JPH09176872A - Corrosion suppression of metal in water system and suppressing method of silica based scale - Google Patents

Corrosion suppression of metal in water system and suppressing method of silica based scale

Info

Publication number
JPH09176872A
JPH09176872A JP7334883A JP33488395A JPH09176872A JP H09176872 A JPH09176872 A JP H09176872A JP 7334883 A JP7334883 A JP 7334883A JP 33488395 A JP33488395 A JP 33488395A JP H09176872 A JPH09176872 A JP H09176872A
Authority
JP
Japan
Prior art keywords
water
anion exchange
silica
exchange resin
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7334883A
Other languages
Japanese (ja)
Inventor
Kuniyuki Takahashi
邦幸 高橋
Kazuhisa Fujita
藤田  和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP7334883A priority Critical patent/JPH09176872A/en
Publication of JPH09176872A publication Critical patent/JPH09176872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively suppress the corrosion of a metal in a water system and to prevent the generation of a silica based scale by allowing water to contact with a bicarbonate ion type anion exchange resin and hydroxide ion type basic anion exchange resin. SOLUTION: A part of the water in the water system is let flow from pipings 11 and 11A to an anion exchange tower 1 filled with an HCO3 <-> type anion exchange resin 1A. Residual water is let flow from pipings 11 and 11B to an anion exchange tower 2 filled with an OH<-> type anion exchange resin 1B. An effluent (treated water) of the anion exchange towers 1 and 2 is supplied to the water system via pipins 12A, 12B and 12. The water let flow the anion exchange tower 1 is brought into contact with the HCO3 <-> type anion exchange resin 1A and the incorporated corrosive ion such as Cl<-> and SO4 <-2> is subjected to ion exchange between the HCO3 <-> . The corrosive ion incorporated in the water and let flow the anion exchange tower 2 is subjected to ion exchange with the OH<-> , but silica in the water is also subjected to ion exchange with the OH<-> at this time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水系の金属の腐食抑
制及びシリカ系スケール抑制方法に係り、特に水系にお
ける炭素鋼、ステンレス鋼、銅、銅合金などの金属の腐
食を効果的に抑制すると共に、シリカ系スケールの生成
を防止して、水が濃縮する冷却水系において、孔食やス
ケール障害を引き起こすことなく、高濃縮運転を可能と
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of inhibiting corrosion of a water-based metal and a method of inhibiting a silica-based scale. In particular, it effectively suppresses corrosion of metals such as carbon steel, stainless steel, copper and copper alloy in a water-based system. The present invention relates to a method for preventing the formation of a silica-based scale and enabling highly concentrated operation in a cooling water system in which water is concentrated, without causing pitting corrosion or scale failure.

【0002】[0002]

【従来の技術】開放、密閉循環冷却水系、蓄熱水系、密
閉冷温水系などの淡水系で使用される各種機器や配管等
の基材として、炭素鋼、ステンレス鋼、銅、銅合金等が
使用されている。淡水中に浸漬使用されているこれらの
基材は、補給水から持ち込まれる塩化物イオン(Cl
- )、硫酸イオン(SO4 2- )等により腐食され、孔食
を発生させる。そこで、このような淡水系と接する金属
材の腐食を抑制する方法として、従来、水系の水を防食
性アニオンを担持したアニオン交換体に接触させると共
に、低分子量ポリマーを添加する方法が提案されている
(特開平6−158364号公報)。
2. Description of the Related Art Carbon steel, stainless steel, copper, copper alloys, etc. are used as a base material for various equipments and pipes used in open water, closed circulating cooling water system, heat storage water system, closed cold / hot water system and other fresh water systems. ing. These substrates, which are used by immersion in fresh water, contain chloride ions (Cl
- ), Sulphate ion (SO 4 2- ) etc. corrode and generate pitting corrosion. Therefore, as a method for suppressing the corrosion of the metal material in contact with such a fresh water system, conventionally, a method of adding a low molecular weight polymer while contacting an anion exchanger carrying an anticorrosive anion with aqueous water has been proposed. (JP-A-6-158364).

【0003】この方法では、Cl- ,SO4 2- 等の水中
の腐食性イオンをOH- ,HCO3 -等の防食性アニオン
を担持したアニオン交換体と接触させてイオン交換する
ことにより、水中の腐食性イオン濃度が低減し、水系の
腐食性が緩和される。また、低分子量ポリマーの皮膜形
成促進作用により、イオン交換で溶出したHCO3 -等と
水系由来のCa2+等とが金属表面に防食皮膜を形成し、
金属の腐食はより一層確実に抑制される。
In this method, corrosive ions in water such as Cl and SO 4 2− are brought into contact with an anion exchanger carrying an anticorrosive anion such as OH and HCO 3 to carry out ion exchange. The corrosive ion concentration of is reduced, and the corrosiveness of the water system is mitigated. Further, due to the film formation promoting action of the low molecular weight polymer, HCO 3 etc. eluted by ion exchange and Ca 2+ etc. derived from the water system form an anticorrosion film on the metal surface,
Corrosion of metal is suppressed more reliably.

【0004】即ち、腐食性アニオンであるCl- の低減
は炭素鋼やステンレス鋼、銅、黄銅等の孔食抑制に有効
である上に、ステンレス鋼や黄銅にしばしば生じる応力
腐食割れの有効な防止対策となる。また、SO4 2- の低
減により、銅や黄銅に対し、孔食発生の要因となる塩基
性硫酸銅の生成が防止され、腐食が抑制される。一方、
防食性イオンであるCa2+やHCO3 -は、低分子量ポリ
マーの存在下、金属表面にCaCO3 の均一な沈殿皮膜
を形成し、腐食促進の要因である溶存酸素の拡散を防止
することにより、腐食を抑制する。なお、イオン交換さ
れずに水中に残留するシリカ(SiO2 )は炭素鋼の錆
を固着性に変質させ腐食を抑制する作用を奏する。
That is, the reduction of Cl which is a corrosive anion is effective for suppressing pitting corrosion of carbon steel, stainless steel, copper, brass and the like, and also effective prevention of stress corrosion cracking which often occurs in stainless steel and brass. It will be a countermeasure. Further, the reduction of SO 4 2− prevents generation of basic copper sulfate, which causes pitting corrosion, with respect to copper and brass, and suppresses corrosion. on the other hand,
Ca 2+ and HCO 3 which are anticorrosive ions form a uniform CaCO 3 precipitate film on the metal surface in the presence of a low molecular weight polymer to prevent the diffusion of dissolved oxygen which is a factor promoting corrosion. , Suppress corrosion. Silica (SiO 2 ) that remains in water without being ion-exchanged has the effect of changing the rust of carbon steel to a sticky property and suppressing corrosion.

【0005】また、水が濃縮される水系においては、シ
リカ等のスケール生成成分が濃縮されることでスケール
として析出し、著しい場合には配管閉塞を引き起こすな
どの問題を生起させる。特に、シリカ系スケールは、一
度生成すると、その除去が困難であるため、シリカ系ス
ケールを防止することは、水系の運転管理において極め
て重要である。
Further, in a water system in which water is concentrated, scale-forming components such as silica are concentrated to be deposited as scale, and in a remarkable case, a problem such as clogging of a pipe is caused. In particular, once the silica-based scale is generated, it is difficult to remove it. Therefore, prevention of the silica-based scale is extremely important in the operational management of the water system.

【0006】従来、このような水系のスケール障害を防
止する方法として、H型カチオン交換体とOH型アニオ
ン交換体に水を接触させて、塩類を除去することで、水
系での濃縮を防止する方法(特開昭48−13936号
公報);H型カチオン交換体に水を接触させて、水系の
pH調整を行って、スケールを防止する方法(特許第1
046359号);が提案されている。また、シリカ系
スケール防止剤も提案されている(特開昭62−289
297号公報)。
[0006] Conventionally, as a method of preventing such a scale disorder of an aqueous system, water is brought into contact with an H-type cation exchanger and an OH-type anion exchanger to remove salts, thereby preventing concentration in the aqueous system. Method (JP-A-48-13936); a method of contacting H-type cation exchanger with water to adjust the pH of the aqueous system to prevent scale (Patent No. 1)
No. 046359) is proposed. A silica-based scale inhibitor has also been proposed (Japanese Patent Laid-Open No. 62-289).
297).

