JP7375858B2 - 磁気抵抗効果素子 - Google Patents

磁気抵抗効果素子 Download PDF

Info

Publication number
JP7375858B2
JP7375858B2 JP2022100265A JP2022100265A JP7375858B2 JP 7375858 B2 JP7375858 B2 JP 7375858B2 JP 2022100265 A JP2022100265 A JP 2022100265A JP 2022100265 A JP2022100265 A JP 2022100265A JP 7375858 B2 JP7375858 B2 JP 7375858B2
Authority
JP
Japan
Prior art keywords
layer
heavy metal
ferromagnetic layer
ferromagnetic
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022100265A
Other languages
English (en)
Other versions
JP2022132288A (ja
Inventor
和海 犬伏
勝之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2022100265A priority Critical patent/JP7375858B2/ja
Publication of JP2022132288A publication Critical patent/JP2022132288A/ja
Application granted granted Critical
Publication of JP7375858B2 publication Critical patent/JP7375858B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁気抵抗効果素子に関するものである。
磁気抵抗効果素子は、磁気抵抗効果により積層方向の抵抗値が変化する素子である。磁気抵抗効果素子は、2つの強磁性層とこれらに挟まれた非磁性層とを備える。非磁性層に導体が用いられた磁気抵抗効果素子は、巨大磁気抵抗(GMR)素子と言われ、非磁性層に絶縁層(トンネルバリア層、バリア層)が用いられた磁気抵抗効果素子は、トンネル磁気抵抗(TMR)素子と言われる。
磁気抵抗効果素子は、非磁性層を挟む2つの強磁性体の磁化の相対角の違いに応じて抵抗値が変化する。磁気抵抗効果素子の抵抗値は、2つの磁化が平行な状態で最小を示し、反平行の状態で最大を示す。磁気抵抗効果素子の抵抗値の変化率は、MR比で表される。MR比は、反平行状態と平行状態との抵抗値の差を平行状態の抵抗値で割った比率である。
特許文献1には、磁性層にホイスラー合金を用いた磁気抵抗効果素子が記載されている。ホイスラー合金は高いスピン分極率を有し、ホイスラー合金を用いると磁気抵抗効果素子のMR比が大きくなる。
特開2010-034152号公報
ホイスラー合金は、理論的には高い分極率を有し、大きなMR比が得られると言われている。しかしながら、現実には他の層からの原子拡散等によりホイスラー合金の結晶構造が乱れ、予想されるほどの高いMR比を得ることができなかった。
本発明は、このような実情に鑑み、磁気抵抗変化率(MR比)をより大きくできる磁気抵抗効果素子を提供することを課題とする。
本発明者らは、ホイスラー合金に強磁性層を積層し、これらの間に一部が連続しない重金属層を設けることで、磁気抵抗効果素子のMR比が向上することを見出した。本発明は、上記課題を解決するため、以下の手段を提供する。
(1)第1の態様にかかる磁気抵抗効果素子は、第1強磁性層と、第2強磁性層と、前記第1強磁性層と前記第2強磁性層との間に位置する非磁性金属層と、を備え、前記第1強磁性層と前記第2強磁性層とのうち少なくとも一方は、ホイスラー合金を含む第1層と、前記第1層と異なる第2層と、前記第1層と前記第2層との間に位置し重金属領域を含む重金属層と、を有し、前記重金属領域は、原子番号が39以上の重金属元素を含み、前記重金属領域は、不連続又は開口を有する連続な領域であり、前記重金属領域と前記第1層及び前記第2層との界面において結晶構造が連続している。
(2)上記態様にかかる磁気抵抗効果素子において、前記重金属層の厚みが、前記重金属元素の直径の3倍以下であってもよい。
(3)上記態様にかかる磁気抵抗効果素子において、前記重金属領域の格子定数と前記第1層及び前記第2層の格子定数との格子整合度が、5%以内であってもよい。
(4)上記態様にかかる磁気抵抗効果素子において、前記重金属元素は、Ag、Gd、Tb、Dy、Ho、Er、Tm、Lu、Pt、Au、Thからなる群から選択される何れか一つ以上であってもよい。
(5)上記態様にかかる磁気抵抗効果素子において、前記重金属元素は、組成式Ptα1-αで示され、組成式におけるZは、Tb、Dy、Ho、Er、Tm、Luからなる群から選択される何れか一つ以上であってもよい。
(6)上記態様にかかる磁気抵抗効果素子において、組成式におけるαが0.6<α<0.9を満たしてもよい。
(7)上記態様にかかる磁気抵抗効果素子において、前記重金属元素は、Ag又はAgを含む合金であってもよい。
(8)上記態様にかかる磁気抵抗効果素子において、前記重金属元素は、前記非磁性金属層を構成する元素を含んでもよい。
(9)上記態様にかかる磁気抵抗効果素子において、前記ホイスラー合金は、組成式Coβγで表され、組成式におけるLは、Mn、Fe、Crからなる群から選択される何れか一つ以上であり、組成式におけるMは、Si、Al、Ga、Geからなる群から選択される何れか一つ以上であってもよい。
(10)上記態様にかかる磁気抵抗効果素子において、組成式におけるβとγが2.0<β+γ<2.6を満たしてもよい。
(11)上記態様にかかる磁気抵抗効果素子において、前記第2層が、CoとFeとを含む合金であってもよい。
(12)上記態様にかかる磁気抵抗効果素子において、前記第1層は、前記第2層より前記非磁性金属層の近くに位置してもよい。
(13)上記態様にかかる磁気抵抗効果素子において、前記第1層の膜厚は、前記第1層のスピン拡散長より厚く、前記第2層の膜厚は、前記第2層のスピン拡散長より薄くてもよい。
