JP7374079B2 - Flame retardant resin composition, flame retardant heat shrinkable tube and flame retardant insulated wire - Google Patents
Flame retardant resin composition, flame retardant heat shrinkable tube and flame retardant insulated wire Download PDFInfo
- Publication number
- JP7374079B2 JP7374079B2 JP2020509255A JP2020509255A JP7374079B2 JP 7374079 B2 JP7374079 B2 JP 7374079B2 JP 2020509255 A JP2020509255 A JP 2020509255A JP 2020509255 A JP2020509255 A JP 2020509255A JP 7374079 B2 JP7374079 B2 JP 7374079B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- flame
- resin composition
- less
- retardant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims description 61
- 239000003063 flame retardant Substances 0.000 title claims description 61
- 239000011342 resin composition Substances 0.000 title claims description 45
- 239000004698 Polyethylene Substances 0.000 claims description 53
- 229920000573 polyethylene Polymers 0.000 claims description 53
- 229920005989 resin Polymers 0.000 claims description 38
- 239000011347 resin Substances 0.000 claims description 38
- 229920001296 polysiloxane Polymers 0.000 claims description 32
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 claims description 28
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 26
- 150000004692 metal hydroxides Chemical class 0.000 claims description 26
- 239000004020 conductor Substances 0.000 claims description 14
- 238000000465 moulding Methods 0.000 claims description 10
- -1 polyethylene Polymers 0.000 claims description 8
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical group [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 6
- 239000000347 magnesium hydroxide Substances 0.000 claims description 6
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 6
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 30
- 229910052760 oxygen Inorganic materials 0.000 description 30
- 239000001301 oxygen Substances 0.000 description 30
- 239000000463 material Substances 0.000 description 27
- 238000002485 combustion reaction Methods 0.000 description 26
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 25
- 238000001125 extrusion Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 238000004132 cross linking Methods 0.000 description 13
- 230000005855 radiation Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- 239000005038 ethylene vinyl acetate Substances 0.000 description 7
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 7
- 238000010894 electron beam technology Methods 0.000 description 6
- 230000008602 contraction Effects 0.000 description 5
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 229920000092 linear low density polyethylene Polymers 0.000 description 3
- 239000004707 linear low-density polyethylene Substances 0.000 description 3
- 229920001179 medium density polyethylene Polymers 0.000 description 3
- 239000004701 medium-density polyethylene Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920005573 silicon-containing polymer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920003355 Novatec® Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 229920006245 ethylene-butyl acrylate Polymers 0.000 description 2
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 2
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000007765 extrusion coating Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- BLDFSDCBQJUWFG-UHFFFAOYSA-N 2-(methylamino)-1,2-diphenylethanol Chemical compound C=1C=CC=CC=1C(NC)C(O)C1=CC=CC=C1 BLDFSDCBQJUWFG-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 239000004708 Very-low-density polyethylene Substances 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000001654 beetroot red Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229920006229 ethylene acrylic elastomer Polymers 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001866 very low density polyethylene Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/295—Protection against damage caused by extremes of temperature or by flame using material resistant to flame
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Conductors (AREA)
Description
本開示は、熱収縮チューブの材料等として用いられる難燃性樹脂組成物、及びその難燃性樹脂組成物により形成された難燃性熱収縮チューブ、難燃性絶縁電線に関する。 The present disclosure relates to a flame-retardant resin composition used as a material for a heat-shrinkable tube, a flame-retardant heat-shrinkable tube formed from the flame-retardant resin composition, and a flame-retardant insulated wire.
熱収縮チューブは、加熱により径方向に収縮する樹脂チューブである。熱収縮チューブにより被覆対象物を被覆して加熱すると、被覆される部分の形状に沿って収縮し当該部分に密着した樹脂層が形成される。そこで熱収縮チューブは、絶縁電線の絶縁層の形成や、電線の結束部や配線の端末の保護、絶縁、防水等に用いられている。 A heat shrinkable tube is a resin tube that shrinks in the radial direction when heated. When an object to be coated is covered with a heat-shrinkable tube and heated, a resin layer is formed that shrinks along the shape of the covered portion and adheres to the covered portion. Therefore, heat shrink tubes are used for forming insulation layers of insulated wires, protecting wire bundles and wiring terminals, insulating them, waterproofing them, and the like.
熱収縮チューブには、収縮により被覆される部分と充分に密着するため、優れた収縮率(加熱による径方向への収縮が大きいこと)が求められる。
熱収縮チューブは、熱可塑性樹脂に難燃剤等を配合した樹脂組成物を押出加工してチューブ状の成形体(中空押出成形体)を形成した後、樹脂の架橋及びチューブの拡径を施して熱収縮性を付与することにより得られる。そこで、熱収縮チューブの形成材料としての樹脂組成物には、押出加工の際に押出されるチューブの径の変動が小さいこと、すなわち優れた押出加工性(寸法安定性)が望まれる。The heat-shrinkable tube is required to have an excellent shrinkage rate (large radial shrinkage due to heating) in order to sufficiently adhere to the portion covered by the shrinkage.
Heat-shrinkable tubes are made by extruding a resin composition containing a thermoplastic resin and a flame retardant, etc. to form a tubular molded product (hollow extrusion molded product), and then crosslinking the resin and expanding the diameter of the tube. Obtained by imparting heat shrinkability. Therefore, the resin composition used as the material for forming the heat-shrinkable tube is desired to have small fluctuations in the diameter of the extruded tube during extrusion processing, that is, to have excellent extrusion processability (dimensional stability).
さらに、鉄道車両、自動車等の内部配線に使用される絶縁電線の絶縁保護用の熱収縮チューブやビル、工場等に設置される電気接続箱で用いられるブスバーの絶縁保護に用いられる熱収縮チューブには、ハロゲンフリーであるとともに、高い難燃性、引張強度や引張伸び等の機械的強度が優れることが求められている。例えば、鉄道車両に用いられる熱収縮チューブには、難燃性の指標である酸素指数が所定値以上であることが求められ、又、難燃性としては、燃焼が伝播しにくい性質、具体的には火炎伝播指数が小さいこと、燃焼時に燃焼物のドリップ(落下)がないこと等が求められる場合も多い。さらに、優れた耐油性が求められる場合も多い。 Furthermore, heat shrinkable tubes are used to protect the insulation of insulated wires used in the internal wiring of railway vehicles and automobiles, and heat shrinkable tubes are used to protect the insulation of busbars used in electrical junction boxes installed in buildings, factories, etc. is required to be halogen-free and to have high flame retardancy and excellent mechanical strength such as tensile strength and tensile elongation. For example, heat-shrinkable tubes used in railway vehicles are required to have an oxygen index, which is an indicator of flame retardancy, of a predetermined value or higher. In many cases, it is required that the flame spread index be small and that there be no dripping (falling) of burning material during combustion. Furthermore, excellent oil resistance is often required.
高い難燃性と優れた機械的強度を両立するハロゲンフリーの難燃性樹脂組成物としては、ポリオレフィン等の熱可塑性樹脂に難燃剤である金属水酸化物を配合した組成物が広く知られている。例えば、特許文献1には、エチレン-酢酸ビニル共重合体(EVA)等のポリオレフィン樹脂に水酸化マグネシウムを配合したハロゲンフリーの難燃性樹脂組成物からなる熱収縮チューブが開示されている。 As a halogen-free flame-retardant resin composition that achieves both high flame retardancy and excellent mechanical strength, compositions in which metal hydroxide, which is a flame retardant, is blended with thermoplastic resin such as polyolefin are widely known. There is. For example, Patent Document 1 discloses a heat-shrinkable tube made of a halogen-free flame-retardant resin composition in which magnesium hydroxide is blended with a polyolefin resin such as ethylene-vinyl acetate copolymer (EVA).
しかし、特許文献1に開示されている難燃性樹脂組成物等の従来の難燃性樹脂組成物には、鉄道車両の内部配線の絶縁保護用の熱収縮チューブを形成する難燃性樹脂組成物に望まれている前記の要請、すなわち、優れた収縮率の熱収縮チューブを形成できること、押出加工性に優れること、酸素指数が所定値以上、火炎伝播指数が所定値以下、燃焼時に燃焼物のドリップ(落下)がない等の高い難燃性を有すること、引張強度や引張伸び等の機械的強度が優れること、耐油性に優れること、を全て充たすものはなく、前記の要請を全て充たす難燃性樹脂組成物の開発が望まれていた。 However, conventional flame-retardant resin compositions such as the flame-retardant resin composition disclosed in Patent Document 1 do not include flame-retardant resin compositions that are used to form heat-shrinkable tubes for insulation protection of internal wiring of railway vehicles. The above-mentioned requirements for products include the ability to form heat-shrinkable tubes with excellent shrinkage, excellent extrusion processability, oxygen index above a certain value, flame spread index below a certain value, and the ability to produce combustible materials during combustion. There is no material that satisfies all of the following requirements: high flame retardancy such as no dripping (dropping), excellent mechanical strength such as tensile strength and tensile elongation, and excellent oil resistance. The development of flame-retardant resin compositions has been desired.
