JP7380449B2 - 判定装置及びプログラム - Google Patents

判定装置及びプログラム Download PDF

Info

Publication number
JP7380449B2
JP7380449B2 JP2020113363A JP2020113363A JP7380449B2 JP 7380449 B2 JP7380449 B2 JP 7380449B2 JP 2020113363 A JP2020113363 A JP 2020113363A JP 2020113363 A JP2020113363 A JP 2020113363A JP 7380449 B2 JP7380449 B2 JP 7380449B2
Authority
JP
Japan
Prior art keywords
determination
vehicle
area
trajectory
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020113363A
Other languages
English (en)
Other versions
JP2022011933A (ja
Inventor
健揮 上田
亮介 立花
潤 服部
敬 北川
宗史 大橋
利弘 安田
哲生 嶽本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020113363A priority Critical patent/JP7380449B2/ja
Priority to CN202110576570.5A priority patent/CN113870616A/zh
Priority to US17/304,478 priority patent/US20210406563A1/en
Publication of JP2022011933A publication Critical patent/JP2022011933A/ja
Application granted granted Critical
Publication of JP7380449B2 publication Critical patent/JP7380449B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/103Static body considered as a whole, e.g. static pedestrian or occupant recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/08Detecting or categorising vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、車両が対象物と接近した場合の危険を判定する判定装置及びプログラムに関する。
特許文献1には、運転者が運転する車両と衝突する危険性のある物体の存在を運転者に対して警告する警告表示装置が開示されている。当該警告表示装置は、車両の周囲を撮影した周辺画像を取得する第1の撮像部と、周辺画像から、車両と衝突する危険性がある危険物体を検出する危険物体検出部と、周辺画像上で危険物体検出部により検出された危険物体を強調表示した警告画像を生成する警告画像生成部と、警告画像を表示する表示部と、を有している。
特開2019-191793号公報
特許文献1の危険物体検出部は、危険物体の判定に際してパターンマッチングを用いており、自車両と物体との相対的な位置に基づいて相関値を算出している。そのため、対象物体の速度や移動方向などの情報が考慮されておらず正しい危険度が算出できていない。また、自車両の動きが判定に使用されておらず、自車両の進行方向における危険度が算出できていない。
本発明は、対象物の位置、速度等の情報、及び自車両の走行情報を考慮して危険を判定する判定装置及びプログラムを提供することを目的とする。
請求項1に記載の判定装置は、車両に設けられた撮像部によって撮像された撮像画像から対象物を検出する検出部と、前記車両の走行情報、並びに前記対象物の位置及び速度に基づいて、前記車両の進行方向に応じた判定領域を生成する生成部と、前記判定領域に前記対象物が含まれる場合に危険と判定する判定部と、を備え、前記生成部は、前記車両の左前輪の軌跡及び右前輪の軌跡に挟まれた領域として規定された基準領域に対して、奥行を設定すると共に、前記奥行の範囲に応じて設定した前記左前輪の軌跡及び前記右前輪の軌跡を拡幅又は縮幅させた領域を前記判定領域として生成している。
請求項1に記載の判定装置は、検出部が車両に設けられた撮像部により撮像された撮像画像から対象物を検出し、生成部が車両の進行方向に応じた判定領域を生成する。ここで、対象物とは、他の車両及び歩行者等が該当する。「進行方向に応じた判定領域」とは、車両がこれから進行する軌跡に沿って、かつ所定の幅を有する領域である。
また、判定領域は、車両から取得した走行情報、並びに前記対象物の位置及び速度に基づいて生成される。走行情報は、車両におけるステアリングホイールの操舵角、及びウィンカの操作情報等が例示される。そして、当該判定装置は、判定部が判定領域に対象物が含まれる場合に危険と判定する。当該判定装置によれば、対象物の位置、速度等の情報、及び自車両の走行情報を考慮して危険を判定することができる。