【0007】ところで、開放循環冷却水系では冷却塔で
水が蒸発し、水中の塩類が濃縮していく。開放循環冷却
水系の水収支は、次のように表される。
By the way, in the open circulation cooling water system, water is evaporated in the cooling tower and salts in the water are concentrated. The water balance of the open circulation cooling water system is expressed as follows.

【0008】M=E+B+W … (1) N=M/(B+W) … (2) (ただし、M:補給水量,E:蒸発水量,B:強制ブロ
ー水量,W:飛散損失水量,N:濃縮倍数) 上記(1), (2)式において、蒸発水量(E)と飛散損失水
量(W)は冷却水系の運転条件が一定であれば、当該水
系に固有の値で一定値となる。従って、冷却水系への補
給水量(M)を少なくするには、上記(1) 式より、強制
ブロー水量(B)を小さくする必要があるが、その結
果、上記(2) 式により、水系の濃縮倍数(N)が大きく
なる。なお、強制ブロー水量(B)を小さくして補給水
量(M)を小さくすることは、節水のみならず、排水量
の低減につながり、排水処理装置への負荷低下の面で好
適である。また、冷却水系では金属の腐食防止やスケー
ル防止のために種々の薬剤(例えば、リン酸塩、ホスホ
ン酸塩、亜鉛塩、低分子量ポリマーなど)が用いられて
いるが、強制ブロー水量(B)の低減は環境への化学物
質排出量の低減につながるという利点もある。
M = E + B + W (1) N = M / (B + W) (2) (where M: make-up water amount, E: evaporated water amount, B: forced blow water amount, W: splash loss water amount, N: concentration multiple ) In the above equations (1) and (2), if the operating conditions of the cooling water system are constant, the amount of evaporated water (E) and the amount of dispersed water loss (W) will be constant values that are unique to the water system. Therefore, in order to reduce the amount of makeup water (M) to the cooling water system, it is necessary to reduce the forced blow water amount (B) from the above equation (1). The concentration factor (N) increases. It should be noted that reducing the forced blow water amount (B) to reduce the makeup water amount (M) leads to not only saving water but also reducing the amount of drainage, which is preferable in terms of reducing the load on the wastewater treatment device. In addition, various chemicals (for example, phosphates, phosphonates, zinc salts, low molecular weight polymers, etc.) are used in the cooling water system to prevent metal corrosion and scale, but forced blow water amount (B) There is also an advantage that the reduction of CO2 will lead to the reduction of the amount of chemical substances released to the environment.

【0009】[0009]

【発明が解決しようとする課題】特開平6−15836
4号公報に開示される方法において、アニオン交換体と
して重炭酸イオン(HCO3 -)型アニオン交換樹脂のみ
を用いた場合には、水中のシリカを除去することはでき
ない。このため、濃縮によりスケール障害が発生する可
能性のある水系においては、濃縮倍数を高くすることが
できない場合がある。一方、水酸化物イオン(OH-
型アニオン交換樹脂のみを用いた場合には、水中のシリ
カは除去できるが、防食性物質であるシリカを含まない
水となるため、当該水の防食性が低く、水系内の腐食抑
制効果が十分に得られないという問題がある。
Problems to be Solved by the Invention Japanese Patent Application Laid-Open No. 6-15836
In the method disclosed in Japanese Patent Publication No. 4, the silica in water cannot be removed when only the bicarbonate ion (HCO 3 ) type anion exchange resin is used as the anion exchanger. Therefore, in a water system in which scale disorder may occur due to concentration, it may not be possible to increase the concentration factor. On the other hand, the hydroxide ion (OH -)
When only the type anion exchange resin is used, the silica in the water can be removed, but since the water does not contain silica which is an anticorrosive substance, the anticorrosive property of the water is low and the effect of suppressing corrosion in the water system is sufficient. There is a problem that you can not get it.

【0010】また、従来のスケール防止方法のうち、H
型カチオン交換体及びOH型アニオン交換体と水を接触
させて塩類を除去する方法は、硬度成分も含めて腐食性
アニオンとシリカを除去するものであるが、硬度成分や
防食性物質であるシリカを含まない水となるため、上記
と同様、当該水の防食性が低く、腐食抑制のために、別
途、リン酸塩や金属塩などの環境汚染が懸念される防食
剤が必要となるという問題がある。
Among the conventional scale prevention methods, H
A method of removing salts by contacting water with a cation-type cation exchanger and an OH-type anion exchanger is to remove corrosive anions and silica including hardness components. As above, since the water does not contain water, the corrosion resistance of the water is low, and in order to suppress corrosion, a separate anticorrosive agent that may cause environmental pollution such as phosphates and metal salts is required. There is.

【0011】一方、H型カチオン交換体に水を接触させ
てpH調整することでスケールを防止する方法では、炭
酸カルシウムやシリカ系スケールが水中で飽和せず、ス
ケールが析出しないpHは、pH7以下の酸性領域であ
るため、このような酸性領域に調整することで金属の腐
食が進行しやすくなるという欠点がある。
On the other hand, in the method of preventing the scale by bringing the H-type cation exchanger into contact with water to adjust the pH, calcium carbonate and silica-based scale are not saturated in water, and the pH at which scale does not precipitate is pH 7 or less. Since it is in the acidic region of the above, there is a drawback that the corrosion of the metal easily proceeds by adjusting to such an acidic region.

【0012】また、特開昭62−289297号公報に
開示されるシリカ系スケール防止剤によるシリカ系スケ
ールの防止では、許容できる水中のシリカ濃度、即ち、
スケール防止効果を得ることができるシリカ濃度(以
下、「許容シリカ濃度」と称する場合がある。)は30
0〜400mg−SiO2 /Lであるが、水系で濃縮が
ある場合、補給水中のシリカ濃度によっては、濃縮でき
る最大濃縮倍数に制限を受け、節水、更には、強制ブロ
ー水量低減による排水処理装置の負荷軽減や環境への化
学物質排出量低減につながる濃縮倍数の増大を実施でき
ない場合がある。例えば、補給水中のシリカ濃度が30
mg−SiO2 /Lで、スケール防止剤の添加による許
容シリカ濃度が360mg−SiO2 /Lである場合、
可能な最大濃縮倍数は360/30=12倍であり、水
系の運転においてはこれ以上の濃縮が起こらないように
強制的に系内の水をブローダウンして系外へ水を排出
し、排出相当分の水を補給する必要がある。
Further, in the prevention of silica-based scale by the silica-based scale inhibitor disclosed in JP-A-62-289297, an allowable silica concentration in water, that is,
The silica concentration capable of obtaining the scale prevention effect (hereinafter, may be referred to as "allowable silica concentration") is 30.
Although it is 0 to 400 mg-SiO 2 / L, if there is concentration in the water system, the maximum concentration multiple that can be concentrated is limited depending on the silica concentration in the makeup water, and water saving and further wastewater treatment equipment by reducing the amount of forced blow water. In some cases, it is not possible to increase the concentration multiple that leads to a reduction in the load on the environment and a reduction in the amount of chemical substances released to the environment. For example, the silica concentration in the makeup water is 30
mg-SiO 2 / L, when the allowable silica concentration by the addition of the scale inhibitor is 360 mg-SiO 2 / L,
The maximum possible concentration factor is 360/30 = 12 times, and in the operation of the water system, the water in the system is forcibly blown down and the water is discharged outside the system to prevent further concentration. It is necessary to supply a considerable amount of water.

【0013】本発明は、環境汚染等の問題を引き起こす
ことなく、濃縮水系においても、水系の金属の腐食を抑
制すると共に、シリカ系スケールの生成を有効にする水
系の金属の腐食抑制及びシリカ系スケール抑制方法を提
供することを目的とする。
The present invention suppresses corrosion of a water-based metal even in a concentrated water system without causing problems such as environmental pollution, and suppresses corrosion of a water-based metal and silica-based system that enables the formation of a silica-based scale. An object is to provide a scale suppression method.