本開示は、難燃剤としての金属水酸化物を含有するハロゲンフリーの樹脂組成物であって、押出加工性に優れるとともに、高い酸素指数、小さな火炎伝播指数、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有し、機械的強度、耐油性に優れ、優れた収縮率の熱収縮チューブを形成できる難燃性樹脂組成物を提供することを課題とする。 The present disclosure is a halogen-free resin composition containing a metal hydroxide as a flame retardant, which has excellent extrusion processability, has a high oxygen index, a small flame spread index, and has a high oxygen index, a low flame spread index, and no dripping of combustion materials during combustion. An object of the present invention is to provide a flame-retardant resin composition that can form a heat-shrinkable tube with excellent mechanical strength, oil resistance, and excellent shrinkage rate.
本開示は、又、前記難燃性樹脂組成物から形成されるハロゲンフリーの難燃性熱収縮チューブであって優れた機械的強度、優れた耐油性、優れた収縮率を有するとともに、難燃性に優れ、高い酸素指数、小さな火炎伝播指数を有し、燃焼時に燃焼物のドリップ(落下)がない難燃性熱収縮チューブを提供することも課題とする。 The present disclosure also provides a halogen-free flame-retardant heat shrinkable tube formed from the flame-retardant resin composition, which has excellent mechanical strength, excellent oil resistance, and excellent shrinkage rate, and is flame-retardant. Another object of the present invention is to provide a flame-retardant heat-shrinkable tube that has excellent properties, a high oxygen index, a small flame spread index, and does not cause any burning material to drip during combustion.
本開示は、さらに、導体及び前記難燃性樹脂組成物から形成される絶縁層を有し、前記絶縁層は、優れた機械的強度、優れた耐油性を有するとともに、高い酸素指数、小さな火炎伝播指数を有し、燃焼時に燃焼物のドリップ(落下)がない絶縁電線を提供することも課題とする。 The present disclosure further includes an insulating layer formed from a conductor and the flame-retardant resin composition, and the insulating layer has excellent mechanical strength, excellent oil resistance, high oxygen index, and small flame resistance. Another object of the present invention is to provide an insulated wire that has a propagation index and does not drip (fall) of combustion materials during combustion.
本発明者は、以上の課題を解決するため鋭意研究を行った結果、ポリエチレン(PE)、エチレンエチルアクリレート共重合体(EEA)、酸変性ポリエチレン(酸変性PE)、金属水酸化物、及びシリコーンを含有する樹脂組成物であって、PE、EEA、酸変性PE、金属水酸化物、シリコーンの含有量が所定の範囲内にある樹脂組成物により、前記の課題が達成できることを見出し、本開示の発明を完成した。 As a result of intensive research to solve the above problems, the present inventors have discovered that polyethylene (PE), ethylene ethyl acrylate copolymer (EEA), acid-modified polyethylene (acid-modified PE), metal hydroxide, and silicone It has been found that the above-mentioned problems can be achieved by a resin composition containing PE, EEA, acid-modified PE, metal hydroxide, and silicone in a predetermined content, and the present disclosure completed the invention.
本開示の第1の態様は、
PE、EEA及び酸変性PEからなる樹脂成分A、金属水酸化物、並びにシリコーンを含有する樹脂組成物であって、樹脂成分A中の、PEの含有割合が25質量%以上70質量%以下、EEAの含有割合が25質量%以上70質量%以下、及び酸変性PEの含有割合が5質量%以上35質量%以下であり、前記樹脂成分A100質量部に対し、前記金属水酸化物の含有量が100質量部以上200質量部以下であり、かつ前記シリコーンの含有量が1質量部以上8質量部以下である難燃性樹脂組成物である。A first aspect of the present disclosure includes:
A resin composition containing a resin component A consisting of PE, EEA and acid-modified PE, a metal hydroxide, and silicone, wherein the content of PE in the resin component A is 25% by mass or more and 70% by mass or less, The content of EEA is 25% by mass or more and 70% by mass or less, the content of acid-modified PE is 5% by mass or more and 35% by mass or less, and the content of the metal hydroxide is based on 100 parts by mass of the resin component A. is 100 parts by mass or more and 200 parts by mass or less, and the content of the silicone is 1 part by mass or more and 8 parts by mass or less.
本開示の第2の態様は
第1の態様の難燃性樹脂組成物をチューブ状に成形した成形品であって、前記成形品を拡径することにより熱収縮性が付与されている難燃性熱収縮チューブである。A second aspect of the present disclosure is a flame-retardant molded article formed by molding the flame-retardant resin composition of the first aspect into a tube shape, the flame-retardant resin composition being imparted with heat shrinkability by expanding the diameter of the molded article. It is heat shrink tubing.
本開示の第3の態様は、導体と前記導体を被覆する絶縁層を有する絶縁電線であって、前記絶縁層が、第1の態様の難燃性樹脂組成物からなる難燃性絶縁電線である。 A third aspect of the present disclosure is an insulated wire having a conductor and an insulating layer covering the conductor, wherein the insulating layer is a flame-retardant insulated wire made of the flame-retardant resin composition of the first aspect. be.
本開示の第1の態様により、ハロゲンフリーであって、酸素指数が高く、火炎伝播指数が小さく、燃焼時に燃焼物のドリップ(落下)がない優れた難燃性や優れた押出加工性を有するとともに、機械的強度、耐油性及び収縮率が優れた熱収縮チューブを形成できる難燃性樹脂組成物が提供される。 According to the first aspect of the present disclosure, it is halogen-free, has a high oxygen index, a low flame spread index, and has excellent flame retardancy and excellent extrusion processability without dripping (falling) of combustion materials during combustion. Additionally, a flame-retardant resin composition is provided that can form a heat-shrinkable tube with excellent mechanical strength, oil resistance, and shrinkage rate.
本開示の第2の態様により、ハロゲンフリーであって、酸素指数が高く、火炎伝播指数が小さく、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有するとともに、機械的強度、耐油性及び収縮率に優れる難燃性熱収縮チューブが提供される。 According to the second aspect of the present disclosure, it is halogen-free, has a high oxygen index, a low flame spread index, has excellent flame retardancy with no dripping (falling) of combustion materials during combustion, and has a mechanical A flame-retardant heat-shrinkable tube with excellent strength, oil resistance, and shrinkage rate is provided.
本開示の第3の態様により、ハロゲンフリーであって、高い酸素指数、小さな火炎伝播指数、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有するとともに、機械的強度及び耐油性に優れる絶縁層により導体が被覆された難燃性絶縁電線が提供される。 According to a third aspect of the present disclosure, the present invention is halogen-free, has excellent flame retardancy such as a high oxygen index, a small flame spread index, and no dripping of combustion materials during combustion, and has excellent mechanical strength and A flame-retardant insulated wire in which a conductor is coated with an insulating layer having excellent oil resistance is provided.
以下、本開示の発明を実施するための形態について具体的に説明する。なお、本開示の発明は下記の実施形態に限定されるものではなく、特許請求の範囲内及び特許請求の範囲と均等の意味、範囲内での全ての変更が含まれる。 Hereinafter, embodiments for carrying out the invention of the present disclosure will be specifically described. Note that the invention of the present disclosure is not limited to the embodiments described below, and includes all changes within the scope of the claims and within the meaning and range equivalent to the scope of the claims.