請求項2に記載の判定装置は、請求項1に記載の判定装置において、前記判定部は、前記判定領域に含まれる前記対象物に対して危険度を算出し、算出された前記危険度が閾値を超えた場合に危険と判定する。
請求項2に記載の判定装置では、判定部が判定領域に含まれる対象物の危険性を危険度として定量化し、危険度が閾値を超えたか否かで危険と判定する。当該判定装置によれば、自車両と対象物との位置関係の程度に応じて危険を判定することができる。
請求項3に記載の判定装置は、請求項2に記載の判定装置において、前記生成部は、前記走行情報並びに前記対象物の位置及び速度に応じて複数の判定領域を生成し、前記判定部は、前記判定領域毎に前記危険度を算出し、何れか1の前記判定領域における前記危険度が閾値を超えた場合に危険と判定する。
請求項3に記載の判定装置では、生成部が走行情報並びに対象物の位置及び速度に応じて複数の判定領域を生成し、判定部が判定領域毎に危険を判定する。そのため、当該判定装置によれば、対象物の位置や速度等、危険の判定に複数の条件を含めることができ、状況に応じた危険の判定を行うことができる。
請求項4に記載の判定装置は、請求項1~3の何れか1項に記載の判定装置において、前記判定部は、所定フレーム前の前記撮像画像に基づく判定において危険と判定されていた場合、現時点における危険の判定を維持する。
請求項4に記載の判定装置では、前記判定部は、所定フレーム分の撮像画像を基に危険の判定を行う。そのため、当該判定装置によれば、所定時間に渡り危険の判定を維持することで、ある対象物に対する判定結果がフレーム毎に揺らぐ場合であっても判定結果を安全側に振ることができる。
請求項5に記載のプログラムは、車両に設けられた撮像部によって撮像された撮像画像から対象物を検出する検出処理と、前記車両の走行情報、並びに前記対象物の位置及び速度に基づいて、前記車両の進行方向に応じた判定領域を生成する生成処理と、前記判定領域に前記対象物が含まれる場合に危険と判定する判定処理と、を含み、前記生成処理は、前記車両の左前輪の軌跡及び右前輪の軌跡に挟まれた領域として規定された基準領域に対して、奥行を設定すると共に、前記奥行の範囲に応じて設定した前記左前輪の軌跡及び前記右前輪の軌跡を拡幅又は縮幅させた領域を前記判定領域として生成する処理をコンピュータに実行させる。
請求項5に記載のプログラムは、コンピュータに次の処理を実行させる。すなわち、検出処理において車両に設けられた撮像部により撮像された撮像画像から対象物が検出され、生成処理において車両の進行方向に応じた判定領域が生成される。ここで、対象物、「進行方向に応じた判定領域」及び走行情報とは、上述のとおりである。判定領域は、車両から取得した走行情報、並びに前記対象物の位置及び速度に基づいて生成される。そして、コンピュータでは、判定処理において判定領域に対象物が含まれる場合に危険と判定される。当該プログラムによれば、対象物の位置、速度等の情報、及び自車両の走行情報を考慮して危険を判定することができる。
本発明によれば、対象物の位置、速度等の情報、及び自車両の走行情報を考慮して危険を判定することができる。
実施形態に係る車両の概略構成を示す図である。 実施形態の車両のハードウェア構成を示すブロック図である。 実施形態のコントローラにおけるROMの構成を示すブロック図である。 実施形態のコントローラにおけるストレージの構成を示すブロック図である。 実施形態のコントローラのCPUの機能構成を示すブロック図である。 実施形態における撮像画像の例を示す図である。 実施形態における判定領域を説明する図である。 実施形態における判定領域を説明する図である。 実施形態のコントローラにおける判定処理の流れを示すフローチャートである。 実施形態のコントローラにおける報知処理の流れを示すフローチャートである。
図1に示されるように、本発明の実施形態に係る判定装置としてのコントローラ20は、運転者Dが乗車する車両である自車両12に搭載されている。自車両12は、コントローラ20の他に、ECU(Electronic Control Unit)22、カメラ24及び報知装置25を含む。ECU22、カメラ24及び報知装置25は、それぞれコントローラ20に対して接続されている。
ECU22は、自車両12の各部を制御する、又は外部との通信を行うための制御装置として設けられている。図2に示されるように、本実施形態のECU22は、ステアリングECU22A、ボデーECU22B、DCM(Data Communication Module)22C、を含んでいる。
ステアリングECU22Aは、電動ステアリングを制御する機能を有している。ステアリングECU22Aには、ステアリングホイール14(図1参照)に接続された図示しない操舵角センサの信号が入力されている。また、ボデーECU22Bは、灯火類を制御する機能を有している。ボデーECU22Bには、例えば、ウィンカレバー15(図1参照)が操作された場合に操作信号が入力される。DCM22Cは、自車両12の外部との通信を行うための通信装置として機能する。
図1に示されるように、カメラ24は、ルームミラー16の車両前方側に設けられている。このカメラ24は、フロントウインドウ17を通じて自車両12の車両前方を撮像するものである。
報知装置25は、ダッシュボード18の上面に設けられている。図2に示されるように、報知装置25は、モニタ26と、スピーカ28とを有している。モニタ26は、運転者Dが視認可能に車両後方側を向いて設けられている。スピーカ28は、報知装置25の本体部ではなく、別体として設けられていてもよい。また、スピーカ28は、自車両12に設けられたオーディオ用のスピーカと兼用してもよい。