【0014】[0014]

【課題を解決するための手段】本発明の水系の金属の腐
食抑制及びシリカ系スケール抑制方法は、水系の金属の
腐食抑制及びシリカ系スケール抑制方法であって、該水
系の水を、重炭酸イオン型アニオン交換樹脂及び水酸化
物イオン型強塩基性アニオン交換樹脂と接触させること
を特徴とする。
A method for inhibiting corrosion of a water-based metal and a method for inhibiting a silica-based scale of the present invention is a method for inhibiting a corrosion of a water-based metal and a method for inhibiting a silica-based scale. It is characterized by being brought into contact with an ion type anion exchange resin and a hydroxide ion type strongly basic anion exchange resin.

【0015】強塩基性アニオン交換樹脂はOH- のよう
な塩基性の高いアニオンを担持した場合、NaClやN
2 SO4 などの強酸の塩だけでなく弱酸であるシリカ
(ケイ酸)もイオン交換できる。一方、アニオン交換樹
脂にHCO3 -を担持させた場合は、塩基性がシリカを交
換補捉できる程高くないため、NaClやNa2 SO4
などの強酸塩だけが交換される。
The strongly basic anion exchange resin, when loaded with a highly basic anion such as OH , has NaCl or N
Not only salts of strong acids such as a 2 SO 4 but also weak acids such as silica (silicic acid) can be ion-exchanged. On the other hand, when HCO 3 is supported on the anion exchange resin, the basicity is not so high as to be able to exchange and capture silica, and therefore NaCl or Na 2 SO 4 is used.
Only strong acid salts such as are exchanged.

【0016】即ち、水を、HCO3 -型アニオン交換樹脂
及びOH- 型強塩基性アニオン交換樹脂に接触させる
と、水中のCl- ,SO4 2- 等の腐食性イオンは、両ア
ニオン交換樹脂でイオン交換されて除去されるが、シリ
カは、OH- 型アニオン交換樹脂のみで除去される。
That is, when water is brought into contact with the HCO 3 type anion exchange resin and the OH type strongly basic anion exchange resin, corrosive ions such as Cl , SO 4 2− in water are converted into both anion exchange resins. However, silica is removed only by the OH type anion exchange resin.

【0017】水中の腐食性イオンをHCO3 -型アニオン
交換樹脂でHCO3 -にイオン交換した水は、前述の如
く、水系由来のCa2+等とイオン交換で溶出したHCO
3 -との化合物が金属表面に防食皮膜を形成して腐食を抑
制する。また、この水には、シリカ成分もイオン交換さ
れずに残留しているため、防食性物質であるシリカが防
食剤の役割を果たす。しかし、シリカが残留するため、
濃縮によるシリカ系スケール生成の問題がある。
[0017] HCO corrosive ions in water 3 - HCO Ion exchange water is as described above, eluted with Ca 2+ or the like and an ion exchange from aqueous - HCO 3 in a type anion exchange resin
3 - compound of suppressing corrosion by forming an anticorrosive coating on the metal surface. In addition, since the silica component also remains in this water without being ion-exchanged, silica, which is an anticorrosive substance, serves as an anticorrosive agent. However, since silica remains,
There is a problem of silica-based scale formation due to concentration.

【0018】一方、腐食性イオンをOH- 型強塩基性ア
ニオン交換樹脂でイオン交換した水にはシリカは含まれ
ておらず、シリカ系スケール生成の問題はないが、イオ
ン交換で溶出したOH- とCa2+等の水系由来のカチオ
ンは防食皮膜となるような不溶性化合物を金属表面に形
成しにくく、従って、OH- 型強塩基性アニオン交換樹
脂のみで腐食性イオンを除去した水の防食効果は高くな
い。
Meanwhile, the corrosive ions OH - not included silica on the type strongly basic anion exchange resin with water ion-exchanged, there is no problem of silica scale formation, OH eluted with deionized - And water-derived cations such as Ca 2+ are unlikely to form insoluble compounds that form an anticorrosion film on the metal surface. Therefore, the anticorrosion effect of water in which corrosive ions are removed only by the OH - type strongly basic anion exchange resin Is not high.

【0019】本発明では、このようなHCO3 -型アニオ
ン交換樹脂とOH- 型強塩基性アニオン交換樹脂とを併
用するため、腐食性イオンの除去、イオン交換で溶出し
たHCO3 -と水系由来のCa2+等とによる防食皮膜の生
成による腐食抑制効果と、シリカ除去によるシリカ系ス
ケール防止との両方の効果を得ることができる。
In the present invention, since such an HCO 3 -type anion exchange resin and an OH -type strongly basic anion exchange resin are used in combination, HCO 3 and water-derived HCO 3 eluted by ion exchange are removed. It is possible to obtain both the effect of inhibiting corrosion due to the formation of an anticorrosive film by Ca 2+ and the like and the effect of preventing silica-based scale by removing silica.

【0020】本発明においては、特に、処理する水の一
部をHCO3 -型アニオン交換樹脂に接触させると共に、
残部をOH- 型強塩基性アニオン交換樹脂に接触させ、
HCO3 -型アニオン交換樹脂に接触させる水の割合と、
OH- 型アニオン交換樹脂に接触させる水の割合を、該
水系の水のシリカ濃度が許容シリカ濃度以下となるよう
に制御するのが好ましい。
In the present invention, in particular, a portion of the water to be treated HCO 3 - with contacting the mold anion exchange resin,
The rest is contacted with an OH - type strongly basic anion exchange resin,
The proportion of water contacted with the HCO 3 type anion exchange resin,
It is preferable to control the proportion of water to be brought into contact with the OH type anion exchange resin so that the silica concentration of the water in the water system is equal to or lower than the allowable silica concentration.

【0021】本発明において、水系の水をHCO3 -型ア
ニオン交換樹脂及びOH- 型強塩基性アニオン交換樹脂
と接触させる方法としては特に制限はないが、HCO3 -
型アニオン交換樹脂を充填した充填塔及びOH- 型強塩
基性アニオン交換樹脂を充填した充填塔に補給水又は循
環水を通水接触させれば良い。この場合の通水条件や通
水比率等は、被処理対象水系の水質等に応じて適宜決定
される。
In the present invention, the method of contacting aqueous water with the HCO 3 type anion exchange resin and the OH type strong basic anion exchange resin is not particularly limited, but HCO 3
Make-up water or circulating water may be brought into water contact with the packed column filled with the type anion exchange resin and the packed column filled with the OH type strongly basic anion exchange resin. In this case, the water flow conditions, water flow ratio, etc. are appropriately determined according to the water quality of the water system to be treated.

【0022】[0022]

【発明の実施の形態】以下、図面を参照して本発明の水
系の金属の腐食抑制及びシリカ系スケール抑制方法を詳
細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A method for inhibiting corrosion of a water-based metal and a method for inhibiting a silica-based scale according to the present invention will be described in detail below with reference to the drawings.

【0023】図1は本発明の水系の金属の腐食抑制及び
シリカ系スケール抑制方法の一実施例方法を示す系統図
である。
FIG. 1 is a system diagram showing an embodiment of a method for inhibiting corrosion of a water-based metal and inhibiting a silica-based scale according to the present invention.

【0024】図1において、1はHCO3 -型アニオン交
換樹脂1Aが充填されたアニオン交換塔(以下「HCO
3 -型アニオン交換塔」と称する場合がある。)であり、
2はOH- 型強塩基性アニオン交換樹脂2Aが充填され
たアニオン交換塔(以下「OH- 型アニオン交換塔」と
称する場合がある。)である。
In FIG. 1, 1 is an anion exchange column packed with HCO 3 type anion exchange resin 1A (hereinafter referred to as “HCO 3
Sometimes referred to as " 3 -- type anion exchange column". )
Reference numeral 2 is an anion exchange column (hereinafter sometimes referred to as “OH type anion exchange column”) filled with the OH type strongly basic anion exchange resin 2A.