本開示の第1の態様は、
PE、EEA及び酸変性PEからなる樹脂成分A、金属水酸化物、及びシリコーンを含有する樹脂組成物であって、樹脂成分A中の、PEの含有割合が25質量%以上70質量%以下、EEAの含有割合が25質量%以上70質量%以下、及び酸変性PEの含有割合が5質量%以上35質量%以下であり、かつ前記樹脂成分A100質量部に対し、前記金属水酸化物の含有量が100質量部以上200質量部以下であり、前記シリコーンの含有量が1質量部以上8質量部以下である難燃性樹脂組成物である。A first aspect of the present disclosure includes:
A resin composition containing a resin component A consisting of PE, EEA, and acid-modified PE, a metal hydroxide, and a silicone, wherein the content of PE in the resin component A is 25% by mass or more and 70% by mass or less, The content ratio of EEA is 25% by mass or more and 70% by mass or less, the content ratio of acid-modified PE is 5% by mass or more and 35% by mass or less, and the content of the metal hydroxide is based on 100 parts by mass of the resin component A. The present invention is a flame-retardant resin composition in which the amount of silicone is 100 parts by mass or more and 200 parts by mass or less, and the content of the silicone is 1 part by mass or more and 8 parts by mass or less.
先ず、第1の態様の難燃性樹脂組成物を構成する各組成について説明する。
PEとしては、高密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレン等の各種のPEのいずれも使用することができる。
PEの中でも、メルトフローレート(JIS K 7210-1999によるメルトマスフローレート(g/10min))が0.08以上であるPEが好ましく使用できる。メルトフローレートが0.08以上であるPEを使用すると、押出成形により熱収縮チューブを作製するとき、押出したチューブの外観が良好となり、又絶縁電線の絶縁層の形成に用いたときには絶縁層の印字性が向上するので好ましい。
又、ゲル浸透クロマトグラフィー(GPC)で測定した数平均分子量をMn、重量平均分子量をMwとしたときのMw/Mnが8以上のPEが好ましい。Mw/MnはPEの分子量分布の広さを表す指標であるが、Mw/Mnが8以上である分子量分布の広いPEを使用すると、押出成形により熱収縮チューブを作製するとき、押出したチューブの外観が良好となり、又絶縁電線の絶縁層の形成に用いたときには絶縁層の印字性が向上するので好ましい。First, each composition constituting the flame-retardant resin composition of the first embodiment will be explained.
As PE, any of various PEs such as high density polyethylene, medium density polyethylene, linear low density polyethylene, etc. can be used.
Among PEs, PEs having a melt flow rate (melt mass flow rate (g/10min) according to JIS K 7210-1999) of 0.08 or more can be preferably used. When PE with a melt flow rate of 0.08 or more is used, the appearance of the extruded tube will be good when producing a heat-shrinkable tube by extrusion molding, and when used to form an insulating layer of an insulated wire, the appearance of the insulating layer will be improved. This is preferable because printing properties are improved.
Moreover, PE having Mw/Mn of 8 or more is preferable, where Mn is the number average molecular weight and Mw is the weight average molecular weight measured by gel permeation chromatography (GPC). Mw/Mn is an index showing the breadth of the molecular weight distribution of PE, but when using PE with a wide molecular weight distribution with Mw/Mn of 8 or more, when producing a heat shrink tube by extrusion molding, the extruded tube has a It is preferable because it provides a good appearance and improves the printing properties of the insulating layer when used for forming an insulating layer of an insulated wire.
EEAは、エチレンとアクリル酸エチルの共重合体である。エチレンとアクリル酸エチルの共重合比の範囲は特に限定されないが、通常、全構成モノマーの中のアクリル酸エチルの質量比が5~25%程度のものが用いられる。アクリル酸エチルの比が増大すると融点が低下するが、通常、融点83~107℃のものが用いられる。EEAの分子量の範囲や密度(比重)の範囲も特に限定されないが、通常、190℃、荷重21.6kgで測定したメルトフローレイト(MFR)が0.3~25(g/10min)であり、比重0.92~0.95のものが用いられる。 EEA is a copolymer of ethylene and ethyl acrylate. Although the range of the copolymerization ratio of ethylene and ethyl acrylate is not particularly limited, one in which the mass ratio of ethyl acrylate to all constituent monomers is about 5 to 25% is usually used. As the ratio of ethyl acrylate increases, the melting point decreases, but those having a melting point of 83 to 107°C are usually used. The molecular weight range and density (specific gravity) range of EEA are not particularly limited, but usually the melt flow rate (MFR) measured at 190 ° C. and a load of 21.6 kg is 0.3 to 25 (g / 10 min), Those with a specific gravity of 0.92 to 0.95 are used.
酸変性PEとは、無水マレイン酸等の酸がポリマー鎖にグラフトしている、又はポリマー鎖の末端にカルボン酸基が存在するPEである。 Acid-modified PE is PE in which an acid such as maleic anhydride is grafted onto a polymer chain, or a carboxylic acid group is present at the end of the polymer chain.
金属水酸化物としては、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム等を挙げることができる。中でも水酸化マグネシウム、水酸化アルミニウムが好ましく、より好ましくは水酸化マグネシウムである。金属水酸化物としては、粒径が0.1μm以上5.0μm以下の範囲にあるものが好ましく、特に樹脂中への分散性と分散した時の難燃性、機械強度の観点から粒径が0.5μm以上2.0μm以下の範囲にあるものが好ましく用いられる。粒径が前記範囲より大きい場合は樹脂の引張伸びを低下させる傾向があり、前記範囲より小さい場合は金属水酸化物が凝集しやすい。又、シランカップリング剤で表面処理した金属水酸化物やアニオン界面活性剤で表面処理した金属水酸化物も用いることができる。 Examples of metal hydroxides include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, and the like. Among these, magnesium hydroxide and aluminum hydroxide are preferred, and magnesium hydroxide is more preferred. The metal hydroxide preferably has a particle size in the range of 0.1 μm or more and 5.0 μm or less, and particularly from the viewpoint of dispersibility in resin, flame retardance when dispersed, and mechanical strength. Those in the range of 0.5 μm or more and 2.0 μm or less are preferably used. When the particle size is larger than the above range, the tensile elongation of the resin tends to be reduced, and when it is smaller than the above range, the metal hydroxide tends to aggregate. Further, metal hydroxides surface-treated with a silane coupling agent or metal hydroxides surface-treated with an anionic surfactant can also be used.
シリコーンとしては、その種類は特に限定されないが、樹脂成分への相溶性の観点から、変性シリコーンが好ましい。変性シリコーンとは、シリコーンのポリマー鎖の末端、側鎖の少なくともいずれかに1以上の官能基を有するシリコーンを意味する。変性シリコーンとしては、例えば、ビニル変性シリコーン、アルキル変性シリコーンを挙げることができる。 The type of silicone is not particularly limited, but modified silicone is preferred from the viewpoint of compatibility with the resin component. The term "modified silicone" means a silicone having one or more functional groups at least at the end or side chain of a silicone polymer chain. Examples of modified silicones include vinyl-modified silicones and alkyl-modified silicones.
ビニル変性シリコーンとは、シリコーンのポリマー鎖の末端、側鎖の少なくともいずれかに、1以上の炭素-炭素二重結合を有する官能基を結合させたシリコーンである。ポリマー鎖の末端又は側鎖に結合する炭素-炭素二重結合を有する官能基としては、-CH=CH2、-OCO-C(CH3)=CH2(メタクリレート基)、-OCO-CH=CH2(アクリレート基)等を挙げることができる。中でも、アクリレート基、メタクリレート基が好ましい。ビニル変性シリコーンとしては、例えば、特開2005-132855号公報に記載のものを挙げることができる。又、TEGOMER V-Si4042(EVONIK社製)等の市販品も用いることができる。
アルキル変性シリコーンとは、シリコーンのポリマー鎖の末端、側鎖の少なくともいずれかに、炭素数が3以上のアルキル基を1以上結合させたシリコーンである。Vinyl-modified silicone is a silicone in which a functional group having one or more carbon-carbon double bonds is bonded to at least one of the end and side chain of the silicone polymer chain. Functional groups having a carbon-carbon double bond bonded to the end or side chain of a polymer chain include -CH=CH 2 , -OCO-C(CH 3 )=CH 2 (methacrylate group), -OCO-CH= CH 2 (acrylate group) and the like can be mentioned. Among these, acrylate groups and methacrylate groups are preferred. Examples of vinyl-modified silicones include those described in JP-A No. 2005-132855. Furthermore, commercially available products such as TEGOMER V-Si4042 (manufactured by EVONIK) can also be used.
The alkyl-modified silicone is a silicone in which one or more alkyl groups having 3 or more carbon atoms are bonded to at least one of the terminal and side chain of the silicone polymer chain.
