間 4に 水素吸蔵合金 40が充填封入された状態が得られる。封入された水素吸蔵合金 40に 対しては、所定の活性化処理が行われ、水素の吸蔵'放出が可能な状態とされ、これ で水素吸蔵用容器として機能することとなる。  [0116] The hydrogen storage alloy 40 in the form of powder is introduced from the inlet / outlet part 13 side into the gap 4 that has been previously depressurized by the vacuum pump through the inlet / outlet part 11. A filter is disposed at the inlet / outlet portion 11, and the state in which the hydrogen storage alloy 40 is filled and sealed in the gap 4 is obtained without the hydrogen storage alloy 40 flowing out to the vacuum pump side. The encapsulated hydrogen storage alloy 40 is subjected to a predetermined activation process so that hydrogen can be stored and released, thereby functioning as a hydrogen storage container.
[0117] さらに、本実施の形態に係る水素吸蔵用容器における水素の吸蔵及び放出過程 について説明する。あらかじめ、一つの水素吸蔵用容器をなす構成要素として、容 器本体 80と共に、水素通路を各出入口部 11、 13に接続配設し、基幹の水素注入及 び放出部となる出入口部 11には制御用パルプあるいは制御用バルブとフィルタ等を 設置し、出入口部 13側にもバルブを設置した状態とし、また、水素の放出及び吸蔵 に要する熱媒体の供給排出ラインを入口部 10及び出口部 12に接続配設して、水素 吸蔵用容器として機能する状態が得られているものとする。  [0117] Further, the process of storing and releasing hydrogen in the hydrogen storage container according to the present embodiment will be described. As a component constituting a single hydrogen storage container, a hydrogen passage is connected to each of the inlet / outlet portions 11 and 13 together with the container body 80, and the main inlet / outlet portion 11 serving as a hydrogen injection / discharge portion is provided in the inlet / outlet portion 11 The control pulp or control valve and filter are installed, the valve is also installed on the inlet / outlet 13 side, and the supply and discharge lines for the heat medium required for hydrogen release and storage are connected to the inlet 10 and outlet 12 It is assumed that a state of functioning as a hydrogen storage container is obtained.
[0118] 水素吸蔵の場合は、一旦隙間 4の真空排気を行った後、隙間 4のなす各通路 4a、 4b、 4c、 4dに封入されている水素吸蔵合金 40に対し、出入口部 11、 13から水素を 高圧で注入すると共に、入口部 10からは、低温の熱媒体を供給する。水素が水素吸 蔵合金 40に吸蔵されると同時に、反応熱が生じるが、フィン 2及びプレート 1を介した 伝熱で熱媒体側に速やかに水素吸蔵合金 40の熱を放出でき、水素を効率よく吸蔵 させること力 Sできる。また、水素は水素吸蔵合金 40間の間隙を進むと共に通気材を 介しても進行すること力 Sでき、隙間 4の水素吸蔵合金 40全体に水素を行渡らせて確 実に吸蔵が行えることとなる。水素吸蔵合金 40の熱を奪って温度上昇した熱媒体は 、外殻プレート 8の出口部 12から容器外部に取出される。 [0118] In the case of hydrogen storage, after the vacuum of the gap 4 is once evacuated, the inlet / outlet portions 11, 13 with respect to the hydrogen storage alloy 40 enclosed in the passages 4a, 4b, 4c, 4d formed by the gap 4 Hydrogen is injected at a high pressure from the inlet 10 and a low-temperature heat medium is supplied from the inlet 10. At the same time as hydrogen is stored in the hydrogen storage alloy 40, reaction heat is generated, but heat transfer through the fins 2 and plate 1 can quickly release the heat of the hydrogen storage alloy 40 to the heat medium side, making hydrogen efficient. Can absorb well S. In addition, hydrogen can travel through the gap between the hydrogen storage alloys 40 and also through the ventilation material S, and hydrogen can be distributed to the entire hydrogen storage alloy 40 in the gap 4 so that the storage can be performed with certainty. . The heat medium that took the heat of the hydrogen storage alloy 40 and increased its temperature The outer shell plate 8 is taken out from the outlet 12 to the outside of the container.
[0119] 水素放出の場合は、水素を吸蔵した水素吸蔵合金 40に対し、入口部 10から高温 の熱媒体を供給する。プレート 1及びフィン 2を介した伝熱で熱媒体側から速やかに 水素吸蔵合金 40に反応熱を与えられることで、水素吸蔵合金 40から水素を効率よく 放出させること力 Sできる。また、水素吸蔵合金 40から放出された水素は、水素吸蔵合 金 40間の間隙を進むと共に通気材 30を介しても進行することができ、隙間 4から速 やかに出入口部 11、 13を通じて外部に取出されることとなる。水素吸蔵合金 40に熱 を与えて温度を低下させた熱媒体は、外殻プレート 8の出口部 12から容器外部に取 出される。 In the case of hydrogen release, a high-temperature heat medium is supplied from the inlet 10 to the hydrogen storage alloy 40 that has stored hydrogen. The reaction heat can be quickly given to the hydrogen storage alloy 40 from the heat medium side by heat transfer through the plate 1 and the fin 2, so that the power S can be efficiently released from the hydrogen storage alloy 40. In addition, the hydrogen released from the hydrogen storage alloy 40 can travel through the gap between the hydrogen storage alloys 40 and also through the ventilation material 30, and quickly passes through the entrance / exit portions 11 and 13 from the clearance 4. It will be taken out to the outside. The heat medium whose temperature is lowered by applying heat to the hydrogen storage alloy 40 is taken out from the outlet 12 of the outer shell plate 8 to the outside of the container.
[0120] なお、水素の吸蔵'放出に二つの出入口部 11、 13を用いる構成としている力 一 つの出入口部を用レ、る構成としたり、三つ以上の出入口部を配設して用レ、て水素を 注入する構成とすることもでき、その注入速度を高めることができる。  [0120] It should be noted that the force that uses the two inlet / outlet portions 11 and 13 for the storage and release of hydrogen is configured to use one inlet / outlet portion, or three or more inlet / outlet portions are provided. In addition, a configuration in which hydrogen is injected can be adopted, and the injection rate can be increased.