【0025】本実施例の方法においては、水系の水(被
処理水)の一部を、配管11,11AよりHCO3 -型ア
ニオン交換樹脂1Aが充填されたアニオン交換塔1に通
水すると共に、残部を配管11,11BよりOH- 型ア
ニオン交換樹脂2Aが充填されたアニオン交換塔2に通
水し、各アニオン交換塔1,2の流出水(処理水)を配
管12A,12B及び12を経て水系へ供給する。
In the method of the present embodiment, a part of the water (water to be treated) in the water system is passed through the pipes 11 and 11A to the anion exchange tower 1 filled with the HCO 3 type anion exchange resin 1A. , The rest is passed through the pipes 11 and 11B to the anion exchange tower 2 filled with the OH type anion exchange resin 2A, and the outflow water (treated water) of each anion exchange tower 1 and 2 is passed through the pipes 12A, 12B and 12. After that, it is supplied to the water system.

【0026】本実施例において、アニオン交換塔1に通
水された水は、HCO3 -型アニオン交換樹脂1Aと接触
して、含有されるCl- ,SO4 2- 等の腐食性イオンが
HCO3 -とイオン交換される。一方、アニオン交換塔2
に通水された水は、OH- 型強塩基性アニオン交換樹脂
2Bと接触して、含有される腐食性イオンがOH- にイ
オン交換されるが、この際、水中のシリカもOH- にイ
オン交換される。
In the present embodiment, the water passed through the anion exchange tower 1 comes into contact with the HCO 3 type anion exchange resin 1A so that the corrosive ions such as Cl and SO 4 2− contained in the HCO 3 type HCO 3 HCO. 3 - and is ion exchange. On the other hand, anion exchange tower 2
The water that has been passed through is contacted with the OH type strongly basic anion exchange resin 2B, and the corrosive ions contained therein are ion-exchanged to OH . At this time, silica in the water is also ionized to OH . Will be exchanged.

【0027】この方法において、各アニオン交換塔1,
2への通水量は、当該水系の水中のシリカ濃度がシリカ
系スケールが生成する飽和濃度、即ち、許容シリカ濃度
以下となるように、各配管11A,11Bに設けられた
バルブV1 ,V2 の開度を調節するのが好ましい。
In this method, each anion exchange tower 1,
The flow rate of water to 2 is such that the silica concentration in the water of the water system is equal to or less than the saturation concentration generated by the silica scale, that is, the allowable silica concentration or less, and the valves V 1 and V 2 provided in the pipes 11A and 11B are used. It is preferable to adjust the opening degree of.

【0028】例えば、水系への補給水中のシリカ濃度が
30mg−SiO2 /Lであり、当該水系の許容シリカ
濃度が200mg−SiO2 /Lである場合には、濃縮
倍数に応じて、次のような比率でアニオン交換塔1,2
へ通水することで、高濃縮倍数の運転時においても、シ
リカ系スケールを防止することができる。
For example, when the silica concentration in the replenishing water to the water system is 30 mg-SiO 2 / L and the permissible silica concentration in the water system is 200 mg-SiO 2 / L, the following concentration factors are used. Anion exchange towers 1 and 2 in such a ratio
By passing water to, it is possible to prevent silica-based scale even during operation at a high concentration factor.

【0029】[0029]

【数1】 [Equation 1]

【0030】因みに、従来においては、同様の条件で、
最高濃縮倍数は200/30=6.7倍であり、10
倍、20倍というような高濃縮倍数の運転は不可能であ
る。
Incidentally, in the past, under the same conditions,
The highest concentration factor is 200/30 = 6.7, which is 10
It is impossible to operate at a high concentration factor such as double or 20 times.

【0031】このアニオン交換塔1,2への通水比率の
計算式は、下記一般式[A]で表される。
The formula for calculating the water flow ratio to the anion exchange towers 1 and 2 is represented by the following general formula [A].

【0032】[0032]

【数2】 [Equation 2]

【0033】本発明において、図1に示すようなアニオ
ン交換塔を並設した装置を用いて水をアニオン交換処理
する場合、水系への補給水を通水して処理するのが好ま
しいが、水系内の循環水を通水して系内の水のシリカ濃
度が許容シリカ濃度以下となるようにしても良い。
In the present invention, when water is subjected to anion exchange treatment by using an anion exchange tower as shown in FIG. 1, it is preferable to pass makeup water to the water system for treatment. The circulating water in the interior may be passed to make the silica concentration of the water in the system below the allowable silica concentration.

【0034】また、開放循環冷却水系のように水の濃縮
がある水系においては、濃縮度が低いうちは金属の腐食
を防止するためにOH- 型強塩基性アニオン交換樹脂に
よるシリカ除去率を小さくするか、シリカ除去を行わ
ず、即ち、OH- 型アニオン交換塔への通水比率を小さ
くするか、OH- 型アニオン交換塔には通水せず、濃縮
度が高くなった時点で、前記[A]式に従って処理を行
うのが望ましい。
In addition, in an aqueous system in which water is concentrated, such as an open-circulation cooling water system, the silica removal rate by the OH - type strongly basic anion exchange resin is small in order to prevent metal corrosion while the concentration is low. Or without silica removal, that is, by reducing the water flow rate to the OH type anion exchange column, or not passing water to the OH type anion exchange column, and when the concentration becomes high, It is desirable to perform the processing according to the formula [A].

【0035】例えば、被処理水中のシリカ濃度が30m
g−SiO2 /Lである場合、濃縮倍数が小さければ、
水系におけるシリカ濃度は許容シリカ濃度に達しないた
め、シリカ系スケール障害は起こらない。従って、腐食
防止効果を高めるためにも、OH- 型強塩基性アニオン
交換樹脂によるシリカ除去を実施しない方が良い。濃縮
倍数が大きくなり、水中のシリカ濃度が許容シリカ濃度
に達し、シリカ系スケールの生成が予想される場合に
は、前記[A]式に基いてOH- 型アニオン交換塔への
通水比率を変更するか、OH- 型アニオン交換塔への通
水を開始することで水系でのシリカ系スケール障害を十
分に防止することができる。このように、濃縮倍数に応
じてOH- 型アニオン交換塔への通水比率を変えること
は、特に、水の濃縮がある水系の運転開始時において、
系内の金属の腐食を防止し、濃縮倍数が上った時点以降
では、シリカ系スケール障害の発生を防止するのに有効
である。
For example, the silica concentration in the water to be treated is 30 m
In the case of g-SiO 2 / L, if the concentration factor is small,
Since the silica concentration in the water system does not reach the allowable silica concentration, no silica-based scale hindrance occurs. Therefore, in order to enhance the corrosion prevention effect, it is better not to carry out the silica removal by the OH type strongly basic anion exchange resin. When the concentration factor becomes large, the silica concentration in water reaches the allowable silica concentration, and the production of silica-based scale is expected, the water flow rate to the OH - type anion exchange column is determined based on the above formula [A]. It is possible to sufficiently prevent the silica-based scale failure in the water system by changing it or by starting the passage of water to the OH type anion exchange column. In this way, changing the water flow rate to the OH type anion exchange column according to the concentration multiple is particularly effective at the start of operation of an aqueous system in which water is concentrated.
It is effective for preventing the corrosion of the metal in the system and for preventing the occurrence of silica-based scale trouble after the concentration factor increases.

【0036】本発明に従って、シリカ濃度が水系の最高
温度での許容シリカ濃度以下になるように前記[A]式
によって水中のシリカ濃度を保つことにより、シリカ系
スケール防止剤を特に水系に添加しなくてもシリカ系ス
ケール障害を防止することが可能である。しかし、本発
明はシリカ系スケール防止剤の使用を排除するものでは
なく、必要に応じてシリカ系スケール防止剤を用いても
良い。この場合、用いるシリカ系スケール防止剤には特
に制限はなく、従来公知のポリアクリルアミドの部分加
水分解物等のシリカ系スケール防止剤を用いることがで
き、このようなシリカ系スケール防止剤を用いた場合の
許容シリカ濃度以下となるように、前記[A]式に基い
てアニオン交換塔通水比率を設定して水系内のシリカ濃
度を制御すれば良い。
According to the present invention, a silica-based scale inhibitor is added especially to an aqueous system by keeping the silica concentration in water according to the above formula [A] so that the silica concentration is equal to or less than the allowable silica concentration at the maximum temperature of the aqueous system. Even without it, it is possible to prevent silica-based scale failures. However, the present invention does not exclude the use of silica-based scale inhibitors, and silica-based scale inhibitors may be used as necessary. In this case, the silica-based scale inhibitor used is not particularly limited, and a conventionally known silica-based scale inhibitor such as a partially hydrolyzed product of polyacrylamide can be used. Such a silica-based scale inhibitor was used. In this case, the silica concentration in the water system may be controlled by setting the water flow rate of the anion exchange column based on the above formula [A] so that the silica concentration is not more than the allowable silica concentration.

