JP2004189069A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2004189069A
JP2004189069A JP2002358030A JP2002358030A JP2004189069A JP 2004189069 A JP2004189069 A JP 2004189069A JP 2002358030 A JP2002358030 A JP 2002358030A JP 2002358030 A JP2002358030 A JP 2002358030A JP 2004189069 A JP2004189069 A JP 2004189069A
Authority
JP
Japan
Prior art keywords
heat exchanger
flow path
refrigerant
pressure side
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002358030A
Other languages
Japanese (ja)
Inventor
Noriho Okaza
典穂 岡座
Yuichi Kusumaru
雄一 藥丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002358030A priority Critical patent/JP2004189069A/en
Publication of JP2004189069A publication Critical patent/JP2004189069A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of an increase in the number of components when a refrigeration cycle device using a carbon dioxide as a coolant and equipped with a water-refrigerant heat exchanger is configured to carry out highly efficient operation using an internal heat exchanger. <P>SOLUTION: The refrigeration cycle device uses the carbon dioxide as the coolant and comprises a refrigeration cycle circuit to connect coolant passages on the high pressure side of at least a compressor, a first heat exchanger, and a third heat exchanger with coolant passages on the low pressure side of a decompressor, a second heat exchanger, a third heat exchanger in sequence and a hot water circuit to connect at least a flow path on the water side of the third heat exchanger with a hot water heater core. The third heat exchanger exchanges the heat of the coolant flowing between the first heat exchanger and the decompressor for the heat of the coolant to flow between the second heat exchanger and the compressor and/or the heat of the coolant flowing between the compressor and the decompressor is exchanged for the heat of a fluid flowing in the hot water circuit. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば電気自動車等の車両用空気調和装置として利用できる、二酸化炭素を冷媒として用いる冷凍サイクル装置、及びこの冷凍サイクル装置に適した熱交換器に関する。
【0002】
【従来の技術】
近年、環境保護の観点から電気自動車が提供されているが、そのバッテリ能力の不足から、走行用補助エンジン、もしくは、発電用エンジンを備えたハイブリット形の電気自動車が提案されている。さらに、電気化学反応により発電を行う燃料電池を採り入れた電気自動車も提案されつつある。
ところで、暖房時に、電気自動車が備える上記エンジンの排熱や、又は燃料電池等の車載機器からの排熱を利用する車両用空気調和装置として、例えば、特許文献1などに開示された技術がある。この従来技術の車両用空気調和装置の構成について、図6を参照して説明する。
図6に示す車両用空気調和装置は、圧縮機1、水側流路2aと冷媒側流路2bが熱交換するように構成された水冷媒熱交換器2、第一減圧器3、室外熱交換器4、第二減圧器5、室内熱交換器6などを配管接続した冷凍サイクルと、水冷媒熱交換器2、温水ヒータコア7、エンジンや燃料電池などの発熱体を冷却する冷却部(図示せず)、循環ポンプ(図示せず)などを配管接続した温水サイクルから構成される。そしてブロワーファン(図示せず)により、例えば、自動車の車室内に吹き出される空気を、ダクト8に納められた室内熱交換器6や温水ヒータコア7に通過させて、冷房や暖房除湿を行うものである。なお、図中において、実線の矢印は冷媒の流れ方向を、白抜きの矢印は空気の流れ方向をそれぞれ示している。
図6に示す冷凍サイクル装置の動作について説明する。まず、冷房モード時には、第一減圧器3は全開にし、減圧器としての作用を行わせず、第二減圧器5で減圧器としての作用を行わせる。すなわち圧縮機1で圧縮された冷媒は、高温高圧状態となり、水冷媒熱交換器2の冷媒側流路2b、室外熱交換器4を通過する際に、冷却水や空気に放熱し冷却される。その後冷媒は、第二減圧器5により減圧されて、低温低圧の気液二相状態となる。室内熱交換器6では、冷媒はブロワーファン(図示せず)によりダクト8内に送り込まれた空気から吸熱し、気液二相又はガス状態となり、一方、送り込まれた空気は冷却される。さらに、気液二相又はガス状態となった冷媒は、再び圧縮機1に吸入される。このようなサイクルを繰り返すことにより、冷却された空気は、ダクト8より車室内の吹出口(図示せず)より吹き出されて、車室内を冷房する。このとき、車室内に吹き出す空気の温度調整は、ミックスダンパ9の開度調整により行うことができる。また、ミックスダンパ9を全閉にして、全空気を温水ヒータコア7側に通さずバイパスさせて、圧縮機1の回転数を制御することでも、車室内へ吹き出す空気の温度調節が可能であり、こちらの方が冷凍サイクル装置の効率は良い。
次に、暖房除湿モード時には、第二減圧器5は全開にし、減圧器としての作用を行わせず、第一減圧器3で減圧器としての作用を行わせる。すなわち圧縮機1で圧縮された冷媒は、高温高圧状態となり、水冷媒熱交換器2の冷媒側流路2bを通過する際に、水側流路2aを流れる冷却水に放熱し冷却される。一方、水冷媒熱交換器2の水側流路2aを流れる冷却水は加熱されて温水になる。その後冷媒は、第一減圧器3により減圧されて、低温低圧の気液二相状態となる。さらに、室外熱交換器4では外気により、及び、室内熱交換器6ではブロワーファン(図示せず)によりダクト8内に送り込まれた空気から吸熱し、気液二相又はガス状態となる。このとき、送り込まれた空気は室内熱交換器6にて冷却される。そして、気液二相又はガス状態となった冷媒は、再び圧縮機1に吸入される。このようなサイクルを繰り返すことにより、冷却された空気は、ダクト8より車室内の吹出口(図示せず)より吹き出されて、車室内を除湿する。一方、水冷媒熱交換器2で冷媒により加熱された冷却水は、温水ヒータコア7で、ブロワーファン(図示せず)によりダクト8内に送り込まれた空気を加熱する。加熱された空気は、ダクト8より車室内の吹出口(図示せず)より吹き出されて、車室内を暖房する。このとき、車室内に吹き出す空気の温度調整は、ミックスダンパ9の開度調整により行うことができる。また、ミックスダンパ9を全開にして、全空気を温水ヒータコア7側に通して、圧縮機1の回転数を制御することでも、車室内へ吹き出す空気の温度調節が可能であり、こちらの方が冷凍サイクル装置の効率は良い。
従来、このように運転される冷凍サイクル装置内に封入される冷媒としては、フッ素原子を含有する炭化水素類(フロン類)が用いられていた。しかし、フロン類は、オゾン層を破壊する性質を有していたり、地球温暖化に影響を与えたりと、必ずしも満足な冷媒とはいえない。そこでフロン類の代わりに、オゾン破壊係数がゼロであり、かつ地球温暖化係数もフロン類に比べれば格段に小さい、二酸化炭素の冷媒(以下、CO冷媒)を用いる冷凍サイクルが検討されつつある。
しかしながら、CO冷媒は、臨界温度が31.06℃と低く、通常の冷凍サイクルの高圧側(圧縮機出口から放熱器を経由して減圧器の入口まで)では、CO冷媒の凝縮が生じない超臨界サイクルとなりうること、また、従来の冷媒に比べてCO冷媒は、物質の持つ理論効率が低く、冷凍サイクルの効率(COP)が低下するといった課題を有することから、内部熱交換器を備えて冷凍サイクルの効率を向上させる方法があり、例えば特許文献2に示されている超臨界蒸気圧縮サイクル装置がある。
この従来技術について、図7及び図8を用いて説明する。図7に示す超臨界蒸気圧縮サイクル装置は、圧縮機1、室外熱交換器(放熱器)4、減圧器5、室内熱交換器(蒸発器)6、及び、低圧側流路10aと高圧側流路10bが熱交換するように構成された内部熱交換器10から構成されている。そして、内部熱交換器10の低圧側流路10aは、室内熱交換器6出口から圧縮機1入口の間の冷媒が流れるように構成されており、高圧側流路10bは、室外熱交換器4出口から減圧器11入口の間の冷媒が流れるように構成されている。
このような冷凍サイクル装置の超臨界蒸気圧縮サイクルにおける状態変化は、図8に示すモリエル線図において、A→B→C→D→E→F→Aで示される。すなわち、図7と図8を用いて説明すると、A点で示される冷媒が、圧縮機1で圧縮されて、B点で示される超臨界の高温高圧状態となり、室外熱交換器4でC点まで冷却される。室外熱交換器4から流出した冷媒は、内部熱交換器10の高圧側流路10bに流入してさらにD点まで冷却される。すなわちモリエル線図においては、C−D間のエンタルピが変化する。そして、減圧器11によって減圧されて、E点で示される低温低圧の気液二相状態となり、その後、室内熱交換器6で気化されてF点に至る。室内熱交換器6を流出した冷媒は、さらに内部熱交換器10の低圧側流路10aでA点まで加熱されて、再び圧縮機1で圧縮される。このように、内部熱交換器10において、室外熱交換器4から流出して減圧器11に流入する減圧前の冷媒と、室内熱交換器6から流出して圧縮機1に流入する圧縮前の冷媒とが熱交換される。
このような内部熱交換器10を備えた冷凍サイクル装置を、内部熱交換器10を備えていない冷凍サイクル装置と比べると、冷凍能力は、E−E’間(すなわちC−D間に相当)のエンタルピ差分だけ増大する。一方、圧縮機1の入力(A−B間のエンタルピ差、又はF−B’間のエンタルピ差)は、内部熱交換器10の有無によって大きく変化しないか、又は、COPが最大となる高圧側圧力が低下し差圧が小さくなるので減少するかである。従って、冷凍能力を圧縮機入力で除した値であるCOPを向上させることができる。
【0003】
【特許文献1】
特開平8−197937号公報
【特許文献2】
特許第2132329号公報
【0004】
【発明が解決しようとする課題】
ところで、図6に示したような、第一減圧器3及び第二減圧器5のいずれか一方を減圧器として用いて、冷房モードと暖房除湿モードを切り替え運転する冷凍サイクル装置を、そのままの構成で、オゾン破壊せず、地球温暖化への影響も小さいCO冷媒を用いて超臨界蒸気圧縮サイクルとし、かつ内部熱交換器を利用する冷凍サイクル装置に置き換えるならば、図9に示すような冷凍サイクル装置が提案できる。
図9に示す冷凍サイクル装置は、図6の冷凍サイクル装置に内部熱交換器10を設けて、冷房モード時に、室外熱交換器4から流出して減圧器11に流入する減圧前の冷媒と、室内熱交換器6から流出して圧縮機1に流入する圧縮前の冷媒とが熱交換するように構成している。しかしながら、このような構成では、冷凍サイクル装置を構成する部品点数が増加し、冷凍サイクル装置製造時の組み付けの手間や取り付けスペースが増加し、高コスト化するといった課題が生じる。
【0005】
そこで、本発明は、CO冷媒を使用する冷凍サイクル装置において、その構成部品点数を削減して低コスト化を図ることのできる冷凍サイクル装置、及びこの冷凍サイクル装置に適した熱交換器を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の本発明の冷凍サイクル装置は、二酸化炭素を冷媒として用い、少なくとも圧縮機、第一熱交換器、第三熱交換器の高圧側冷媒流路、減圧器、第二熱交換器、第三熱交換器の低圧側冷媒流路とを順に接続した冷凍サイクル回路と、少なくとも第三熱交換器の水側流路と温水ヒータコアとを接続した温水回路とを備え、前記高圧側冷媒流路には、前記第一熱交換器と前記減圧器の間を流れる冷媒を流し、前記低圧側冷媒流路には、前記第二熱交換器と前記圧縮機の間を流れる冷媒を流す冷凍サイクル装置において、前記高圧側冷媒流路を流れる冷媒を、前記低圧側冷媒流路を流れる冷媒、及び/又は前記温水回路を流れる流体と熱交換させるように前記第三熱交換器を構成したことを特徴とする。
請求項2記載の本発明は、請求項1に記載の冷凍サイクル装置において、前記高圧側冷媒流路を流れる冷媒と前記低圧側冷媒流路を流れる冷媒とを熱交換させる第一モード運転と、前記高圧側冷媒流路を流れる冷媒と前記温水回路を流れる流体とを熱交換させる第二モード運転を有することを特徴とする。