[0121] また、容器内に水素を注入 ·放出する場合に、二つの出入口部 1 1、 13を用いて複 数経路で水素の注入 ·放出を行う構成としている力 この他、単に注入'放出の経路 を増やすだけでなぐ基幹となる出入口部以外の他の出入口部を注入に用いず開放 状態とし、水素注入及び放出の反応の特性を高める構成とすることもできる。特に、 図 26に示すように、主に水素注入及び放出を行う基幹の出入口部 1 1に制御用バル ブあるいは制御用バルブとフィルタ等を設置すると共に、他の出入口部 13に連通す る通路にァクチユエータゃ流動装置を配置して動作させ、水素、あるいは水素と水素 吸蔵合金を流動させると、固化しやすい水素吸蔵合金における水素の吸蔵及び放 出の反応特性を向上させることができる。  [0121] In addition, when hydrogen is injected into and discharged from the container, the force is configured to inject and discharge hydrogen in multiple paths using the two inlet / outlet ports 11 and 13. It is also possible to increase the characteristics of the hydrogen injection and release reaction by leaving the other inlet / outlet portions other than the main inlet / outlet portion open for injection without increasing the number of routes. In particular, as shown in FIG. 26, a control valve or a control valve and a filter are installed at the main inlet / outlet portion 11 for mainly injecting and releasing hydrogen, and a passage communicating with the other inlet / outlet portion 13. In addition, if the actuator is operated with a fluidizing device disposed therein and hydrogen or hydrogen and a hydrogen storage alloy are flowed, the hydrogen storage and release reaction characteristics of the hydrogen storage alloy that is easily solidified can be improved.
[0122] このように、本実施の形態に係る水素吸蔵用容器においては、多数のプレート 1及 びフィン 2を交互に組合せて所定段数の積層状態とし、フィン 2ごとプレート 1をろう付 して容器本体 80を形成し、プレート 1間に生じる二組の隙間のうち一方は熱媒体の 流路とすると共に、他方の隙間 4は水素吸蔵合金 40の収容空間とし、水素吸蔵合金 40とその反応熱を制御する熱媒体とがプレート 1及びフィン 2を介して伝熱を行う状 態となることから、プレート 1とフィン 2が接合して lOOMPa程炭の高圧にも耐え得る構 造を実現でき、コンパクトで耐圧性能に優れる容器とすることが可能な上、フィン 2を 介した伝熱で冷却特性及び加熱特性が良好となり、水素吸蔵合金 40における吸熱 及び放熱の反応性が向上し、水素吸蔵合金 40による水素の吸蔵及び放出性能に 優れることとなる。また、容器内へのフィン 2の設置力 S、プレート 1積層時にプレート 1 間に配置するのみで極めて容易であるため、製造工程を簡略化でき、且つ耐圧強度 を高くしても、各部が肉厚及び重量大となることを避けられ、低コスト化が図れる。 実施例 9 [0122] As described above, in the hydrogen storage container according to the present embodiment, a large number of plates 1 and fins 2 are alternately combined to form a predetermined number of layers, and plate 1 is brazed together with fins 2. One of the two gaps formed between the plates 1 forming the container body 80 is a heat medium flow path, and the other gap 4 is an accommodation space for the hydrogen storage alloy 40, and the hydrogen storage alloy 40 and its reaction. Since the heat medium that controls the heat is in a state where heat is transferred through the plate 1 and the fin 2, a structure that can withstand the high pressure of coal as much as lOOMPa can be realized by joining the plate 1 and the fin 2. It is possible to make a container that is compact and has excellent pressure resistance performance. Thus, the cooling and heating characteristics are improved by the heat transfer, the heat absorption and heat release reactivity of the hydrogen storage alloy 40 is improved, and the hydrogen storage and release performance of the hydrogen storage alloy 40 is excellent. In addition, the installation force S of the fins 2 in the container, and the arrangement of the plates 1 between the plates 1 when stacking the plates 1 are extremely easy. Thickness and weight increase can be avoided, and cost can be reduced. Example 9
[0123] 本発明の第 9の実施形態を図 27に基づいて説明する。図 27は本実施形態に係る 水素吸蔵用容器における通気材のろう付前後の各状態を示す説明図である。  The ninth embodiment of the present invention will be described with reference to FIG. FIG. 27 is an explanatory view showing respective states before and after brazing of the ventilation member in the hydrogen storage container according to the present embodiment.
[0124] 前記図 27において本実施形態に係る水素吸蔵用容器は、前記第 8の実施形態同 様、プレート 1と、フィン 2と、通気材 31とを備える一方、前記第 8の実施形態における 、プレート積層時点で通気性のある通気材 30を各プレート 1間に配設する構成とは 異なる点として、温度上昇すると発泡し、冷却され常温に戻ると硬化し、その後は通 気性のある多孔質状態を維持する発泡材 32を通気材 31として用いる構成を有する ものである。  [0124] In FIG. 27, the hydrogen storage container according to the present embodiment includes the plate 1, the fins 2, and the ventilation member 31 as in the eighth embodiment. Unlike the configuration in which the breathable air-permeable material 30 is disposed between the plates 1 at the time of laminating the plates, it foams when the temperature rises, hardens when cooled and returns to room temperature, and then breathable porous. The foam material 32 that maintains the quality state is used as the ventilation material 31.
[0125] 通気材 31となる発泡材 32は、プレート積層の前にプレート 1及び/又はフィン 2に 塗布され(図 27 (a)参照)、ろう付に伴う加熱、温度上昇の過程で発泡し、ろう付終了 後、冷却硬化して通気可能な多孔質状態を維持する(図 27 (b)参照)こととなる。  [0125] The foam material 32 to be the ventilation material 31 is applied to the plate 1 and / or the fin 2 before the plate lamination (see Fig. 27 (a)), and foams in the process of heating and temperature rise due to brazing. After brazing, it will cool and harden to maintain a porous state that allows ventilation (see Fig. 27 (b)).
[0126] この発泡材 32から得られた通気材 31は、微細な空隙を有し、水素の通気性を高め ること力 Sできる。また、製造過程で発泡材 32を塗布すれば、ろう付後に通気材 31とし て問題なく機能させられ、製造工程の簡素化が極めて効果的に図れることとなる。  [0126] The ventilation material 31 obtained from the foam material 32 has fine voids and can increase the hydrogen permeability. In addition, if the foam material 32 is applied during the manufacturing process, it can function without any problem as the air-permeable material 31 after brazing, and the manufacturing process can be simplified extremely effectively.