本態様の難燃性樹脂組成物には、発明の趣旨を損なわない限り、各種の特性を改良する目的で、エチレンメチルアクリレート共重合体(EMA)、エチレンメチルメタクリレート共重合体(EMMA)、エチレン・プロピレン・ジエンゴム(EPDM)、エチレンブチルアクリレート(EBA)、エチレンアクリルゴム、ポリオレフィンエラストマー、スチレン系エラストマー等の各種樹脂を配合してもよい。又、発明の趣旨を損なわない限り、酸化防止剤、滑剤、加工安定剤、着色剤(着色顔料)、発泡剤、補強剤、炭酸カルシウム、タルク等の充填剤、多官能性モノマー(架橋助剤)等の各種の添加剤を配合することが出来る。 The flame retardant resin composition of this embodiment contains ethylene methyl acrylate copolymer (EMA), ethylene methyl methacrylate copolymer (EMMA), ethylene - Various resins such as propylene diene rubber (EPDM), ethylene butyl acrylate (EBA), ethylene acrylic rubber, polyolefin elastomer, and styrene elastomer may be blended. In addition, antioxidants, lubricants, processing stabilizers, colorants (coloring pigments), blowing agents, reinforcing agents, fillers such as calcium carbonate and talc, and polyfunctional monomers (crosslinking aids) may be used as long as they do not impair the spirit of the invention. ) and other various additives can be added.
第1の態様の難燃性樹脂組成物は、前記の必須の構成成分を特定の組成範囲内で配合することを特徴とする。次に、この特定の組成範囲について説明する。
PEの含有割合は、PE、EEA及び酸変性PEの合計配合量(すなわち樹脂成分Aの配合量)を100質量部としたとき、25質量部以上70質量部以下、すなわち樹脂成分A中の25質量%以上70質量%以下である。
PEの配合により、難燃性樹脂組成物より形成される熱収縮チューブや絶縁電線の絶縁層の耐油性が向上する。PEの含有割合が25質量%未満の場合は、充分な耐油性が得られない。一方PEの含有割合が70質量%を超える場合は、火炎伝播性試験においてドリップを生じやすくなり、又引張伸びやチューブの収縮率も低下し不十分となりやすい。好ましくは30質量%以上50質量%以下であり、この範囲内でより優れた耐油性が得られ、又ドリップをより抑制し、引張伸びやチューブの収縮率も充分なものとなる。The flame-retardant resin composition of the first aspect is characterized in that the above-mentioned essential components are blended within a specific composition range. Next, this specific composition range will be explained.
The content ratio of PE is 25 parts by mass or more and 70 parts by mass or less, that is, 25 parts by mass or less, when the total amount of PE, EEA, and acid-modified PE (i.e., the amount of resin component A) is 100 parts by mass. It is not less than 70% by mass and not more than 70% by mass.
The addition of PE improves the oil resistance of the heat-shrinkable tube or insulating layer of the insulated wire formed from the flame-retardant resin composition. If the PE content is less than 25% by mass, sufficient oil resistance cannot be obtained. On the other hand, if the PE content exceeds 70% by mass, drips are likely to occur in the flame propagation test, and the tensile elongation and shrinkage rate of the tube are also likely to decrease, resulting in insufficient results. It is preferably 30% by mass or more and 50% by mass or less, and within this range, better oil resistance can be obtained, dripping can be further suppressed, and the tensile elongation and shrinkage rate of the tube can be sufficient.
EEAの含有割合は、PE、EEA及び酸変性PEの合計配合量(すなわち樹脂成分Aの配合量)を100質量部としたとき、25質量部以上70質量部以下、すなわち樹脂成分A中の25質量%以上70質量%以下である。
EEAの配合により、火炎伝播性試験においてドリップが抑制される。EEAの代わりに従来技術で用いられているEVAを用いた場合は、ドリップが生じやすい。EVAの場合は、燃焼時にエステル結合が切断された際に水酸基が主鎖に残るために金属水酸化物による樹脂間の凝集力が弱いが、EEAの場合は、燃焼時にエステル結合が切断された際にカルボキシ基が主鎖に残るために金属水酸化物による樹脂間の凝集力が強く、その結果ドリップが抑制されるものと考えられる。
EEAの含有割合が25質量%未満の場合は、充分なドリップ抑制効果が得られない。一方EEAの含有割合が70質量%を超える場合は、耐油性が低下し、チューブの収縮率も不十分なものとなる。好ましくは30質量%以上50質量%以下であり、この範囲内でより優れたドリップ抑制効果が得られ、又耐油性やチューブの収縮率も充分となる。The content ratio of EEA is 25 parts by mass or more and 70 parts by mass or less, i.e., 25 parts by mass or less, when the total blending amount of PE, EEA, and acid-modified PE (i.e., the blending amount of resin component A) is 100 parts by mass. It is not less than 70% by mass and not more than 70% by mass.
The EEA formulation suppresses drips in flame spread tests. When EVA, which is used in the prior art, is used instead of EEA, drips are likely to occur. In the case of EVA, the cohesive force between the resins due to the metal hydroxide is weak because the hydroxyl group remains in the main chain when the ester bond is broken during combustion, but in the case of EEA, the ester bond is broken during combustion. In this case, since the carboxy group remains in the main chain, the cohesive force between the resins due to the metal hydroxide is strong, and as a result, it is thought that dripping is suppressed.
If the content of EEA is less than 25% by mass, a sufficient drip suppression effect cannot be obtained. On the other hand, if the content of EEA exceeds 70% by mass, the oil resistance will decrease and the shrinkage rate of the tube will be insufficient. Preferably, it is 30% by mass or more and 50% by mass or less, and within this range, a better drip suppression effect can be obtained, and the oil resistance and shrinkage rate of the tube will also be sufficient.
酸変性PEの含有割合は、PE、EEA及び酸変性PEの合計配合量(すなわち樹脂成分Aの配合量)を100質量部としたとき、5質量部以上35質量部以下、すなわち樹脂成分A中の5質量%以上35質量%以下である。
酸変性PEの配合により、金属水酸化物の分散性が向上し、その結果引張強度、引張伸びが向上する。又、チューブの収縮率も向上する。
酸変性PEの含有割合が5質量%未満の場合、引張強度、引張伸びが低下し、充分な機械的強度(引張特性)が得られない場合がある。又チューブの収縮率も不十分なものとなる。一方、酸変性PEの含有割合が35質量%を超える場合は、火炎伝播性試験においてドリップが生じやすくなり、又耐油性も低下し不充分となりやすい。好ましくは10質量%以上30質量%以下であり、この範囲内でより優れた引張強度、引張伸び、チューブの収縮率が得られ、火炎伝播性試験でのドリップも抑制され充分な耐油性も得られる。The content ratio of acid-modified PE is 5 parts by mass or more and 35 parts by mass or less, i.e., 5 parts by mass or more and 35 parts by mass or less, when the total amount of PE, EEA, and acid-modified PE (i.e., the amount of resin component A) is 100 parts by mass. It is 5% by mass or more and 35% by mass or less.
By blending acid-modified PE, the dispersibility of metal hydroxide is improved, resulting in improved tensile strength and tensile elongation. Moreover, the shrinkage rate of the tube is also improved.
If the content of acid-modified PE is less than 5% by mass, tensile strength and tensile elongation may decrease, and sufficient mechanical strength (tensile properties) may not be obtained. Also, the shrinkage rate of the tube becomes insufficient. On the other hand, if the content of acid-modified PE exceeds 35% by mass, drips are likely to occur in the flame propagation test, and the oil resistance is also likely to decrease and become insufficient. Preferably, it is 10% by mass or more and 30% by mass or less, and within this range, better tensile strength, tensile elongation, and tube shrinkage can be obtained, dripping in the flame spread test is also suppressed, and sufficient oil resistance can be obtained. It will be done.
金属水酸化物は、前記樹脂成分Aの配合量(すなわちPE、EEA及び酸変性PEの配合量の合計)100質量部に対し、100質量部以上200質量部以下配合される。金属水酸化物は、酸素指数や火炎伝播指数等で表される難燃性を向上させ、鉄道車両、自動車等の内部配線に使用される車載用絶縁電線についての各種の規格を満たす難燃性を達成するために配合される。
金属水酸化物の配合量が、樹脂成分Aの100質量部に対し、100質量部未満の場合は、火炎伝播指数が高くなり、又酸素指数等が不充分となり、車載用絶縁電線についての各種の規格を満たす難燃性が得られにくくなる。
一方、金属水酸化物の配合量が200質量部を超える場合は、引張強度、引張伸びが低下して不十分なものとなり、又チューブの収縮率も低下して不十分となりやすい。The metal hydroxide is blended in an amount of 100 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the resin component A (that is, the total blended amount of PE, EEA, and acid-modified PE). Metal hydroxide improves flame retardancy expressed by oxygen index, flame spread index, etc., and has flame retardancy that meets various standards for automotive insulated wires used for internal wiring of railway vehicles, automobiles, etc. It is formulated to achieve the following.