(14)上記態様にかかる磁気抵抗効果素子において、前記第1強磁性層及び前記第2強磁性層が、前記第1層と前記第2層と前記重金属領域を含む重金属層と、を有してもよい。
(15)上記態様にかかる磁気抵抗効果素子において、前記第1強磁性層における重金属層の面積と、前記第2強磁性層における重金属層の面積とが異なってもよい。
本発明の一態様に係る磁気抵抗効果素子は、大きなMR比を示す。
第1実施形態にかかる磁気抵抗効果素子の断面図である。 第1実施形態にかかる磁気抵抗効果素子の重金属層の平面図である。 第1実施形態にかかる重金属層の要部を拡大した模式図である。 第1変形例にかかる磁気抵抗効果の断面図である。 第2変形例にかかる磁気抵抗効果の断面図である。 第3変形例にかかる磁気抵抗効果の断面図である。 第4変形例にかかる磁気抵抗効果素子の重金属層の平面図である。 適用例1にかかる磁気記録素子の断面図である。 適用例2にかかる磁気記録素子の断面図である。
以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
「磁気抵抗効果素子」
図1は、本実施形態にかかる磁気抵抗効果素子の断面図である。図1は、磁気抵抗効果素子の各層の積層方向に沿って磁気抵抗効果素子100を切断した断面図である。磁気抵抗効果素子100は、第1強磁性層10と第2強磁性層20と非磁性金属層30とを有する。図1では、基板40、下地層50及びキャップ層60を同時に図示している。
(第1強磁性層、第2強磁性層)
第1強磁性層10及び第2強磁性層20は磁性体である。第1強磁性層10及び第2強磁性層20は、それぞれ磁化をもつ。磁気抵抗効果素子100は、第1強磁性層10の磁化と第2強磁性層20の磁化の相対角の変化を抵抗値変化として出力する。
第2強磁性層20の磁化は、例えば、第1強磁性層10の磁化より動きにくい。所定の外力を加えた場合に、第2強磁性層20の磁化の向きは変化せず(固定され)、第1強磁性層10の磁化の向きは変化する。第2強磁性層20の磁化の向きに対して第1強磁性層10の磁化の向きが変化することで、磁気抵抗効果素子100の抵抗値は変化する。この場合、第2強磁性層20は磁化固定層と言われ、第1強磁性層10は磁化自由層と呼ばれる場合がある。以下、第1強磁性層10が磁化自由層、第2強磁性層20が磁化固定層の場合を例に説明をする。
所定の外力を印加した際の第2強磁性層20の磁化と第1強磁性層10の磁化との動きやすさの差は、第1強磁性層10と第2強磁性層20との保磁力の違いにより生じる。例えば、第2強磁性層20の厚みを第1強磁性層10の厚みより厚くすると、第2強磁性層20の保磁力が第1強磁性層10の保磁力より大きくなる。また例えば、第2強磁性層20の非磁性金属層30と反対側の面に、スペーサ層を介して、反強磁性層を設ける。第2強磁性層20、スペーサ層、反強磁性層は、シンセティック反強磁性構造(SAF構造)となる。シンセティック反強磁性構造は、非磁性層を挟む二つの磁性層からなる。第2強磁性層20と反強磁性層とが反強磁性カップリングするとことで、反強磁性層を有さない場合より第2強磁性層20の保磁力が大きくなる。反強磁性層は、例えば、IrMn,PtMn等である。スペーサ層は、例えば、Ru、Ir、Rhからなる群から選択される少なくとも一つを含む。厚みにより保磁力差を生み出す方法は、反強磁性層等の寄生抵抗の原因となりうる追加の層が不要である。一方で、SAF構造により保磁力差を生み出す方法は、第2強磁性層20の磁化の配向性を高めることができる。
第1強磁性層10及び第2強磁性層20は、それぞれ第1層11、21と第2層12、22と重金属層13、23とを備える。
第1層11、21は、ホイスラー合金を含む。ホイスラー合金はハーフメタルであり、高いスピン分極率を有する。ホイスラー合金は、XYZ又はXYZの化学組成をもつ金属間化合物であり、Xは周期表上でCo、Fe、Ni、Cu族の遷移金属元素または貴金属元素であり、YはMn、V、Cr、Ti族の遷移金属又はXの元素種であり、ZはIII族からV族の典型元素である。第1層11と第1層21とは、同じ組成でも異なる組成でもよい。
ホイスラー合金は、組成式Coβγで表されるものが好ましい。組成式におけるLは、Mn、Fe、Crからなる群から選択される何れか一つ以上であり、組成式におけるMは、Si、Al、Ga、Geからなる群から選択される何れか一つ以上である。Co系のホイスラー合金は、キュリー温度が高い。Co系のホイスラー合金を用いた磁気抵抗効果素子は、室温においてもMR比が大きい。また組成式におけるβとγは、2.0<β+γ<2.6を満たすことが好ましい。組成式におけるβ及びγが当該範囲だと、Co原子が他の原子サイトを置換するアンチサイトが生じにくく、ホイスラー合金の高スピン分極率の特性を維持できる。ホイスラー合金は、例えば、CoFeSi、CoFeGe、CoFeGa、CoMnSi、CoMn1-aFeAlSi1-b、CoFeGe1-cGa等である。
図1に示すように、第1層11、21は、例えば、第2層12、22より非磁性金属層30の近くに位置する。磁気抵抗効果素子100のMR比は、非磁性金属層30を挟む2つの磁性体の磁化の相対角の違いにより生じる。したがって、磁気抵抗効果素子100のMR比に特に大きな影響を及ぼすのは、非磁性金属層30に接する2つの強磁性層である。ホイスラー合金を有し、スピン分極率の高い第1層11、21が非磁性金属層30に接することで、磁気抵抗効果素子100のMR比をより大きくできる。
また第1層11、21の積層方向の厚みは、第1層11、21のスピン拡散長より厚いことが好ましい。スピン拡散長は、スピンの情報を保存したまま電子が移動できる距離である。また第1層11、21の厚みは、例えば、第2層12、22の厚みより厚いことが好ましい。第1層11、21が第1強磁性層10及び第2強磁性層20の主の部分を占めることで、スピン分極率の高いホイスラー合金を用いた効果を高め、磁気抵抗効果素子100のMR比をより大きくできる。
第2層12、22は、第1層11、21と異なる磁性体である。第2層12は、第1層11と対向する。第2層22は、第1層21と対向する。第2層12、22は、第1層11、21と磁気的にカップリングしている。第1層11、21の磁化の配向方向が変化すると第2層12、22の磁化の配向方向も変化する。