請求項3記載の本発明は、請求項2に記載の冷凍サイクル装置において、前記圧縮機から吐出した冷媒を前記第一熱交換器に流入させるか、あるいは、前記第一熱交換器をバイパスさせるかを切り替える流れ方向切替弁をさらに備え、前記第一モード運転では、前記圧縮機から吐出した冷媒を前記第一熱交換器に流入させ、前記第二モード運転では、前記第一熱交換器をバイパスさせるように流れ方向切替弁を制御することを特徴とする。
請求項4記載の本発明は、請求項2に記載の冷凍サイクル装置において、前記第一モード運転では、前記水側流路を流れる流体の温度が、前記高圧側冷媒流路を流れる冷媒の温度より高い場合には、前記水側流路に流入する前記流体の流量を停止あるいは低減するように制御することを特徴とする。
請求項5記載の本発明は、請求項2に記載の冷凍サイクル装置において、前記第一モード運転では、前記水側流路に流入する前記流体の流量を停止あるいは低減するように制御することを特徴とする。
請求項6記載の本発明は、請求項2に記載の冷凍サイクル装置において、前記第二熱交換器から流出した冷媒が前記低圧側冷媒流路をバイパスして前記圧縮機に流入するバイパス流路と、前記バイパス流路に設けられた電磁弁とを備え、前記第二モード運転では、前記低圧側冷媒流路をバイパスさせるように前記電磁弁を制御することを特徴とする。
請求項7記載の本発明は、請求項6に記載の冷凍サイクル装置において、前記第三熱交換器が前記バイパス流路及び前記電磁弁を備えていることを特徴とする。
請求項8記載の本発明の熱交換器は、温水ヒータコアを有する温水回路に接続される水側流路と、圧縮機、第一熱交換器、減圧器、及び第二熱交換器を有する冷凍サイクル回路の高圧側冷媒流路に接続される高圧側冷媒流路と、前記冷凍サイクル回路の低圧側冷媒流路に接続される低圧側冷媒流路とを備えたことを特徴とする。
請求項9記載の本発明は、請求項8に記載の熱交換器において、前記高圧側冷媒流路を流れる冷媒を、前記低圧側冷媒流路を流れる冷媒、及び/又は前記温水回路を流れる流体と熱交換させるように構成したことを特徴とする。
請求項10記載の本発明は、請求項8に記載の熱交換器において、前記低圧側冷媒流路をバイパスするバイパス流路と、前記バイパス流路の冷媒流れを制御する電磁弁を備えていることを特徴とする。
請求項11記載の本発明は、請求項8に記載の熱交換器において、二酸化炭素を冷媒として用いることを特徴とする。
【0007】
【発明の実施の形態】
本発明による第1の実施の形態による冷凍サイクル装置は、高圧側冷媒流路を流れる冷媒を、低圧側冷媒流路を流れる冷媒、及び/又は温水回路を流れる流体と熱交換させるように第三熱交換器を構成したものである。本実施の形態によれば、2つ別々に備える必要があった内部熱交換器と水冷媒熱交換器を1つにできるために、高効率な運転が可能な冷凍サイクル装置であっても、構成部品点数を削減して低コスト化を図ることができる。
また、本発明による第2の実施の形態は、第1の実施の形態による冷凍サイクル装置において、高圧側冷媒流路を流れる冷媒と低圧側冷媒流路を流れる冷媒とを熱交換させる第一モード運転と、高圧側冷媒流路を流れる冷媒と温水回路を流れる流体とを熱交換させる第二モード運転を有するものである。本実施の形態によれば、2つのモード運転を有することで、高温冷媒を低温冷媒又は低温流体と熱交換させることができる。
また、本発明による第3の実施の形態は、第2の実施の形態による冷凍サイクル装置において、流れ方向切替弁によって、第一モード運転では、圧縮機から吐出した冷媒を第一熱交換器に流入させ、第二モード運転では、第一熱交換器をバイパスさせるものである。本実施の形態によれば、流れ方向切替弁を制御することによって第一熱交換器での無用な放熱を抑制し、水側回路を流れる流体に対して充分に熱を伝達することができる。
また、本発明による第4の実施の形態は、第2の実施の形態による冷凍サイクル装置において、第一モード運転では、水側流路を流れる流体の温度が、高圧側冷媒流路を流れる冷媒の温度より低い場合には、水側流路に流体を流入させるように制御するものである。本実施の形態によれば、水側流路を流れる流体への放熱を有効に利用して冷凍サイクルのCOPを高めることができる。
また、本発明による第5の実施の形態は、第2の実施の形態による冷凍サイクル装置において、第一モード運転では、水側流路に流入する流体の流量を停止あるいは低減するように制御するものである。本実施の形態によれば、水側流路を流れる流体からの無用な授熱を抑制して冷凍サイクルのCOPを高めることができる。
また、本発明による第6の実施の形態は、第2の実施の形態による冷凍サイクル装置において、第二モード運転では、低圧側冷媒流路をバイパスさせるように電磁弁を制御するものである。本実施の形態によれば、第二モード運転では高圧側冷媒流路を流れる冷媒と低圧側冷媒流路を流れる冷媒との間での熱交換を行わせないことで、水側流路を流れる流体に対して十分に熱を伝達することができる。
また、本発明による第7の実施の形態は、第6の実施の形態による冷凍サイクル装置において、第三熱交換器がバイパス流路及び電磁弁を備えたものである。本実施の形態によれば、バイパス流路や電磁弁を第三熱交換器が備えるために、構成部品点数を削減して低コスト化を図ることができる。
また、本発明による第8の実施の形態による熱交換器は、温水ヒータコアを有する温水回路に接続される水側流路と、圧縮機、第一熱交換器、減圧器、及び第二熱交換器を有する冷凍サイクル回路の高圧側冷媒流路に接続される高圧側冷媒流路と、冷凍サイクル回路の低圧側冷媒流路に接続される低圧側冷媒流路とを備えたものである。本実施の形態によれば、2つ別々に備える必要があった内部熱交換器と水冷媒熱交換器を1つにできるために、高効率な運転が可能な冷凍サイクル装置であっても、構成部品点数を削減して低コスト化を図ることができる。
また、本発明による第9の実施の形態は、第8の実施の形態による熱交換器において、高圧側冷媒流路を流れる冷媒を、低圧側冷媒流路を流れる冷媒、及び/又は温水回路を流れる流体と熱交換させるように構成したものである。本実施の形態によれば、高温冷媒を低温冷媒及び/又は低温流体と熱交換させることができる。
また、本発明による第10の実施の形態は、第8の実施の形態による熱交換器において、低圧側冷媒流路をバイパスするバイパス流路と、バイパス流路の冷媒流れを制御する電磁弁を備えたものである。本実施の形態によれば、バイパス流路や電磁弁を備えるために、構成部品点数を削減して低コスト化を図ることができる。
また、本発明による第11の実施の形態は、第8の実施の形態による熱交換器において、二酸化炭素を冷媒として用いるものである。本実施の形態によれば、二酸化炭素を冷媒として用いることで、より高温の放熱を利用することができる。
【0008】
【実施例】
以下、本発明の一実施例について、図面に基づき説明する。
図1は、本発明による実施例の冷凍サイクル装置を示す図であり、図中において、実線及び破線の矢印は冷媒の流れ方向を、白抜きの矢印は空気の流れ方向を、それぞれ示している。本実施例の冷凍サイクル装置は、少なくとも、CO冷媒が用いられている冷凍サイクル回路と、水などの流体が用いられている温水回路とを備えている。
冷凍サイクル回路は、少なくとも圧縮機1、流れ方向切替弁としての三方弁12、第一熱交換器としての室外熱交換器4、第三熱交換器11の高圧側冷媒流路11b、減圧器13、第二熱交換器としての室内熱交換器6、第三熱交換器11の低圧側冷媒流路11aを、順に配管で接続して冷媒流路を形成している。また、三方弁12の冷媒入口側(以下、入口と略す)は、圧縮機1の冷媒出口側(以下、出口と略す)と配管で接続して冷媒流路を形成し、三方弁12の出口の一端は、第一熱交換器4の入口と配管で接続して冷媒流路を形成し、三方弁12出口の他端は、第三熱交換器11の高圧側冷媒流路11b入口と配管で接続して冷媒流路を形成している。さらに、冷凍サイクル回路は、圧縮機1入口と室内熱交換器6出口を接続して低圧側冷媒流路11aをバイパスする低圧側冷媒流路バイパス回路11dと、このバイパス回路11dに設けられた電磁弁11eとを備えている。
ここで、第三熱交換器11の低圧側冷媒流路11aと高圧側冷媒流路11bは、両流路を流れるCO冷媒同士を熱交換するように構成されており、低圧側冷媒流路11aには、室内熱交換器6出口から圧縮機1入口までの間の冷媒が流れるように配管接続されており、高圧側冷媒流路11bは、室外熱交換器4出口から減圧器10入口までの間の冷媒が流れるように配管接続されている。
一方、温水回路は、少なくとも第三熱交換器11の水側流路11cと、温水ヒータコア7とを配管で接続しており、さらに、エンジンや燃料電池などの発熱体を冷却する冷却部(図示せず)や循環ポンプ(図示せず)などを加えて構成される。ここで、第三熱交換器11の高圧側冷媒流路11bと水側流路11cは、高圧側冷媒流路11bを流れるCO冷媒と水側流路11cを流れる冷却水とが熱交換するように構成されている。
【0009】
図1に示す冷凍サイクル装置の運転方法について説明する。なお、本実施例による冷凍サイクル装置は、高圧側の冷媒圧力が臨界点を越える、超臨界蒸気圧縮サイクルで運転される。
まず、冷房モード(第一モード)で運転する時には、三方弁12を図中に示す実線矢印方向に切り替え、低圧側冷媒流路バイパス回路11dに設けた電磁弁11eを閉となるように制御する。すなわち圧縮機1で圧縮された冷媒は、高温高圧状態となり、室外熱交換器4に流入する側に切り替えられた三方弁12を経由して室外熱交換器4に流入する。そして、室外熱交換器4では、電動ファン(図示せず)で送風された空気、又は車両の走行時に発生する走行風に放熱して冷却される。その後、冷媒は第三熱交換器11の高圧側冷媒流路11bに流入し、低圧側流路11aを流れる低温冷媒と熱交換してさらに冷却される。さらに、高圧側冷媒流路11bを流出した冷媒は、減圧器13により減圧されて、低圧の気液二相状態となる。この冷媒は、室内熱交換器6でブロワーファン(図示せず)によりダクト8内に送り込まれた空気から吸熱して、気液二相又はガス状態となる。このとき空気は室内熱交換器6にて冷却される。その気液二相又はガス状態となった冷媒は、低圧側冷媒流路バイパス回路11dに設けた電磁弁11eを閉となるように制御しているため、第三熱交換器11の低圧側冷媒流路11aに流入し、高圧側流路11bを流れる冷媒を冷却した後、再び圧縮機1に吸入される。このようなサイクルを繰り返すことにより、室内熱交換器6における冷媒の吸熱により冷却された空気が、ダクト8から車室内の吹出口(図示せず)より吹き出されて、車室内を冷房するという冷房モード運転が行われる。
【0010】
ところで、図1に示す冷凍サイクル装置では、同一ダクト8内に冷たくなる室内熱交換器6と熱くなる温水ヒータコア7が配設されている。したがって、車室内に吹き出す空気の温度調整は、ミックスダンパ9の開度調整により行うことができる。しかし、冷房モード時には、ミックスダンパを全閉にして、温水ヒータコア7を全空気バイパスさせ、圧縮機1の回転数を制御することでも、車室内へ吹き出す空気の温度調節が可能であり、こちらの方が、効率が良い。また、冷房能力を最大に発揮させるためには、ミックスダンパ9を全閉にして、温水ヒータコア7を全空気バイパスさせたり、温水ヒータコア7からの放熱を極力小さくする、例えば、循環ポンプを止めて第三熱交換器11の水側流路11cの冷却水への放熱を抑制したり、温水ヒータコア7に流れる冷却水をバイパスさせる流路を設けてもよい。
【0011】
上記のように冷房モード時には、CO冷媒を用いた冷凍サイクルを有効に働かせるために、室外熱交換器4の出口から流出して減圧器13の入口に流入する減圧前の冷媒と、室内熱交換器6の出口から流出して圧縮機1の入口に流入する圧縮前の冷媒とを熱交換させる。すなわち第三熱交換器11の高圧側冷媒流路11bで室外熱交換器4を出た冷媒をさらに冷却することで、室内熱交換器6の入口エンタルピを減少させ、室内熱交換器6でのエンタルピ差を拡大させること、また、COPが最大となる高圧側圧力が低下するため、差圧が小さくなり入力を低減できることから、COPを向上させることができる。したがって、COを冷媒として用いる冷凍サイクル装置の運転効率を向上させることができる。
なお、第三熱交換器11の水側流路11cを流れる冷却水が高圧側冷媒流路11bを流れるCO冷媒より高温である場合には、高圧側冷媒流路11bを流れる冷媒が低圧側冷媒流路11aを流れる冷媒により効率良く冷却されるように、水側流路11cを流れる冷却水をバイパスさせ、水側流路11cを流れる冷却水から高圧側冷媒流路11bを流れる冷媒への熱伝達を抑制してもよい。逆に、第三熱交換器11の水側流路11cを流れる冷却水が高圧側冷媒流路を流れるCO冷媒より低温である場合には、高圧側冷媒流路11bを流れる冷媒を効率良く冷却されるように、積極的に水側流路11cに冷却水を流し、高圧側冷媒流路11bを流れる冷媒から水側流路11cを流れる冷却水への熱伝達を促進してもよい。
【0012】
次に、暖房除湿モード(第二モード)で運転する時には、三方弁12を図中に示す破線矢印方向に切り替え、低圧側冷媒流路バイパス回路11dに設けた電磁弁11eは開となるように制御する。すなわち圧縮機1で圧縮された冷媒は、高温高圧状態となり、室外熱交換器4をバイパスする側に切り替えられた三方弁12を経由して第三熱交換器11の高圧側冷媒流路11bに流入する。第三熱交換器11では高圧側冷媒流路11bを通過する際に、冷媒は水側流路11cを流れる冷却水に放熱し冷却される。このとき水側流路11cを流れる冷却水は加熱される。その後冷媒は、減圧器13により減圧されて、低温低圧の気液二相状態となる。この冷媒は、室内熱交換器6に流入し、室内熱交換器6では空気から吸熱して、気液二相又はガス状態となる。このとき空気は室内熱交換器6にて冷却される。さらに、気液二相又はガス状態となった冷媒の大部分は、低圧側冷媒流路バイパス回路11dに設けた電磁弁11eが開となるように制御されているため、圧力損失の大きい第三熱交換器11の低圧側流路11aを流れずに、低圧側冷媒流路バイパス回路11dを流れて、再び圧縮機1に吸入される。すなわち、暖房除湿モード時においては、第三熱交換器11では、水側流路11cを流れる冷却水を高圧側冷媒流路11bを流れる冷媒で効率よく加熱するために、高圧側冷媒流路11bと低圧側流路11aを流れる冷媒同士は熱交換させないようにしている。
このようなサイクルを繰り返すことにより、高圧側冷媒流路11bにおける冷媒の放熱、すなわち、水側流路11cにおいて加熱された冷却水が、温水ヒータコア7でブロワーファン(図示せず)によりダクト8内に送り込まれた空気を加熱し、加熱された空気が、ダクト8より車室内の吹出口より吹き出されて車室内を暖房する、即ち暖房モードで運転する。一方、室内熱交換器6では、ブロワーファン(図示せず)によりダクト8内に送り込まれて、室内熱交換器6で冷媒吸熱(蒸発)により冷却された空気が、ダクト8より車室内の吹出口(図示せず)より吹き出されて車室内を除湿、すなわち除湿モードで運転するという暖房除湿モード運転が行われる。