If the amount of metal hydroxide is less than 100 parts by mass per 100 parts by mass of resin component A, the flame spread index will be high and the oxygen index etc. will be insufficient, resulting in various problems regarding insulated wires for vehicles. It becomes difficult to obtain flame retardancy that meets the standards.
On the other hand, if the amount of metal hydroxide exceeds 200 parts by mass, the tensile strength and tensile elongation will decrease and become insufficient, and the shrinkage rate of the tube will also decrease and tend to become insufficient.
シリコーンは、前記樹脂成分Aの配合量(すなわちPE、EEA及び酸変性PEの配合量の合計)100質量部に対し、1質量部以上8質量部以下配合される。
シリコーンは、酸素指数等で表される難燃性を向上させるために配合されるが、シリコーンの配合量が、樹脂成分Aの100質量部に対し、1質量部未満の場合は、酸素指数が低下し難燃性が不充分なものとなる。一方8質量部を超える場合は、押出加工性が低下し、チューブ状に押出成形する際にチューブ径が不安定となり充分な寸法安定性が得られない。The silicone is blended in an amount of 1 part by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the resin component A (that is, the total amount of PE, EEA, and acid-modified PE).
Silicone is blended to improve flame retardancy expressed by oxygen index, etc., but if the amount of silicone blended is less than 1 part by mass per 100 parts by mass of resin component A, the oxygen index flame retardancy becomes insufficient. On the other hand, if the amount exceeds 8 parts by mass, extrusion processability deteriorates, and when extruded into a tube, the tube diameter becomes unstable and sufficient dimensional stability cannot be obtained.
本態様の難燃性樹脂組成物は、前記の必須の成分及び任意に配合される成分を、公知の方法で、公知の混合機、混錬機を用いて混合することにより得ることができる。 The flame-retardant resin composition of this embodiment can be obtained by mixing the above-mentioned essential components and optional components by a known method using a known mixer or kneader.
本態様の難燃性樹脂組成物は、ハロゲンフリーであって、高い酸素指数、小さな火炎伝播指数、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有し、押出加工性に優れるとともに、機械的強度、耐油性及び収縮率が優れた熱収縮チューブを形成できる難燃性樹脂組成物である。 The flame-retardant resin composition of this embodiment is halogen-free, has excellent flame retardancy such as a high oxygen index, a small flame spread index, and no dripping of combustion materials during combustion, and can be processed by extrusion. It is a flame-retardant resin composition that can form a heat-shrinkable tube with excellent properties, mechanical strength, oil resistance, and shrinkage rate.
本開示の第2の態様は
第1の態様の難燃性樹脂組成物をチューブ状に成形した成形品であって、前記成形品を拡径することにより熱収縮性が付与されている難燃性熱収縮チューブである。A second aspect of the present disclosure is a flame-retardant molded article formed by molding the flame-retardant resin composition of the first aspect into a tube shape, the flame-retardant resin composition being imparted with heat shrinkability by expanding the diameter of the molded article. It is heat shrink tubing.
本態様の難燃性熱収縮チューブは、第1の態様の難燃性樹脂組成物をチューブ状に成形する工程(成形工程)、成形工程で得られた樹脂チューブ(成形品)を径方向に膨張させる工程(拡径工程)を有する方法により製造することができる。成形工程は押出成形により行うことができるが、この押出成形は、従来の熱収縮チューブを作製する際に通常使用される公知の方法と同様にして行うことができる。 The flame-retardant heat-shrinkable tube of this embodiment includes a step of molding the flame-retardant resin composition of the first embodiment into a tube shape (molding step), and a resin tube (molded product) obtained in the molding step in the radial direction. It can be manufactured by a method including an expansion step (diameter expansion step). The molding process can be performed by extrusion molding, and this extrusion molding can be performed in a manner similar to a known method commonly used in producing conventional heat shrinkable tubes.
好ましくは、前記拡径工程の前に、樹脂を架橋する架橋工程が行われる。樹脂を架橋することにより、熱収縮チューブとしての収縮特性がより発現される。樹脂を架橋する方法としては、樹脂に放射線を照射する方法(樹脂の照射架橋)が好ましい。放射線の照射により樹脂材料を架橋した後は成形が困難になるので、放射線の照射(架橋工程)は押出成形(成形工程)後に行われる。押出成形後に放射線の照射を行うことにより、成形が容易であり、かつ放射線の照射による効果を充分に得ることができる。 Preferably, a crosslinking step of crosslinking the resin is performed before the diameter expanding step. By crosslinking the resin, the shrinkage characteristics as a heat-shrinkable tube are better expressed. As a method for crosslinking the resin, a method of irradiating the resin with radiation (irradiation crosslinking of the resin) is preferable. Since molding becomes difficult after the resin material is crosslinked by radiation irradiation, radiation irradiation (crosslinking process) is performed after extrusion molding (molding process). By performing radiation irradiation after extrusion molding, molding is easy and the effects of radiation irradiation can be sufficiently obtained.
樹脂の照射架橋に使用される放射線としては、X線、γ線等の高エネルギー電磁波、電子線等の粒子線を挙げることができる。電子線発生装置はランニングコストが低く、又大出力の電子線が得られ、制御も容易であるので、放射線の中では電子線が好ましく用いられる。 Examples of the radiation used for irradiation crosslinking of the resin include high-energy electromagnetic waves such as X-rays and γ-rays, and particle beams such as electron beams. Among radiation sources, electron beams are preferably used because electron beam generators have low running costs, can produce high-output electron beams, and are easy to control.
放射線照射量は、特に限定されないが、放射線照射量が多すぎるときは分解反応が架橋反応に対して優勢となり逆に架橋度が低下し又強度が低下する場合がある。一方、放射線照射量が少なすぎるときは、熱収縮チューブとしての収縮特性を充分に発現させるために必要な架橋度が得られない場合がある。そこで、収縮特性が充分に発現する範囲で、なるべく小さい放射線照射量を選択することが好ましく、通常は10kGy~300kGyの範囲が好ましい。 The amount of radiation irradiation is not particularly limited, but if the amount of radiation irradiation is too large, the decomposition reaction becomes dominant over the crosslinking reaction, and the degree of crosslinking may decrease and the strength may decrease. On the other hand, if the amount of radiation irradiation is too small, the degree of crosslinking required to fully exhibit the shrinkage characteristics as a heat-shrinkable tube may not be obtained. Therefore, it is preferable to select a radiation irradiation dose as small as possible within a range in which the shrinkage characteristics are sufficiently expressed, and usually a range of 10 kGy to 300 kGy is preferable.
架橋されたチューブ状成形体の拡径の方法としては、従来の熱収縮チューブの作製に通常使用されている公知の拡径方法を用いることができる。例えば、樹脂チューブを融点以上の温度に加熱した後、内圧(チューブ内の圧力)を加えてチューブを膨張し、その後冷却する方法を挙げることができる。 As a method for expanding the diameter of the crosslinked tubular molded body, a known diameter expanding method that is commonly used in the production of conventional heat-shrinkable tubes can be used. For example, a method may be used in which a resin tube is heated to a temperature equal to or higher than its melting point, then internal pressure (pressure inside the tube) is applied to expand the tube, and then the tube is cooled.
本開示の第2の態様の難燃性熱収縮チューブは、ハロゲンフリーであり、高い酸素指数、小さな火炎伝播指数、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有するとともに、機械的強度、耐油性及び収縮率に優れる熱収縮チューブである。 The flame-retardant heat shrink tube of the second aspect of the present disclosure is halogen-free and has excellent flame retardancy with high oxygen index, small flame spread index, and no dripping of combustion materials during combustion. In addition, it is a heat-shrinkable tube with excellent mechanical strength, oil resistance, and shrinkage rate.
本開示の第3の態様は、導体と前記導体を被覆する絶縁層を有する絶縁電線であって、前記絶縁層が、第1の態様の難燃性樹脂組成物からなる難燃性絶縁電線である。 A third aspect of the present disclosure is an insulated wire having a conductor and an insulating layer covering the conductor, wherein the insulating layer is a flame-retardant insulated wire made of the flame-retardant resin composition of the first aspect. be.