第2層12、22は、例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金を含む。第2層12、22は、例えば、CoとFeとを含む合金を含む。第1層11、21を構成するホイスラー合金は、積層界面付近で磁化の安定性が低いことが報告されている。一方、CoとFeの合金は、磁化の安定性が高く、第1層11、21を構成するホイスラー合金との格子整合性も高い。第2層12、22にCoとFeの合金を用いた磁気抵抗効果素子は、第1層11、21を構成するホイスラー合金の磁化を安定させるため、室温においてもMR比が大きい。第2層12、22は、例えば、Co-Fe、Co-Fe-Bである。
第2層12、22の積層方向の厚みは、第2層12、22のスピン拡散長より薄いことが好ましい。また第2層12、22の厚みは、例えば、第1層11、21の厚みより薄いことが好ましい。
重金属層13は第1層11と第2層12との間に位置し、重金属層23は第1層21と第2層22との間に位置する。図2は、磁気抵抗効果素子100の重金属層13の平面図である。重金属層13は、第1領域14と第2領域15とを有する。
第1領域14は、原子番号が39以上の重金属元素を含む重金属領域である。第2領域15は、第1領域14以外の領域である。第2領域15は、例えば、第1層11及び第2層12の一部であり、これらと同様の材料からなる。第1領域14は、重金属層13内に不連続に存在する。第1領域14は、例えば、重金属層13内に島状に存在する。第2領域15は、開口を有する連続な領域である。第2領域15の開口は、第1領域14を構成する重金属で充填されている。第1領域14が重金属層13の全面に存在しないことで、第1層11と第2層12が磁気カップリングする。
重金属層13の厚みは、第1領域14を構成する重金属元素の直径の3倍以下であることが好ましく、重金属元素の直径の2倍以下であることがより好ましく、重金属元素の直径以下であることがさらに好ましい。重金属層13は、例えばスパッタリング法を用いて形成する。この程度の膜厚を成膜すると、成膜元素は通常均一な層とならず、部分的に凝集し、点在する。すなわち、重金属層13の厚みが上記の範囲であると、第1領域14を部分的に不連続に形成しやすい。
第1領域14は、第1層11及び第2層12と結晶構造が連続する。結晶構造が連続するとは、第1領域14の近傍を透過型電子顕微鏡で測定した際に、原子が連続的に配列していることをいう。原子が連続的に配列するとは、成膜方向に原子同士を繋ぐ線が途切れないことを意味する。第1領域14が第1層11及び第2層12に対してエピタキシャル成長していると、第1領域14と第1層11及び第2層12との間で、結晶構造が連続する。
図3は、本実施形態にかかる重金属層13の要部を拡大した模式図である。第1層11、第2層12及び重金属層13は、それぞれ原子Aにより構成されている。図3において、第1層11、第2層12及び重金属層13を構成する原子Aは、積層方向に連続している。第1領域の格子定数L14と、第1層11及び第2層12の格子定数L11、L12との格子整合度は5%以内であることが好ましい。格子整合度は、第1領域の格子定数L14を基準とした際の第1層11又は第2層12の格子定数L11、L12のずれの程度である。なお、説明の便宜上により代表して原子Aとしたが、第1層、第2層、重金属層を構成する原子により、それぞれ原子Aは異なる。
図2及び図3では、代表して重金属層13を図示したが、重金属層23も同様である。
重金属層13、23に含まれる重金属元素は、原子番号が39以上である。重金属元素は、Ag、Gd、Tb、Dy、Ho、Er、Tm、Lu、Pt、Au、Thからなる群から選択される何れか一つ以上を含むことが好ましい。
重金属層13、23に含まれる重金属元素は、例えば、組成式Ptα1-αで示されるものである。組成式におけるZは、Tb、Dy、Ho、Er、Tm、Luからなる群から選択される何れか一つ以上である。また組成式におけるαは、0.6<α<0.9を満たすことが好ましい。第1領域14がこれらの材料により構成されると、第1領域14とホイスラー合金(第1層11)及びCoFe合金(第2層12)との格子整合度が高まる。格子整合度が高いと、結晶構造に歪が少なく、磁気抵抗効果素子100のMR比が大きくなる。
また重金属層13、23に含まれる重金属元素は、例えば、Ag又はAgを含む合金である。Ag又はAgを含む合金は抵抗が低く、これらの材料を重金属層13、23に用いると磁気抵抗効果素子100のMR比が大きくなる。またAg又はAgを含む合金は、ホイスラー合金(第1層11)及びCoFe合金(第2層12)との格子整合度が高い。
また重金属層13、23は、非磁性金属層30又は下地層50を構成する材料と同様の材料により構成されていてもよい。すなわち、重金属層13、23は、非磁性金属層30又は下地層50を構成する材料を含んでもよい。
非磁性金属層30は、第1強磁性層10と第2強磁性層20との間に位置する。非磁性金属層30は、第1強磁性層10と第2強磁性層20とに挟まれる。
非磁性金属層30は、例えば、非磁性の金属からなる。非磁性金属層30は、例えば、Cu、Au、Ag、Al、Cr等である。非磁性金属層30は、主の構成元素としてAg、Cu、Au、Ag、Al、Crからなる群から選択されるいずれかを含むことが好ましい。主の構成元素とは、化学量論組成式において、Cu、Au、Ag、Al、Crが占める割合が50%以上となることを意味する。非磁性金属層30は、Agを含むことが好ましく、主の構成元素としてAgを含むことが好ましい。
非磁性金属層30は、例えば厚みが1nm以上、10nm以下 である。非磁性金属層30は、第1強磁性層10と第2強磁性層20との磁気的な結合を阻害する。
基板40は、磁気抵抗効果素子100の土台となる部分である。基板40は、平坦性に優れた材料を用いることが好ましい。基板40は、例えば、金属酸化物単結晶、シリコン単結晶、熱酸化膜付シリコン単結晶、サファイア単結晶、セラミック、石英、及びガラスを含む。基板40に含まれる材料は、適度な機械的強度を有し、且つ熱処理や微細加工に適した材料であれば、特に限定されない。金属酸化物単結晶としては、例えば、MgO単結晶が挙げられ、MgO単結晶を含む基板によれば、例えば、スパッタ法を用いて容易にエピタキシャル成長膜が形成される。このエピタキシャル成長膜は、大きな磁気抵抗特性を示すことができる。基板40は目的とする製品によって異なる。製品がMRAMの場合、基板40は、例えば、回路構造を有するSi基板である。製品が磁気ヘッドの場合、基板40は、例えば、加工しやすいAlTiC基板である。
下地層50は、基板40と磁気抵抗効果素子100との間に位置する。下地層50は、導電性の材料、絶縁性の材料のいずれでもよい。下地層50が電極を兼ねる場合は、下地層50は導電性材料を含む。下地層50は、下地層50上に積層される第1強磁性層10、非磁性金属層30及び第2強磁性層20の結晶性を高めるための層である。
下地層50は、例えば、(001)配向したNaCl構造を有する。NaCl構造を有する下地層50は、例えば、Ti,Zr,Nb,V,Hf,Ta,Mo,W,B,Al,Ceの群から選択される少なくとも1つの元素を含む窒化物、又は、Mg、Al、Ceの群から選択される少なくとも1つの元素を含む酸化物である。
また別の例として、下地層50は、例えば、ABOの組成式で表される(002)配向したペロブスカイト系導電性酸化物の層である。サイトAはSr、Ce、Dy、La、K、Ca、Na、Pb、Baの群から選択された少なくとも1つの元素を含み、サイトBはTi、V、Cr、Mn、Fe、Co、Ni、Ga、Nb、Mo、Ru、Ir、Ta、Ce、Pbの群から選択された少なくとも1つの元素を含む。
また別の例として、下地層50は、(001)配向した正方晶構造または立方晶構造を有し、かつAl、Cr、Fe、Co、Rh、Pd、Ag、Ir、Pt、Au、Mo、W、Ptの群から選択される少なくとも1つの元素を含む。また、これらの金属元素の合金、これら金属元素の2種類以上からなる材料の積層体を含んでもよい。金属元素の合金には、立方晶系のAgZn合金、AgMg合金、CoAl合金、FeAl合金及びNiAl合金が含まれる。
キャップ層60は、磁気抵抗効果素子100の基板40と反対側に位置する。キャップ層60は、磁気抵抗層30を保護するために設けられる。キャップ層60は、第2強磁性層20からの元素の拡散を抑制する。またキャップ層60は、磁気抵抗効果素子100の各層の結晶配向性にも寄与する。キャップ層60を有すると、第1強磁性層10及び第2強磁性層20の磁化が安定化し、磁気抵抗効果素子100を低抵抗化することができる。
キャップ層60は、例えば、導電性が高い材料を含む。キャップ層60は、例えば、Ru、Ag、Al、Cu、Au、Cr、Mo、Pt、W、Ta、Pd、及びIrの一以上の金属元素、これら金属元素の合金、又は、これら金属元素の2種類以上からなる材料の積層体を含んでよい。
次いで、本実施形態にかかる磁気抵抗効果素子100の製造方法について説明する。磁気抵抗効果素子100は、第1強磁性層10、非磁性金属層30、第2強磁性層20を順に積層して得られる。各層の成膜方法は、例えば、スパッタリング法、蒸着法、レーザアブレーション法、分子線エピタキシャル(MBE)法である。
第1強磁性層10の各層は、例えば、スパッタリング法を用いて成膜する。例えば、第2層12をまず形成する。次いで、第2層12の表面に重金属元素をスパッタリングする。重金属元素は、原子数層分の厚みで積層する。スパッタリング法で成膜される重金属元素は、原子数層分の均一な層とはならず、一部に重金属元素が偏在する。また重金属元素の一部は、第2層12に打ち込まれ、第2層12に侵入する。その結果、第1領域14と第2領域15とを有する重金属層13が形成される。次いで、第1層11を形成することで、第1強磁性層10が形成される。第2強磁性層20についても、第1層21を第2層22より先に成膜する点以外は、同様である。
また磁気抵抗効果素子100を積層後に、磁気抵抗効果素子100をアニールしてもよい。アニールにより各層の結晶性が高まる。
第1実施形態にかかる磁気抵抗効果素子100は、第1層11、21と第2層12、22との間に、重金属層13、23を有する。重金属は、原子半径が大きく重いため、第2層12、22の元素が第1層11、21へ拡散することを抑制する。第2層12、22の元素が第1層11、21へ拡散すると、ホイスラー合金の結晶構造が乱れたり、アンチサイトが生じたりし、ホイスラー合金のスピン分極率の低下の一因となる。重金属層13、23が第1層11、21と第2層12、22との間の元素拡散を防ぐことで、ホイスラー合金の高いスピン分極率が維持され、磁気抵抗効果素子100のMR比を高めることができる。
表1~表3は、磁気抵抗効果素子の格子整合度の例を示すための表である。具体的には、表1は、本実施形態の重金属層13、23を構成し得る材料の例(第1例~第17例)及びCoFe(第18例)と、それらの材料が立方晶系の結晶構造を有する場合の格子定数の文献値を示す表である。表2は、本実施形態の第1層11、21を構成し得る材料の例(合金A~合金H)と、それらの材料の格子定数の文献値を示す表である。
表3は、表1に示す第1例~第18例のそれぞれに対する、表2に示す合金A~合金Hのそれぞれの格子整合度を示す表である。表3における格子整合度は、百分率で示され、下記の式(1)又は式(2)によって求められる。第1例~第17例のそれぞれの(001)面の[110]方向と、合金A~合金Hのそれぞれの(001)面の[100]方向とが格子整合する場合は式(1)により格子整合度が求められる。第18例は(001)面の[100]方向と、合金A~合金Hのそれぞれの(001)面の[100]方向とが格子整合し、式(2)により格子整合度が求められる。また、式(1)又は式(2)において、aは、表1に示す第1例~第18例の格子定数、bは、表2に示す合金A~合金Hの格子定数を示す。また、√2は、2の平方根を意味する。
格子整合度(%)=((a×√2-b)/b)×100(%) …(1)
格子整合度(%)=((2a-b)/b)×100(%) …(2)
Figure 0007375858000001
Figure 0007375858000002
Figure 0007375858000003
表3には、第1例~第17例の評価結果も示されている。表3では、第1例~第17例のうち、合金A~合金Hの3つ以上に対して、第18例における格子整合度よりも小さい格子整合度を示す例について、「特に良好」を意味する「A」と評価している。また、第1例~第17例のうち、合金A~合金Hの1つ以上2つ以下において、第18例における格子整合度よりも小さい格子整合度を示す例について、「良好」を意味する「B」と評価している。
表3に示すように、第1例~第17例では、「A」又は「B」と評価されている。評価Bの例の材料を本実施形態の重金属層13、23として用いれば、第1層11、21、及び第2層12、22との格子整合も良好であるため第1強磁性層10、及び第2強磁性層20の結晶性が向上し、大きな磁気抵抗効果を発揮すると考えられる。評価Aの例の材料を本実施形態の重金属層13、23として用いれば、第1層11、21、及び第2層12、22との格子整合も良好であるため第1強磁性層10、及び第2強磁性層20の結晶性が向上し、さらに大きな磁気抵抗効果を発揮すると考えられる。
以上、第1実施形態の一例について詳述したが、この例に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
例えば、非磁性金属層30に変えて、絶縁体又は半導体からなる非磁性層を用いてもよい。非磁性の絶縁体は、例えば、Al、SiO、MgO、MgAl、およびこれらのAl、Si、Mgの一部がZn、Be等に置換された材料である。非磁性の半導体は、例えば、Si、Ge、CuInSe、CuGaSe、Cu(In,Ga)Se等である。
また図4は、第1変形例にかかる磁気抵抗効果素子101の断面図である。磁気抵抗効果素子101は、第1層11、21と第2層12、22の位置関係が反対である点が、図1に示す磁気抵抗効果素子100と異なる。図1と同様の構成については、同様の符号を付す。
第2強磁性層20Aは、非磁性金属層30に近い側から順に、第2層22、重金属層23、第1層21を有する。第1強磁性層10Aは、非磁性金属層30に近い側から順に、第2層12、重金属層13、第1層11を有する。
第1変形例にかかる磁気抵抗効果素子101も、第1層11、21と第2層12、22との間に重金属層13、23を有するため、第1層11、21と第2層12、22との間の元素拡散が抑制されている。したがって、磁気抵抗効果素子101は、大きなMR比を示す。
また図5は、第2変形例にかかる磁気抵抗効果素子102の断面図である。磁気抵抗効果素子102は、第2強磁性層20Bが第1層21と第2層22からなり、重金属層23を有さない点が、図1に示す磁気抵抗効果素子100と異なる。図1と同様の構成については、同様の符号を付す。
第2変形例にかかる磁気抵抗効果素子102も、第1層11と第2層12との間に重金属層13を有するため、第1層11と第2層12との間の元素拡散が抑制されている。したがって、磁気抵抗効果素子102は、大きなMR比を示す。またここでは、第2強磁性層20Bが重金属層23を有さない構成を例示したが、第1強磁性層10が重金属層13を有さない構成でもよい。磁気抵抗効果素子は、第1強磁性層10と第2強磁性層20とのうち少なくとも一方が、第1層と第2層と重金属層と、を有すればよい。
また図6は、第3変形例にかかる磁気抵抗効果素子103の断面図である。磁気抵抗効果素子103は、磁気抵抗効果素子103の側面が積層面に対して傾斜している点が、図1に示す磁気抵抗効果素子100と異なる。図1と同様の構成については、同様の符号を付す。
磁気抵抗効果素子103は、第1強磁性層10Cと第2強磁性層20Cと非磁性金属層30Cと基板40と下地層50Cとキャップ層60Cとを有する。第1強磁性層10C、第2強磁性層20C、非磁性金属層30C、下地層50C及びキャップ層60Cは、側面が積層面に対して傾斜している。磁気抵抗効果素子103は、基板40に近づくにつれて外周長又は外径が大きくなっている。断面図において、磁気抵抗効果素子103の幅は、基板40に近づくにつれて広がっている。
第1強磁性層10Cは、第1層11Cと第2層12Cと重金属層13Cとを有する。第2強磁性層20Cは、第1層21Cと第2層22Cと重金属層23Cとを有する。第1強磁性層10Cにおける重金属層13Cの面積と、第2強磁性層20Cにおける重金属層23Cの面積とは、異なる。例えば、重金属層13Cの面積は、重金属層23Cの面積より大きい。磁気抵抗効果素子103は、下地層50Cからの影響がキャップ層60Cからの影響より大きい。下地層50Cに近い側の重金属層13Cの面積が大きいことで、下地層50Cからの影響をより抑制できる。
第3変形例にかかる磁気抵抗効果素子103も、第1層11C、21Cと第2層12C、22Cとの間に重金属層13C、23Cを有するため、第1層11C、21Cと第2層12C、22Cとの間の元素拡散が抑制されている。したがって、磁気抵抗効果素子103は、大きなMR比を示す。
また図7は、第4変形例にかかる磁気抵抗効果素子の重金属層13Aの平面図である。重金属層13Aは、第1領域14Aと第2領域15Aとを有する。第1領域14Aと第2領域15Aの関係が、図2に示す重金属層13と異なる。
第1領域14Aは、原子番号が39以上の重金属元素を含む重金属領域である。第2領域15Aは、第1領域14A以外の領域である。第1領域14Aは、開口を有する連続な領域である。第1領域14Aの開口は、第1層又は第2層を構成する材料で充填されている。第2領域15Aは、重金属層13A内に不連続に存在する。第2領域15Aは、例えば、重金属層13A内に島状に存在する。
第4変形例にかかる磁気抵抗効果素子も、第1層と第2層との間に重金属層13Aを有するため、第1層と第2層との間の元素拡散が抑制されている。したがって、第4変形例にかかる磁気抵抗効果素子は、大きなMR比を示す。
次いで、本実施形態にかかる磁気抵抗効果素子100の適用例について説明する。磁気抵抗効果素子100は、例えば、磁気センサ、MRAMなどのメモリ等に利用できる。
図8は、適用例1にかかる磁気記録素子200の断面図である。図8は、磁気抵抗効果素子の各層の積層方向に沿って磁気抵抗効果素子100を切断した断面図である。図8に示す磁気記録素子200は、磁気抵抗効果素子100の適用例の一例である。
磁気記録素子200は、磁気抵抗効果素子100と第1電極51と第2電極61と電源70と測定部80とを有する。第1電極51は、磁気抵抗効果素子100の下地層50を兼ねてもよい。第2電極61は、磁気抵抗効果素子100のキャップ層60を兼ねてもよい。電源70及び測定部80は、第1電極51と第2電極61とのそれぞれに接続されている。電源70は、磁気抵抗効果素子100の積層方向に電位差を与える。測定部80は、磁気抵抗効果素子100の積層方向の抵抗値を測定する。
電源70により第1電極51と第2電極61との間に電位差を生み出すと、磁気抵抗効果素子100の積層方向に電流が流れる。電流は、第2強磁性層20を通過する際にスピン偏極し、スピン偏極電流となる。スピン偏極電流は、非磁性金属層30を介して、第1強磁性層10に至る。第1強磁性層10の磁化は、スピン偏極電流によるスピントランスファートルク(STT)を受けて磁化反転する。第1強磁性層10の磁化の向きと第2強磁性層20の磁化の向きとが変化することで、磁気抵抗効果素子100の積層方向の抵抗値が変化する。磁気抵抗効果素子100の積層方向の抵抗値は、測定部80で読み出される。すなわち、図8に示す磁気記録素子200は、スピントランスファートルク(STT)型の磁気記録素子である。
図9は、適用例2にかかる磁気記録素子201の断面図である。図9は、磁気抵抗効果素子の各層の積層方向に沿って磁気抵抗効果素子100を切断した断面図である。図9に示す磁気記録素子201は、磁気抵抗効果素子100の適用例の一例である。
磁気記録素子201は、磁気抵抗効果素子100と第1配線52と第2電極62と電源71と測定部81とを有する。第2電極62は、磁気抵抗効果素子100の積層方向の第1面に接続されている。第1配線52は、磁気抵抗効果素子100の積層方向の第2面に接続されている。第2電極62は導体であり、例えば、Cuである。第1配線52は、電流が流れる際のスピンホール効果によってスピン流を発生させる機能を有する金属、合金、金属間化合物、金属硼化物、金属炭化物、金属珪化物、金属燐化物のいずれかを含む。第1配線52は、例えば、最外殻にd電子又はf電子を有する原子番号39以上の原子番号を有する非磁性金属である。電源71は、第1配線52の第1端と第2端に接続されている。測定部81は、第2電極62と第1配線52とに接続され、磁気抵抗効果素子100の積層方向の抵抗値を測定する。
電源71により第1配線52の第1端と第2端との間に電位差を生み出すと、第1配線52に沿って電流が流れる。第1配線52に沿って電流が流れると、スピン軌道相互作用によりスピンホール効果が生じる。スピンホール効果は、移動するスピンが電流の流れ方向と直交する方向に曲げられる現象である。スピンホール効果は、第1配線52内にスピンの偏在を生み出し、第1配線52の厚み方向にスピン流を誘起する。スピンは、スピン流によって第1配線52から第1強磁性層10に注入される。
第1強磁性層10に注入されたスピンは、第1強磁性層10の磁化にスピン軌道トルク(SOT)を与える。第1強磁性層10は、スピン軌道トルク(SOT)を受けて、磁化反転する。第1強磁性層10の磁化の向きと第2強磁性層20の磁化の向きとが変化することで、磁気抵抗効果素子100の積層方向の抵抗値が変化する。磁気抵抗効果素子100の積層方向の抵抗値は、測定部81で読み出される。すなわち、図9に示す磁気記録素子201は、スピン軌道トルク(SOT)型の磁気記録素子である。
(実施例1)
図1に示す磁気抵抗効果素子100を作製した。各層の構成は、以下とした。
下地層50:Ag、厚み70nm
第1強磁性層10
第1層11:CoMnβSiγ(β=0.95、γ=0.95)、厚み10nm
第2層12:CoFe合金、厚み2nm
重金属層13を構成する重金属:Ag、厚み0.41nm
非磁性金属層30:Ag、厚み5nm
第2強磁性層20
第1層21:CoMnβSiγ(β=0.95、γ=0.95)、厚み8nm
第2層22:CoFe合金、厚み2nm
重金属層23を構成する重金属:Ag、厚み0.41nm
キャップ層60:Ru、厚み5nm
(実施例2から実施例5)
実施例2から実施例5は、重金属層13を構成する重金属を変えた点が実施例1と異なる。その他の条件は、実施例1と同様にした。
(実施例6から実施例26)
実施例6から実施例26は、第1層11、21を構成するホイスラー合金の組成を変えた点が実施例1と異なる。その他の条件は、実施例1と同様にした。実施例6~実施例16では、γを0.95に固定し、βを0.4~1.7の間で変化させている。実施例17~実施例26では、βを1.3に固定し、βを0.55~1.45の間で変化させている。
(比較例1)
比較例1は、第1強磁性層10及び第2強磁性層20が重金属層13、23を有さない点が実施例1と異なる。その他の条件は、実施例1と同様にした。
実施例1から実施例26及び比較例1の結果を、表4にまとめた。表4に示すように、実施例1から実施例26は、比較例1に対してMR比が高くなっている。また、表4に示されるように、2<β+γ<2.6であるとき、実施例に係る磁気抵抗効果素子は10を超えるMR比を有することができる。この大きなMR比は、ホイスラー合金は、2<β+γ<2.6であるとき、ハーフメタル特性を有し易くなり、このハーフメタル特性を有するホイスラー合金が、大きな磁気抵抗効果を示した結果である。
Figure 0007375858000004
以上、実施形態及び実施例によって本発明を説明してきたが、本発明はこれらの実施形態及び実施例に限定されず、様々な変形態様が可能である。例えば、上記実施形態の磁気抵抗効果素子100は、CPP(Current Perpendicular to Plane)構造ではなく、積層面方向に沿って検出用電流が流されるCIP(Current In Plane)構造を有することができる。
本実施形態を満たす磁気抵抗効果素子によれば、高いMR比を得ることができ、上記の磁気抵抗効果素子を備えた磁気ヘッド、センサ、高周波フィルタ又は発振素子は、磁気抵抗効果が大きいため、これに起因する優れた特性を発揮することができる。
10、10A、10C 第1強磁性層
11、11C、21、21C 第1層
12、12C、22、22C 第2層
13、13A、13C、23、23C 重金属層
14、14A 第1領域
15、15A 第2領域
20、20A、20B、20C 第2強磁性層
30、30C 非磁性金属層
40 基板
50、50C 下地層
51 第1電極
52 第1配線
60、60C キャップ層
61、62 第2電極
70、71 電源
80、81 測定部
100、101、102、103 磁気抵抗効果素子
200、201 磁気記録素子

Claims (14)

  1. 第1強磁性層と、第2強磁性層と、前記第1強磁性層と前記第2強磁性層との間に位置する非磁性金属層と、を備え、
    前記第1強磁性層と前記第2強磁性層とのうち少なくとも一方は、ホイスラー合金を含む第1層と、第2層と、前記第1層と前記第2層との間に位置し重金属領域を含む重金属層と、を有し、
    前記重金属領域は、原子番号が39以上の重金属元素を含み、
    前記重金属領域は、不連続又は開口を有する連続な領域であり、
    前記重金属領域の格子定数と前記第1層及び前記第2層の格子定数との格子整合度が、5%以内である、磁気抵抗効果素子。
  2. 前記重金属層の厚みが、前記重金属元素の直径の3倍以下である、請求項1に記載の磁気抵抗効果素子。
  3. 前記重金属元素は、Ag、Gd、Tb、Dy、Ho、Er、Tm、Lu、Pt、Au、Thからなる群から選択される何れか一つ以上である、請求項1又は2に記載の磁気抵抗効果素子。
  4. 第1強磁性層と、第2強磁性層と、前記第1強磁性層と前記第2強磁性層との間に位置する非磁性金属層と、を備え、
    前記第1強磁性層と前記第2強磁性層とのうち少なくとも一方は、ホイスラー合金を含む第1層と、第2層と、前記第1層と前記第2層との間に位置し重金属領域を含む重金属層と、を有し、
    前記重金属領域は、原子番号が39以上の重金属元素を含み、
    前記重金属領域は、不連続又は開口を有する連続な領域であり、
    前記重金属元素は、組成式Ptα1-αで示され、
    組成式におけるZは、Tb、Dy、Ho、Er、Tm、Luからなる群から選択される何れか一つ以上である、磁気抵抗効果素子。
  5. 組成式におけるαが0.6<α<0.9を満たす、請求項に記載の磁気抵抗効果素子。
  6. 前記重金属元素は、Ag又はAgを含む合金である、請求項に記載の磁気抵抗効果素子。
  7. 前記重金属元素は、前記非磁性金属層を構成する元素を含む、請求項1~のいずれか一項に記載の磁気抵抗効果素子。
  8. 前記ホイスラー合金は、組成式Coβγで表され、
    組成式におけるLは、Mn、Fe、Crからなる群から選択される何れか一つ以上であり、
    組成式におけるMは、Si、Al、Ga、Geからなる群から選択される何れか一つ以上である、請求項1~のいずれか一項に記載の磁気抵抗効果素子。
  9. 組成式におけるβとγが2.0<β+γ<2.6を満たす、請求項に記載の磁気抵抗効果素子。
  10. 前記第2層が、CoとFeとを含む合金である、請求項1~のいずれか一項に記載の磁気抵抗効果素子。
  11. 前記第1層は、前記第2層より前記非磁性金属層の近くに位置する、請求項1~10のいずれか一項に記載の磁気抵抗効果素子。
  12. 第1強磁性層と、第2強磁性層と、前記第1強磁性層と前記第2強磁性層との間に位置する非磁性金属層と、を備え、
    前記第1強磁性層と前記第2強磁性層とのうち少なくとも一方は、ホイスラー合金を含む第1層と、第2層と、前記第1層と前記第2層との間に位置し重金属領域を含む重金属層と、を有し、
    前記重金属領域は、原子番号が39以上の重金属元素を含み、
    前記重金属領域は、不連続又は開口を有する連続な領域であり、
    前記第1層の膜厚は、前記第1層のスピン拡散長より厚く、
    前記第2層の膜厚は、前記第2層のスピン拡散長より薄い、磁気抵抗効果素子。
  13. 前記第1強磁性層及び前記第2強磁性層が、前記第1層と前記第2層と前記重金属領域を含む重金属層と、を有する、請求項1~12のいずれか一項に記載の磁気抵抗効果素子。
  14. 第1強磁性層と、第2強磁性層と、前記第1強磁性層と前記第2強磁性層との間に位置する非磁性金属層と、を備え、
    前記第1強磁性層及び前記第2強磁性層は、ホイスラー合金を含む第1層と、第2層と、前記第1層と前記第2層との間に位置し重金属領域を含む重金属層と、を有し、
    前記重金属領域は、原子番号が39以上の重金属元素を含み、
    前記重金属領域は、不連続又は開口を有する連続な領域であり、
    前記第1強磁性層における重金属層の面積と、前記第2強磁性層における重金属層の面積とが異なる、磁気抵抗効果素子。
JP2022100265A 2019-04-26 2022-06-22 磁気抵抗効果素子 Active JP7375858B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022100265A JP7375858B2 (ja) 2019-04-26 2022-06-22 磁気抵抗効果素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019086290A JP7096198B2 (ja) 2019-04-26 2019-04-26 磁気抵抗効果素子
JP2022100265A JP7375858B2 (ja) 2019-04-26 2022-06-22 磁気抵抗効果素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019086290A Division JP7096198B2 (ja) 2019-04-26 2019-04-26 磁気抵抗効果素子

Publications (2)

Publication Number Publication Date
JP2022132288A JP2022132288A (ja) 2022-09-08
JP7375858B2 true JP7375858B2 (ja) 2023-11-08

Family

ID=73024894

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019086290A Active JP7096198B2 (ja) 2019-04-26 2019-04-26 磁気抵抗効果素子
JP2022100265A Active JP7375858B2 (ja) 2019-04-26 2022-06-22 磁気抵抗効果素子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019086290A Active JP7096198B2 (ja) 2019-04-26 2019-04-26 磁気抵抗効果素子

Country Status (1)

Country Link
JP (2) JP7096198B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047583A (ja) 2002-07-09 2004-02-12 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子とこれを用いた磁気ヘッドおよび磁気メモリならびに磁気記録装置
JP2008010590A (ja) 2006-06-28 2008-01-17 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2011501420A (ja) 2007-10-11 2011-01-06 エバースピン テクノロジーズ インコーポレイテッド 低電流密度を有する磁気要素
WO2018155078A1 (ja) 2017-02-27 2018-08-30 Tdk株式会社 スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ
JP2018147998A (ja) 2017-03-03 2018-09-20 Tdk株式会社 磁気抵抗効果素子
JP2019057626A (ja) 2017-09-21 2019-04-11 Tdk株式会社 スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150183A (ja) * 2005-11-30 2007-06-14 Tdk Corp 磁気抵抗効果素子、薄膜磁気ヘッド、および前記磁気抵抗効果素子の製造方法
JP2008108821A (ja) * 2006-10-24 2008-05-08 Tdk Corp 磁気抵抗効果素子、積層体、ウエハ、ヘッドジンバルアセンブリ、ハードディスク装置、および磁気抵抗効果素子の製造方法
JP7024204B2 (ja) * 2017-04-21 2022-02-24 Tdk株式会社 スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047583A (ja) 2002-07-09 2004-02-12 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子とこれを用いた磁気ヘッドおよび磁気メモリならびに磁気記録装置
JP2008010590A (ja) 2006-06-28 2008-01-17 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2011501420A (ja) 2007-10-11 2011-01-06 エバースピン テクノロジーズ インコーポレイテッド 低電流密度を有する磁気要素
WO2018155078A1 (ja) 2017-02-27 2018-08-30 Tdk株式会社 スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ
JP2018147998A (ja) 2017-03-03 2018-09-20 Tdk株式会社 磁気抵抗効果素子
JP2019057626A (ja) 2017-09-21 2019-04-11 Tdk株式会社 スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ

Also Published As

Publication number Publication date
JP2022132288A (ja) 2022-09-08
JP2020181961A (ja) 2020-11-05
JP7096198B2 (ja) 2022-07-05

Similar Documents

Publication Publication Date Title
CN109560192B (zh) 层叠结构、磁阻效应元件、磁头、传感器、高频滤波器以及振荡器
US11694714B2 (en) Magnetoresistance effect element and Heusler alloy
US11581365B2 (en) Magnetoresistance effect element and Heusler alloy
WO2016158923A1 (ja) 磁気抵抗効果素子
US20240062777A1 (en) Magnetoresistance effect element and heusler alloy
JP6438636B1 (ja) 磁気抵抗効果素子
CN113036032A (zh) 磁阻效应元件
JP7375858B2 (ja) 磁気抵抗効果素子
JP2020004865A (ja) 磁気抵抗効果素子
JP6844743B2 (ja) 強磁性積層膜、スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ
JP7435057B2 (ja) 磁気抵抗効果素子
WO2021186693A1 (ja) 磁気抵抗効果素子
JP7400560B2 (ja) トンネルバリア層、磁気抵抗効果素子、トンネルバリア層の製造方法及び絶縁層
US11967348B2 (en) Magnetoresistance effect element containing Heusler alloy with additive element
JP2020155436A (ja) 磁気抵抗効果素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R150 Certificate of patent or registration of utility model

Ref document number: 7375858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150