コントローラ20は、CPU(Central Processing Unit)20A、ROM(Read Only Memory)20B、RAM(Random Access Memory)20C、ストレージ20D、通信I/F(InterFace)20E及び入出力I/F20Fを含んで構成されている。CPU20A、ROM20B、RAM20C、ストレージ20D、通信I/F20E及び入出力I/F20Fは、内部バス20Gを介して相互に通信可能に接続されている。
CPU20Aは、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU20Aは、ROM20Bからプログラムを読み出し、RAM20Cを作業領域としてプログラムを実行する。
ROM20Bは、各種プログラム及び各種データを記憶している。図3に示されるように、本実施形態のROM20Bは、処理プログラム100、車両データ110及び判定ログ120を記憶している。なお、処理プログラム100、車両データ110及び判定ログ120は、ストレージ20Dに記憶されていてもよい。
処理プログラム100は、後述する判定処理及び報知処理を行うためのプログラムである。車両データ110は、自車両12のタイヤのトレッド幅や、カメラ24の設置高さ等を記憶したデータである。判定ログ120は、判定処理の判定結果を記憶したデータである。判定ログ120は、RAM20Cに一時的に記憶してもよい。
図2に示されるように、RAM20Cは、作業領域として一時的にプログラム又はデータを記憶する。
ストレージ20Dは、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、各種プログラム及び各種データを記憶している。図4に示されるように、本実施形態のストレージ20Dは、カメラ24により撮像された撮像画像に係る撮像データ150を記憶している。撮像データ150には、判定処理により危険と判定された場合の撮像画像、及び実際に事故が発生した場合の撮像画像等を含めることができる。なお、ストレージ20Dに代えて、コントローラ20に接続されたSD(Secure Digital)カード、又はUSB(Universal Serial Bus)メモリ等に撮像データ150を記憶してもよい。
通信I/F20Eは、各ECU22と接続するためのインタフェースである。当該インタフェースは、CANプロトコルによる通信規格が用いられている。通信I/F20Eは、外部バス20Hを介して各ECU22に接続されている。
入出力I/F20Fは、自車両12に搭載されるカメラ24、並びに報知装置25が有するモニタ26及びスピーカ28と通信するためのインタフェースである。
図5に示されるように本実施形態のコントローラ20では、CPU20Aが、処理プログラム100を実行することで、設定部200、画像取得部210、情報取得部220、検出部230、生成部240、判定部250、及び出力部260として機能する。
設定部200は、自車両12のトレッド幅、及びカメラ24の設置高さを設定する機能を有している。設定部200は、コントローラ20、カメラ24及び報知装置25の設置時において、作業者の操作により自車両12のトレッド幅、及びカメラ24の設置高さを設定する。設定されたデータは車両データ110として記憶される。
画像取得部210は、カメラ24により撮像された撮像画像を取得する機能を有している。
情報取得部220は、各ECU22から自車両12の走行情報としてのCAN情報から取得する機能を有している。ここで、例えば、情報取得部220は、ステアリングECU22Aから操舵角情報を取得し、ボデーECU22Bからウィンカの作動情報を取得する。また、情報取得部220は、DCM22Cを通じて、外部のサーバ(図示せず)から気象情報及び交通情報等を取得することができる。
検出部230は、カメラ24により撮像された撮像画像から対象物Oを検出する機能を有している。対象物Oとは、例えば、道路を走行する車両OV、及び道路を横断する歩行者OPである(図6参照)。
生成部240は、情報取得部220により取得されたCAN情報、並びに対象物Oの位置及び速度に基づいて、自車両12の進行方向に応じた判定領域DAを生成する機能を有している。図6に示されるように、具体的に、生成部240は、ステアリングホイール14の操舵角に応じた基準領域BAを生成する。基準領域BAは、自車両12の車幅方向両側に設けられ自車両12の進行方向に延びる軌跡TL及び軌跡TRに挟まれた領域として規定される。車幅方向左側の軌跡TLは自車両12の左前輪の軌跡とされ、車幅方向右側の軌跡TRは自車両12の右前輪の軌跡とされている。
また、生成部240は、CAN情報並びに対象物Oの位置及び速度に応じて判定領域DAを生成する。判定領域DAは、基準領域BAに対して、奥行を設定すると共に、軌跡TL及び軌跡TRを拡幅又は縮幅させた領域である。ここで、本実施形態では、第1領域A1、第2領域A2及び第3領域A3の3つの判定領域DAが設定されている。
第1領域A1は、自車両12の位置にのみ基づく判定領域DAである。第1領域A1は、対象物Oが車両OVの場合、表1に示されるように、奥行きが自車両12から8mの範囲で、かつ、通常はトレッド幅の範囲で、ウィンカ作動時はトレッド幅+1mの範囲で設定されている。図7の一点鎖線は、ウィンカ作動時における車両OVに対する第1領域A1の例である。そして、車両OVが第1領域A1に入っている場合、リスク度1.0が付与される。