[0127] なお、前記第 8及び第 9の各実施形態に係る水素吸蔵用容器において、フィンを配 設されて水素吸蔵合金の収容部分となるプレート間の隙間に、通気材を配設する構 成としている力 これに限らず、適切な使用条件であれば、通気材を用いず、水素吸 蔵合金の膨張率を考慮して充填量を適切に設定し、所定の通気空間を設けたり、ま た、通気空間を特に設けずに、水素吸蔵合金の膨張率を考慮して最大限充填しつ つ、水素吸蔵合金周囲に水素の通過可能な微細間隙が問題なく生じている状態と するなど、水素吸蔵合金容器として通気材を用いない構成とすることもできる。  [0127] In the hydrogen storage container according to each of the eighth and ninth embodiments, a ventilation material is provided in a gap between plates in which fins are provided to serve as a storage part for the hydrogen storage alloy. Not limited to this, under appropriate conditions of use, do not use a ventilation material, set the filling amount appropriately in consideration of the expansion rate of the hydrogen storage alloy, provide a predetermined ventilation space, In addition, there is no problem in that there is no problem with a fine gap that allows hydrogen to pass around the hydrogen storage alloy while providing maximum ventilation in consideration of the expansion coefficient of the hydrogen storage alloy without providing a ventilation space. Further, the hydrogen storage alloy container may be configured not to use a ventilation material.
[0128] また、前記第 8及び第 9の各実施形態に係る水素吸蔵用容器においては、フィン 2 の形状をオフセット型とする構成としている力 これに限らず、他の形状のフィンとして 図 10に示すように、平板フィン 2a、波状ツイン 2b、ノレーノ フィン 2c、孔開きフィン 2d 等を適用することもでき、フィン形状を適切に設定することにより、運転条件に対応し て水素吸蔵合金における水素吸蔵、放出性能を最適なものとすることができる。図 2 8に平板フィン 2aに水素通気材を設置した状態の斜視図を示す。さらに、フィン形状 、特に隙間への入口側に位置するフィン端面部の形状を、水素吸蔵合金がフィン間 の間隙に入りやすいように構成することもでき、水素吸蔵合金の封入時における隙間 への充填率の向上が図れる。この他、プレート 1についても、フィン 2やガイドプレート 5、 51との接合に影響しない範囲で所定の凹凸パターンを配設することもでき、開口 孔 14などの流体の出入口付近となる領域ではプレート各部への流体分配性を重視 した凹凸パターンとし、フィン 2のある中央の領域では熱交換効率を重視した別の凹 凸パターンとすれば、水素吸蔵、放出性能のさらなる向上が図れる。 [0128] In the hydrogen storage container according to each of the eighth and ninth embodiments, the fin 2 As shown in Fig. 10, not only this but also a flat fin 2a, corrugated twin 2b, noreno fin 2c, perforated fin 2d, etc. In addition, by appropriately setting the fin shape, the hydrogen storage / release performance of the hydrogen storage alloy can be optimized in accordance with the operating conditions. Fig. 28 shows a perspective view of a state in which a hydrogen vent is installed on the flat fin 2a. Furthermore, the fin shape, particularly the shape of the fin end face located on the inlet side to the gap, can be configured so that the hydrogen storage alloy can easily enter the gap between the fins. The filling rate can be improved. In addition, the plate 1 can be provided with a predetermined uneven pattern as long as it does not affect the bonding with the fins 2 and the guide plates 5 and 51. If the concave / convex pattern emphasizes fluid distribution to each part and another concave / convex pattern emphasizes heat exchange efficiency in the central area where the fins 2 are located, the hydrogen storage / release performance can be further improved.
[0129] また、前記第 1及び第 2の各実施形態に係る水素吸蔵用容器においては、水素の 吸蔵、放出に水素吸蔵用容器を単独で用いる構成としている力 これに限らず、容 器を直列又は並列に接続して水素吸蔵システムを構築した状態で水素の吸蔵、放 出に用いる構成とすることもできる。  [0129] Further, in the hydrogen storage container according to each of the first and second embodiments, the force is such that the hydrogen storage container is used alone for storage and release of hydrogen. It may be configured to be used for storing and releasing hydrogen in a state where a hydrogen storage system is constructed by connecting in series or in parallel.
[0130] また、前記第 8及び第 9の各実施形態に係る水素吸蔵用容器については、その優 れた水素吸蔵性能を利用して、水素吸蔵用容器として用いる他に、高純度水素回収 容器として禾 IJ用することあでさる。  [0130] Further, the hydrogen storage container according to each of the eighth and ninth embodiments is not only used as a hydrogen storage container by utilizing its excellent hydrogen storage performance, but also as a high purity hydrogen recovery container.禾 I'm going to use it for IJ.