導体とは、銅等の導電体からなる線である。本態様の難燃性絶縁電線の絶縁層を形成する方法としては、導体上に第1の態様の難燃性樹脂組成物を押出被覆する方法等を挙げることができる。鉄道車両、自動車の内部配線では、使用中に高温にさらされることもあるため、難燃性樹脂組成物を押出被覆した後に電子線照射等を行って架橋させ、高温時の変形等を抑えることが好ましい。又、絶縁層は、第2の態様の難燃性熱収縮チューブにより導体を被覆して熱収縮させる方法によっても形成できる。 A conductor is a wire made of a conductor such as copper. Examples of the method for forming the insulating layer of the flame-retardant insulated wire of this embodiment include a method of extrusion coating the flame-retardant resin composition of the first embodiment onto the conductor. The internal wiring of railway vehicles and automobiles is sometimes exposed to high temperatures during use, so after extrusion coating a flame-retardant resin composition, cross-linking is performed using electron beam irradiation, etc. to suppress deformation at high temperatures. is preferred. Further, the insulating layer can also be formed by the method of covering the conductor with the flame-retardant heat-shrinkable tube of the second embodiment and heat-shrinking the conductor.
本開示の第3の難燃性絶縁電線は、ハロゲンフリーであり、高い酸素指数、小さな火炎伝播指数、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有するとともに、機械的強度及び耐油性に優れる絶縁層により導体が被覆された絶縁電線である。従って、鉄道車両、自動車等の内部配線等に好適に使用できる。 The third flame-retardant insulated wire of the present disclosure is halogen-free, has excellent flame retardancy such as a high oxygen index, a small flame spread index, and no dripping of combustion materials during combustion, and This is an insulated wire in which the conductor is coated with an insulating layer that has excellent physical strength and oil resistance. Therefore, it can be suitably used for internal wiring of railway vehicles, automobiles, etc.
実施例1~15及び比較例1~11
(使用材料)
・高密度ポリエチレン:ノバテックHD320、三菱ケミカル社製、メルトフローレート=0.3、Mw/Mn=44、密度0.947g/mL、表中では「HDPE」と表す。
・中密度ポリエチレン:ノバテックSD911、三菱ケミカル社製、メルトフローレート=0.1、Mw/Mn=38、密度0.937g/mL、表中では「MDPE」と表す。
・直鎖状低密度ポリエチレン:DFDJ7540、NUC社製、メルトフローレート=0.8、Mw/Mn=10、密度0.920g/mL、表中では「LLDPE」と表す。
・EEA:レクスパールA4250、三菱ケミカル社製、EA量25wt%、メルトフローレート=5、密度0.934g/mL、表中では「EEA」と表す。
・EVA:エバフレックスEV360、三井デュポンポリケミカル社製、VA量25wt%、メルトフローレート=2、密度0.94g/mL、表中では「EVA」と表す。
・酸変性PE:タフマーMH5020、密度0.860g/mLの酸変性VLDPE、表中では「酸変性PE」と表す。
・水酸化マグネシウム:キスマ5L(協和化学社製)
・水酸化アルミニウム:ハイジライトH42STM(昭和電工社製)
・酸化防止剤:イルガノックス1010(BASFジャパン社製)
・滑剤:ステアリン酸亜鉛
・ビニル変性シリコーン:TEGOMER V-Si4042(EVONIK社製)
・アルキル変性シリコーン:TSF4421(モメンティブ・パフォーマンス・マテリアルズ社製)Examples 1 to 15 and Comparative Examples 1 to 11
(Materials used)
- High-density polyethylene: Novatec HD320, manufactured by Mitsubishi Chemical Corporation, melt flow rate = 0.3, Mw/Mn = 44, density 0.947 g/mL, expressed as "HDPE" in the table.
- Medium density polyethylene: Novatec SD911, manufactured by Mitsubishi Chemical Corporation, melt flow rate = 0.1, Mw/Mn = 38, density 0.937 g/mL, expressed as "MDPE" in the table.
-Linear low density polyethylene: DFDJ7540, manufactured by NUC, melt flow rate = 0.8, Mw/Mn = 10, density 0.920 g/mL, expressed as "LLDPE" in the table.
- EEA: Lexpar A4250, manufactured by Mitsubishi Chemical Corporation, EA amount 25 wt%, melt flow rate = 5, density 0.934 g/mL, expressed as "EEA" in the table.
- EVA: Evaflex EV360, manufactured by DuPont Mitsui Polychemicals, VA amount 25 wt%, melt flow rate = 2, density 0.94 g/mL, expressed as "EVA" in the table.
- Acid-modified PE: Tafmer MH5020, acid-modified VLDPE with a density of 0.860 g/mL, expressed as "acid-modified PE" in the table.
・Magnesium hydroxide: Kisuma 5L (manufactured by Kyowa Chemical Co., Ltd.)
・Aluminum hydroxide: Higilite H42STM (manufactured by Showa Denko)
・Antioxidant: Irganox 1010 (manufactured by BASF Japan)
・Lubricant: Zinc stearate ・Vinyl modified silicone: TEGOMER V-Si4042 (manufactured by EVONIK)
・Alkyl-modified silicone: TSF4421 (manufactured by Momentive Performance Materials)
前記の使用材料を、表1~5に示す配合(質量比)で、オープンロールにて180℃で混練した後、ペレタイザによってペレット状にした。その後、50mmφ押出機にて、内径3mmφ、外径4mmφ(肉厚0.5mm)のチューブ形状に押出した。得られたチューブに60kGyの電子線を照射した後、150℃でチューブ内に空気を吹き込み加圧して外径6mmφになるまで径方向に膨張させてチューブ状成形体を得た。 The materials used above were kneaded at 180° C. with an open roll in the formulations (mass ratios) shown in Tables 1 to 5, and then made into pellets using a pelletizer. Thereafter, it was extruded into a tube shape with an inner diameter of 3 mm and an outer diameter of 4 mm (thickness: 0.5 mm) using a 50 mmφ extruder. After the obtained tube was irradiated with an electron beam of 60 kGy, air was blown into the tube at 150° C. to pressurize it and expand it in the radial direction until the outer diameter became 6 mmφ to obtain a tubular molded body.
得られたチューブについて、押出加工性、酸素指数(難燃性)、火炎伝播性(火炎伝播指数及びドリップの有無)、引張強度、引張伸び、耐油性、拡径させたチューブの収縮率の評価を行った。評価方法は下記の通りである。 The obtained tube was evaluated for extrusion processability, oxygen index (flame retardancy), flame spread property (flame spread index and presence or absence of drip), tensile strength, tensile elongation, oil resistance, and shrinkage rate of the expanded tube. I did it. The evaluation method is as follows.
(押出加工性)
レーザー式外径測定器にて外径変動幅を測定し、外径変動幅が設計値±10%以内の場合を合格とした。(Extrusion processability)
The outer diameter variation range was measured using a laser outer diameter measuring device, and a case where the outer diameter variation range was within ±10% of the design value was considered to be a pass.
(酸素指数)
酸素指数とは、材料の燃焼持続に必要な最低酸素濃度(容積%、材料の燃焼を維持しうる酸素と窒素の混合物における酸素の最低濃度)を示し、JIS K 7201:2007に規格化されており、材料の燃えやすさの指標となる。実施例、比較例では、酸素指数を、JIS K 7201:2007(酸素指数法による高分子材料の燃焼試験方法)に準じて測定した。高難燃材料としては一般的には酸素指数30以上が望まれており、特に鉄道車両用客室用材料規格BS6853では、酸素指数34以上の規格が設けられているので、酸素指数34以上が合格と判定される。(oxygen index)
The oxygen index indicates the minimum oxygen concentration (volume %, the minimum concentration of oxygen in a mixture of oxygen and nitrogen that can maintain the combustion of the material) required to sustain the combustion of the material, and is standardized in JIS K 7201:2007. It is an indicator of the flammability of the material. In Examples and Comparative Examples, the oxygen index was measured according to JIS K 7201:2007 (combustion test method for polymeric materials by oxygen index method). Generally speaking, highly flame-retardant materials are desired to have an oxygen index of 30 or more, and in particular, the BS6853 material standard for railroad vehicle cabins requires an oxygen index of 34 or more, so an oxygen index of 34 or more is acceptable. It is determined that
(火炎伝播性試験)
ASTM E162:2016(輻射熱エネルギー源による材料の表面燃焼性)に準じて行った。具体的には、サイズ152mm×457mmのサンプルを6枚使用して次の試験を行った。
垂直に設置されたラジアントパネル(輻射板)に対してサンプルを30°傾斜させてセットし、輻射板をあらかじめ670℃まで加熱し、サンプル上部にあるパイロットフレームを使用してサンプルに着火させる。着火後炎は、サンプルの表面を下方へ拡がるが、ラジアントパネルからの輻射熱が除々に減少し、炎の伝播を継続出来なくなる点まで進行する。サンプルの表面を炎が伝わっていく速度(炎拡散係数:Fs)と、装置の上部にある排気管の熱放出係数(Q)を求め、下式より火炎伝播指数Isを求めた。
Is=Fs×Q
炎の伝播中の燃焼物の落下(ドリップ)の有無を目視により観察した。
火炎伝播指数Isが35以下でかつ燃焼物の落下(ドリップ)がない場合を合格と判定した。(Flame spread test)
The test was conducted in accordance with ASTM E162:2016 (Surface combustibility of materials using radiant heat energy sources). Specifically, the following test was conducted using six samples with a size of 152 mm x 457 mm.