【0037】本発明においても、前記特開平6−158
364号公報記載の方法と同様に、水に低分子量ポリマ
ーを添加しても良い。低分子量ポリマーの添加により、
イオン交換で水中に溶出したOH- ,HCO3 -等の防食
性アニオンと水系由来のCa2+,SiO2 等の防食性成
分との均一な防食皮膜の形成が促進され、腐食がより一
層確実に抑制される。
Also in the present invention, the above-mentioned JP-A-6-158 is used.
Similar to the method described in Japanese Patent No. 364, a low molecular weight polymer may be added to water. By adding a low molecular weight polymer,
The formation of a uniform anticorrosion film between the anticorrosion anions such as OH and HCO 3 dissolved in water by ion exchange and the anticorrosion components such as Ca 2+ and SiO 2 derived from the water system is promoted, and corrosion is more reliable. Suppressed to.

【0038】この場合、低分子量ポリマーとしては、分
子量500〜100,000、特に1000〜20,0
00程度の水溶性のポリマー、具体的には、マレイン酸
−イソブチレン共重合体、ポリアクリル酸、ポリアクリ
ルアミドの部分加水分解物、アクリル酸−アリロキシ−
2−ヒドロキシプロパンスルホン酸共重合体、アクリル
酸−ヒドロキシエチルメタクリル酸共重合体、アクリル
アミドとアリルスルホン酸共重合体、アクリル酸−マレ
イン酸共重合体、アクリル酸−スチレン共重合体、アク
リル酸−スチレンスルホン酸共重合体、ポリマレイン
酸、ポリスチレンスルホン酸、アクリル酸−イタコン酸
共重合体、ポリイタコン酸、アクリル酸−アクリロニト
リル共重合体、アクリル酸−ビニルスルホン酸共重合
体、メチルビニルエーテル−マレイン酸共重合体など公
知の低分子量ポリマーが挙げられる。
In this case, the low molecular weight polymer has a molecular weight of 500 to 100,000, particularly 1000 to 20.0.
A water-soluble polymer of about 00, specifically, maleic acid-isobutylene copolymer, polyacrylic acid, partial hydrolyzate of polyacrylamide, acrylic acid-allyloxy-
2-hydroxypropanesulfonic acid copolymer, acrylic acid-hydroxyethyl methacrylic acid copolymer, acrylamide and allylsulfonic acid copolymer, acrylic acid-maleic acid copolymer, acrylic acid-styrene copolymer, acrylic acid- Styrene sulfonic acid copolymer, polymaleic acid, polystyrene sulfonic acid, acrylic acid-itaconic acid copolymer, polyitaconic acid, acrylic acid-acrylonitrile copolymer, acrylic acid-vinyl sulfonic acid copolymer, methyl vinyl ether-maleic acid copolymer Known low molecular weight polymers such as polymers are exemplified.

【0039】このような低分子量ポリマーの添加量は被
処理水系の水質によっても異なるが、通常の場合、被処
理水に対して0.1〜500mg/L添加する。
The addition amount of such a low molecular weight polymer varies depending on the water quality of the water to be treated, but in the usual case, it is added in an amount of 0.1 to 500 mg / L with respect to the water to be treated.

【0040】なお、低分子量ポリマーの添加時期には特
に制限はないが、通常の場合、前記アニオン交換樹脂に
よる処理の後とするのが好ましい。
There are no particular restrictions on the timing of addition of the low molecular weight polymer, but in the usual case, it is preferably after the treatment with the anion exchange resin.

【0041】このような本発明の方法は、腐食性イオン
としてCl- ,SO4 2- を含有する水系、例えば淡水系
であって、水が濃縮される水系の金属の腐食抑制に極め
て有効である。
The method of the present invention as described above is extremely effective in inhibiting corrosion of an aqueous metal containing Cl and SO 4 2− as a corrosive ion, for example, a fresh water system, in which water is concentrated. is there.

【0042】このように本発明は上記の構成により環境
問題を引き起こすことなく水系の防食及びシリカ系スケ
ールの防止を達成し得るものであるが、必要に応じて、
無機リン酸塩(正リン酸塩や重合リン酸塩)や有機リン
酸エステル、ホスホン酸類、亜鉛、ニッケル塩、タング
ステン酸塩、モリブデン酸塩、亜硝酸塩、ホウ酸塩、ケ
イ酸塩、オキシカルボン酸塩、ベンゾトリアゾール、メ
ルカプトベンゾチアゾール等の防食剤や、前述の如く、
リグニン誘導体、タンニン酸類、デンプン等の多糖類等
のスケール防止剤等を併用してもよい。
As described above, the present invention can achieve water-based anticorrosion and silica-based scale prevention without causing environmental problems by the above-mentioned constitution.
Inorganic phosphates (orthophosphates and polymeric phosphates), organic phosphates, phosphonic acids, zinc, nickel salts, tungstates, molybdates, nitrites, borates, silicates, oxycarboxylic acids Anticorrosion agents such as acid salts, benzotriazole, mercaptobenzothiazole, and as described above,
Scale inhibitors such as lignin derivatives, tannic acids, and polysaccharides such as starch may be used in combination.

【0043】[0043]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0044】実施例1 図1に示す方法で、水の処理を行った。Example 1 Water was treated by the method shown in FIG.

【0045】強塩基性アニオン交換樹脂「ダイヤイオン
SA20A」(三菱化学(株)製)2Lを内径38m
m,長さ1000mmのアクリルカラム2本にそれぞれ
1Lずつ充填し、一方のカラムは5重量%NaHCO3
水溶液で再生してHCO3 -型アニオン交換樹脂とし、他
方は5重量%NaOH水溶液で再生してOH- 型強塩基
性アニオン交換樹脂とした後、各々、純水で洗浄した。
2 L of strongly basic anion exchange resin "DIAION SA20A" (manufactured by Mitsubishi Chemical Co., Ltd.) has an inner diameter of 38 m.
1 L each of two acrylic columns each having a length of m and a length of 1000 mm was packed, and one column was filled with 5 wt% NaHCO 3
An HCO 3 -type anion exchange resin was regenerated with an aqueous solution, and an OH -type strongly basic anion exchange resin was regenerated with a 5 wt% NaOH aqueous solution, and then washed with pure water.

【0046】各々のカラムに、表1に示す水質の厚木市
水を表1に示す通水比率(HCO3 -型アニオン交換樹脂
カラムの通水量:OH- 型強塩基性アニオン交換樹脂カ
ラムの通水量=VHCO3:VOH)で通水し(通水SV=5
hr-1)、表1に示す水質の処理水A〜Dを得た。
Atsugi city water having the water quality shown in Table 1 is passed through each column by the water flow ratio shown in Table 1 (HCO 3 type anion exchange resin column water flow rate: OH type strongly basic anion exchange resin column flow rate). Water flow = V HCO3 : V OH (water flow SV = 5)
hr −1 ), and treated water AD having the water quality shown in Table 1 was obtained.

【0047】[0047]

【表1】 [Table 1]

【0048】厚木市水及び処理水A〜Dを試験水とし
て、図2に示す装置を用いて、下記方法でループ腐食試
験を行った。
Using Atsugi city water and treated water A to D as test water, a loop corrosion test was carried out by the following method using the apparatus shown in FIG.