Claims

請求の範囲 The scope of the claims
[1] 矩形又は方形状の金属製プレートと、当該プレートと略同じ又はより小さい外形を 有する略板状体の全面に凹凸形状を成型されてなる金属製のフィンとを少なくとも備 え、  [1] At least a rectangular or rectangular metal plate, and a metal fin formed by forming a concavo-convex shape on the entire surface of a substantially plate-like body having substantially the same or smaller outer shape as the plate,
前記プレートが、プレート周縁部に周縁以外の部分に対し前記フィン高さと略同じ 所定高さの起立状態となる外周突壁を形成され、  The plate is formed with an outer peripheral protruding wall in an upright state having a predetermined height substantially the same as the fin height with respect to a portion other than the peripheral edge at the peripheral edge of the plate,
前記プレートが、外周突壁の向きを一致させ、且つ前記フィンを一つずつ間に介在 させる状態で複数重ね合されて積層され、各プレートにおける外周突壁先端と他プ レートの外周突壁基端部との接触部分、及びプレートとフィンとの接触部分をそれぞ れろう付により一体に且つ気密維持状態で接合して容器本体を形成し、  A plurality of the plates are stacked so that the directions of the outer peripheral protruding walls coincide with each other and the fins are interposed one by one. The outer peripheral protruding wall tip of each plate and the outer peripheral protruding wall base of the other plate are stacked. The container body is formed by joining the contact portion with the end portion and the contact portion between the plate and the fin together by brazing in an integrated and airtight state,
前記各プレート間に生じる隙間を一つおきに同じ組として二組に分け、一方の組の 各隙間には、所定の熱媒体を流通させる一方、他方の組の隙間には、所定の被カロ 熱流体を流通させ、  Every other gap between the plates is divided into two groups, and a predetermined heating medium is circulated in each gap of one set, while a predetermined calorific value is placed in the other set of gaps. Circulate the thermal fluid,
前記容器本体の外面部に、前記一方の組の隙間に連通する前記熱媒体の入口部 と出口部とがそれぞれ一又は複数配設されると共に、前記他方の組の隙間に連通す る被加熱流体の出入口部が一又は複数配設されることを特徴とする高耐圧コンパクト 熱交換器。  One or a plurality of inlets and outlets of the heat medium communicating with the one set of gaps are respectively disposed on the outer surface of the container body, and the object to be heated communicated with the other set of gaps. A high pressure compact heat exchanger characterized in that one or a plurality of fluid inlet / outlet portions are arranged.
[2] 前記外周突壁を垂直から外方に傾斜させ、外周突壁先端内側部と他プレートの外 周突壁基端部外側部との接触部分をろう付けすることを特徴とする請求項 1記載の 高耐圧コンパクト熱交換器。  [2] The outer peripheral protruding wall is inclined outward from the vertical, and the contact portion between the outer peripheral protruding wall tip inner side portion and the outer peripheral protruding wall base end outer portion of the other plate is brazed. High pressure-resistant compact heat exchanger as described in 1.
[3] 前記外周突壁先端に段差部分を形成し、前記段差部分と他プレートの外周突壁基 端部及びその外側部の接触部分をろう付けすることを特徴とする請求項 1記載の高 耐圧コンパクト熱交換器。  [3] The height of claim 1, wherein a stepped portion is formed at a tip of the outer peripheral protruding wall, and the stepped portion is brazed to a contact portion between the outer peripheral protruding wall base portion of the other plate and its outer portion. Pressure-resistant compact heat exchanger.
[4] 前記両方の通路の一方が前記入口部から分岐せずに前記出口部に至るように形 成され、他方の通路が前記入口部から前記出口部に至るまでに分岐しな!/、通路であ ることを特徴とする請求項 1乃至 3いずれか記載の高耐圧コンパクト熱交換器。  [4] One of the two passages is formed so as not to branch from the inlet portion to the outlet portion, and the other passage does not branch from the inlet portion to the outlet portion! /, The high pressure-resistant compact heat exchanger according to any one of claims 1 to 3, wherein the high-pressure compact heat exchanger is a passage.
[5] 前記両方の通路の一方が前記入口部から分岐せずに前記出口部に至るように形 成され、他方の通路が前記入口部から前記出口部に至るまでに分岐する通路である ことを特徴とする請求項 1乃至 3いずれか記載の高耐圧コンパクト熱交換器。 [5] One of the two passages is formed so as to reach the outlet portion without branching from the inlet portion, and the other passage is a passage branching from the inlet portion to the outlet portion. The high pressure-resistant compact heat exchanger according to any one of claims 1 to 3.
[6] 前記凹凸状のフィンの配列方向が、前記熱媒体体と前記被加熱流体の流路の方 向に対して所望の角度をなすことを特徴とする請求項 1乃至 5いずれか記載の高耐 圧コンパクト熱交換器。 [6] The arrangement according to any one of claims 1 to 5, wherein an arrangement direction of the uneven fins forms a desired angle with respect to a direction of the flow path of the heating medium and the fluid to be heated. High pressure resistant compact heat exchanger.
[7] 前記所望の角度が、 0度乃至 90度のいずれかの角度であることを特徴とする請求 項 6記載の高耐圧コンパクト熱交換器。  7. The high pressure-resistant compact heat exchanger according to claim 6, wherein the desired angle is any angle from 0 degrees to 90 degrees.
[8] 前記凹凸状のフィンが、前記方形の金属製プレート内において所望の個数に分割 され、該分割された凹凸状のフィンの配列方向と前記高圧流体と前記被加熱流体の 流路の方向がなす各々の角度が、相互に異なることを特徴とする請求項 1乃至 5い ずれか記載の高耐圧コンパクト熱交換器。 [8] The concavo-convex fins are divided into a desired number in the rectangular metal plate, and the arrangement direction of the divided concavo-convex fins and the flow paths of the high-pressure fluid and the heated fluid 6. The high pressure resistant compact heat exchanger according to any one of claims 1 to 5, wherein each angle formed by is different from each other.
[9] 積層される前記プレートの積層方向外側に、前記プレートより厚く高強度の略板状 体で、且つ前記入口部、出口部、及び/又は出入口部を形成される外殻プレートが 積層配設され、 [9] On the outer side in the stacking direction of the plates to be stacked, an outer shell plate that is thicker and stronger than the plate and has the inlet portion, the outlet portion, and / or the inlet / outlet portion is stacked. Established,
当該外殻プレートが、前記外殻プレートに隣接する他のプレートの外周突壁先端 又は他のプレートの積層方向の表面へろう付により接合されて容器本体に一体化さ れることを特徴とする請求項 1乃至 8いずれか記載の高耐圧コンパクト熱交換器。  The outer shell plate is joined to a front end of an outer peripheral protruding wall of another plate adjacent to the outer shell plate or a surface in the stacking direction of the other plate by brazing, and is integrated with the container body. Item 9. A high-pressure compact heat exchanger according to any one of Items 1 to 8.
[10] 高圧自然冷媒は、二酸化炭素、アンモニア、水とアンモニアの混合物、イソブタン、 プロパン、ノルマルブタン又はプロピレンの!/、ずれかであることを特徴とする請求項 1 乃至 91/、ずれか記載の高耐圧コンパクト熱交換器。  [10] The high-pressure natural refrigerant is carbon dioxide, ammonia, a mixture of water and ammonia, isobutane, propane, normal butane, or propylene! /. High pressure resistant compact heat exchanger.