【0013】
上記CO冷媒を使用している冷凍サイクル回路においては、暖房除湿モード時の第三熱交換器11の高圧側冷媒流路11b及び低圧側流路11aを流れる冷媒は熱交換していない。つまり、従来の技術の図8で説明した内部熱交換は行われない。しかし、CO冷媒を用いた冷凍サイクルの特性として、以下の特性に着目すれば冷凍サイクル装置のCOPに関してはほとんど影響しないのがわかる。すなわち、第1の特性として、暖房除湿モード時に内部熱交換させて、室内熱交換器6でのエンタルピ差を拡大させても、室内熱交換器6での除湿(冷房)能力は向上するものの、高圧側冷媒流路11bの冷媒が水側冷媒流路11cの冷却水を加熱する暖房能力はあまり向上しない。むしろ内部熱交換を作用させることは、室内熱交換器6でのエンタルピ差が拡大し室内熱交換器6での冷房能力を大きくすることにつながり、除湿は良いとしても暖房には好ましいこととは言えない。さらに第2の特性として、暖房除湿モード時には、高圧側冷媒流路11bの冷媒が水側冷媒流路11cの冷却水を加熱させるために、冷媒の温度を上げて冷却水との温度差を確保する必要がある。このため高圧側圧力を冷房モード時の圧力よりも高くすることになり、冷房モード時のように内部熱交換器を作用させ高圧側圧力を低下させて、COPを向上させることのできる割合が小さい。すなわち暖房除湿モード時の冷凍サイクルのCOPが向上する割合は冷房モードに比べて小さく、内部熱交換器を用いた高効率化は望みにくい。
したがって、内部熱交換器の機能と水冷媒熱交換器の機能を具備した第三熱交換器11を上述のように構成することにより、従来の構成のように、2つ別々に備える必要があった内部熱交換器と水冷媒熱交換器を1つにできるために、高効率な運転が可能な冷凍サイクル装置であっても、構成部品点数を削減して低コスト化を図ることができる。
【0014】
なお、本実施例では、暖房除湿モード時には、三方弁12を用いて室外熱交換器4をバイパスさせる構成としているが、他の方法、例えば、バイパス回路と電磁弁の組み合わせなどで室外熱交換器4をバイパスさせてもよい。また、暖房除湿モード時には、室外熱交換器4をバイパスさせないようにしてもよい。その場合には、例えば、室外ファンを停止するなどして、室外熱交換器4を流れる空気量を低減し、室外熱交換器4での無用な放熱を抑制するようにしてもよい。
【0015】
次に、第三熱交換器11の実施例について説明する。図2は、本実施例の内部熱交換器の機能と水冷媒熱交換器の機能を具備した熱交換器(第三熱交換器11)の概略構成図であり、図3はその側面図である。図2中の破線矢印、実線矢印、二重線矢印は、それぞれ、熱交換器の内部を流れる低圧冷媒、高圧冷媒、冷却水の流れを模式的に示したものである。
図2及び図3に示す熱交換器は、図1における、高圧側冷媒流路11bを形成する部分と、低圧側冷媒流路11aを形成する部分と、水側流路11cを形成する部分と、低圧側冷媒流路バイパス回路11dと電磁弁11eを形成する部分を備えている。
【0016】
図1における高圧側冷媒流路11bを形成する部分は、貫通された複数の貫通孔を有する伝熱管125と、その伝熱管125の長さ方向の両端に接続された一対のヘッダタンク121、122とから構成される。また図1における低圧側冷媒流路11aを形成する部分は、伝熱管125と熱交換するように設けられた貫通された複数の貫通孔を有する伝熱管115と、その伝熱管115の長さ方向の両端に接続された一対のヘッダタンク111、112とから構成される。また図1における水側流路11cを形成する部分は、伝熱管125と熱交換するように設けられた水流路部135と、その水流路部135に接合された水入口管131、水出口管132とから構成される。また図1における低圧側冷媒流路バイパス回路11dと電磁弁11eを形成する部分は、バイパス配管201、及びそのバイパス配管201に接続された電磁弁202とから構成される。
【0017】
まず、低圧側冷媒流路11aは以下のように構成されている。
伝熱管115は、図4に示すように、冷媒が流通する複数の貫通穴302を有するように、押し出し又は引き抜き加工により形成された扁平チューブ301から形成されている。なお、貫通穴302の断面形状は、応力集中を緩和するため、円形状や角が丸められた(Rを有する)矩形状であることが望ましいが、これにこだわるものではなく、流通する冷媒の伝熱を促進するための形状としてもよい。扁平チューブ301の両端は、互いに平行かつ所定の間隔をもって対向するようになるように設けられた一対のヘッダーパイプ111、112に接続されている。例えば、ヘッダーパイプ111には、図5に示すように、円柱状の内部空間205を形成する円筒状のタンク部203、及び、タンク部203の長手方向の両端を閉塞するキャップ部204から構成されており、タンク部203の円周方向に形成されたスリット(図示せず)に挿入された伝熱管115である扁平チューブ301の貫通穴302と内部空間205が連通するようになっている。すなわち、扁平チューブ301は、タンク部203の外側から内側に貫通してタンク部203に挿入された状態でキャップ部204とともに、ろう材によりタンク部203にろう付け接合されている。ちなみに、タンク部203は、押し出し又は引き抜き加工にて成形したものであり、キャップ部204は、削り出し加工、又はダイカスト法にて成形したものである。なお、内部空間205側に面したキャップ部204の内壁面形状は、応力集中を緩和するため、球面状やさら形状としてもよい。さらにヘッダーパイプ112には、図5に示すように、冷媒入口管113がろう付け接合され、冷媒流路を構成している。また、ヘッダーパイプ112と同様に、ヘッダーパイプ111には伝熱管115である扁平チューブ301と冷媒出口管124が接続されている。
高圧側冷媒流路11bは、低圧側冷媒流路11aと同様に構成される。
【0018】
さらに、水側流路11cは以下のように構成されている。
水流路部135は銅、アルミ、ステンレス等の板材を、プレス加工、曲げ加工し、袋状に成形し、その周囲を溶接、ろう付け等により接合することで、内部に機密性のある水流路を形成する。また、水流路部135の両端には水入口管131、水出口管132が接合されている。
また、低圧側冷媒流路バイパス回路11dは、冷媒入口管114や冷媒出口管113と同様にヘッダーパイプ111、112の内部空間に連通するようにろう付け接合されたバイパス配管201により構成されている。なお、図1中の電磁弁11eは図3中では電磁弁202にあたり、バイパス配管201の途中に設置されている。
【0019】
上述のように構成された、伝熱管115、125、水流路部135は、伝熱管125を挟み込むように三層構造を形成し、溶接、ろう付け、圧着等により接合され、伝熱管125を流れる冷媒と水流路部135を流れる冷却水とが、また、伝熱管115を流れる冷媒と伝熱管125を流れる冷媒とが、それぞれ、ほぼ対向流となるように構成されている。なお、水流路部135内部の流体の流れは高圧側冷媒流路11bの冷媒流れに対して、対向して流れる方が望ましいが、図2に示すように、蛇行しながら略対向流として流れるようにしてもよい。
【0020】
このように第三熱交換器11を構成することにより、従来、高圧側冷媒流路11bと低圧側冷媒流路11aを主要構成要素としていた内部熱交換器と、高圧側冷媒流路11bと水側流路11cとを主要構成要素としていた水冷媒熱交換器の2つの熱交換器を、高圧側冷媒流路11bを共用することで、内部熱交換器の機能と水冷媒熱交換器の機能を有した1つの熱交換器とすることで、高効率な運転が可能な冷凍サイクル装置であっても、構成部品点数を削減して低コスト化を図ることができる。
なお、伝熱管115と水流路部135とで行われる熱交換と、伝熱管115と伝熱管125で行われる熱交換とで必要な伝熱面積の異なる場合には、図2、3のように伝熱管115を伝熱管125より短くしたり、あるいは、水流路部135を伝熱管125より短くすることが、熱交換器の小型化の点では望ましい。
あるいは、本実施例では低圧側冷媒流路バイパス回路11dと電磁弁11eは、図3中のバイパス配管201と電磁弁202のように第三熱交換器11と一体構成としたが、同様の機能を有する別の構成要素としてもよい。
【0021】
【発明の効果】
本発明によれば、第三熱交換器の高圧側冷媒流路を内部熱交換器の高圧側流路と水熱交換器の冷媒側流路の両方の役割で使用することにより、2つ別々に備える必要があった内部熱交換器と水冷媒熱交換器を1つにできるために、高効率な運転が可能な冷凍サイクル装置であっても、構成部品点数を削減して低コスト化を図ることができる効果を有する。
さらに、本発明によれば、第三熱交換器の水側流路の流量を調節することにより、第三熱交換器での放熱を有効に利用して、さらに高効率な運転が可能となる効果を有する。
さらに、本発明によれば、第三熱交換器の低圧側冷媒流路をバイパスすることにより、第三熱交換器での無用な放熱を抑制して、さらに高効率な運転が可能となる効果を有する。
また、本発明によれば、バイパス流路や電磁弁を第三熱交換器に一体化することにより、2つ別々に備える必要があった内部熱交換器と水冷媒熱交換器、かつ、バイパス流路や電磁弁を1つにできるために、高効率な運転が可能な冷凍サイクル装置であっても、構成部品点数を削減して低コスト化を図ることができる効果を有する。
【図面の簡単な説明】
【図1】本発明による実施例の冷凍サイクル装置を示す図
【図2】本発明による実施例の冷凍サイクル装置の熱交換器を示す図
【図3】本発明による実施例の冷凍サイクル装置の熱交換器を示す図
【図4】本発明による実施例の冷凍サイクル装置の熱交換器の構成要素を示す図
【図5】本発明による実施例の冷凍サイクル装置の熱交換器の構成要素を示す図
【図6】従来の車両用空気調和装置を示す図
【図7】従来の超臨界蒸気圧縮サイクル装置を示す図
【図8】図7に示す超臨界蒸気圧縮サイクル装置のモリエル線図を示す図
【図9】図6に示す車両用空気調和装置に内部熱交換器を設けた超臨界蒸気圧縮サイクル装置を示す図
【符号の説明】
1 圧縮機
2 水冷媒熱交換器
3 第一減圧器
4 第一熱交換器(室外熱交換器)
5 第二減圧器
6 第二熱交換器(室内熱交換器)
7 温水ヒータコア
8 ダクト
9 ミックスダンパ
10 内部熱交換器
11 第三熱交換器
11a 低圧側流路(第三熱交換器の低圧側流路)
11b 高圧側流路(第三熱交換器の高圧側流路)
11c 水側流路(第三熱交換器の水側流路)
11d,201 低圧側流路バイパス回路(第三熱交換器の低圧側流路バイパス回路)
11e,202 電磁弁(第三熱交換器に備えられた電磁弁)
12 流れ方向切替弁(三方弁)
13 減圧器
111,112,121,122 ヘッダーパイプ
113,123 冷媒入口管
114,124 冷媒出口管
115,125 伝熱管
131 水入口管
132 水出口管
135 水流路部
203 タンク部
204 キャップ部
205 ヘッダーパイプの内部空間
301 扁平チューブ
302 貫通穴
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration cycle device using carbon dioxide as a refrigerant, which can be used as an air conditioner for a vehicle such as an electric vehicle, and a heat exchanger suitable for the refrigeration cycle device.
[0002]
[Prior art]
In recent years, electric vehicles have been provided from the viewpoint of environmental protection. However, due to insufficient battery capacity, hybrid electric vehicles equipped with a driving auxiliary engine or a power generation engine have been proposed. Further, an electric vehicle employing a fuel cell that generates power by an electrochemical reaction has been proposed.
By the way, as a vehicle air conditioner utilizing the exhaust heat of the engine provided in an electric vehicle or the exhaust heat from an on-vehicle device such as a fuel cell at the time of heating, there is a technology disclosed in Patent Document 1, for example. . The configuration of the conventional vehicle air conditioner will be described with reference to FIG.