【0049】水槽3内に試験水を入れ、この試験水中に
加熱用蛇管4及び温度センサ5を挿入し、温度センサ5
に連動した電磁弁6で蛇管4内の水温制御用温水の流量
を制御して試験水の温度を30℃に保持した。この試験
水をポンプ7で試験チューブ8内に流速0.3m/sで
通水し、試験チューブ8の腐食速度を調べた。なお、試
験チューブ8には、市販の炭素鋼チューブ(STB34
0,外径19mm,肉厚(実測)2.2mm)を、20
0mmの長さに切断し、内表面の油分をトルエンで脱脂
したものを用いた。試験期間は4日間とし、試験チュー
ブの腐食速度は下記式により計算で求めた。
Test water is put in the water tank 3, and the heating coil 4 and the temperature sensor 5 are inserted into the test water.
The flow rate of the hot water for controlling the water temperature in the flexible pipe 4 was controlled by the solenoid valve 6 linked with the temperature of the test water was kept at 30 ° C. This test water was passed through the test tube 8 by the pump 7 at a flow rate of 0.3 m / s, and the corrosion rate of the test tube 8 was examined. The test tube 8 is a commercially available carbon steel tube (STB34
0, outer diameter 19 mm, wall thickness (actual measurement 2.2 mm), 20
It was cut to a length of 0 mm, and the oil on the inner surface was degreased with toluene. The test period was 4 days, and the corrosion rate of the test tube was calculated by the following formula.

【0050】[0050]

【数3】 (Equation 3)

【0051】試験後のチューブ重量は、内面のみをイン
ヒビター(イビット)入りの10重量%塩酸で洗浄し、
付着物を除去して水洗乾燥した後、天秤によって秤量し
た。試験後の塩酸洗浄によってチューブ表面のミルスケ
ールも除去されるため、上記腐食速度の計算では未使用
の試験チューブ5本の内面酸洗浄前後の重量変化から求
めた平均ミルスケール量(44mg)分を補正した。チ
ューブ内面積は外径19mm,肉厚(実測)2.2m
m,長さ2000mmから計算によって求めた0.92
dm2 を用いた。
The weight of the tube after the test was washed only with 10 wt% hydrochloric acid containing an inhibitor (ivite) on the inner surface,
After removing the deposits, washing with water and drying, the balance was weighed. Since the mill scale on the tube surface is also removed by washing with hydrochloric acid after the test, the average mill scale amount (44 mg) obtained from the weight change before and after the inner surface acid washing of 5 unused test tubes was calculated in the above corrosion rate calculation. Corrected. The inside area of the tube is 19mm in outer diameter and 2.2m in wall thickness
m, length 0.92 calculated from 2000 mm
dm 2 was used.

【0052】なお、試験水には低分子量ポリマーとして
マレイン酸系ポリマー(FMC製「ベルクレン20
0」)を40mg/L添加した。
In the test water, a maleic acid-based polymer (“Berklene 20 manufactured by FMC” as a low molecular weight polymer was used.
0 ") was added at 40 mg / L.

【0053】結果を表2に示す。表2より明らかなよう
に、腐食性イオンの除去によって腐食速度はいずれも低
下するが、OH- 型強塩基性アニオン交換樹脂のみで腐
食性イオンを除去した場合(処理水D)の防食効果は、
HCO3 -型アニオン交換樹脂のみ(処理水A)やHCO
3 -型アニオン交換樹脂とOH- 型強塩基性アニオン交換
樹脂とを組み合わせた場合(処理水B,C)よりも劣
る。
The results are shown in Table 2. As is clear from Table 2, the corrosion rate is reduced by the removal of corrosive ions, but when the corrosive ions are removed only by the OH - type strongly basic anion exchange resin (treated water D), the anticorrosion effect is ,
HCO 3 - type anion exchange resin alone (treated water A) and HCO
It is inferior to the case where the 3 -- type anion exchange resin and the OH - type strongly basic anion exchange resin are combined (treated water B, C).

【0054】[0054]

【表2】 [Table 2]

【0055】実施例2 図3に示すモデル冷却水系試験装置を用いてスケール防
止効果、腐食防止効果の確認を行った。
Example 2 Using the model cooling water system test apparatus shown in FIG. 3, the scale preventing effect and the corrosion preventing effect were confirmed.

【0056】図3において、20は補給水配管、21は
冷却塔、22は保有水水槽、23は充填材、24はファ
ン、25は循環ポンプ、26はシェル側冷却水通水熱交
換器、27はチューブ側冷却水通水熱交換器、28は試
験片カラムである。冷却水は、水槽22から、配管2
9,配管29A,29B,配管30A,30B,配管3
0を経て循環される。
In FIG. 3, 20 is a makeup water pipe, 21 is a cooling tower, 22 is a holding water tank, 23 is a filler, 24 is a fan, 25 is a circulation pump, 26 is a shell side cooling water flow heat exchanger, Reference numeral 27 is a tube side cooling water flow heat exchanger, and 28 is a test piece column. The cooling water is supplied from the water tank 22 to the pipe 2
9, piping 29A, 29B, piping 30A, 30B, piping 3
It circulates through 0.

【0057】熱交換器26,27の運転条件は、次の通
りである。
The operating conditions of the heat exchangers 26 and 27 are as follows.

【0058】シェル側冷却水通水熱交換器26 冷却水入口水温:30℃ 冷却水出口水温:35℃ 冷却水流速:0.1m/s 熱交換チューブ長:1100mmチューブ側冷却水通水熱交換器27 冷却水入口水温:30℃ 冷却水出口水温:50℃ 冷却水流速:0.5m/s 熱交換チューブ長:2700mm いずれの熱交換器も加熱側は2kgf/cm2 の蒸気で
ある。また、熱交換チューブには市販の炭素鋼チューブ
(STB340,外径19mm,肉厚(実測値)2.2
mm)を用い、実施例1と同様にトルエン脱脂処理後、
それぞれの熱交換器26,27に2本ずつ挿入した。
Shell side cooling water flow heat exchanger 26 Cooling water inlet water temperature: 30 ° C. Cooling water outlet water temperature: 35 ° C. Cooling water flow rate: 0.1 m / s Heat exchange tube length: 1100 mm Tube side cooling water flow water heat exchange Unit 27 Cooling water inlet water temperature: 30 ° C. Cooling water outlet water temperature: 50 ° C. Cooling water flow rate: 0.5 m / s Heat exchange tube length: 2700 mm Both heat exchangers have steam of 2 kgf / cm 2 on the heating side. Further, as the heat exchange tube, a commercially available carbon steel tube (STB340, outer diameter 19 mm, wall thickness (measured value) 2.2)
mm) and after the toluene degreasing treatment in the same manner as in Example 1,
Two pieces were inserted into each heat exchanger 26, 27.

【0059】腐食防止効果は、熱交換器26,27の熱
交換チューブの外観を観察し、孔食が発生した場合はそ
の孔食深さを調べると共に、試験片カラム28内に設置
した炭素鋼製試験片(SPCC,50mm×15mm×
1mm,表面積15.6cm2 )の腐食速度測定により
調べた。なお、このモデル冷却水系の保有水量は250
Lである。
Regarding the corrosion prevention effect, the appearance of the heat exchange tubes of the heat exchangers 26 and 27 is observed, and if pitting corrosion occurs, the depth of the pitting corrosion is examined, and the carbon steel installed in the test piece column 28 is used. Made test piece (SPCC, 50 mm x 15 mm x
It was investigated by measuring the corrosion rate of 1 mm and a surface area of 15.6 cm 2 . In addition, the amount of water held by this model cooling water system is 250
L.

【0060】用いた試験水の水質を表3に示す。表3
中、アニオン交換水は、原水を実施例1と同様にして、
図1に示すアニオン交換装置にVCH3 :VOH=1:2で
通水し、腐食性イオンを除去したものである。
The water quality of the test water used is shown in Table 3. Table 3
Medium, anion exchange water, the raw water in the same manner as in Example 1,
Water was passed through the anion exchange device shown in FIG. 1 at V CH3 : V OH = 1: 2 to remove corrosive ions.