[11] 多数の方形の金属製プレートの両側で、凹凸状のフィンの外方には、自段および 他段への流体の流通を可能とする切欠孔および流通孔を並設したガイドプレートを 金属製プレートと一体に備え、かつ複数の金属製プレートの重合積層時、切欠孔ぉ よび流通孔に対向する個処の、金属製プレートに流通孔を穿って成ることを特徴とす る請求項 1乃至 9いずれか記載の高耐圧コンパクト熱交換器。  [11] On both sides of a large number of rectangular metal plates, on the outside of the uneven fins, there are guide plates with notched holes and flow holes arranged in parallel to allow fluid to flow to the own stage and other stages. The metal plate is provided integrally with the metal plate, and the metal plate is provided with a through hole at a location facing the notch hole and the through hole when the plurality of metal plates are stacked. The high pressure resistant compact heat exchanger according to any one of 1 to 9.
[12] 凹凸状のフィンは、オフセット型、平板フィン型、波状フィン型、ルーバ型、穴あき型 等の中の一つ又は組合せで形成して成ることを特徴とする請求項 1乃至 9いずれか 記載の高耐圧コンパクト熱交換器。  [12] The uneven fin is formed by one or a combination of an offset type, a flat fin type, a corrugated fin type, a louver type, a perforated type, and the like. High pressure-resistant compact heat exchanger as described.
[13] 請求項 1乃至 12のいずれかに記載の高耐圧コンパクト熱交換器において、 前記プレート及びフィンは、ろう付可能な引張強度 52kgf/mm2以上のステンレス 材で、厚さが 0. 3mm以上とされ、 [13] In the high pressure resistant compact heat exchanger according to any one of claims 1 to 12, The plate and fin are made of stainless steel with a brazing tensile strength of 52 kgf / mm 2 or more and a thickness of 0.3 mm or more.
前記プレートとフィンの接合面積が一接合箇所あたり 4mm2以上であり、 また、ろう付用に、接合強度 20kgf/mm2以上のろう材力 積層状態のプレート同 士及びプレートとフィンとの各接触部分に配設されることを特徴とする高耐圧コンパク ト熱交換器。 The joint area of the plate and fin is 4 mm 2 or more per joint, and for brazing, a brazing material strength of 20 kgf / mm 2 or more is used. A high pressure compact heat exchanger characterized in that it is disposed in a part.
[14] 請求項 1乃至 12いずれか記載の複数の高耐圧コンパクト熱交換器を直列又は並 列に接続したことを特徴とする熱交換器システム。  [14] A heat exchanger system comprising a plurality of high-pressure-resistant compact heat exchangers according to any one of claims 1 to 12 connected in series or in parallel.
[15] プレート周縁部に当該周縁以外の部分に対し所定高さの起立状態となる外周突壁 を形成される複数の金属製プレートと、当該プレートと略同じ又はより小さい外形を有 する略板状体の全面に凹凸形状を成型されてなる金属製のフィンとを少なくとも使用 して、前記プレートを、外周突壁の向きを一致させ且つ前記フィンを間に介在させる 状態で複数積層すると共に、前記プレート同士及びプレートとフィンの各接触部には ろう材を配置し、  [15] A plurality of metal plates having outer peripheral protruding walls that are in a standing state with a predetermined height with respect to a portion other than the periphery at the periphery of the plate, and a substantially plate having an outer shape substantially the same as or smaller than the plate Using at least metal fins formed on the entire surface of the concavo-convex shape, and laminating a plurality of the plates in a state in which the directions of the outer peripheral protruding walls coincide and the fins are interposed therebetween, A brazing material is disposed between the plates and the contact portions of the plates and fins.
積層状態の前記各部材を真空加熱炉内に入れ、加熱によりプレート同士及びプレ ートとフィンとの各接触部分をそれぞれろう付処理して一体接合状態とすることを特 徴とする高耐圧コンパクト熱交換器の製造方法。  High pressure-resistant compact, characterized in that the above-mentioned members in a stacked state are placed in a vacuum heating furnace, and the contact portions between the plates and the plates and fins are brazed to form an integrally joined state by heating. Manufacturing method of heat exchanger.
[16] 矩形又は方形状の金属製プレートと、当該プレートと略同じ又はより小さい外形を 有する略板状体の全面に凹凸形状を成型されてなる金属製のフィンとを少なくとも備 え、 [16] A rectangular or rectangular metal plate and at least a metal fin formed by forming a concavo-convex shape on the entire surface of a substantially plate-like body having substantially the same or smaller outer shape as the plate,
前記プレートが、プレート周縁部に周縁以外の部分に対し前記フィン高さと略同じ 所定高さの起立状態となる外周突壁を形成され、  The plate is formed with an outer peripheral protruding wall in an upright state having a predetermined height substantially the same as the fin height with respect to a portion other than the peripheral edge at the peripheral edge of the plate,
前記プレートが、外周突壁の向きを一致させ、且つ前記フィンを一つずつ間に介在 させる状態で複数重ね合されて積層され、各プレートにおける外周突壁先端と他プ レートの外周突壁基端部との接触部分、及びプレートとフィンとの接触部分をそれぞ れろう付により一体に且つ気密維持状態で接合して容器本体を形成し、  A plurality of the plates are stacked so that the directions of the outer peripheral protruding walls coincide with each other and the fins are interposed one by one. The outer peripheral protruding wall tip of each plate and the outer peripheral protruding wall base of the other plate are stacked. The container body is formed by joining the contact portion with the end portion and the contact portion between the plate and the fin together by brazing in an integrated and airtight state,
前記各プレート間に生じる隙間を一つおきに同じ組として二組に分け、一方の組の 各隙間には、所定の熱媒体を流通させる一方、他方の組の隙間には、所定の水素 吸蔵合金を収容し、 Every other gap between the plates is divided into two groups, the same set, and a predetermined heat medium is circulated in each gap of one set, while a predetermined hydrogen is passed in the other set of gaps. Contains occlusion alloys,
前記容器本体の外面部に、前記一方の組の隙間に連連する前記熱媒体の入口部 と出口部とがそれぞれ一又は複数配設されると共に、前記他方の組の隙間に連通す る水素吸蔵合金及び水素の出入口部が一又は複数配設されることを特徴とする水 素吸蔵用容器。  One or a plurality of inlets and outlets of the heat medium that communicate with the gaps of the one set are disposed on the outer surface of the container body, and hydrogen storage that communicates with the gaps of the other set. A hydrogen storage container, wherein one or a plurality of inlets and outlets of an alloy and hydrogen are arranged.