The vehicle air conditioner shown in FIG. 6 includes a compressor 1, a water-refrigerant heat exchanger 2 configured to exchange heat between a water-side flow path 2a and a refrigerant-side flow path 2b, a first decompressor 3, an outdoor heat source. A refrigeration cycle in which the exchanger 4, the second decompressor 5, the indoor heat exchanger 6, and the like are connected by piping, and a cooling unit that cools a heating element such as a water-refrigerant heat exchanger 2, a hot water heater core 7, an engine or a fuel cell (FIG. (Not shown), a circulating pump (not shown) and the like are connected by piping. A blower fan (not shown), for example, passes air blown into the cabin of an automobile through an indoor heat exchanger 6 and a hot water heater core 7 accommodated in a duct 8 to perform cooling and heating dehumidification. It is. In the drawings, solid arrows indicate the flow direction of the refrigerant, and white arrows indicate the flow directions of the air.
The operation of the refrigeration cycle apparatus shown in FIG. 6 will be described. First, in the cooling mode, the first decompressor 3 is fully opened, and the second depressurizer 5 does not function as the depressor, but performs the function as the depressurizer. That is, the refrigerant compressed by the compressor 1 is in a high-temperature and high-pressure state, and when passing through the refrigerant-side flow path 2b of the water-refrigerant heat exchanger 2 and the outdoor heat exchanger 4, radiates heat to cooling water or air to be cooled. . Thereafter, the refrigerant is decompressed by the second decompressor 5 to be in a low-temperature low-pressure gas-liquid two-phase state. In the indoor heat exchanger 6, the refrigerant absorbs heat from the air sent into the duct 8 by a blower fan (not shown) to be in a gas-liquid two-phase or gas state, while the sent air is cooled. Further, the refrigerant in the gas-liquid two-phase or gas state is sucked into the compressor 1 again. By repeating such a cycle, the cooled air is blown out of the duct 8 from an outlet (not shown) in the vehicle compartment to cool the vehicle compartment. At this time, the temperature of the air blown into the vehicle compartment can be adjusted by adjusting the opening of the mix damper 9. Also, by controlling the rotation speed of the compressor 1 by fully closing the mix damper 9 and bypassing all air without passing through the hot water heater core 7, the temperature of the air blown into the vehicle compartment can be adjusted. Here, the efficiency of the refrigeration cycle device is better.
Next, in the heating and dehumidifying mode, the second pressure reducer 5 is fully opened, and the first pressure reducer 3 does not function as the pressure reducer, but functions as the pressure reducer. That is, the refrigerant compressed by the compressor 1 is in a high-temperature and high-pressure state and, when passing through the refrigerant-side flow path 2b of the water-refrigerant heat exchanger 2, releases heat to the cooling water flowing through the water-side flow path 2a and is cooled. On the other hand, the cooling water flowing through the water-side flow path 2a of the water-refrigerant heat exchanger 2 is heated to become hot water. Thereafter, the refrigerant is decompressed by the first decompressor 3 to be in a low-temperature, low-pressure gas-liquid two-phase state. Further, in the outdoor heat exchanger 4, heat is absorbed by the outside air, and in the indoor heat exchanger 6, heat is absorbed from the air sent into the duct 8 by a blower fan (not shown), so as to be in a gas-liquid two-phase or gas state. At this time, the sent air is cooled by the indoor heat exchanger 6. Then, the refrigerant in the gas-liquid two-phase or gas state is sucked into the compressor 1 again. By repeating such a cycle, the cooled air is blown out from the duct 8 through an air outlet (not shown) in the vehicle interior to dehumidify the vehicle interior. On the other hand, the cooling water heated by the refrigerant in the water-refrigerant heat exchanger 2 heats the air sent into the duct 8 by the blower fan (not shown) in the hot water heater core 7. The heated air is blown out of the duct 8 from an outlet (not shown) in the vehicle compartment to heat the vehicle compartment. At this time, the temperature of the air blown into the vehicle compartment can be adjusted by adjusting the opening of the mix damper 9. Also, by controlling the rotation speed of the compressor 1 by fully opening the mix damper 9 and passing all the air through the hot water heater core 7, the temperature of the air blown into the vehicle compartment can be adjusted. The efficiency of the refrigeration cycle device is good.
Conventionally, hydrocarbons containing fluorine atoms (fluorocarbons) have been used as the refrigerant sealed in the refrigeration cycle apparatus operated in this manner. However, fluorocarbons are not necessarily satisfactory refrigerants because they have the property of destroying the ozone layer and affect global warming. Therefore, instead of chlorofluorocarbons, a refrigerant of carbon dioxide (hereinafter referred to as CO2), which has an ozone depletion potential of zero and a significantly lower global warming potential than fluorocarbons 2 A refrigeration cycle using a refrigerant is being studied.
However, CO 2 The refrigerant has a critical temperature as low as 31.06 ° C., and on the high pressure side of a normal refrigeration cycle (from the compressor outlet to the inlet of the pressure reducer via the radiator) 2 It can be a supercritical cycle in which refrigerant condensation does not occur. 2 Since the refrigerant has a problem that the theoretical efficiency of the substance is low and the efficiency (COP) of the refrigeration cycle is reduced, there is a method for improving the efficiency of the refrigeration cycle by providing an internal heat exchanger. There is a supercritical vapor compression cycle device shown in
This prior art will be described with reference to FIGS. The supercritical vapor compression cycle device shown in FIG. 7 includes a compressor 1, an outdoor heat exchanger (radiator) 4, a pressure reducer 5, an indoor heat exchanger (evaporator) 6, a low-pressure side flow path 10a and a high-pressure side. The flow path 10b includes an internal heat exchanger 10 configured to exchange heat. The low-pressure side flow path 10a of the internal heat exchanger 10 is configured so that the refrigerant flows from the outlet of the indoor heat exchanger 6 to the inlet of the compressor 1, and the high-pressure side flow path 10b is connected to the outdoor heat exchanger. The refrigerant flows between the four outlets and the inlet of the pressure reducer 11.