また、第1領域A1は、対象物Oが歩行者OPの場合、表2に示されるように、奥行きが自車両12から8mの範囲で、かつ、トレッド幅+2mの範囲で設定されている。図8の点線は、歩行者OPに対する第1領域A1の例である。そして、歩行者OPが第1領域A1に入っている場合、リスク度1.0が付与される。
第2領域A2は、対象物Oの車両前後方向の車速を加味した判定領域DAである。第2領域A2は、対象物Oが車両OVの場合、歩行者OPの場合の何れも表3のように設定される。第2領域A2は、奥行きが自車両12から8~14mの範囲で、かつ、トレッド幅の範囲で設定されている。この第2領域A2に対象物Oが入っている場合、自車両12から8m以内の範囲についてはリスク度1.0が付与され、自車両12から12m以内の範囲についてはリスク度0.9が付与され、自車両12から14m以内の範囲についてはリスク度0.8が付与される。
また、第2領域A2は、奥行きが自車両12から12mの範囲で、ウィンカ作動時はトレッド幅+1mの範囲で設定されている。この第2領域A2に対象物Oが入っている場合、リスク度0.9が付与される。さらに、第2領域A2は、奥行きが自車両12から14mの範囲で、ウィンカ作動時はトレッド幅+2mの範囲で設定されている。図7の点線は、ウィンカ作動時における車両OVに対する、自車両12から14mの範囲かつトレッド幅+2mの範囲の第2領域A2の例である。この第2領域A2に対象物Oが入っている場合、リスク度0.8が付与される。
第3領域A3は、対象物Oの左右方向の速度を加味した判定領域DAである。第3領域A3は、対象物Oが車両OVの場合、歩行者OPの場合の何れも表4のように設定される。第3領域A3は、奥行きが自車両12から8mの範囲で、かつ、特定の幅の範囲で設定されている。この第3領域A3に対象物Oが入っている場合、左右幅がトレッド幅の範囲についてはリスク度1.0が付与され、トレッド幅+内外輪差の範囲についてはリスク度0.8が付与され、自車両12の進路+内外輪差+人の停止距離の範囲についてはリスク度0.5が付与される。図8の実線は、歩行者OPに対する、自車両12から8mの範囲かつトレッド幅の範囲の第3領域A3の例である。
図5に示されるように、判定部250は、生成部240が生成した判定領域DAに対象物Oが含まれる場合に危険と判定する機能を有している。具体的に、判定部250は、判定領域DAに含まれる対象物Oに対して危険度を算出し、算出された危険度が閾値0.8を超えた場合に危険と判定する。特に本実施形態の判定部250は、第1領域A1~第3領域A3の判定領域DA毎に危険度を算出し、何れか1の判定領域DAにおける危険度が閾値を超えた場合に危険と判定する。
ここで、第1領域A1に対する危険度は式1により算出される。
危険度=リスク度・・・(式1)
式1によれば、自車両12の位置にのみ基づく判定に際し、危険度はリスク度に等しい値となる。
また、第2領域A2に対する危険度は式2により算出される。
危険度=リスク度×Min(30、対象物Oとの速度差)/30・・・(式2)
ただし、速度差の単位はkm/hである。
式2によれば、対象物Oの車両前後方向の車速を加味した判定に際し、危険度はリスク度以下の値となる。
さらに、第3領域A3に対する危険度は式3により算出される。
危険度=リスク度+0.5×x・・・(式3)
ただし、車両左側の対象物Oが右に移動 or 車両右側の対象物Oが左に移動:x=1
上記以外:x=0
式3によれば、対象物Oの左右方向の速度を加味した判定に際し、危険度は、対象物Oが自車両12に接近している場合、リスク度に0.5を付加した値となる。
出力部260は、判定部250において危険と判定された場合に、報知装置25に対して注意情報を出力する機能を有している。出力部260が注意情報を出力することにより、報知装置25では、モニタ26には運転者Dに対して注意を促す画像が表示され、スピーカ28からは運転者Dに対して注意を促す音声やアラームが出力される。
(制御の流れ)
本実施形態のコントローラ20において実行される判定処理及び報知処理の流れについて、図9及び図10を用いて説明する。判定処理及び報知処理は、CPU20Aが、設定部200、画像取得部210、情報取得部220、検出部230、生成部240、判定部250、及び出力部260として機能することにより実行される。
まず、判定処理の流れについて、図9のフローチャートを用いて説明する。
図9のステップS100において、CPU20AはECU22からCAN情報を取得する。例えば、CPU20Aは、ステアリングECU22Aから操舵角センサの信号をCAN情報により取得する。また例えば、CPU20Aは、ボデーECU22Bからウィンカの操作信号をCAN情報により取得する。
ステップS101において、CPU20Aはカメラ24が撮像した撮像画像に係る画像情報を取得する。
ステップS102において、CPU20Aは地平線を推定する。地平線の推定は、公知の技術を用いて行われる。例えば、CPU20Aは道路の白線等、道路の直線成分を検知し、抽出した全ての直線の交点から地平線の座標を推定する。
ステップS103において、CPU20Aは撮像画像中の対象物Oを検出する。具体的に、CPU20Aは、画像認識等の公知の方法により車両OV及び歩行者OP等の対象物Oを検出する。