【0061】試験は、試験開始用水No.1,No.2
をそれぞれ用いた場合で比較を行い、いずれの試験も冷
却塔で失われる蒸発水及び飛散水と、一定の濃縮倍数を
保つために行う強制ブロー水とに相当する水の補給水に
は、表3に示す水質のアニオン交換水を用いた。また、
比較のため、試験開始用水No.1のみを用い(補給水
も試験開始用水No.1としたもの)、その他の条件は
全く同様としたものについても試験を行った。なお、試
験開始用水No.1は、原水250L全量をHCO3 -
アニオン交換樹脂に通水したものであり、試験開始用水
No.2は、原水250L全量をOH- 型強塩基性アニ
オン交換樹脂に通水したものである。このモデル冷却水
系は、まず1日間室温で水を循環し、その後熱交換器部
分への蒸気加熱を開始し、循環水の濃縮を開始した。な
お、試験開始時には、低分子量ポリマーとしてマレイン
酸系ポリマー(FMC製「ベルクレン200」)を20
0mg/L添加し、濃縮倍数が15倍になるように強制
ブロー量を調整した。濃縮が上がった後は冷却水中のポ
リマー濃度が40mg/Lになるように全ブロー量に見
合う量を連続的に添加した。
The test was carried out using the test starting water No. 1, No. 2
In each test, the replenishing water equivalent to the evaporated water and splash water lost in the cooling tower and the forced blow water to maintain a certain concentration multiple are Anion-exchanged water having the water quality shown in 3 was used. Also,
For comparison, the test starting water No. Tests were also conducted using only No. 1 (supplemented water was also water for starting test No. 1) and other conditions were exactly the same. The test start water No. No. 1 was obtained by passing the entire 250 L of raw water through the HCO 3 type anion exchange resin. In No. 2, 250 L of the raw water was passed through the OH - type strongly basic anion exchange resin. This model cooling water system first circulated water at room temperature for one day, then started steam heating to the heat exchanger portion, and started concentrating circulating water. At the start of the test, a maleic acid-based polymer (“Berkulen 200” manufactured by FMC) was used as a low molecular weight polymer.
0 mg / L was added, and the forced blow amount was adjusted so that the concentration factor was 15. After the concentration was increased, an amount corresponding to the total blow amount was continuously added so that the polymer concentration in the cooling water would be 40 mg / L.

【0062】[0062]

【表3】 [Table 3]

【0063】表4に結果を示す。表4中のスケール付着
量は熱交換チューブを200mm長に切断した後、それ
ぞれのチューブ片に付着していたスケールを金属ブラシ
でこすり落として重量を測定したものの平均値を示す。
Table 4 shows the results. The scale adhesion amount in Table 4 is an average value obtained by cutting the heat exchange tube into a length of 200 mm and then scraping off the scale adhered to each tube piece with a metal brush and measuring the weight.

【0064】試験期間は31日間としたが、試験開始用
水No.1のみを用いたものでは、試験開始7日目頃よ
り熱交換器チューブへのスケール付着によると判断され
る熱交換器蒸気ドレン水温の上昇が観察されたため、試
験を14日目で終了した時点の結果を示す。
Although the test period was 31 days, the test starting water No. When only 1 was used, the temperature of the heat exchanger steam drain water, which was judged to be due to scale adherence to the heat exchanger tube, was observed from about 7 days after the start of the test, so the test was completed on the 14th day. The result is shown.

【0065】[0065]

【表4】 [Table 4]

【0066】表4より次のことが明らかである。即ち、
HCO3 -型アニオン交換樹脂のみの処理で、シリカ除去
をしていない試験開始用水No.1水を補給水として用
いた場合は、他のものよりも試験期間が14日と短いに
もかかわらず、多量のスケールが熱交換チューブに付着
していた。化学分析により付着物はシリカを主体とする
ものであることが確認された。
From Table 4, the following is clear. That is,
The water for starting the test No. 3 in which silica was not removed by the treatment with only the HCO 3 type anion exchange resin. When 1 water was used as make-up water, a large amount of scale adhered to the heat exchange tube, although the test period was 14 days shorter than the others. It was confirmed by chemical analysis that the deposit was mainly composed of silica.

【0067】一方、本発明に従って、補給水に、シリカ
を一部除去したアニオン交換水を用いた場合は、いずれ
の試験結果もともにスケール付着量は、補給水中のシリ
カを除去していない試験開始用水No.1のみを用いた
場合に比べて大きく低下しており、良好なスケール防止
効果が得られている。
On the other hand, according to the present invention, when anion-exchanged water from which silica was partially removed was used as make-up water, the scale adhesion amount in all the test results was the start of the test in which silica in the make-up water was not removed. Water No. Compared with the case where only 1 was used, it was greatly reduced, and a good scale preventing effect was obtained.

【0068】シリカ系スケールを防止するためには、補
給水中のシリカの全量をOH- 型強塩基性アニオン交換
樹脂で除去することが有利であるが、表4の結果からも
明らかなように、運転開始時には、水の濃縮度が小さい
場合は、OH- 型強塩基性アニオン交換樹脂で処理し、
シリカを含まない試験開始用水No.2を用いると、水
の防食性が十分でないため、熱交換チューブや試験片上
での腐食発生量が多い。一方、水の濃縮度が小さい運転
初期においては、HCO3 -型アニオン交換樹脂で処理
し、シリカを含む試験開始用水No.1を用い、濃縮度
が上った後に、シリカを一部除去したアニオン交換水を
補給した場合には、腐食発生量が格段に少ない。スケー
ルと腐食の両方を抑制するためには、水の濃縮度が小さ
い運転初期においては、シリカをある程度含む水を用
い、濃縮度が上った時点でシリカを一部除去した水を補
給するように、水の濃縮倍数に応じて系内の水のシリカ
濃度を制御することが有効であることが明らかである。
In order to prevent silica-based scale, it is advantageous to remove the total amount of silica in the makeup water with an OH - type strongly basic anion exchange resin, but as is clear from the results in Table 4, At the start of operation, if the water concentration is low, treat with OH - type strongly basic anion exchange resin,
Test start water No. containing no silica When No. 2 is used, the anticorrosion property of water is not sufficient, so that a large amount of corrosion is generated on the heat exchange tube or the test piece. On the other hand, in the initial stage of operation when the concentration of water was small, the test start water No. 1 containing silica was treated with the HCO 3 type anion exchange resin. When 1 was used and anion-exchanged water from which silica was partially removed was replenished after the degree of enrichment increased, the amount of corrosion generated was remarkably small. In order to suppress both scale and corrosion, water containing a certain amount of silica should be used at the beginning of operation when the water concentration is low, and water with partial removal of silica should be replenished when the concentration increases. Furthermore, it is clear that it is effective to control the silica concentration of water in the system according to the concentration factor of water.

【0069】[0069]

【発明の効果】以上詳述した通り、本発明の水系の金属
の腐食抑制及びシリカ系スケール抑制方法によれば、 水系の金属の腐食を防止すると共に、シリカ系スケ
ール障害を引き起こすことなく水系の濃縮倍数を高くで
きる。特に、対象水系の濃縮倍数に応じて、HCO3 -
アニオン交換塔とOH- 型アニオン交換塔との通水比率
を制御することで、スケール障害を確実に防止すること
ができる。 水系の濃縮倍数を大きくできることで、水の使用量
やブロー水量(排水量)の低減が可能となる。 水系の濃縮に応じて水中のシリカ濃度を変化させる
ことで、必要に応じて環境への負荷が小さい低分子量ポ
リマーを用いるのみでより安定した腐食防止効果を得る
ことができる。 といった効果が奏され、水系の運転を安定かつ効率的に
維持することができる。
As described above in detail, according to the method for inhibiting corrosion of a water-based metal and the inhibition of a silica-based scale of the present invention, it is possible to prevent corrosion of a water-based metal and to prevent the corrosion of a water-based metal without causing a silica-based scale failure. The concentration factor can be increased. In particular, by controlling the water flow ratio between the HCO 3 type anion exchange column and the OH type anion exchange column according to the concentration multiple of the target water system, it is possible to reliably prevent the scale failure. By increasing the concentration factor of the water system, it is possible to reduce the amount of water used and the amount of blow water (wastewater amount). By changing the silica concentration in the water according to the concentration of the water system, a more stable corrosion-inhibiting effect can be obtained only by using a low-molecular weight polymer having a low environmental load, if necessary. Such an effect can be obtained, and the operation of the water system can be stably and efficiently maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水系の金属の腐食抑制及びシリカ系ス
ケール抑制方法の一実施例方法を示す系統図である。
FIG. 1 is a system diagram showing an example method of a method for inhibiting corrosion of a water-based metal and a method for inhibiting silica-based scale according to the present invention.