The state change in the supercritical vapor compression cycle of such a refrigeration cycle device is indicated by A → B → C → D → E → F → A in the Mollier diagram shown in FIG. That is, with reference to FIGS. 7 and 8, the refrigerant shown at point A is compressed by the compressor 1 to be in a supercritical high-temperature and high-pressure state shown at point B, and at the outdoor heat exchanger 4 at point C Cooled down. The refrigerant flowing out of the outdoor heat exchanger 4 flows into the high-pressure side flow path 10b of the internal heat exchanger 10, and is further cooled to a point D. That is, in the Mollier diagram, the enthalpy between C and D changes. Then, the pressure is reduced by the pressure reducer 11 to be in a low-temperature and low-pressure gas-liquid two-phase state indicated by the point E, and thereafter, it is vaporized by the indoor heat exchanger 6 to reach the point F. The refrigerant flowing out of the indoor heat exchanger 6 is further heated to the point A in the low-pressure side flow path 10a of the internal heat exchanger 10, and is compressed again by the compressor 1. Thus, in the internal heat exchanger 10, the refrigerant before decompression flowing out of the outdoor heat exchanger 4 and flowing into the decompressor 11 and the refrigerant before compression flowing out of the indoor heat exchanger 6 and flowing into the compressor 1. Heat is exchanged with the refrigerant.
When a refrigeration cycle apparatus provided with such an internal heat exchanger 10 is compared with a refrigeration cycle apparatus not provided with the internal heat exchanger 10, the refrigeration capacity is between EE '(that is, corresponding to CD). Enthalpy difference. On the other hand, the input of the compressor 1 (the enthalpy difference between A and B or the enthalpy difference between FB ′) does not change significantly depending on the presence or absence of the internal heat exchanger 10, or the high pressure side where the COP is maximized. The pressure decreases and the differential pressure decreases, so it decreases. Therefore, the COP, which is a value obtained by dividing the refrigerating capacity by the compressor input, can be improved.
[0003]
[Patent Document 1]
JP-A-8-197937
[Patent Document 2]
Japanese Patent No. 2132329
[0004]
[Problems to be solved by the invention]
By the way, as shown in FIG. 6, the refrigeration cycle apparatus that switches between the cooling mode and the heating and dehumidifying mode by using one of the first depressurizer 3 and the second depressurizer 5 as a depressurizer has the same configuration. CO that does not destroy ozone and has little impact on global warming 2 If the refrigerant is used as a supercritical vapor compression cycle and the refrigeration cycle device uses an internal heat exchanger, a refrigeration cycle device as shown in FIG. 9 can be proposed.
The refrigeration cycle apparatus shown in FIG. 9 is provided with an internal heat exchanger 10 in the refrigeration cycle apparatus of FIG. 6, and in a cooling mode, refrigerant before decompression flowing out of the outdoor heat exchanger 4 and flowing into the decompressor 11, It is configured to exchange heat with the uncompressed refrigerant flowing out of the indoor heat exchanger 6 and flowing into the compressor 1. However, in such a configuration, the number of components constituting the refrigeration cycle device increases, the time and labor required for assembling and the mounting space at the time of manufacturing the refrigeration cycle device increase, and problems such as high cost arise.
[0005]
Therefore, the present invention provides 2 It is an object of the present invention to provide a refrigeration cycle apparatus that uses a refrigerant and that can reduce the number of components and reduce cost, and a heat exchanger suitable for the refrigeration cycle apparatus.
[0006]
[Means for Solving the Problems]
The refrigeration cycle apparatus according to the first aspect of the present invention uses carbon dioxide as a refrigerant, and includes at least a compressor, a first heat exchanger, a high-pressure side refrigerant flow path of a third heat exchanger, a pressure reducer, and a second heat exchanger. A refrigeration cycle circuit sequentially connecting the low-pressure side refrigerant flow path of the third heat exchanger, and a hot water circuit connecting at least a water-side flow path of the third heat exchanger and a hot water heater core; In the flow path, a refrigerant flowing between the first heat exchanger and the decompressor flows, and in the low-pressure side refrigerant flow path, a refrigeration flowing the refrigerant flowing between the second heat exchanger and the compressor. In the cycle device, the third heat exchanger is configured to exchange heat with the refrigerant flowing through the high-pressure side refrigerant flow path with the refrigerant flowing through the low-pressure side refrigerant flow path and / or the fluid flowing through the hot water circuit. It is characterized by.
According to a second aspect of the present invention, in the refrigeration cycle apparatus according to the first aspect, a first mode operation of exchanging heat between the refrigerant flowing through the high-pressure side refrigerant flow path and the refrigerant flowing through the low-pressure side refrigerant flow path, A second mode operation for exchanging heat between the refrigerant flowing through the high-pressure side refrigerant flow path and the fluid flowing through the hot water circuit is provided.
According to a third aspect of the present invention, in the refrigeration cycle apparatus according to the second aspect, the refrigerant discharged from the compressor is caused to flow into the first heat exchanger or to bypass the first heat exchanger. Further comprising a flow direction switching valve for switching the flow, in the first mode operation, the refrigerant discharged from the compressor flows into the first heat exchanger, in the second mode operation, the first heat exchanger The flow direction switching valve is controlled so as to be bypassed.
According to a fourth aspect of the present invention, in the refrigeration cycle apparatus according to the second aspect, in the first mode operation, the temperature of the fluid flowing through the water-side flow path is the temperature of the refrigerant flowing through the high-pressure side refrigerant flow path. When the pressure is higher, the flow rate of the fluid flowing into the water-side flow path is controlled to be stopped or reduced.
According to a fifth aspect of the present invention, in the refrigeration cycle apparatus according to the second aspect, in the first mode operation, control is performed so as to stop or reduce a flow rate of the fluid flowing into the water-side flow path. Features.
According to a sixth aspect of the present invention, there is provided the refrigeration cycle apparatus according to the second aspect, wherein the refrigerant flowing out of the second heat exchanger bypasses the low-pressure side refrigerant flow path and flows into the compressor. And a solenoid valve provided in the bypass passage. In the second mode operation, the solenoid valve is controlled so as to bypass the low-pressure side refrigerant passage.
According to a seventh aspect of the present invention, in the refrigeration cycle apparatus according to the sixth aspect, the third heat exchanger includes the bypass passage and the solenoid valve.
The heat exchanger of the present invention according to claim 8 is a refrigeration system having a water-side flow path connected to a hot water circuit having a hot water heater core, a compressor, a first heat exchanger, a decompressor, and a second heat exchanger. It is characterized by comprising a high-pressure side refrigerant flow path connected to the high-pressure side refrigerant flow path of the cycle circuit, and a low-pressure side refrigerant flow path connected to the low-pressure side refrigerant flow path of the refrigeration cycle circuit.
According to a ninth aspect of the present invention, in the heat exchanger according to the eighth aspect, a refrigerant flowing through the high-pressure side refrigerant flow path, a refrigerant flowing through the low pressure side refrigerant flow path, and / or a fluid flowing through the hot water circuit are provided. And heat exchange.
According to a tenth aspect of the present invention, in the heat exchanger according to the eighth aspect, the heat exchanger includes a bypass flow path that bypasses the low-pressure side refrigerant flow path, and an electromagnetic valve that controls a refrigerant flow in the bypass flow path. It is characterized by the following.
According to an eleventh aspect of the present invention, in the heat exchanger according to the eighth aspect, carbon dioxide is used as a refrigerant.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The refrigeration cycle apparatus according to the first embodiment of the present invention is configured such that the refrigerant flowing through the high-pressure side refrigerant flow path exchanges heat with the refrigerant flowing through the low-pressure side refrigerant flow path and / or the fluid flowing through the hot water circuit. It constitutes a heat exchanger. According to the present embodiment, since the internal heat exchanger and the water-refrigerant heat exchanger, which had to be provided separately, can be integrated into one, even in a refrigeration cycle apparatus capable of highly efficient operation, The number of components can be reduced, and cost can be reduced.
Further, the second embodiment according to the present invention is directed to a refrigeration cycle apparatus according to the first embodiment, in which a heat exchange is performed between the refrigerant flowing through the high-pressure side refrigerant flow path and the refrigerant flowing through the low-pressure side refrigerant flow path. And a second mode operation for exchanging heat between the refrigerant flowing through the high-pressure side refrigerant flow path and the fluid flowing through the hot water circuit. According to the present embodiment, by having two mode operations, the high-temperature refrigerant can be exchanged with the low-temperature refrigerant or the low-temperature fluid.
In a third embodiment according to the present invention, in the refrigeration cycle apparatus according to the second embodiment, in the first mode operation, the refrigerant discharged from the compressor is supplied to the first heat exchanger by the flow direction switching valve. In the second mode operation, the first heat exchanger is bypassed. According to the present embodiment, unnecessary heat radiation in the first heat exchanger is suppressed by controlling the flow direction switching valve, and heat can be sufficiently transmitted to the fluid flowing through the water-side circuit.
According to a fourth embodiment of the present invention, in the refrigeration cycle apparatus according to the second embodiment, in the first mode operation, the temperature of the fluid flowing through the water-side flow path is changed by the refrigerant flowing through the high-pressure side refrigerant flow path. If the temperature is lower than the temperature, control is performed so that the fluid flows into the water-side flow path. According to the present embodiment, the COP of the refrigeration cycle can be increased by effectively utilizing the heat release to the fluid flowing through the water-side flow path.
According to a fifth embodiment of the present invention, in the refrigeration cycle apparatus according to the second embodiment, in the first mode operation, control is performed so as to stop or reduce the flow rate of the fluid flowing into the water-side flow path. Things. According to the present embodiment, it is possible to suppress unnecessary heat transfer from the fluid flowing through the water-side flow path and increase the COP of the refrigeration cycle.
A sixth embodiment according to the present invention controls the solenoid valve so as to bypass the low-pressure side refrigerant flow path in the second mode operation in the refrigeration cycle apparatus according to the second embodiment. According to the present embodiment, in the second mode operation, heat exchange between the refrigerant flowing through the high-pressure side refrigerant flow path and the refrigerant flowing through the low-pressure side refrigerant flow path is not performed, so that the refrigerant flows through the water-side flow path. The heat can be sufficiently transferred to the fluid.
According to a seventh embodiment of the present invention, in the refrigeration cycle apparatus according to the sixth embodiment, the third heat exchanger includes a bypass passage and a solenoid valve. According to the present embodiment, since the third heat exchanger includes the bypass flow path and the solenoid valve, the number of components can be reduced and cost can be reduced.
The heat exchanger according to the eighth embodiment of the present invention includes a water-side flow path connected to a hot water circuit having a hot water heater core, a compressor, a first heat exchanger, a decompressor, and a second heat exchanger. And a low-pressure side refrigerant flow path connected to the high-pressure side refrigerant flow path of the refrigeration cycle circuit having a refrigeration cycle circuit. According to the present embodiment, since the internal heat exchanger and the water-refrigerant heat exchanger, which had to be provided separately, can be integrated into one, even in a refrigeration cycle apparatus capable of highly efficient operation, The number of components can be reduced, and cost can be reduced.
In a ninth embodiment according to the present invention, in the heat exchanger according to the eighth embodiment, the refrigerant flowing through the high pressure side refrigerant flow path, the refrigerant flowing through the low pressure side refrigerant flow path, and / or the hot water circuit are provided. It is configured to exchange heat with flowing fluid. According to the present embodiment, the high-temperature refrigerant can exchange heat with the low-temperature refrigerant and / or the low-temperature fluid.
In a tenth embodiment according to the present invention, in the heat exchanger according to the eighth embodiment, a bypass flow path that bypasses the low-pressure side refrigerant flow path and an electromagnetic valve that controls the flow of the refrigerant in the bypass flow path are provided. It is provided. According to the present embodiment, the provision of the bypass flow path and the solenoid valve can reduce the number of components and reduce cost.