ステップS104において、CPU20Aはトラッキングを実行する。これによりステップS103において検出された対象物Oの追跡が行われる。
ステップS105において、CPU20Aは追跡が行われている対象物Oまでの距離を推定する。具体的には、撮像画像に対し対象物OにはバウンディングボックスBBが表示されており(図6参照)、CPU20Aは撮像画像上のバウンディングボックスBBの底辺BLのY座標、及び地平線のY座標を予め用意した回帰式に入力することで対象物Oまでの距離を算出する。
ステップS106において、CPU20Aは現在位置における危険度を推定する。具体的に、CPU20Aは、対象物Oが車両OVの場合、判定領域DAとして表1に基づく第1領域A1を規定し、対象物Oが歩行者OPの場合、表2に基づく第2領域A2を規定する。そして、CPU20Aは、第1領域A1に存在する対象物Oに応じて付与されたリスク度を式1に代入して危険度を求める。例えば、図8に示されるように、第1領域A1に歩行者OPが存在する場合、リスク度1.0が付与され、式1により危険度は1.0となる。
ステップS107において、CPU20Aは前後速度における危険度を推定する。具体的に、CPU20Aは、対象物Oが車両OV及び歩行者OPの場合、判定領域DAとして表3に基づく第2領域A2を規定する。そして、CPU20Aは、第2領域A2に存在する対象物Oに応じて付与されたリスク度を式2に代入して危険度を求める。例えば、図7に示されるように、自車両12から12mかつトレッド幅の範囲の第2領域A2に車両OVが存在する場合、リスク度0.9が付与される。そして、自車両12と車両OVとの速度差が20km/hの場合、式2により危険度は0.6となる。
ステップS108において、CPU20Aは左右速度における危険度を推定する。具体的に、CPU20Aは、対象物Oが車両OV及び歩行者OPの場合、判定領域DAとして表4に基づく第3領域A3を規定する。そして、CPU20Aは、第3領域A3に存在する対象物Oに応じて付与されたリスク度を式3に代入して、危険度を求める。例えば、図8に示されるように、自車両12から8mかつトレッド幅の範囲の第3領域A3に歩行者OPが存在する場合、リスク度1.0が付与される。そして、歩行者OPが自車両12の車両左方から車両右方に移動して第3領域A3に進入していた場合、式3により危険度は1.5となる。
ステップS109において、CPU20Aは各判定領域DAに対して算出された危険度のうちの何れかの1つが閾値を超えたか否かの判定を行う。本実施形態では、閾値を0.8としている。CPU20Aは何れかの1つの危険度が閾値を超えたと判定した場合、ステップS110に進む。一方、CPU20Aは何れかの1つの危険度が閾値を超えていない、すなわち全ての危険度が閾値以下であると判定した場合、ステップS111に進む。
ステップS110において、CPU20Aはこのまま自車両12が走行すると対象物Oに接触する可能性が高いことを示す「危険」と判定する。
ステップS111において、CPU20Aはこのまま自車両12が走行しても対象物Oに接触する可能性を低いことを示す「非危険」と判定する。
ステップS112において、CPU20Aは判定処理を終了するか否かの判定を行う。CPU20Aは判定処理を終了すると判定した場合、判定処理を終了させる。一方、CPU20Aは判定処理を終了しないと判定した場合、ステップS100に戻る。
次に、報知処理の流れについて、図10のフローチャートを用いて説明する。
図10のステップS200において、CPU20Aは撮像画像の過去10フレーム中に危険の判定があるか否かの判定を行う。CPU20Aは撮像画像の過去10フレーム中に危険の判定があると判定した場合、ステップS201に進む。一方、CPU20Aは撮像画像の過去10フレーム中に危険の判定がないと判定した場合、ステップS203に進む。
ステップS201において、CPU20Aは報知装置25が未報知か否かの判定を行う。CPU20Aは報知装置25が未報知であると判定した場合、ステップS202に進む。一方、CPU20Aは報知装置25が未報知ではない、すなわち報知中であると判定した場合、ステップS200に戻る。
ステップS202において、CPU20Aは報知装置25に注意情報を出力して報知を開始する。これにより、報知装置25では、モニタ26に「アクセルを離してください」の文字が表示されたり、スピーカ28からアラームが出力されたりする。
ステップS203において、CPU20Aは報知装置25が報知中か否かの判定を行う。CPU20Aは報知装置25が報知中であると判定した場合、ステップS204に進む。一方、CPU20Aは報知装置25が報知中ではない、すなわち未報知であると判定した場合、ステップS200に戻る。
ステップS204において、CPU20Aは報知装置25に対する注意情報の出力を停止して報知を終了する。これにより、報知装置25におけるモニタ26の表示及びスピーカ28からのアラームが終了される。
(まとめ)
本実施形態のコントローラ20は、検出部230が自車両12に設けられたカメラ24により撮像された撮像画像から対象物Oを検出し、生成部240が自車両12の進行方向に応じた判定領域DAを生成する。この判定領域DAは、CAN情報、並びに対象物Oの位置及び速度に基づいて第1領域A1~第3領域A3の3種類が生成される。具体的には、自車両12の位置にのみ基づく第1領域A1と、対象物Oの車両前後方向の車速を加味した第2領域A2と、対象物Oの左右方向の速度を加味した第3領域A3と、がそれぞれ生成される。
そして、コントローラ20は、判定部250が各判定領域DAに対象物Oが含まれる場合にその程度に応じて危険と判定する。そして、コントローラ20は、危険と判定した場合に報知装置25を通じて運転者Dに対して危険である旨を報知する。本実施形態によれば、対象物Oの位置、速度等の情報、及び自車両12のCAN情報を考慮して危険を判定することができる。また、本実施形態によれば、生成部240が第1領域A1~第3領域A3を設けることで、対象物Oの位置や速度等、危険の判定に複数の条件を含めることができ、状況に応じた危険の判定を行うことができる。
また、本実施形態のコントローラ20では、判定部250が判定領域DAに含まれる対象物Oの危険性を危険度として定量化し、危険度が閾値を超えたか否かで危険と判定する。そのため、本実施形態によれば、自車両12と対象物Oとの位置関係の程度に応じて危険を判定することができる。
さらに、本実施形態では、判定部250は、10フレーム分の撮像画像を基に危険の判定を行う。そのため、本実施形態によれば、所定時間に渡り危険の判定を維持することで、ある対象物Oに対する判定結果がフレーム毎に揺らぐ場合であっても判定結果を安全側に振ることができる。
[備考]
本実施形態では、判定部250が第1領域A1に基づく判定、第2領域A2に基づく判定、及び第3領域A3に基づく判定を実行したが、判定領域DAの種類は第1領域A1~第3領域A3に限らない。
判定部250は第1領域A1~第3領域A3の順に危険度を算出し、判定を実行していたが、判定順はこれに限らない。また、判定順は自車両12の乗員数、CAN情報の内容、及び天候等に応じて変えてもよい。例えば、降雨時においては、特に車幅方向の視界が悪くなることを考慮して、左右方向に係る第3領域A3に基づく判定を優先して行ってもよい。
また、本実施形態では、閾値が固定値0.8に設定されていたが、これに限らず、自車両12の乗員数、CAN情報の内容、及び天候等に応じて変えてもよい。例えば、CAN情報から取得したステアリングホイール14の操舵角が大きくなるほど閾値が低くなるように設定してもよい。
本実施形態では、自車両12の走行情報であるCAN情報として、ステアリングホイール14の操舵角情報と、ウィンカの操作情報を取得し、危険の判定に使用したが、判定に使用するCAN情報はこの限りではない。例えば、CAN情報からブレーキの操作情報、加速度センサの情報、及びミリ波レーダーのセンサ情報等を取得し、危険の判定に使用してもよい。
なお、上記実施形態でCPU20Aがソフトウェア(プログラム)を読み込んで実行した各種処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、上述した処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
また、上記実施形態において、各プログラムはコンピュータが読み取り可能な非一時的記録媒体に予め記憶(インストール)されている態様で説明した。例えば、コントローラ20における処理プログラム100は、ROM20Bに予め記憶されている。しかしこれに限らず、各プログラムは、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的記録媒体に記録された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
上記各実施形態における処理は、1つのプロセッサによって実行されるのみならず、複数のプロセッサが協働して実行されるものであってもよい。上記実施形態で説明した処理の流れも、一例であり、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
12 自車両(車両)
20 コントローラ(判定装置)
24 カメラ(撮像部)
100 処理プログラム(プログラム)
230 検出部
240 生成部
250 判定部
DA 判定領域
O 対象物

Claims (5)

  1. 車両に設けられた撮像部によって撮像された撮像画像から対象物を検出する検出部と、
    前記車両の走行情報、並びに前記対象物の位置及び速度に基づいて、前記車両の進行方向に応じた判定領域を生成する生成部と、
    前記判定領域に前記対象物が含まれる場合に危険と判定する判定部と、
    を備え、
    前記生成部は、前記車両の左前輪の軌跡及び右前輪の軌跡に挟まれた領域として規定された基準領域に対して、奥行を設定すると共に、前記奥行の範囲に応じて設定した前記左前輪の軌跡及び前記右前輪の軌跡を拡幅又は縮幅させた領域を前記判定領域として生成する判定装置。
  2. 前記判定部は、
    前記判定領域に含まれる前記対象物に対して危険度を算出し、
    算出された前記危険度が閾値を超えた場合に危険と判定する請求項1に記載の判定装置。
  3. 前記生成部は、前記走行情報並びに前記対象物の位置及び速度に応じて複数の判定領域を生成し、
    前記判定部は、前記判定領域毎に前記危険度を算出し、何れか1の前記判定領域における前記危険度が閾値を超えた場合に危険と判定する請求項2に記載の判定装置。
  4. 前記判定部は、所定フレーム前の前記撮像画像に基づく判定において危険と判定されていた場合、現時点における危険の判定を維持する請求項1~3の何れか1項に記載の判定装置。
  5. 車両に設けられた撮像部によって撮像された撮像画像から対象物を検出する検出処理と、
    前記車両の走行情報、並びに前記対象物の位置及び速度に基づいて、前記車両の進行方向に応じた判定領域を生成する生成処理と、
    前記判定領域に前記対象物が含まれる場合に危険と判定する判定処理と、
    を含み、
    前記生成処理は、前記車両の左前輪の軌跡及び右前輪の軌跡に挟まれた領域として規定された基準領域に対して、奥行を設定すると共に、前記奥行の範囲に応じて設定した前記左前輪の軌跡及び前記右前輪の軌跡を拡幅又は縮幅させた領域を前記判定領域として生成する処理をコンピュータに実行させるためのプログラム。
JP2020113363A 2020-06-30 2020-06-30 判定装置及びプログラム Active JP7380449B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020113363A JP7380449B2 (ja) 2020-06-30 2020-06-30 判定装置及びプログラム
CN202110576570.5A CN113870616A (zh) 2020-06-30 2021-05-26 判定装置、判定方法及记录有程序的记录介质
US17/304,478 US20210406563A1 (en) 2020-06-30 2021-06-22 Determination device, determination method, and storage medium storing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020113363A JP7380449B2 (ja) 2020-06-30 2020-06-30 判定装置及びプログラム

Publications (2)

Publication Number Publication Date
JP2022011933A JP2022011933A (ja) 2022-01-17
JP7380449B2 true JP7380449B2 (ja) 2023-11-15

Family

ID=78989907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020113363A Active JP7380449B2 (ja) 2020-06-30 2020-06-30 判定装置及びプログラム

Country Status (3)

Country Link
US (1) US20210406563A1 (ja)
JP (1) JP7380449B2 (ja)
CN (1) CN113870616A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023110461A (ja) 2022-01-28 2023-08-09 学校法人帝京大学 太陽電池モジュールの異常判定システム、太陽電池モジュールの異常判定方法およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004038877A (ja) 2002-07-08 2004-02-05 Yazaki Corp 車両用周辺監視装置及び画像処理装置
JP2012048460A (ja) 2010-08-26 2012-03-08 Denso Corp 走行支援装置
WO2015186395A1 (ja) 2014-06-03 2015-12-10 本田技研工業株式会社 車両周辺監視装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3984897B2 (ja) * 2002-09-18 2007-10-03 トヨタ自動車株式会社 車両用障害物検知装置
JP2009040107A (ja) * 2007-08-06 2009-02-26 Denso Corp 画像表示制御装置及び画像表示制御システム
JP5083075B2 (ja) * 2008-07-04 2012-11-28 トヨタ自動車株式会社 衝突防止装置
US20100191793A1 (en) * 2009-01-28 2010-07-29 Microsoft Corporation Symbolic Computation Using Tree-Structured Mathematical Expressions
JP2010191793A (ja) * 2009-02-19 2010-09-02 Denso It Laboratory Inc 警告表示装置及び警告表示方法
JP4733756B2 (ja) * 2009-04-28 2011-07-27 本田技研工業株式会社 車両周辺監視装置
JP5172887B2 (ja) * 2010-04-06 2013-03-27 本田技研工業株式会社 車両の周辺監視装置
JP5197679B2 (ja) * 2010-06-09 2013-05-15 株式会社豊田中央研究所 対象物検出装置及びプログラム
JP2015035055A (ja) * 2013-08-08 2015-02-19 日産自動車株式会社 移動物体進入判定装置及び移動物体進入判定方法
JP2016001464A (ja) * 2014-05-19 2016-01-07 株式会社リコー 処理装置、処理システム、処理プログラム、及び、処理方法
RU2659670C1 (ru) * 2014-08-11 2018-07-03 Ниссан Мотор Ко., Лтд. Устройство и способ управления движением для транспортного средства
WO2017029847A1 (ja) * 2015-08-19 2017-02-23 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
WO2017056385A1 (ja) * 2015-09-29 2017-04-06 ソニー株式会社 情報処理装置、情報処理方法、及びプログラム
JP6504042B2 (ja) * 2015-12-17 2019-04-24 株式会社デンソー 制御装置、制御方法
JP2017194926A (ja) * 2016-04-22 2017-10-26 株式会社デンソー 車両制御装置、車両制御方法
WO2019031407A1 (ja) * 2017-08-08 2019-02-14 パイオニア株式会社 判定装置、判定方法、及び、プログラム
CN108549880B (zh) * 2018-04-28 2021-06-25 深圳市商汤科技有限公司 碰撞控制方法及装置、电子设备和存储介质
JP2020016950A (ja) * 2018-07-23 2020-01-30 株式会社デンソーテン 衝突判定装置および衝突判定方法
JP7176415B2 (ja) * 2019-01-15 2022-11-22 トヨタ自動車株式会社 衝突前制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004038877A (ja) 2002-07-08 2004-02-05 Yazaki Corp 車両用周辺監視装置及び画像処理装置
JP2012048460A (ja) 2010-08-26 2012-03-08 Denso Corp 走行支援装置
WO2015186395A1 (ja) 2014-06-03 2015-12-10 本田技研工業株式会社 車両周辺監視装置

Also Published As

Publication number Publication date
JP2022011933A (ja) 2022-01-17
US20210406563A1 (en) 2021-12-30
CN113870616A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
US10579885B2 (en) Collision warning system
JP4615038B2 (ja) 画像処理装置
KR102657202B1 (ko) 능동형 안전 장치의 트리거 조정을 위해 앞차의 제동등 인식
US8301344B2 (en) Device for classifying at least one object in the surrounding field of a vehicle
US8447484B2 (en) Branch-lane entry judging system
US8471726B2 (en) System and method for collision warning
JP2021526681A (ja) ライダー支援システム及び方法
JP5371273B2 (ja) 物体検知装置、周辺監視装置、運転支援システムおよび物体検知方法
JP2008037361A (ja) 障害物認識装置
JP4116643B2 (ja) 車両周囲の少なくとも1つの物体を分類する装置
JP2003288691A (ja) 割り込み予測装置
CN111373460A (zh) 车辆的物标检测装置
JP4751894B2 (ja) 自動車の前方にある障害物を検知するシステム
JP4864450B2 (ja) 車両の運転支援装置
CN108275148A (zh) 用于缓解行人碰撞的装置和方法
JP7380449B2 (ja) 判定装置及びプログラム
US20200384992A1 (en) Vehicle control apparatus, vehicle, operation method of vehicle control apparatus, and non-transitory computer-readable storage medium
CN115837837A (zh) 车辆用显示装置、车辆、显示方法以及记录有程序的计算机可读介质
JP6548147B2 (ja) 車両用制御装置
KR20150092505A (ko) 차간 거리 경고 방법 및 전방 충돌 감지 장치
JP7227284B2 (ja) 運転支援装置
JP7484585B2 (ja) 車両の情報表示装置
JP2022123474A (ja) 運転支援装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R151 Written notification of patent or utility model registration

Ref document number: 7380449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151