【図2】実施例1で用いた試験装置を示す系統図であ
る。
FIG. 2 is a system diagram showing a test apparatus used in Example 1.

【図3】実施例2で用いたモデル冷却水系試験装置を示
す系統図である。
FIG. 3 is a system diagram showing a model cooling water system testing device used in Example 2.

【符号の説明】[Explanation of symbols]

1,2 アニオン交換塔 1A HCO3 -型アニオン交換樹脂 2A OH- 型強塩基性アニオン交換樹脂 3 水槽 4 加熱用蛇管 5 温度センサ 8 試験チューブ 21 冷却塔 22 保有水槽 25 循環ポンプ 26 シェル側冷却水通水熱交換器 27 チューブ側冷却水通水熱交換器 28 試験片カラム1,2 anion exchange column 1A HCO 3 - type anion exchange resin 2A OH - type strongly basic anion exchange resin 3 water tank 4 for heating the flexible tube 5 temperature sensor 8 test tube 21 the cooling tower 22 held aquarium 25 circulation pump 26 the shell side cooling water Water flow heat exchanger 27 Tube side cooling water water flow heat exchanger 28 Test piece column

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 5/08 C02F 5/08 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C02F 5/08 C02F 5/08 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水系の金属の腐食抑制及びシリカ系スケ
ール抑制方法であって、該水系の水を、重炭酸イオン型
アニオン交換樹脂及び水酸化物イオン型強塩基性アニオ
ン交換樹脂と接触させることを特徴とする水系の金属の
腐食抑制及びシリカ系スケール抑制方法。
1. A method for inhibiting corrosion of an aqueous metal and inhibiting silica scale, which comprises contacting the aqueous water with a bicarbonate ion-type anion exchange resin and a hydroxide ion-type strongly basic anion exchange resin. A method for suppressing corrosion of a water-based metal and a method for suppressing a silica-based scale, characterized by:
【請求項2】 請求項1において、該水系の水の一部を
重炭酸イオン型アニオン交換樹脂に接触させると共に、
残部を水酸化物イオン型強塩基性アニオン交換樹脂に接
触させることを特徴とする水系の金属の腐食抑制及びシ
リカ系スケール抑制方法。
2. The method according to claim 1, wherein a part of the water of the water system is brought into contact with a bicarbonate ion type anion exchange resin,
A method for inhibiting corrosion of a water-based metal and inhibiting a silica-based scale, which comprises contacting the balance with a hydroxide ion-type strongly basic anion exchange resin.
【請求項3】 請求項2において、重炭酸イオン型アニ
オン交換樹脂に接触させる水の割合と、水酸化物イオン
型強塩基性アニオン交換樹脂に接触させる水の割合を、
該水系内の水のシリカ濃度がシリカ系スケールが生成す
る濃度以下となるように制御することを特徴とする水系
の金属の腐食抑制及びシリカ系スケール抑制方法。
3. The proportion of water brought into contact with the bicarbonate ion type anion exchange resin and the proportion of water brought into contact with the hydroxide ion type strongly basic anion exchange resin according to claim 2.
A method for inhibiting corrosion of a water-based metal and a method for inhibiting a silica-based scale, wherein the silica concentration of water in the water-based system is controlled to be equal to or lower than a concentration at which a silica-based scale is generated.
JP7334883A 1995-12-22 1995-12-22 Corrosion suppression of metal in water system and suppressing method of silica based scale Pending JPH09176872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7334883A JPH09176872A (en) 1995-12-22 1995-12-22 Corrosion suppression of metal in water system and suppressing method of silica based scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7334883A JPH09176872A (en) 1995-12-22 1995-12-22 Corrosion suppression of metal in water system and suppressing method of silica based scale

Publications (1)

Publication Number Publication Date
JPH09176872A true JPH09176872A (en) 1997-07-08

Family

ID=18282298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7334883A Pending JPH09176872A (en) 1995-12-22 1995-12-22 Corrosion suppression of metal in water system and suppressing method of silica based scale

Country Status (1)

Country Link
JP (1) JPH09176872A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0857514A2 (en) * 1997-01-09 1998-08-12 Kurita Water Industries Ltd. Method of preventing corrosion in a water system
EP0866148B1 (en) * 1995-12-27 2001-09-19 Kurita Water Industries Ltd. Method for inhibiting corrosion in water systems
JP2001324296A (en) * 2000-05-18 2001-11-22 Kurita Water Ind Ltd Open circulation type cooling equipment
JP2002018454A (en) * 2000-07-05 2002-01-22 Kurita Water Ind Ltd Apparatus for supplying ozone-dissolved water
JP2009041844A (en) * 2007-08-09 2009-02-26 Miura Co Ltd Water-quality regulating device for cooling tower makeup water
CN109650580A (en) * 2017-09-27 2019-04-19 株式会社雷肯 Water treatment facilities, water treatment system and cooling system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866148B1 (en) * 1995-12-27 2001-09-19 Kurita Water Industries Ltd. Method for inhibiting corrosion in water systems
EP0857514A2 (en) * 1997-01-09 1998-08-12 Kurita Water Industries Ltd. Method of preventing corrosion in a water system
EP0857514A3 (en) * 1997-01-09 1999-03-17 Kurita Water Industries Ltd. Method of preventing corrosion in a water system
US5985152A (en) * 1997-01-09 1999-11-16 Kurita Water Industries Ltd. Method of preventing corrosion in a water system
EP1405671A2 (en) * 1997-01-09 2004-04-07 Kurita Water Industries Ltd. Method of preventing corrosion in a water system
EP1405671A3 (en) * 1997-01-09 2004-06-30 Kurita Water Industries Ltd. Method of preventing corrosion in a water system
JP2001324296A (en) * 2000-05-18 2001-11-22 Kurita Water Ind Ltd Open circulation type cooling equipment
JP2002018454A (en) * 2000-07-05 2002-01-22 Kurita Water Ind Ltd Apparatus for supplying ozone-dissolved water
JP4538702B2 (en) * 2000-07-05 2010-09-08 栗田工業株式会社 Ozone dissolved water supply device
JP2009041844A (en) * 2007-08-09 2009-02-26 Miura Co Ltd Water-quality regulating device for cooling tower makeup water
CN109650580A (en) * 2017-09-27 2019-04-19 株式会社雷肯 Water treatment facilities, water treatment system and cooling system

Similar Documents

Publication Publication Date Title
JP3928182B2 (en) Corrosion prevention and scale prevention method for open circulation cooling water system
CA2916926C (en) Corrosion control methods using shot doses of tin(11) salts
JP5800044B2 (en) Descaling method and descaling agent for steam generating equipment
US4387027A (en) Control of iron induced fouling in water systems
JP3944932B2 (en) Water-based anticorrosion method
WO2011118389A1 (en) Treatment method of cooling water system
JPH09176872A (en) Corrosion suppression of metal in water system and suppressing method of silica based scale
US5820763A (en) Method for inhibiting corrosion in water systems
JP2002054894A (en) Method and device for water treatment in open circulation cooling water system
JP3358216B2 (en) Water-based metal corrosion suppression method
JPH07316848A (en) Method for inhibiting corrosion of metal in water line
JPH1128461A (en) Method for suppressing corrosion of metal in water system
JP6635173B1 (en) Corrosion protection method for metal members of cooling water system
JPH1119687A (en) Method for preventing adhesion of scale at water system
JP2917813B2 (en) Water-based metal corrosion suppression method
JPH09111482A (en) Corrosion preventing method of metal in water system
JPH1129885A (en) Preventing method of pitting corrosion of metal in water system
ZA200102275B (en) Inhibition of corrosion in aqueous systems.
JP7247794B2 (en) Treatment method for circulating cooling water system
JP2001327994A (en) Apparatus for treating open circulating cooling water
JP2009299161A (en) Metal corrosion suppression method of water system
JP2003320392A (en) Scaling preventing method and scaling preventing apparatus
JPS5823472B2 (en) Corrosion prevention method for metals in low conductivity cooling water systems
JPS6312941B2 (en)
JP2003080292A (en) Method for preventing scale of cooling water system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628