The eleventh embodiment according to the present invention uses carbon dioxide as a refrigerant in the heat exchanger according to the eighth embodiment. According to the present embodiment, by using carbon dioxide as the refrigerant, higher-temperature heat radiation can be utilized.
[0008]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a refrigeration cycle apparatus according to an embodiment of the present invention. In the drawing, solid and broken arrows indicate the flow direction of the refrigerant, and white arrows indicate the flow direction of the air, respectively. . The refrigeration cycle apparatus of the present embodiment has at least CO 2 2 It includes a refrigeration cycle circuit using a refrigerant and a hot water circuit using a fluid such as water.
The refrigeration cycle circuit includes at least a compressor 1, a three-way valve 12 as a flow direction switching valve, an outdoor heat exchanger 4 as a first heat exchanger, a high-pressure side refrigerant flow path 11b of a third heat exchanger 11, and a pressure reducer 13. The indoor heat exchanger 6 as a second heat exchanger and the low-pressure side refrigerant flow path 11a of the third heat exchanger 11 are sequentially connected by piping to form a refrigerant flow path. The refrigerant inlet side (hereinafter, abbreviated as “inlet”) of the three-way valve 12 is connected to a refrigerant outlet side (hereinafter, abbreviated as “outlet”) of the compressor 1 by a pipe to form a refrigerant flow path. Is connected to the inlet of the first heat exchanger 4 by a pipe to form a refrigerant flow path, and the other end of the three-way valve 12 outlet is connected to the inlet of the high-pressure side refrigerant flow path 11b of the third heat exchanger 11 by a pipe. To form a refrigerant flow path. Further, the refrigeration cycle circuit includes a low pressure side refrigerant flow path bypass circuit 11d that connects the compressor 1 inlet and the indoor heat exchanger 6 outlet and bypasses the low pressure side refrigerant flow path 11a, and an electromagnetic wave provided in the bypass circuit 11d. And a valve 11e.
Here, the low pressure side refrigerant flow path 11a and the high pressure side refrigerant flow path 11b of the third heat exchanger 11 2 The refrigerant is configured to exchange heat with each other, and is connected to the low-pressure side refrigerant flow path 11a so that the refrigerant flows from the outlet of the indoor heat exchanger 6 to the inlet of the compressor 1 by piping. The refrigerant flow path 11b is connected by piping so that the refrigerant flows from the outdoor heat exchanger 4 outlet to the pressure reducer 10 inlet.
On the other hand, the hot water circuit connects at least the water-side flow path 11c of the third heat exchanger 11 and the hot water heater core 7 by piping, and further includes a cooling unit (see FIG. 1) for cooling a heating element such as an engine or a fuel cell. (Not shown) and a circulation pump (not shown). Here, the high pressure side refrigerant flow path 11b and the water side flow path 11c of the third heat exchanger 11 are connected to the CO flowing through the high pressure side refrigerant flow path 11b. 2 The refrigerant and the cooling water flowing through the water-side flow path 11c are configured to exchange heat.
[0009]
An operation method of the refrigeration cycle apparatus shown in FIG. 1 will be described. The refrigeration cycle apparatus according to the present embodiment is operated in a supercritical vapor compression cycle in which the refrigerant pressure on the high pressure side exceeds a critical point.
First, when operating in the cooling mode (first mode), the three-way valve 12 is switched in the direction of the solid line arrow shown in the drawing, and the solenoid valve 11e provided in the low-pressure side refrigerant flow path bypass circuit 11d is controlled to be closed. . That is, the refrigerant compressed by the compressor 1 enters a high-temperature and high-pressure state, and flows into the outdoor heat exchanger 4 via the three-way valve 12 switched to the side where the refrigerant flows into the outdoor heat exchanger 4. Then, in the outdoor heat exchanger 4, heat is radiated to air blown by an electric fan (not shown) or traveling wind generated when the vehicle travels, and is cooled. Thereafter, the refrigerant flows into the high-pressure side refrigerant flow path 11b of the third heat exchanger 11, exchanges heat with the low-temperature refrigerant flowing through the low-pressure side flow path 11a, and is further cooled. Further, the refrigerant flowing out of the high-pressure side refrigerant flow path 11b is decompressed by the decompressor 13 to be in a low-pressure gas-liquid two-phase state. This refrigerant absorbs heat from the air sent into the duct 8 by the blower fan (not shown) in the indoor heat exchanger 6, and becomes a gas-liquid two-phase or gas state. At this time, the air is cooled by the indoor heat exchanger 6. Since the refrigerant in the gas-liquid two-phase or gas state controls the solenoid valve 11e provided in the low-pressure side refrigerant flow path bypass circuit 11d to be closed, the low-pressure side refrigerant of the third heat exchanger 11 After cooling the refrigerant flowing into the flow path 11a and flowing through the high-pressure side flow path 11b, it is sucked into the compressor 1 again. By repeating such a cycle, the air cooled by the heat absorption of the refrigerant in the indoor heat exchanger 6 is blown out of the duct 8 from an outlet (not shown) in the vehicle interior, thereby cooling the vehicle interior. Mode operation is performed.
[0010]
By the way, in the refrigeration cycle apparatus shown in FIG. 1, an indoor heat exchanger 6 to be cooled and a hot water heater core 7 to be heated are arranged in the same duct 8. Therefore, the temperature of the air blown into the vehicle compartment can be adjusted by adjusting the opening of the mix damper 9. However, in the cooling mode, the temperature of the air blown into the vehicle compartment can also be adjusted by fully closing the mix damper, bypassing the hot water heater core 7 with all air, and controlling the rotation speed of the compressor 1. It is more efficient. Further, in order to maximize the cooling capacity, the mix damper 9 is fully closed to bypass the hot water heater core 7 with all air, and the heat radiation from the hot water heater core 7 is minimized, for example, by stopping the circulation pump. A flow path that suppresses heat radiation to the cooling water in the water-side flow path 11c of the third heat exchanger 11 or that bypasses the cooling water flowing through the hot water heater core 7 may be provided.
[0011]
In the cooling mode as described above, CO 2 In order to effectively operate the refrigeration cycle using the refrigerant, the refrigerant before depressurization flowing out of the outlet of the outdoor heat exchanger 4 and flowing into the inlet of the decompressor 13 and the refrigerant flowing out of the outlet of the indoor heat exchanger 6 and compressed. Heat is exchanged with the uncompressed refrigerant flowing into the inlet of the machine 1. That is, by further cooling the refrigerant that has exited the outdoor heat exchanger 4 in the high-pressure side refrigerant flow path 11b of the third heat exchanger 11, the enthalpy of the inlet of the indoor heat exchanger 6 is reduced. Since the enthalpy difference is increased, and the high-pressure side pressure at which the COP is maximized decreases, the differential pressure decreases and the input can be reduced, so that the COP can be improved. Therefore, CO 2 The operating efficiency of a refrigeration cycle device using as a refrigerant can be improved.
Note that the cooling water flowing through the water-side flow path 11c of the third heat exchanger 11 is cooled by CO2 flowing through the high-pressure side refrigerant flow path 11b. 2 When the temperature is higher than the refrigerant, the cooling water flowing through the water-side flow path 11c is bypassed so that the refrigerant flowing through the high-pressure-side refrigerant flow path 11b is efficiently cooled by the refrigerant flowing through the low-pressure-side refrigerant flow path 11a. Heat transfer from the cooling water flowing through the water-side flow path 11c to the refrigerant flowing through the high-pressure-side refrigerant flow path 11b may be suppressed. Conversely, the cooling water flowing through the water side flow path 11c of the third heat exchanger 11 is 2 When the temperature of the refrigerant is lower than that of the refrigerant, the cooling water is positively flown into the water-side flow path 11c so that the refrigerant flowing through the high-pressure side refrigerant flow path 11b is efficiently cooled. From the cooling water flowing through the water-side flow path 11c.
[0012]
Next, when operating in the heating and dehumidifying mode (second mode), the three-way valve 12 is switched in the direction of the dashed arrow shown in the drawing, and the solenoid valve 11e provided in the low-pressure side refrigerant flow path bypass circuit 11d is opened. Control. That is, the refrigerant compressed by the compressor 1 enters a high-temperature and high-pressure state and passes through the three-way valve 12 switched to the side that bypasses the outdoor heat exchanger 4 to the high-pressure side refrigerant flow path 11b of the third heat exchanger 11. Inflow. In the third heat exchanger 11, when passing through the high-pressure side refrigerant flow path 11b, the refrigerant radiates heat to the cooling water flowing through the water side flow path 11c and is cooled. At this time, the cooling water flowing through the water-side flow path 11c is heated. Thereafter, the refrigerant is depressurized by the decompressor 13 to be in a low-temperature low-pressure gas-liquid two-phase state. This refrigerant flows into the indoor heat exchanger 6, where the refrigerant absorbs heat from the air and becomes a gas-liquid two-phase or gas state. At this time, the air is cooled by the indoor heat exchanger 6. Further, since most of the refrigerant in the gas-liquid two-phase or gas state is controlled so that the solenoid valve 11e provided in the low-pressure-side refrigerant flow path bypass circuit 11d is opened, the third pressure loss is large. The refrigerant flows through the low-pressure side refrigerant flow path bypass circuit 11d without flowing through the low-pressure side flow path 11a of the heat exchanger 11, and is sucked into the compressor 1 again. That is, in the heating and dehumidifying mode, in the third heat exchanger 11, the cooling water flowing through the water-side flow path 11c is efficiently heated by the refrigerant flowing through the high-pressure side refrigerant flow path 11b. The refrigerant flowing through the low-pressure side flow passage 11a is prevented from exchanging heat.
By repeating such a cycle, the heat radiation of the refrigerant in the high-pressure side refrigerant flow path 11b, that is, the cooling water heated in the water side flow path 11c is supplied to the duct 8 by the hot water heater core 7 by a blower fan (not shown). Then, the heated air is blown out of the duct 8 through the air outlet in the vehicle compartment to heat the vehicle compartment, that is, operates in a heating mode. On the other hand, in the indoor heat exchanger 6, air blown into the duct 8 by a blower fan (not shown) and cooled by heat absorption (evaporation) of the refrigerant in the indoor heat exchanger 6 is blown from the duct 8 into the vehicle interior. A heating and dehumidifying mode operation is performed in which the air is blown out from an outlet (not shown) and the vehicle interior is dehumidified, that is, operated in a dehumidifying mode.
[0013]
The above CO 2 In the refrigeration cycle circuit using the refrigerant, the refrigerant flowing through the high-pressure side refrigerant flow path 11b and the low-pressure side flow path 11a of the third heat exchanger 11 in the heating and dehumidifying mode does not exchange heat. That is, the internal heat exchange described with reference to FIG. 8 of the related art is not performed. However, CO 2 Focusing on the following characteristics as characteristics of the refrigeration cycle using the refrigerant, it is understood that the COP of the refrigeration cycle device has almost no effect. That is, as a first characteristic, even when the internal heat exchange is performed in the heating and dehumidifying mode to increase the enthalpy difference in the indoor heat exchanger 6, the dehumidifying (cooling) ability in the indoor heat exchanger 6 is improved. The heating capacity in which the refrigerant in the high-pressure side refrigerant flow path 11b heats the cooling water in the water-side refrigerant flow path 11c does not improve much. Rather, applying the internal heat exchange leads to an increase in the enthalpy difference in the indoor heat exchanger 6 and an increase in the cooling capacity in the indoor heat exchanger 6, and it is preferable that dehumidification is good but heating is good. I can not say. Further, as a second characteristic, in the heating and dehumidifying mode, the refrigerant in the high-pressure refrigerant flow path 11b heats the cooling water in the water-side refrigerant flow path 11c, so that the temperature of the refrigerant is raised to secure a temperature difference from the cooling water. There is a need to. For this reason, the high pressure side pressure is made higher than the pressure in the cooling mode, and as in the cooling mode, the ratio at which the internal heat exchanger acts to lower the high pressure side pressure and improve the COP is small. . That is, the rate of improvement in the COP of the refrigeration cycle in the heating and dehumidifying mode is smaller than that in the cooling mode, and it is difficult to expect high efficiency using the internal heat exchanger.