The sample is set at a 30° inclination to a vertically installed radiant panel (radiant plate), the radiant plate is preheated to 670°C, and the sample is ignited using a pilot flame above the sample. After ignition, the flame spreads downward across the surface of the sample, but the radiant heat from the radiant panel gradually decreases until the flame can no longer continue propagating. The speed of flame propagation on the surface of the sample (flame diffusion coefficient: Fs) and the heat release coefficient (Q) of the exhaust pipe at the top of the device were determined, and the flame spread index Is was determined from the following formula.
Is=Fs×Q
The presence or absence of dripping of burning material during the propagation of the flame was visually observed.
A case where the flame spread index Is was 35 or less and there was no dripping of combustible material was determined to be acceptable.
(引張強度、引張伸び)
長さ120mmのチューブを切り取り、引張速度500mm/分で引張強度(破断時の強度)と引張伸び(破断時の伸び)を測定した。引張強度が7.0MPa以上、引張伸びが200%以上が合格と判定される。(Tensile strength, tensile elongation)
A tube with a length of 120 mm was cut, and the tensile strength (strength at break) and tensile elongation (elongation at break) were measured at a tensile speed of 500 mm/min. A tensile strength of 7.0 MPa or more and a tensile elongation of 200% or more are judged to be acceptable.
(耐油性)
軽油に70℃で168時間浸漬後、引張強さ、引張伸びを測定して、浸漬後の引張強さが4.9MPa以上でかつ引張伸びが120%以上の場合を合格と判定した。(Oil resistance)
After being immersed in light oil at 70° C. for 168 hours, the tensile strength and tensile elongation were measured, and a case where the tensile strength after immersion was 4.9 MPa or more and the tensile elongation was 120% or more was judged to be acceptable.
(チューブの収縮率)
拡径前のチューブ内径、収縮前のチューブ内径、収縮後のチューブ内径を測定した。チューブの収縮率とは、次式により計算される値(%)である。
{[(収縮前のチューブ内径)-(収縮後のチューブ内径)]/[(収縮前のチューブ内径)-(拡径前のチューブ内径)]}×100(Tube shrinkage rate)
The inner diameter of the tube before expansion, the inner diameter of the tube before contraction, and the inner diameter of the tube after contraction were measured. The shrinkage rate of the tube is a value (%) calculated by the following formula.
{[(Tube inner diameter before contraction) - (Tube inner diameter after contraction)] / [(Tube inner diameter before contraction) - (Tube inner diameter before expansion)]} x 100
前記表1~5に示された評価結果より、
樹脂成分中のPEの含有割合が25質量%以上70質量%以下、EEAの含有割合が25質量%以上70質量%以下及び酸変性PEの含有割合が5質量%以上35質量%以下であり、前記樹脂成分100質量部に対し、前記金属水酸化物の配合量が100質量部以上200質量部以下であり、かつ前記シリコーンの配合量が1質量部以上8質量部以下である(第1の態様の範囲内の組成である)実施例1~15の難燃性樹脂組成物は、押出成形時の寸法の安定性(押出加工性)が合格であること、この樹脂組成物より得られる難燃性熱収縮チューブは、酸素指数、火炎伝播指数も合格基準以上であり、燃焼時に燃焼物のドリップ(落下)もなく優れた難燃性を有していること、機械的強度、耐油性及び収縮率も優れていることが示されている。From the evaluation results shown in Tables 1 to 5 above,
The content of PE in the resin component is 25% by mass or more and 70% by mass or less, the content of EEA is 25% by mass or more and 70% by mass or less, and the content of acid-modified PE is 5% by mass or more and 35% by mass or less, With respect to 100 parts by mass of the resin component, the amount of the metal hydroxide is 100 parts by mass or more and 200 parts by mass or less, and the amount of the silicone is 1 part by mass or more and 8 parts by mass or less (the first The flame-retardant resin compositions of Examples 1 to 15 (having compositions within the range of the embodiments) had to pass the dimensional stability during extrusion molding (extrusion processability), and the flame-retardant resin compositions obtained from the resin compositions The flammable heat shrink tube has an oxygen index and a flame spread index that are above the acceptance criteria, and has excellent flame retardancy with no dripping of combustion materials during combustion, as well as mechanical strength, oil resistance, and It has also been shown that the shrinkage rate is excellent.
一方、PEの含有割合が25質量%未満である比較例1では、耐油性が不合格である。又PEの含有割合が70質量%を超える比較例7では、火炎伝播性試験においてドリップを生じ、火炎伝播性試験は不合格と判定される。そして、引張伸びも合格基準の200%以上よりはるかに低い80%であり、チューブの収縮率も合格基準の90%以上に対し78%であり、ともに不充分な結果となっている。 On the other hand, in Comparative Example 1 in which the PE content is less than 25% by mass, the oil resistance is rejected. Moreover, in Comparative Example 7 in which the PE content exceeds 70% by mass, dripping occurs in the flame propagation test, and the flame propagation test is determined to fail. The tensile elongation was also 80%, which was much lower than the acceptance standard of 200% or more, and the shrinkage rate of the tube was 78%, which was 90% or more, which was the acceptance standard, both of which were unsatisfactory results.
EEAの含有割合が25質量%未満である比較例2では、火炎伝播性試験においてドリップを生じ、火炎伝播性試験は不合格と判定される。一方EEAの含有割合が70質量%を超える比較例8では、耐油性の判定が不合格であり、又、チューブの収縮率も合格基準の90%以上に対し83%であり不充分な結果となっている。
なお、EEAの代わりにEVAを50質量%配合した以外は実施例1と同様である比較例3では、火炎伝播性試験においてドリップを生じ、火炎伝播性試験は不合格と判定される。In Comparative Example 2 in which the content of EEA is less than 25% by mass, dripping occurs in the flame propagation test, and the flame propagation test is determined to fail. On the other hand, in Comparative Example 8, in which the content of EEA exceeds 70% by mass, the oil resistance was judged as failing, and the shrinkage rate of the tube was 83%, compared to the passing standard of 90% or more, indicating an unsatisfactory result. It has become.
In addition, in Comparative Example 3, which is the same as Example 1 except that 50% by mass of EVA was blended instead of EEA, dripping occurred in the flame propagation test, and the flame propagation test was determined to fail.
酸変性PEの含有割合が5質量%未満である比較例6では、引張強度、引張伸びが合格基準の値より低く、充分な機械的強度(引張特性)が得られていない。又、チューブの収縮率も合格基準の90%以上に対し73%であり不充分な結果となっている。一方、酸変性PEの含有割合が35質量%を超える比較例2では、火炎伝播性試験においてドリップを生じており、比較例9では、耐油性が不合格と判定されている。 In Comparative Example 6 in which the content of acid-modified PE was less than 5% by mass, the tensile strength and tensile elongation were lower than the values of the acceptance criteria, and sufficient mechanical strength (tensile properties) was not obtained. Furthermore, the shrinkage rate of the tube was 73%, which was an unsatisfactory result, compared to the acceptance standard of 90% or more. On the other hand, in Comparative Example 2 in which the content of acid-modified PE exceeds 35% by mass, dripping occurred in the flame propagation test, and in Comparative Example 9, the oil resistance was determined to fail.