[17] 請求項 16に記載の水素吸蔵用容器において、 [17] The hydrogen storage container according to claim 16,
積層される前記プレート間におけるプレートとフィン間の間隙に、容器完成状態で 少なくとも水素気体を通気可能となる所定の通気材がー又は複数揷入配設され、プ レートのろう付を経てプレート間に固定されることを特徴とする水素吸蔵用容器。  In the gap between the plates to be laminated, between the plates and fins, a predetermined ventilation material that allows at least hydrogen gas to be ventilated when the container is completed is inserted or disposed, and the plates are brazed between the plates. A container for storing hydrogen, which is fixed to the container.
[18] 請求項 17に記載の水素吸蔵用容器において、 [18] The hydrogen storage container according to claim 17,
前記通気材が、良熱伝導性材料で形成されることを特徴とする水素吸蔵用容器。  The hydrogen-absorbing container, wherein the ventilation material is formed of a heat-conductive material.
[19] 請求項 17に記載の水素吸蔵用容器において、 [19] The hydrogen storage container according to claim 17,
前記通気材が、プレート積層の前にプレート及び/又はフィンに塗布され、ろう付 に伴う加熱、温度上昇の過程で発泡し、ろう付終了後、冷却硬化して通気可能な多 孔質状態を維持する所定の発泡材とされることを特徴とする水素吸蔵用容器。  The air-permeable material is applied to the plate and / or fins before laminating the plate, foams in the process of heating and temperature rise accompanying brazing, and after the brazing is finished, it cools and hardens to form a porous state that allows ventilation. A hydrogen storage container characterized by being a predetermined foam material to be maintained.
[20] 請求項 16乃至 19のいずれかに記載の水素吸蔵用容器において、 [20] The hydrogen storage container according to any one of claims 16 to 19,
前記水素の出入口部が複数配設され、水素注入及び放出の基幹となる一の出入 口部に繋がる水素通路に制御用バルブ、又は制御用バルブ及びフィルタを設置す ると共に、前記制御用バルブ又は制御用バルブ及びフィルタより前記一の出入口部 側の前記水素通路から分岐して他の出入口部に通じる他の水素通路に、ァクチユエ ータ又は流動装置を設置し、水素の吸蔵及び放出の際に前記ァクチユエータ又は 流動装置を動作させて水素、又は水素及び水素吸蔵合金を流動させることを特徴と する水素吸蔵用容器。  A plurality of the hydrogen inlet / outlet portions are provided, and a control valve, or a control valve and a filter are installed in a hydrogen passage connected to one inlet / outlet portion serving as a backbone of hydrogen injection and discharge, and the control valve or In the other hydrogen passage branched from the hydrogen passage on the one inlet / outlet side from the control valve and filter to the other inlet / outlet portion, an actuator or a flow device is installed to store and release hydrogen. A hydrogen storage container characterized by operating hydrogen or hydrogen and a hydrogen storage alloy by operating the actuator or flow device.
[21] 請求項 16乃至 20のいずれかに記載の水素吸蔵用容器において、 [21] The hydrogen storage container according to any one of claims 16 to 20,
前記プレートが、端部に前記入口部、出口部、又は出入口部に連通する開口孔を 一又は複数穿設され、  The plate is formed with one or a plurality of opening holes communicating with the inlet portion, the outlet portion, or the inlet / outlet portion at an end portion,
前記プレート間の隙間に、隙間を挟む二つのプレートにおける前記開口孔近傍部 分を含むプレート端部にいずれも当接且つろう付可能として配設され、前記プレート の開口孔、前記入口部、出口部、及び/又は出入口部に連通する一又は複数の流 通孔を穿設されるガイドプレートを備え、 The plate is disposed so that it can be brought into contact with and brazed to the end portion of the plate including the vicinity of the opening hole in the two plates sandwiching the gap in the gap between the plates. A guide plate having one or a plurality of through holes communicating with the opening hole, the inlet portion, the outlet portion, and / or the inlet / outlet portion,
前記ガイドプレートが、配設されるプレート間の隙間と前記流通孔に通す流体が同 一である場合に、ガイドプレートの一部を切欠かれて流通孔を前記隙間に連通させ ることを特徴とする水素吸蔵用容器。  The guide plate is characterized in that when the gap between the disposed plates is the same as the fluid passing through the flow hole, a part of the guide plate is cut out to allow the flow hole to communicate with the gap. A container for storing hydrogen.
[22] 請求項 16乃至 21のいずれかに記載の水素吸蔵用容器において、 [22] The hydrogen storage container according to any one of claims 16 to 21,
前記フィン力 S、フィン形状をオフセット型、平板フィン型、波状フィン型、ルーバ型、 穴あき型のうちの一又は複数の組合せで形成されてなることを特徴とする水素吸蔵 用容器。  A hydrogen storage container, wherein the fin force S and the fin shape are formed of one or a combination of an offset type, a flat fin type, a corrugated fin type, a louver type, and a perforated type.
[23] 請求項 16乃至 22のいずれかに記載の水素吸蔵用容器において、  [23] The hydrogen storage container according to any one of claims 16 to 22,
積層される前記プレートの積層方向外側に、前記プレートより厚く高強度の略板状 体で、且つ前記入口部、出口部、及び/又は出入口部を形成される外殻プレートが 積層配設され、  On the outside in the stacking direction of the stacked plates, an outer shell plate that is thicker and stronger than the plate and that forms the inlet portion, outlet portion, and / or inlet / outlet portion is laminated and disposed.
当該外殻プレートが、前記外殻プレートに隣接する他のプレートの外周突壁先端 又は他のプレートの積層方向の表面へろう付により接合されて容器本体に一体化さ れることを特徴とする水素吸蔵用容器。  The outer shell plate is integrated into the container body by brazing to the tip of the outer peripheral protruding wall of another plate adjacent to the outer shell plate or the surface in the stacking direction of the other plate by brazing. Container for storage.
[24] 請求項 16乃至 23のいずれかに記載の水素吸蔵用容器において、 [24] The hydrogen storage container according to any one of claims 16 to 23,
前記プレート及びフィンは、ろう付可能な引張強度 52kgf/mm2以上のステンレス 材で、厚さが 0. 3mm以上とされ、 The plate and fin are made of stainless steel with a brazing tensile strength of 52 kgf / mm 2 or more and a thickness of 0.3 mm or more.
前記プレートとフィンの接合面積が一接合箇所あたり 4mm2以上であり、 また、ろう付用に、接合強度 20kgf/mm2以上のろう材力 積層状態のプレート同 士及びプレートとフィンとの各接触部分に配設されることを特徴とする水素吸蔵用容 The joint area of the plate and fin is 4 mm 2 or more per joint, and for brazing, a brazing material strength of 20 kgf / mm 2 or more is used. Hydrogen storage capacity, characterized by being disposed in the part
[25] プレート周縁部に当該周縁以外の部分に対し所定高さの起立状態となる外周突壁 を形成される複数の金属製プレートと、当該プレートと略同じ又はより小さい外形を有 する略板状体の全面に凹凸形状を成型されてなる金属製のフィンとを少なくとも使用 して、前記プレートを、外周突壁の向きを一致させ且つ前記フィンを間に介在させる 状態で複数積層すると共に、前記プレート同士及びプレートとフィンの各接触部には ろう材を配置し、かつ、水素気体が通気可能となる通気材を所定の位置に配設し、 積層状態の前記各部材を加熱炉内に入れ、加熱によりプレート同士及びプレートと フィンとの各接触部分をそれぞれろう付処理して一体接合状態とすることを特徴とす る水素吸蔵用容器の製造方法。 [25] A plurality of metal plates having outer peripheral protruding walls that are in a standing state with a predetermined height with respect to a portion other than the periphery at the periphery of the plate, and a substantially plate having an outer shape substantially the same as or smaller than the plate Using at least metal fins formed on the entire surface of the concavo-convex shape, and laminating a plurality of the plates in a state in which the directions of the outer peripheral protruding walls coincide and the fins are interposed therebetween, In the contact portions between the plates and between the plates and fins, A brazing material is disposed, and a ventilation material that allows hydrogen gas to pass through is disposed at a predetermined position. The laminated members are placed in a heating furnace, and the plates and the plates and fins are heated to each other. A method for producing a hydrogen storage container, characterized in that each contact portion is brazed to form an integrally joined state.
PCT/JP2007/066275 2006-08-23 2007-08-22 Highly pressure-resistant compact heat exchanger, container for occluding hydrogen, and method of producing them WO2008023732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008530941A JPWO2008023732A1 (en) 2006-08-23 2007-08-22 High pressure-resistant compact heat exchanger, hydrogen storage container, and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-226496 2006-08-23
JP2006226496 2006-08-23
JP2006312066 2006-11-17
JP2006-312066 2006-11-17

Publications (1)

Publication Number Publication Date
WO2008023732A1 true WO2008023732A1 (en) 2008-02-28

Family

ID=39106817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066275 WO2008023732A1 (en) 2006-08-23 2007-08-22 Highly pressure-resistant compact heat exchanger, container for occluding hydrogen, and method of producing them

Country Status (2)

Country Link
JP (1) JPWO2008023732A1 (en)
WO (1) WO2008023732A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161323A1 (en) * 2010-06-24 2011-12-29 Vahterus Oy Plate heat exchanger and method for manufacturing of a plate heat exchanger
JP2012007778A (en) * 2010-06-23 2012-01-12 Komatsu Ltd Heat exchanger
JP2012229880A (en) * 2011-04-27 2012-11-22 Hisaka Works Ltd Plate type heat exchanger
WO2014021026A1 (en) * 2012-08-01 2014-02-06 カルソニックカンセイ株式会社 Heat exchanger
CN104334994A (en) * 2012-06-05 2015-02-04 三菱电机株式会社 Plate-type heat exchanger and refrigeration cycle device comprising same
WO2015067356A1 (en) * 2013-11-05 2015-05-14 Linde Aktiengesellschaft Method for indirect heat exchange between a salt melt and a heat transfer medium in a solar thermal power plant
US9341415B2 (en) 2008-12-17 2016-05-17 Swep International Ab Reinforced heat exchanger
WO2017138322A1 (en) 2016-02-12 2017-08-17 三菱電機株式会社 Plate-type heat exchanger and heat-pump-type heating and hot-water supply system equipped with same
WO2018047469A1 (en) * 2016-09-12 2018-03-15 株式会社デンソー Heat exchanger
WO2018216245A1 (en) 2017-05-23 2018-11-29 三菱電機株式会社 Plate heat exchanger and heat pump hot water supply system
US10780409B2 (en) 2017-12-04 2020-09-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid-gas reaction substance-filled reactor and method for manufacturing the same
JP2020200963A (en) * 2019-06-06 2020-12-17 株式会社神戸製鋼所 Heat exchange part of plate fin heat exchanger and method for manufacturing heat exchange system
US10962307B2 (en) 2013-02-27 2021-03-30 Denso Corporation Stacked heat exchanger
EP4343253A1 (en) * 2022-09-20 2024-03-27 Alfa Laval Corporate AB Method for the assembly of a plate and fin heat exchanger and a plate and fin heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148480U (en) * 1982-03-31 1983-10-05 株式会社 土屋製作所 Plate heat exchanger
JPS60176371U (en) * 1984-04-28 1985-11-22 株式会社 土屋製作所 Plate type housingless heat exchanger
JP2000170998A (en) * 1998-10-01 2000-06-23 Japan Steel Works Ltd:The Hydrogen storing container
JP2004047260A (en) * 2002-07-11 2004-02-12 Honda Motor Co Ltd Evaporator
JP3605089B2 (en) * 2002-04-22 2004-12-22 東京ブレイズ株式会社 Method for producing titanium plate heat exchanger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138954A (en) * 1977-05-11 1978-12-04 Seiko Epson Corp Metallic solder
JPS6113171U (en) * 1984-06-29 1986-01-25 株式会社 土屋製作所 Heat exchanger
JPH06329481A (en) * 1993-05-20 1994-11-29 Noritake Co Ltd Ceramics-metal composite and its production
JP2004225980A (en) * 2003-01-22 2004-08-12 Calsonic Kansei Corp Evaporator
JP2004293880A (en) * 2003-03-26 2004-10-21 Calsonic Kansei Corp Stacked heat exchanger
JP2005055092A (en) * 2003-08-05 2005-03-03 Denso Corp Heat exchanger
JP2005188773A (en) * 2003-12-24 2005-07-14 Denso Corp Heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148480U (en) * 1982-03-31 1983-10-05 株式会社 土屋製作所 Plate heat exchanger
JPS60176371U (en) * 1984-04-28 1985-11-22 株式会社 土屋製作所 Plate type housingless heat exchanger
JP2000170998A (en) * 1998-10-01 2000-06-23 Japan Steel Works Ltd:The Hydrogen storing container
JP3605089B2 (en) * 2002-04-22 2004-12-22 東京ブレイズ株式会社 Method for producing titanium plate heat exchanger
JP2004047260A (en) * 2002-07-11 2004-02-12 Honda Motor Co Ltd Evaporator

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9341415B2 (en) 2008-12-17 2016-05-17 Swep International Ab Reinforced heat exchanger
JP2012007778A (en) * 2010-06-23 2012-01-12 Komatsu Ltd Heat exchanger
WO2011161323A1 (en) * 2010-06-24 2011-12-29 Vahterus Oy Plate heat exchanger and method for manufacturing of a plate heat exchanger
JP2012229880A (en) * 2011-04-27 2012-11-22 Hisaka Works Ltd Plate type heat exchanger
CN104334994A (en) * 2012-06-05 2015-02-04 三菱电机株式会社 Plate-type heat exchanger and refrigeration cycle device comprising same
EP2878909A4 (en) * 2012-06-05 2016-04-27 Mitsubishi Electric Corp Plate-type heat exchanger and refrigeration cycle device comprising same
WO2014021026A1 (en) * 2012-08-01 2014-02-06 カルソニックカンセイ株式会社 Heat exchanger
JP2014031898A (en) * 2012-08-01 2014-02-20 Calsonic Kansei Corp Heat exchanger
US20150211810A1 (en) * 2012-08-01 2015-07-30 Calsonic Kansei Corporation Heat exchanger
US9846000B2 (en) 2012-08-01 2017-12-19 Calsonic Kansei Corporation Heat exchanger
US10962307B2 (en) 2013-02-27 2021-03-30 Denso Corporation Stacked heat exchanger
WO2015067356A1 (en) * 2013-11-05 2015-05-14 Linde Aktiengesellschaft Method for indirect heat exchange between a salt melt and a heat transfer medium in a solar thermal power plant
WO2017138322A1 (en) 2016-02-12 2017-08-17 三菱電機株式会社 Plate-type heat exchanger and heat-pump-type heating and hot-water supply system equipped with same
US10907906B2 (en) 2016-02-12 2021-02-02 Mitsubishi Electric Corporation Plate heat exchanger and heat pump heating and hot water supply system including the plate heat exchanger
JP2018044680A (en) * 2016-09-12 2018-03-22 株式会社デンソー Heat exchanger
WO2018047469A1 (en) * 2016-09-12 2018-03-15 株式会社デンソー Heat exchanger
WO2018216245A1 (en) 2017-05-23 2018-11-29 三菱電機株式会社 Plate heat exchanger and heat pump hot water supply system
US10780409B2 (en) 2017-12-04 2020-09-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid-gas reaction substance-filled reactor and method for manufacturing the same
JP2020200963A (en) * 2019-06-06 2020-12-17 株式会社神戸製鋼所 Heat exchange part of plate fin heat exchanger and method for manufacturing heat exchange system
JP7173929B2 (en) 2019-06-06 2022-11-16 株式会社神戸製鋼所 Method for manufacturing heat exchange part of plate-fin heat exchanger and heat exchange system
EP4343253A1 (en) * 2022-09-20 2024-03-27 Alfa Laval Corporate AB Method for the assembly of a plate and fin heat exchanger and a plate and fin heat exchanger
WO2024061818A1 (en) * 2022-09-20 2024-03-28 Alfa Laval Corporate Ab Method for the assembly of a plate and fin heat exchanger and a plate and fin heat exchanger

Also Published As

Publication number Publication date
JPWO2008023732A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
WO2008023732A1 (en) Highly pressure-resistant compact heat exchanger, container for occluding hydrogen, and method of producing them
US8272233B2 (en) Heat exchanger and refrigerating air conditioner
US9372034B2 (en) Cool-storage type heat exchanger
JP5470039B2 (en) Heat exchanger
WO2015016076A1 (en) Hydrogen gas cooling method and hydrogen gas cooling system
US7891412B2 (en) Heat exchanger using a storage fluid
JP2007183071A (en) High-pressure-resistant compact heat exchanger and manufacturing method of the same
CN101846418A (en) Cool-storage type heat exchanger
CN101915480B (en) Heat exchanger and refrigeration air conditioning device
JP6368396B2 (en) Hydrogen gas cooling method and hydrogen gas cooling system
JP5141730B2 (en) Heat exchanger and refrigeration air conditioner
JP2006097911A (en) Heat exchanger
JP3911604B2 (en) Heat exchanger and refrigeration cycle
JP6865934B2 (en) Plate heat exchanger
JP2003279275A (en) Heat exchanger and refrigerating cycle device using this heat exchanger
JP2010243066A (en) Cold storage heat exchanger
JPH05223478A (en) Chemical heat accumulating device
JP2004189069A (en) Refrigeration cycle device
JP2009097818A (en) Heat exchanger
JP3734950B2 (en) Heat utilization system using hydrogen storage alloy
JP3534559B2 (en) Hydrogen storage type cooling device
JP2003222477A (en) Heat exchanger
JP3872913B2 (en) Heat utilization system using hydrogen storage alloy
JPH10122713A (en) Plate type heat exchanger
JPH11173700A (en) Heat utilizing system using hydrogen absorbing alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792867

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530941

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792867

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)