Therefore, by configuring the third heat exchanger 11 having the function of the internal heat exchanger and the function of the water-refrigerant heat exchanger as described above, it is necessary to separately provide two as in the conventional configuration. Since the internal heat exchanger and the water-refrigerant heat exchanger can be integrated into one, even in a refrigeration cycle apparatus that can operate with high efficiency, the number of components can be reduced and the cost can be reduced.
[0014]
In the present embodiment, the outdoor heat exchanger 4 is configured to be bypassed by using the three-way valve 12 in the heating and dehumidifying mode. However, the outdoor heat exchanger may be configured by another method, for example, by a combination of a bypass circuit and a solenoid valve. 4 may be bypassed. In the heating and dehumidifying mode, the outdoor heat exchanger 4 may not be bypassed. In that case, for example, by stopping the outdoor fan, the amount of air flowing through the outdoor heat exchanger 4 may be reduced, and unnecessary heat radiation in the outdoor heat exchanger 4 may be suppressed.
[0015]
Next, an embodiment of the third heat exchanger 11 will be described. FIG. 2 is a schematic configuration diagram of a heat exchanger (third heat exchanger 11) having a function of an internal heat exchanger and a function of a water-refrigerant heat exchanger of the present embodiment, and FIG. 3 is a side view thereof. is there. Dashed arrows, solid arrows, and double arrows in FIG. 2 schematically show flows of the low-pressure refrigerant, the high-pressure refrigerant, and the cooling water flowing inside the heat exchanger, respectively.
The heat exchanger shown in FIGS. 2 and 3 includes a portion forming the high-pressure side refrigerant channel 11b, a portion forming the low-pressure side refrigerant channel 11a, and a portion forming the water-side channel 11c in FIG. And a portion forming a low pressure side refrigerant flow path bypass circuit 11d and an electromagnetic valve 11e.
[0016]
A portion forming the high-pressure side refrigerant flow path 11b in FIG. 1 includes a heat transfer tube 125 having a plurality of through holes penetrated, and a pair of header tanks 121 and 122 connected to both ends of the heat transfer tube 125 in the longitudinal direction. It is composed of Further, a portion forming the low-pressure side refrigerant flow path 11a in FIG. 1 includes a heat transfer tube 115 having a plurality of penetrated through holes provided to exchange heat with the heat transfer tube 125, and a length direction of the heat transfer tube 115. And a pair of header tanks 111 and 112 connected to both ends of the header tank. Further, a portion forming the water-side flow passage 11c in FIG. 1 includes a water flow passage 135 provided to exchange heat with the heat transfer tube 125, a water inlet pipe 131, and a water outlet pipe joined to the water flow passage 135. 132. The portion forming the low pressure side refrigerant flow path bypass circuit 11d and the electromagnetic valve 11e in FIG. 1 includes a bypass pipe 201 and an electromagnetic valve 202 connected to the bypass pipe 201.
[0017]
First, the low-pressure side refrigerant passage 11a is configured as follows.
As shown in FIG. 4, the heat transfer tube 115 is formed from a flat tube 301 formed by extrusion or drawing so as to have a plurality of through holes 302 through which the refrigerant flows. The cross-sectional shape of the through hole 302 is desirably a circular shape or a rectangular shape having rounded corners (having a radius) in order to reduce stress concentration, but is not limited to this, and is not limited to this. It may be shaped to promote heat transfer. Both ends of the flat tube 301 are connected to a pair of header pipes 111 and 112 provided so as to be parallel to each other and to face each other at a predetermined interval. For example, the header pipe 111 includes, as shown in FIG. 5, a cylindrical tank portion 203 forming a cylindrical internal space 205, and cap portions 204 closing both ends of the tank portion 203 in the longitudinal direction. The through-hole 302 of the flat tube 301, which is the heat transfer tube 115 inserted into a slit (not shown) formed in the circumferential direction of the tank 203, communicates with the internal space 205. That is, the flat tube 301 is brazed to the tank 203 together with the cap 204 while being inserted into the tank 203 from the outside to the inside of the tank 203 by brazing material. Incidentally, the tank portion 203 is formed by extrusion or drawing, and the cap portion 204 is formed by shaving or die casting. The shape of the inner wall surface of the cap portion 204 facing the inner space 205 may be spherical or flat to reduce stress concentration. Further, as shown in FIG. 5, a coolant inlet pipe 113 is brazed to the header pipe 112 to form a coolant channel. Further, similarly to the header pipe 112, a flat tube 301 as the heat transfer tube 115 and a refrigerant outlet tube 124 are connected to the header pipe 111.
The high-pressure side refrigerant channel 11b is configured similarly to the low-pressure side refrigerant channel 11a.
[0018]
Further, the water-side flow path 11c is configured as follows.
The water flow path 135 is formed by pressing, bending, and forming a plate material of copper, aluminum, stainless steel, or the like into a bag shape, and joining the periphery thereof by welding, brazing, or the like, so that the water flow path having a confidential inside is formed. To form Further, a water inlet pipe 131 and a water outlet pipe 132 are joined to both ends of the water flow path section 135.
Further, the low-pressure side refrigerant flow path bypass circuit 11d is configured by a bypass pipe 201 brazed and connected so as to communicate with the internal space of the header pipes 111 and 112 similarly to the refrigerant inlet pipe 114 and the refrigerant outlet pipe 113. . The electromagnetic valve 11e in FIG. 1 corresponds to the electromagnetic valve 202 in FIG. 3, and is installed in the middle of the bypass pipe 201.
[0019]
The heat transfer tubes 115 and 125 and the water channel 135 configured as described above form a three-layer structure so as to sandwich the heat transfer tube 125, are joined by welding, brazing, crimping, or the like, and flow through the heat transfer tube 125. The refrigerant and the cooling water flowing through the water flow path portion 135 are configured such that the refrigerant flowing through the heat transfer tube 115 and the refrigerant flowing through the heat transfer tube 125 are substantially countercurrent to each other. It is desirable that the flow of the fluid in the water flow path portion 135 flows in opposition to the flow of the refrigerant in the high-pressure side refrigerant flow path 11b. However, as shown in FIG. It may be.
[0020]
By configuring the third heat exchanger 11 in this manner, the internal heat exchanger, which conventionally has the high pressure side refrigerant flow path 11b and the low pressure side refrigerant flow path 11a as main components, the high pressure side refrigerant flow path 11b and the water The function of the internal heat exchanger and the function of the water-refrigerant heat exchanger can be achieved by sharing the two heat exchangers of the water-refrigerant heat exchanger having the side flow path 11c as a main component and the high-pressure-side refrigerant flow path 11b. By using a single heat exchanger having the above, even in a refrigeration cycle apparatus that can operate with high efficiency, the number of components can be reduced and cost can be reduced.
In the case where the required heat transfer area is different between the heat exchange performed between the heat transfer tube 115 and the water flow path unit 135 and the heat exchange performed between the heat transfer tube 115 and the heat transfer tube 125, as illustrated in FIGS. It is desirable to make the heat transfer tube 115 shorter than the heat transfer tube 125, or to make the water flow path portion 135 shorter than the heat transfer tube 125 from the viewpoint of downsizing the heat exchanger.
Alternatively, in the present embodiment, the low pressure side refrigerant flow path bypass circuit 11d and the solenoid valve 11e are integrated with the third heat exchanger 11 like the bypass pipe 201 and the solenoid valve 202 in FIG. It is good also as another component which has.
[0021]
【The invention's effect】
According to the present invention, by using the high pressure side refrigerant flow path of the third heat exchanger as both the high pressure side flow path of the internal heat exchanger and the refrigerant side flow path of the water heat exchanger, the two are separated. Because the internal heat exchanger and the water-refrigerant heat exchanger, which had to be prepared for the refrigeration cycle, can be integrated into one, the number of components can be reduced and the cost can be reduced even in a refrigeration cycle device that can operate efficiently. It has an effect that can be achieved.
Furthermore, according to the present invention, by adjusting the flow rate of the water-side flow path of the third heat exchanger, heat radiation in the third heat exchanger is effectively used, and more efficient operation is possible. Has an effect.
Furthermore, according to the present invention, by bypassing the low-pressure side refrigerant flow path of the third heat exchanger, unnecessary heat radiation in the third heat exchanger is suppressed, and more efficient operation is enabled. Having.
Further, according to the present invention, by integrating the bypass flow path and the solenoid valve into the third heat exchanger, the internal heat exchanger and the water-refrigerant heat exchanger, which need to be separately provided, are provided. Since the number of flow passages and solenoid valves can be reduced to one, even a refrigeration cycle device capable of high-efficiency operation has the effect of reducing the number of components and reducing cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing a refrigeration cycle apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing a heat exchanger of a refrigeration cycle apparatus according to an embodiment of the present invention.
FIG. 3 is a view showing a heat exchanger of the refrigeration cycle apparatus according to the embodiment of the present invention.
FIG. 4 is a diagram showing components of a heat exchanger of a refrigeration cycle apparatus according to an embodiment of the present invention.
FIG. 5 is a diagram showing components of a heat exchanger of a refrigeration cycle apparatus according to an embodiment of the present invention.
FIG. 6 is a diagram showing a conventional vehicle air conditioner.
FIG. 7 is a diagram showing a conventional supercritical vapor compression cycle device.
8 is a diagram showing a Mollier diagram of the supercritical vapor compression cycle device shown in FIG. 7;
9 is a diagram showing a supercritical vapor compression cycle device provided with an internal heat exchanger in the vehicle air conditioner shown in FIG.
[Explanation of symbols]
1 compressor
2 Water refrigerant heat exchanger
3 first decompressor
4 first heat exchanger (outdoor heat exchanger)
5 Second decompressor
6 second heat exchanger (indoor heat exchanger)
7 Hot water heater core
8 Duct
9 Mix damper
10 Internal heat exchanger
11 Third heat exchanger
11a Low pressure side flow path (low pressure side flow path of third heat exchanger)
11b High-pressure side channel (high-pressure side channel of third heat exchanger)
11c Water-side flow path (water-side flow path of third heat exchanger)
11d, 201 Low-pressure side flow path bypass circuit (low-pressure side flow path bypass circuit of third heat exchanger)
11e, 202 Solenoid valve (solenoid valve provided in the third heat exchanger)
12 Flow direction switching valve (3-way valve)
13 Pressure reducer
111, 112, 121, 122 Header pipe
113,123 Refrigerant inlet pipe
114,124 refrigerant outlet pipe
115,125 heat transfer tube
131 water inlet pipe
132 water outlet pipe
135 Water channel
203 tank
204 cap part
205 Internal Space of Header Pipe
301 flat tube
302 through hole

Claims (11)

二酸化炭素を冷媒として用い、少なくとも圧縮機、第一熱交換器、第三熱交換器の高圧側冷媒流路、減圧器、第二熱交換器、第三熱交換器の低圧側冷媒流路とを順に接続した冷凍サイクル回路と、少なくとも第三熱交換器の水側流路と温水ヒータコアとを接続した温水回路とを備え、前記高圧側冷媒流路には、前記第一熱交換器と前記減圧器の間を流れる冷媒を流し、前記低圧側冷媒流路には、前記第二熱交換器と前記圧縮機の間を流れる冷媒を流す冷凍サイクル装置において、前記高圧側冷媒流路を流れる冷媒を、前記低圧側冷媒流路を流れる冷媒、及び/又は前記温水回路を流れる流体と熱交換させるように前記第三熱交換器を構成したことを特徴とする冷凍サイクル装置。Using carbon dioxide as a refrigerant, at least the compressor, the first heat exchanger, the high-pressure side refrigerant flow path of the third heat exchanger, the decompressor, the second heat exchanger, the low-pressure side refrigerant flow path of the third heat exchanger and A refrigeration cycle circuit connected in order, a hot water circuit connected at least a water-side flow path of the third heat exchanger and a hot water heater core, the high-pressure side refrigerant flow path, the first heat exchanger and the In the refrigeration cycle apparatus in which the refrigerant flowing between the pressure reducers flows and the refrigerant flowing between the second heat exchanger and the compressor flows in the low-pressure refrigerant flow path, the refrigerant flows in the high-pressure refrigerant flow path. Wherein the third heat exchanger is configured to exchange heat with a refrigerant flowing through the low-pressure side refrigerant flow path and / or a fluid flowing through the hot water circuit. 前記高圧側冷媒流路を流れる冷媒と前記低圧側冷媒流路を流れる冷媒とを熱交換させる第一モード運転と、前記高圧側冷媒流路を流れる冷媒と前記温水回路を流れる流体とを熱交換させる第二モード運転を有することを特徴とする請求項1に記載の冷凍サイクル装置。A first mode operation for exchanging heat between the refrigerant flowing through the high pressure side refrigerant flow path and the refrigerant flowing through the low pressure side refrigerant flow path, and performing heat exchange between the refrigerant flowing through the high pressure side refrigerant flow path and the fluid flowing through the hot water circuit. The refrigeration cycle apparatus according to claim 1, further comprising a second mode operation for causing the refrigeration cycle to operate. 前記圧縮機から吐出した冷媒を前記第一熱交換器に流入させるか、あるいは、前記第一熱交換器をバイパスさせるかを切り替える流れ方向切替弁をさらに備え、前記第一モード運転では、前記圧縮機から吐出した冷媒を前記第一熱交換器に流入させ、前記第二モード運転では、前記第一熱交換器をバイパスさせるように流れ方向切替弁を制御することを特徴とする請求項2に記載の冷凍サイクル装置。It further comprises a flow direction switching valve that switches whether the refrigerant discharged from the compressor flows into the first heat exchanger or bypasses the first heat exchanger. The refrigerant discharged from the machine flows into the first heat exchanger, and in the second mode operation, a flow direction switching valve is controlled so as to bypass the first heat exchanger. A refrigeration cycle apparatus as described in the above. 前記第一モード運転では、前記水側流路を流れる流体の温度が、前記高圧側冷媒流路を流れる冷媒の温度より低い場合には、前記水側流路に前記流体を流入させるように制御することを特徴とする請求項2に記載の冷凍サイクル装置。In the first mode operation, when the temperature of the fluid flowing through the water side flow path is lower than the temperature of the refrigerant flowing through the high pressure side refrigerant flow path, control is performed such that the fluid flows into the water side flow path. The refrigeration cycle apparatus according to claim 2, wherein 前記第一モード運転では、前記水側流路に流入する前記流体の流量を停止あるいは低減するように制御することを特徴とする請求項2に記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 2, wherein in the first mode operation, control is performed so as to stop or reduce a flow rate of the fluid flowing into the water-side flow path. 前記第二熱交換器から流出した冷媒が前記低圧側冷媒流路をバイパスして前記圧縮機に流入するバイパス流路と、前記バイパス流路に設けられた電磁弁とを備え、前記第二モード運転では、前記低圧側冷媒流路をバイパスさせるように前記電磁弁を制御することを特徴とする請求項2に記載の冷凍サイクル装置。The second mode includes a bypass flow path through which the refrigerant flowing out of the second heat exchanger bypasses the low-pressure side refrigerant flow path and flows into the compressor; and a solenoid valve provided in the bypass flow path. The refrigeration cycle apparatus according to claim 2, wherein in operation, the solenoid valve is controlled so as to bypass the low-pressure side refrigerant flow path. 前記第三熱交換器が前記バイパス流路及び前記電磁弁を備えていることを特徴とする請求項6に記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 6, wherein the third heat exchanger includes the bypass passage and the solenoid valve. 温水ヒータコアを有する温水回路に接続される水側流路と、圧縮機、第一熱交換器、減圧器、及び第二熱交換器を有する冷凍サイクル回路の高圧側冷媒流路に接続される高圧側冷媒流路と、前記冷凍サイクル回路の低圧側冷媒流路に接続される低圧側冷媒流路とを備えたことを特徴とする熱交換器。A water-side flow path connected to a hot water circuit having a hot water heater core, and a high pressure connected to a high-pressure side refrigerant flow path of a refrigeration cycle circuit having a compressor, a first heat exchanger, a decompressor, and a second heat exchanger. A heat exchanger comprising: a side refrigerant flow path; and a low pressure side refrigerant flow path connected to the low pressure side refrigerant flow path of the refrigeration cycle circuit. 前記高圧側冷媒流路を流れる冷媒を、前記低圧側冷媒流路を流れる冷媒、及び/又は前記温水回路を流れる流体と熱交換させるように構成したことを特徴とする請求項8に記載の熱交換器。The heat according to claim 8, wherein the refrigerant flowing through the high-pressure side refrigerant flow path is heat-exchanged with the refrigerant flowing through the low-pressure side refrigerant flow path and / or the fluid flowing through the hot water circuit. Exchanger. 前記低圧側冷媒流路をバイパスするバイパス流路と、前記バイパス流路の冷媒流れを制御する電磁弁を備えていることを特徴とする請求項8に記載の熱交換器。The heat exchanger according to claim 8, further comprising: a bypass passage that bypasses the low-pressure side refrigerant passage; and an electromagnetic valve that controls a refrigerant flow in the bypass passage. 二酸化炭素を冷媒として用いることを特徴とする請求項8に記載の熱交換器。The heat exchanger according to claim 8, wherein carbon dioxide is used as a refrigerant.
JP2002358030A 2002-12-10 2002-12-10 Refrigeration cycle device Withdrawn JP2004189069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002358030A JP2004189069A (en) 2002-12-10 2002-12-10 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358030A JP2004189069A (en) 2002-12-10 2002-12-10 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2004189069A true JP2004189069A (en) 2004-07-08

Family

ID=32757862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358030A Withdrawn JP2004189069A (en) 2002-12-10 2002-12-10 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2004189069A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695849A1 (en) * 2005-02-28 2006-08-30 Sanyo Electric Co., Ltd. Refrigerant cycle unit
JP2007069655A (en) * 2005-09-05 2007-03-22 Calsonic Kansei Corp Air conditioner for vehicle
WO2009068547A1 (en) * 2007-11-29 2009-06-04 Valeo Systemes Thermiques Air-conditioning circuit condenser with an undercooling part
JP2011116364A (en) * 2009-12-03 2011-06-16 Hyundai Motor Co Ltd Environment-friendly integrated cooling system for vehicle
JP2016060300A (en) * 2014-09-16 2016-04-25 株式会社デンソー Vehicle air conditioner
US9385385B2 (en) 2009-12-03 2016-07-05 Hyundai Motor Company Cooling system for eco-friendly vehicle
CN111114239A (en) * 2019-12-31 2020-05-08 北京新能源汽车股份有限公司 Air conditioning system, vehicle and control method of air conditioning system
DE102021121252A1 (en) 2021-08-16 2023-02-16 Audi Aktiengesellschaft Module assembly for a refrigerant circuit of a motor vehicle and refrigerant circuit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695849A1 (en) * 2005-02-28 2006-08-30 Sanyo Electric Co., Ltd. Refrigerant cycle unit
US7461517B2 (en) 2005-02-28 2008-12-09 Sanyo Electric Co., Ltd. Refrigerant cycle unit
JP2007069655A (en) * 2005-09-05 2007-03-22 Calsonic Kansei Corp Air conditioner for vehicle
JP4630772B2 (en) * 2005-09-05 2011-02-09 カルソニックカンセイ株式会社 Air conditioner for vehicles
WO2009068547A1 (en) * 2007-11-29 2009-06-04 Valeo Systemes Thermiques Air-conditioning circuit condenser with an undercooling part
FR2924490A1 (en) * 2007-11-29 2009-06-05 Valeo Systemes Thermiques CONDENSER FOR AIR CONDITIONING CIRCUIT WITH SUB-COOLING PART
JP2011116364A (en) * 2009-12-03 2011-06-16 Hyundai Motor Co Ltd Environment-friendly integrated cooling system for vehicle
US9180753B2 (en) 2009-12-03 2015-11-10 Hyundai Motor Company Integrated cooling system for eco-friendly vehicle
US9385385B2 (en) 2009-12-03 2016-07-05 Hyundai Motor Company Cooling system for eco-friendly vehicle
US9815349B2 (en) 2009-12-03 2017-11-14 Hyundai Motor Company Integrated cooling system for eco-friendly vehicle
JP2016060300A (en) * 2014-09-16 2016-04-25 株式会社デンソー Vehicle air conditioner
CN111114239A (en) * 2019-12-31 2020-05-08 北京新能源汽车股份有限公司 Air conditioning system, vehicle and control method of air conditioning system
CN111114239B (en) * 2019-12-31 2021-11-05 北京新能源汽车股份有限公司 Air conditioning system, vehicle and control method of air conditioning system
DE102021121252A1 (en) 2021-08-16 2023-02-16 Audi Aktiengesellschaft Module assembly for a refrigerant circuit of a motor vehicle and refrigerant circuit

Similar Documents

Publication Publication Date Title
JP5391379B2 (en) Refrigerant cycle of automobile air conditioner
JP3736847B2 (en) Air conditioning apparatus and air conditioning method
EP2990740B1 (en) Air conditioning system
EP1489367B1 (en) Refrigerating cycle device
US20050103487A1 (en) Vapor compression system for heating and cooling of vehicles
JP4727051B2 (en) Intercooler and CO2 refrigerant vehicle air conditioner
JP2007278624A (en) Heat pump cycle
JP5413313B2 (en) Heat exchanger
KR101811762B1 (en) Heat Pump For a Vehicle
JP2013217631A (en) Refrigeration cycle device
JP2003097857A (en) Air conditioning cycle
JP2010001013A (en) Heating, ventilating and/or air-conditioning device for automobile
JP2020122621A (en) Refrigeration cycle device
JP2006194565A (en) Air conditioner
JP2004177067A (en) Heat pump type air conditioner
JP6796014B2 (en) Vehicle interior heat management system
JPH07329544A (en) Air conditioner for automobile
JP4930214B2 (en) Refrigeration cycle equipment
KR101941026B1 (en) Heat pump system for vehicle
JP2004189069A (en) Refrigeration cycle device
KR101903143B1 (en) Heat Pump For a Vehicle
KR101903140B1 (en) Heat Pump For a Vehicle
JP2006097911A (en) Heat exchanger
JP2003287294A (en) Operating method of refrigeration cycle device
KR20090117055A (en) Hvac for bus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307