金属水酸化物の含有量が、前記樹脂成分100質量部に対し100質量部未満である比較例10では、火炎伝播指数が合格基準を超えており火炎伝播性試験は不合格と判定され、又酸素指数は合格基準未満であり、車載用絶縁電線についての各種の規格を満たす難燃性は得られていない。一方、金属水酸化物の含有量が200質量部を超える比較例11は、引張強度、引張伸びが合格基準の値より低く、又チューブの収縮率も合格基準の90%より低く不十分である。 In Comparative Example 10, in which the content of the metal hydroxide was less than 100 parts by mass based on 100 parts by mass of the resin component, the flame spread index exceeded the passing standard and the flame spread test was determined to fail, and The oxygen index was below the acceptance standard, and the flame retardance that met various standards for insulated wires for vehicles was not achieved. On the other hand, in Comparative Example 11, in which the metal hydroxide content exceeds 200 parts by mass, the tensile strength and tensile elongation are lower than the acceptance criteria, and the shrinkage rate of the tube is also lower than 90% of the acceptance criteria, which is insufficient. .
シリコーンの含有量が、前記樹脂成分100質量部に対し1質量部未満である比較例4は、酸素指数は合格基準未満であり、車載用絶縁電線についての各種の規格を満たす難燃性は得られていない。一方シリコーン(ビニル変性シリコーン)の含有量が8質量部を超える比較例5は、押出加工性が低く、チューブ状に押出成形する際に、チューブ系が不安定となり、充分な寸法安定性が得られていない。 In Comparative Example 4, in which the content of silicone is less than 1 part by mass per 100 parts by mass of the resin component, the oxygen index is less than the acceptance standard, and the flame retardance that meets various standards for insulated wires for vehicles is not obtained. It has not been done. On the other hand, in Comparative Example 5 in which the content of silicone (vinyl-modified silicone) exceeds 8 parts by mass, extrusion processability is low, and when extruded into a tube, the tube system becomes unstable and sufficient dimensional stability cannot be achieved. It has not been done.
Claims (5)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/012835 WO2019186784A1 (en) | 2018-03-28 | 2018-03-28 | Flame-retardant resin composition, flame-retardant heat shrink tube, and flame-retardant insulated electrical wire |
JPPCT/JP2018/012835 | 2018-03-28 | ||
PCT/JP2019/013369 WO2019189469A1 (en) | 2018-03-28 | 2019-03-27 | Flame-retardant resin composition, flame-retardant heat shrink tube, and flame-retardant insulated electrical wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019189469A1 JPWO2019189469A1 (en) | 2021-04-01 |
JP7374079B2 true JP7374079B2 (en) | 2023-11-06 |
Family
ID=68061944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020509255A Active JP7374079B2 (en) | 2018-03-28 | 2019-03-27 | Flame retardant resin composition, flame retardant heat shrinkable tube and flame retardant insulated wire |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7374079B2 (en) |
WO (2) | WO2019186784A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7434043B2 (en) * | 2020-04-15 | 2024-02-20 | 古河電気工業株式会社 | Flat electric wire and its manufacturing method, flat electric wire with terminal and wire harness |
CN114736450A (en) * | 2022-03-10 | 2022-07-12 | 金发科技股份有限公司 | High-thermal-shrinkage-resistance and high-toughness thermo-oxidative-aging-resistance polyolefin material and preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001151952A (en) | 1999-11-25 | 2001-06-05 | Fujikura Ltd | Nonhalogen flame-retardant resin composition |
JP2001335665A (en) | 2000-05-30 | 2001-12-04 | Nippon Unicar Co Ltd | Flame-retardant ethylenic resin composition and cable and wire coated therewith |
JP2006241182A (en) | 2005-02-28 | 2006-09-14 | Furukawa Electric Co Ltd:The | Insulating resin composition and insulated electric wire |
JP2010520937A (en) | 2007-03-09 | 2010-06-17 | ダウ グローバル テクノロジーズ インコーポレイティド | Stress crack / thermal crack resistant cable sheathing material |
WO2014046165A1 (en) | 2012-09-20 | 2014-03-27 | 住友電気工業株式会社 | Flame-retardant resin composition, flame-retardant heat shrinkable tube and flame-retardant insulated wire |
WO2016175076A1 (en) | 2015-04-28 | 2016-11-03 | 住友電気工業株式会社 | Non-halogen flame-resistant resin composition and insulated electric wire |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0615641B2 (en) * | 1985-07-09 | 1994-03-02 | 日本石油化学株式会社 | Flame-retardant resin composition with excellent abrasion resistance |
JPS6211745A (en) * | 1985-07-10 | 1987-01-20 | Nippon Petrochem Co Ltd | Flame-retardant olefin polymer composition having excellent heat-resistance |
-
2018
- 2018-03-28 WO PCT/JP2018/012835 patent/WO2019186784A1/en active Application Filing
-
2019
- 2019-03-27 JP JP2020509255A patent/JP7374079B2/en active Active
- 2019-03-27 WO PCT/JP2019/013369 patent/WO2019189469A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001151952A (en) | 1999-11-25 | 2001-06-05 | Fujikura Ltd | Nonhalogen flame-retardant resin composition |
JP2001335665A (en) | 2000-05-30 | 2001-12-04 | Nippon Unicar Co Ltd | Flame-retardant ethylenic resin composition and cable and wire coated therewith |
JP2006241182A (en) | 2005-02-28 | 2006-09-14 | Furukawa Electric Co Ltd:The | Insulating resin composition and insulated electric wire |
JP2010520937A (en) | 2007-03-09 | 2010-06-17 | ダウ グローバル テクノロジーズ インコーポレイティド | Stress crack / thermal crack resistant cable sheathing material |
WO2014046165A1 (en) | 2012-09-20 | 2014-03-27 | 住友電気工業株式会社 | Flame-retardant resin composition, flame-retardant heat shrinkable tube and flame-retardant insulated wire |
WO2016175076A1 (en) | 2015-04-28 | 2016-11-03 | 住友電気工業株式会社 | Non-halogen flame-resistant resin composition and insulated electric wire |
Also Published As
Publication number | Publication date |
---|---|
WO2019189469A1 (en) | 2019-10-03 |
JPWO2019189469A1 (en) | 2021-04-01 |
WO2019186784A1 (en) | 2019-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7586043B2 (en) | Non-halogenous insulated wire and a wiring harness | |
JP6152110B2 (en) | Flame retardant resin composition, flame retardant heat shrinkable tube, and flame retardant insulated wire | |
US4322575A (en) | Flame retardant compositions | |
JP5825536B2 (en) | Non-halogen flame retardant resin composition and insulated wire and tube using the same | |
US20140018481A1 (en) | Advanced halogen free flame retardant composition for heat shrinkable material and method of making the same | |
JP4255368B2 (en) | Cross-linked flame retardant resin composition, insulated wire and wire harness using the same | |
JP2016091666A (en) | cable | |
WO2006057120A1 (en) | Nonhalogen electric wire, electric wire bundle, and automobile wire harness | |
JP2015097210A (en) | Phosphorus-free non-halogen fire-resistant insulated wire and phosphorus-free non-halogen fire-resistant cable | |
JPWO2016175076A1 (en) | Non-halogen flame retardant resin composition and insulated wire | |
JPH0554723A (en) | Flame retardant electric insulating composition and flame retardant wire & cable | |
JP6344200B2 (en) | Flame retardant resin composition and flame retardant insulated wire / cable | |
JP7374079B2 (en) | Flame retardant resin composition, flame retardant heat shrinkable tube and flame retardant insulated wire | |
KR101012908B1 (en) | Halogen-free flame-retardant resin composition with nanoclay and zinc borate secondary flame-retardants | |
JP5858351B2 (en) | Insulated wires and cables for railway vehicles using halogen-free flame-retardant resin composition | |
JP2000219814A (en) | Flame-retardant resin composition and insulated electric wire, tube, heat-shrinkable tube, flat cable and high- voltage wire for dc | |
JP2007070483A (en) | Flame-retardant composition for coating of electric wire/cable and flame-retardant electric wire/cable | |
JP2012124061A (en) | Flame retardant wire/cable | |
JP2004075993A (en) | Flame-retardant resin composition and insulated electric wire coated therewith | |
KR100203442B1 (en) | Resin compositions with flame resistance and low-smoking | |
JP2000007852A (en) | Resin composition for electric wire coating and insulated electric wire | |
JP3796123B2 (en) | Flame retardant resin composition and flame retardant molded article using the same | |
JP3953694B2 (en) | Insulated wire / cable | |
JP2001348466A (en) | Fire-retarding resin composition | |
JPH07304909A (en) | Flame-retardant resin composition, heat-shrinkable tube, and insulated wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221107 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231024 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7374079 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |