WO2016175076A1 - Non-halogen flame-resistant resin composition and insulated electric wire - Google Patents

Non-halogen flame-resistant resin composition and insulated electric wire Download PDF

Info

Publication number
WO2016175076A1
WO2016175076A1 PCT/JP2016/062259 JP2016062259W WO2016175076A1 WO 2016175076 A1 WO2016175076 A1 WO 2016175076A1 JP 2016062259 W JP2016062259 W JP 2016062259W WO 2016175076 A1 WO2016175076 A1 WO 2016175076A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
less
resin composition
halogen flame
Prior art date
Application number
PCT/JP2016/062259
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 藤田
西川 信也
智 山崎
裕之 大川
堀 賢治
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201680001487.2A priority Critical patent/CN106414593A/en
Priority to JP2016554892A priority patent/JPWO2016175076A1/en
Publication of WO2016175076A1 publication Critical patent/WO2016175076A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the present invention relates to a non-halogen flame retardant resin composition suitable as a material for forming an insulation coating of a harness for automobiles and railway vehicles, and an insulated wire provided with an insulation coating formed from the non-halogen flame retardant resin composition.
  • Insulated wires such as harnesses for automobiles and railway vehicles are subject to temperature changes from cold to high temperatures and severe vibrations, and are also exposed to oils such as lubricating oil, and may be exposed to heat generation and fire of equipment.
  • the insulation coating (insulation layer) has flame resistance, heat resistance, cold resistance (low temperature characteristics), oil resistance, tensile mechanical characteristics, Regarding mechanical strength such as wear resistance, it is required to satisfy predetermined standards, and ISO standards that are international standards, EN standards that are European standards, and the like are defined.
  • the insulation coating is required to contain no halogen (non-halogen, halogen-free) in order to prevent passengers from evacuating due to smoke during a fire. .
  • Patent Document 1 a conductor made of a non-halogen resin composition having excellent flame retardancy and heat resistance is coated on a conductor, and used as a railway vehicle wire or a railway vehicle cable (hereinafter referred to as “electric wire”). Is used in the meaning including the cable).
  • the resin composition contains 100 to 250 parts by mass of a metal hydroxide and 3 to 50 parts by mass of amorphous silica with respect to 100 parts by mass of a polyolefin-based resin as a base polymer.
  • the polyolefin resin comprises 10 to 40% by mass of maleic anhydride-modified ethylene- ⁇ -olefin copolymer and Melt mass flow rate (melt flow rate: MFR) 2.0 (g / 10 min) or less, characterized in that it contains 60 to 90% by mass of polyethylene having a density of 0.900 to 0.925 g / cm 3 .
  • Patent Document 2 discloses a non-halogen crosslinkable resin composition that is a material of a cross-linked molded body having flame resistance and excellent mechanical properties, and excellent in oil resistance, cold resistance, and room temperature storage, and the cross-linked molded body An insulated electric wire for vehicles provided with a coating layer made of is disclosed.
  • This non-halogen crosslinkable resin composition comprises one or more kinds of ethylene-vinyl acetate copolymer (EVA) and an acid-modified polyolefin resin having a glass transition point (Tg) by DSC of ⁇ 55 ° C. or lower within a predetermined range.
  • EVA ethylene-vinyl acetate copolymer
  • Tg glass transition point
  • the EVA contains 100 to 250 parts by mass of a metal hydroxide with respect to 100 parts by mass of the base polymer, and at least one of the EVA has a melting point of 70 ° C. or higher by the DSC method.
  • the content (VA amount) is 25 to 50% by mass.
  • EN standards In recent years, the application of EN standards has been expanded for insulated electric wires for vehicles, and passing of the vertical combustion test is required.
  • tests such as flame retardancy, heat resistance, oil resistance, and low temperature characteristics specified in EN50264-3-1.
  • a durability test such as a strict wear resistance test that assumes a use environment that is constantly exposed to vibration and the like.
  • a cable for a railway vehicle is required to be light in weight for speeding up and saving energy, so that it is required to pass the durability test even when the insulation coating is thin.
  • Durability such as wear resistance can be improved if the insulating coating is formed of a highly crystalline resin. In this case, however, the EN standard low temperature characteristics are likely to be rejected. Thus, there is no existing insulated wire that satisfies all of the above requirements.
  • the present invention is excellent in mechanical strength such as flame resistance, heat resistance, cold resistance (low temperature characteristics), oil resistance, tensile mechanical characteristics, wear resistance, etc.
  • An object of the present invention is to provide a non-halogen flame retardant resin composition used for forming the above.
  • the non-halogen flame retardant resin composition is used as a forming material, and it has flame resistance, heat resistance, low temperature characteristics (cold resistance), oil resistance, and mechanical strength such as tensile mechanical characteristics and wear resistance.
  • An object of the present invention is to provide an insulated wire that is excellent and has an insulation coating that balances them at a high level, and that is suitably used as a harness for automobiles or railway vehicles.
  • the first aspect of the present invention is: 100 parts by mass or more and 250 parts by mass or less of metal hydroxide, and 1 part by mass or more and 20 parts by mass or less of silicone oil having a viscosity at 25 ° C. of 3000 mPa ⁇ s or less with respect to 100 parts by mass of polyolefin resin.
  • the polyolefin resin is 30 mass% or more and 85 mass% or less of polyethylene whose melting point (Tm) by DSC method is 120 ° C. or more and 130 ° C.
  • the second aspect of the present invention has a conductor and an insulating coating covering the conductor,
  • the insulating coating is a non-halogen flame retardant insulated wire made of a crosslinked product of the non-halogen flame retardant resin composition of the first aspect.
  • a third aspect of the present invention has a conductor and an insulation coating,
  • the insulating coating has an inner layer covering the conductor and an outer layer covering the inner layer;
  • the inner layer is made of polyethylene or a composition mainly composed of polyethylene,
  • the outer layer is a non-halogen flame retardant insulated wire made of a crosslinked product of the non-halogen flame retardant resin composition of the first aspect.
  • the present invention can be used as a material for insulation coating of insulated wires, satisfying test items such as flame retardancy, heat resistance, oil resistance, low temperature characteristics and the like specified in EN50264-3-1, Insulation that has high wear resistance even at a thin wall and balances mechanical strength such as flame resistance, heat resistance, cold resistance (low temperature characteristics), oil resistance, tensile mechanical characteristics, and wear resistance at a high level.
  • a non-halogen flame retardant resin composition capable of forming a coating is provided.
  • the second aspect of the present invention satisfies the test items such as flame retardancy, heat resistance, oil resistance, and low temperature characteristics specified in EN50264-3-1 and has high wear resistance, and flame retardancy, Equipped with an insulation coating that balances mechanical strength such as heat resistance, low temperature characteristics (cold resistance), oil resistance, tensile mechanical characteristics, and wear resistance at a high level, and is suitable for use as a harness for automobiles or railway vehicles
  • a non-halogen flame retardant insulated wire is provided.
  • the test items such as flame retardancy, heat resistance, oil resistance, and low temperature characteristics specified in EN50264-3-1 are satisfied, and flame retardancy, heat resistance, low temperature characteristics (cold resistance) ), Oil resistance, and insulation coating that balances mechanical strength such as tensile mechanical properties and wear resistance at a high level, and high durability such as wear resistance even when the insulation coating is thin.
  • a non-halogen flame retardant insulated wire that has high insulation characteristics and is suitably used as a harness for automobiles or railway vehicles.
  • the first aspect of the present invention is: 100 parts by mass or more and 250 parts by mass or less of metal hydroxide, and 1 part by mass or more and 20 parts by mass or less of silicone oil having a viscosity at 25 ° C. of 3000 mPa ⁇ s or less with respect to 100 parts by mass of polyolefin resin.
  • the polyolefin resin is 30 mass% or more and 85 mass% or less of polyethylene whose melting point (Tm) by DSC method is 120 ° C. or more and 130 ° C.
  • the present inventor is a non-halogen flame retardant resin composition containing a polyolefin resin and a metal hydroxide, Contains a predetermined amount of silicone oil whose viscosity is within a predetermined range,
  • a material containing EVA and maleic anhydride-modified ethylene ⁇ -olefin copolymer in a predetermined range composition in polyethylene as a base polymer By using a non-halogen flame retardant resin composition in which the polyethylene is highly crystalline, that is, polyethylene having a melting point of 120 ° C. or higher and 130 ° C.
  • an insulating coating can be formed that balances mechanical strength such as oil resistance, tensile mechanical properties, and wear resistance at a high level. For example, if an insulating coating is formed using highly crystalline polyethylene, it is possible to improve the wear resistance, etc., but the low-temperature deterioration that occurs in this case can be prevented by adding silicone oil. It was found that both durability and low temperature that satisfy the above conditions can be achieved.
  • Polyolefin resin Polyethylene Polyethylene, which is a base polymer constituting the polyolefin resin, is highly crystalline polyethylene. Specifically, the melting point (Tm) by DSC method is 120 ° C. or higher and 130 ° C. or lower, and the density is in the range of 0.925 or higher and 0.945 or lower. By using polyethylene having high crystallinity, excellent wear resistance can be obtained. When polyethylene having a melting point (Tm) of less than 120 ° C. and a density of less than 0.925 is used, abrasion resistance that satisfies the standard cannot be obtained. On the other hand, when a polyethylene having a melting point (Tm) exceeding 130 ° C.
  • melt flow rate is preferably larger than 0.1 g / 10 min and smaller than 5.0 g / 10 min. If the MFR is 0.1 g / 10 min or less, the appearance may be roughened during extrusion, and if it is 5.0 g / 10 min or more, sufficient tensile strength may not be obtained.
  • EVA Ethylene-vinyl acetate copolymer
  • the EVA used here is preferably one having a VA amount (vinyl acetate content) in the range of more than 20% by mass and less than 40% by mass.
  • the melting point (Tm) by DSC method is preferably higher than 40 ° C and lower than 85 ° C. If the EVA VA content is 20% by mass or less or the melting point is 85 ° C. or more, cold resistance may be deteriorated. If the EVA VA content is 40% by mass or more or the melting point is 40 ° C. or less, the pellets become sticky. In the summer, pellets may be blocked, making extrusion difficult.
  • MFR is larger than 0.1 g / 10min and smaller than 5.0 g / 10min.
  • the appearance may be roughened during extrusion, and if it is 5.0 g / 10 min or more, sufficient tensile strength may not be obtained.
  • One type of EVA may be used alone, or two or more types may be used in combination.
  • maleic anhydride-modified ethylene ⁇ -olefin copolymer is obtained by grafting maleic anhydride onto an ethylene ⁇ -olefin copolymer. It can be obtained by adding a peroxide to the ⁇ -olefin copolymer and kneading with a twin screw extruder or the like. Examples of the ⁇ -olefin used here include butene, propylene, and octene.
  • the maleic anhydride-modified ethylene- ⁇ -olefin copolymer has a melting point of 60 ° C. or less by DSC method.
  • the DSC method has a melting point exceeding 60 ° C., the cold resistance is lowered, and it becomes difficult to satisfy the standards required in recent years.
  • the content of the maleic anhydride-modified ethylene- ⁇ -olefin copolymer is 5% by mass or more and 30% by mass or less based on the total mass of polyethylene, EVA and maleic anhydride-modified ethylene ⁇ -olefin copolymer. Range. When the amount is less than 5% by mass, the cold resistance is lowered and it becomes difficult to satisfy the standards required in recent years. On the other hand, if it exceeds 30% by mass, the mechanical strength such as wear resistance and tensile strength is lowered, and the wear resistance and tensile strength satisfying the standard cannot be obtained.
  • the non-halogen flame retardant resin composition of the first aspect contains a metal hydroxide as a flame retardant, in an amount of 100 parts by mass to 250 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • a metal hydroxide as a flame retardant
  • the addition amount of the metal hydroxide is preferably 130 parts by mass or more and 220 parts by mass or less, and more preferably 150 parts by mass or more and 200 parts by mass or less.
  • metal hydroxide examples include magnesium hydroxide, aluminum hydroxide, calcium hydroxide and the like. Of these, magnesium hydroxide and aluminum hydroxide are preferable. These may be used alone or in combination of two or more. These metal hydroxides may be silane coupling agents, titanate coupling agents, fatty acids such as stearic acid and calcium stearate, fatty acid metal salts, and the like. Further, an appropriate amount of metal hydroxide other than these may be added.
  • the halogen-free flame retardant resin composition of the first aspect contains 1 to 20 parts by mass of silicone oil having a viscosity at 25 ° C. of 3000 mPa ⁇ s or less with respect to 100 parts by mass of the polyolefin resin. It is characterized by.
  • silicone oil By containing silicone oil, flame retardancy can be improved, and excellent flame retardancy even when the content of metal hydroxide is about 180 parts by mass with respect to 100 parts by mass of the polyolefin resin. Is obtained.
  • the content of the silicone oil exceeds 20 parts by mass, the wear resistance decreases.
  • the silicone oil used has a viscosity at 25 ° C. of 3000 mPa ⁇ s or less.
  • a silicone oil having a viscosity at 25 ° C. exceeding 3000 mPa ⁇ s is used, even if the content is in the range of 1 to 20 parts by mass, the flame retardancy becomes insufficient, and the decrease in cold resistance can be prevented. Can not.
  • Silicone oil is a silicone oil having a main skeleton of a siloxane bond, and is usually a linear structure silicone having a siloxane bond of about 2000 or less.
  • a silicone oil modified with an alkyl group, an ester group, a vinyl group, a carboxyl group, an epoxy group, a hydroxyalkyl group or an amino group is preferable because it can be easily adapted to a resin or a metal hydroxide. Therefore, the non-halogen flame retardant resin composition according to the first aspect, in which the silicone oil is a modified silicone oil, is provided as a preferred aspect.
  • spherical silica is added in an amount of 1 part by weight or more and less than 35 parts by weight, more preferably 3 parts by weight or more, 30 parts by weight with respect to 100 parts by weight of the polyolefin resin.
  • a non-halogen flame retardant resin composition containing not more than part by mass is provided.
  • Spherical silica means silica whose primary particles are spherical.
  • the spherical silica those having a primary particle diameter of 100 ⁇ m or more are preferable.
  • silica with primary particles in a chain form is used instead of spherical silica, the wear resistance is improved, but the cold resistance is lowered, and even if the content is less than 35 parts by mass, sufficient cold resistance is not I can't get it.
  • the non-halogen flame retardant resin composition of the first aspect further includes a crosslinking aid, an antioxidant, a lubricant, a colorant (coloring pigment, etc.), a softening agent, as necessary, within a range that does not impair the spirit of the invention. It is possible to add additives such as plasticizers, inorganic fillers, compatibilizers, stabilizers and carbon black. Further, in order to further improve the flame retardancy, flame retardants and flame retardant aids other than the above metal hydroxides may be added within the range not impairing the gist of the present invention.
  • the mechanical strength of the molded body of the resin composition is improved.
  • the crosslinking method an electron beam crosslinking method in which an electron beam is irradiated after molding, or a chemical crosslinking in which a crosslinking agent is blended in advance in the resin composition and then crosslinked by heating after molding is employed.
  • non-halogen resin composition preparation of non-halogen resin composition
  • the constituent materials are mixed using a known melt mixer such as a roll mixer, a single screw kneading extruder, a twin screw kneading extruder, a pressure kneader, or a Banbury mixer.
  • a known melt mixer such as a roll mixer, a single screw kneading extruder, a twin screw kneading extruder, a pressure kneader, or a Banbury mixer.
  • a known melt mixer such as a roll mixer, a single screw kneading extruder, a twin screw kneading extruder, a pressure kneader, or a Banbury mixer.
  • a known melt mixer such as a roll mixer, a single screw kneading extruder, a twin screw kneading extruder, a pressure kne
  • the second aspect of the present invention has a conductor and an insulating coating covering the conductor,
  • the insulating coating is a non-halogen flame retardant insulated wire made of a crosslinked product of the non-halogen flame retardant resin composition of the first aspect.
  • This insulated wire satisfies the test items such as flame retardancy, heat resistance, oil resistance, and low temperature characteristics specified in EN50264-3-1, has high wear resistance, and has flame resistance, heat resistance, low temperature. It has an insulation coating that balances mechanical strength such as properties (cold resistance), oil resistance, tensile mechanical properties, and wear resistance at a high level. Therefore, the electric wire or cable is preferably used as a harness or the like for automobiles or railway vehicles.
  • Examples of the conductor constituting the insulated wire of the second aspect include copper and aluminum having excellent conductivity.
  • the conductor may be a single wire or a stranded wire of a plurality of strands.
  • the insulating coating constituting the insulated wire of the second aspect is a crosslinked product of the non-halogen flame retardant resin composition of the first aspect.
  • the insulating coating is formed by extruding the non-halogen resin composition of the first aspect so as to cover the surface of the conductor on the wire using a known extruder such as a melt extruder, and then the non-halogen flame-retardant resin composition. It can be formed by crosslinking a polyolefin resin constituting the product. By crosslinking the polyolefin resin, the mechanical strength such as tensile strength and abrasion resistance of the insulating coating is improved.
  • a method of crosslinking the polyolefin resin chemical crosslinking in which a crosslinking agent such as a peroxide is previously blended in the resin composition and then heated and crosslinked after the molding may be considered, but a method of irradiating the insulating coating with radiation ( Resin irradiation crosslinking) is preferred.
  • the radiation used for irradiation crosslinking of the resin include electron beam, X-ray, ⁇ -ray, and particle beam.
  • the electron beam generator is low in running cost, can produce a high-power electron beam, and is easy to control. Therefore, an electron beam is preferably used in radiation.
  • the thickness of the insulating coating can be appropriately selected within a range in which desired insulating properties and mechanical strength can be obtained according to the conductor diameter and the use of the insulated wire. When used in harnesses for automobiles and railway vehicles, they are often covered with a thickness of 0.2 mm or more.
  • a third aspect of the present invention has a conductor and an insulation coating,
  • the insulating coating has an inner layer covering the conductor and an outer layer covering the inner layer;
  • the inner layer is made of polyethylene or a composition mainly composed of polyethylene,
  • the outer layer is a non-halogen flame retardant insulated wire made of a crosslinked product of the non-halogen flame retardant resin composition of the first aspect.
  • This non-halogen flame retardant insulated wire satisfies the test items such as flame retardancy, heat resistance, oil resistance, and low temperature characteristics specified in EN50264-3-1 and is also flame retardant, heat resistance, low temperature characteristics (cold resistance) Insulation coating that balances mechanical strength such as oil resistance, tensile mechanical properties, and wear resistance at a high level, and has high durability such as wear resistance even when the insulation coating is thin. In addition, it has high insulation characteristics. Therefore, it is an electric wire or cable suitably used as a harness or the like for automobiles or railway vehicles.
  • Inner layer is made of polyethylene or a composition mainly composed of polyethylene.
  • the composition mainly composed of polyethylene means a composition composed of only polyethylene or a resin component containing 50% by mass or more, preferably 80% by mass or more of polyethylene and other components such as a flame retardant. Other components such as antioxidants can be added to polyethylene as necessary within the range not impairing the gist of the invention.
  • the inner layer even if the outer layer is thin, mechanical strength such as high insulation resistance and excellent wear resistance can be imparted to the insulating coating. That is, by providing the inner layer, the outer layer can be thinned and the insulating coating can be reduced in weight.
  • the inner layer is made of polyethylene or a composition mainly composed of polyethylene (which may contain other components added as necessary) on a conductor line using a known extruder such as a melt extruder. It can be formed by extrusion molding so as to be coated.
  • polyethylene from the viewpoint that it can be extrusion coated with a thin wall, it is preferable that MFR (190 ° C. 2.16 kgf) is in the range of 0.5 g / 10 min or more and 5.0 g / 10 min or less, and wear resistance From this point of view, the density is preferably 0.94 g / cm 3 or more.
  • a resin composition containing polyethylene and 5 parts by mass or more and 200 parts by mass or less of aluminum silicate with respect to 100 parts by mass of the polyethylene is preferable.
  • the toxicity index (ITC) indicating the toxicity of the combustion gas generated when the insulating coating is burned may increase, but aluminum silicate is contained in an amount of 5 parts by mass or more with respect to 100 parts by mass of polyethylene.
  • the standard is satisfied (passes the combustion gas toxicity test).
  • magnesium hydroxide is used instead of aluminum silicate, the effect of suppressing the toxicity index (ITC) cannot be obtained, and the effect of improving the insulation resistance by providing the inner layer cannot be obtained.
  • the non-halogen flame retardant resin composition wherein the inner layer is made of a resin composition containing 5 parts by mass or more and 200 parts by mass or less of aluminum silicate with respect to 100 parts by mass of polyethylene and the polyethylene.
  • a non-halogen flame retardant insulated wire comprising a crosslinked product of
  • the outer layer is made of a crosslinked product of the non-halogen flame retardant resin composition of the first aspect.
  • the outer layer was formed by extruding the non-halogen resin composition of the first aspect using a known extruder such as a melt extruder so as to cover the surface of the inner layer of the conductor on which the inner layer was formed. Then, it can form by bridge
  • crosslinking the polyolefin resin as described above, the mechanical strength such as tensile strength and abrasion resistance of the insulating coating is improved.
  • Thickness of inner layer and outer layer The thickness of the entire insulation coating can be appropriately selected within a range in which desired insulating properties and mechanical strength can be obtained according to the conductor diameter, use of the insulated wire, and the like. When used in harnesses for automobiles and railway vehicles, they are often covered with a thickness of 0.2 mm or more.
  • the ratio of the thickness of the inner layer to the outer layer is not particularly limited, but when used for the harness of automobiles and railway vehicles, the thickness of the inner layer is preferably 0.03 mm or more in order to ensure sufficient insulation, and flame retardancy Is preferably 0.1 mm or less.
  • FIG. 1 is a cross-sectional view of an example of the insulated wire of the third aspect.
  • 1 represents a conductor
  • 2 represents an inner layer covering the conductor surface
  • 3 represents an outer layer
  • 4 represents an insulated wire.
  • EVA Ethylene-vinyl acetate copolymer
  • Aluminum silicate Burgess # 30 (manufactured by Shiroishi Calcium)
  • Crosslinking aid Trimethylolpropane trimethacrylate (TMPTMA): Multifunctional monomer
  • Adekastab AO-60 Hindered phenol antioxidant
  • Adekastab AO-503 (ADEKA): Thioether oxidation Inhibitor / Lubricant: Stearic acid / Color pigment: Seest 3 (manufactured by Tokai Carbon Co., Ltd.): Average particle size 28 nm
  • the outer layer had a thickness of 0.615 mm, the total thickness of the inner layer and the outer layer was 0.665 mm, and the outer diameter of the insulated wire was 2.6 mm.
  • combustion gas toxicity test About the insulation coating of the insulated wire produced as described above, a combustion gas toxicity test was performed as follows in accordance with EN50305 9.2, and a toxicity index was calculated. That is, for Experiments 1 to 20 and Experiments 27 to 40, sheets having a thickness of 1 mm prepared from the resin compositions for forming an insulating coating shown in Tables 1 to 4 and Tables 6 to 8, and for Experiments 21 to 26, A 1 mm thick sheet obtained by laminating a 0.08 mm thick layer composed of the inner layer preparing resin composition shown in FIG. 5 and a 0.92 mm thick layer composed of the outer layer preparing resin composition was cut into 5 mm squares, After being stored for 48 hours in a room at 23 ° C.
  • the toxicity index was calculated from the generation amounts of hydrogen cyanide, carbon monoxide, carbon dioxide, nitrogen oxides, and sulfur dioxide and the weighting of toxicity specified for each. An ITC of 6.0 or less was accepted.
  • EVA is 10% by mass or more and 60% by mass or less with respect to 100 parts by mass of polyolefin resin (polyethylene + EVA + maleic anhydride-modified ethylene ⁇ -olefin copolymer), and the melting point by DSC method is 60%. 5 mass% or more and 30 mass% or less of maleic anhydride-modified ethylene ⁇ -olefin copolymer having a temperature of ⁇ ° C. or less, 100 to 250 parts by mass or less of a flame retardant (metal hydroxide), and viscosity at 25 ° C.
  • polyolefin resin polyethylene + EVA + maleic anhydride-modified ethylene ⁇ -olefin copolymer
  • the melting point by DSC method is 60%. 5 mass% or more and 30 mass% or less of maleic anhydride-modified ethylene ⁇ -olefin copolymer having a temperature of ⁇ ° C. or less, 100 to 250 parts by mass or less of a flame
  • Insulation coating or non-halogen flame retardant resin composition of Experiments 1 to 26 using polyethylene 2 or polyethylene 3 (or When the outer layer of the insulation coating is formed, tensile strength, tensile elongation, insulation resistance, and wear resistance that meet recent requirements (EN standards, etc.) have been obtained. Flame resistance test, oil resistance test, cold resistance test Has also been shown to pass.
  • the silicone oil having a viscosity at 25 ° C. of 3000 mPa ⁇ s or less is modified with an alkyl group, an ester group, a vinyl group, a carboxyl group, an epoxy group, a hydroxyalkyl group, or an amino group. It has been shown that any type of silicone oil can be used and that the above effects can be achieved.
  • the amount of the maleic anhydride-modified ethylene ⁇ -olefin copolymer is 5% by mass or more and 30% by mass with respect to 100 parts by mass of the polyolefin resin. The following should be indicated.
  • Experiment 33 is a case where Tafmer MA8510 having a melting point exceeding 60 ° C. was used as the maleic anhydride-modified ethylene ⁇ -olefin copolymer, and the cold resistance was insufficient. This result indicates that a maleic anhydride-modified ethylene ⁇ -olefin copolymer having a melting point of 60 ° C. or lower should be used in order to obtain cold resistance satisfying recent requirements.
  • Experiment 36 is a case where the content of spherical silica is 35 parts by mass or more with respect to 100 parts by mass of the polyolefin resin, and in this case, the cold resistance is insufficient. This result indicates that the content of spherical silica should be less than 35 parts by mass in order not to lower the cold resistance.
  • Experiment 37 is a case where chain silica is used instead of spherical silica. In this case, even if the content is 30 parts by mass, cold resistance is insufficient. This result indicates that spherical silica should be used instead of chain silica in order not to reduce cold resistance.
  • Experiment 38 is a case where the amount of silicone oil exceeds 20 parts by mass with respect to 100 parts by mass of the polyolefin resin, and the abrasion resistance is insufficient.
  • Experiment 39 is a case where silicone oil is not added (that is, the amount of silicone oil is less than 1 part by mass with respect to 100 parts by mass of polyolefin resin), and the flame retardancy is insufficient. This result indicates that the amount of silicone oil should be 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polyolefin resin in order to satisfy both flame retardancy and wear resistance.
  • Experiment 40 is a case where a silicone oil having a viscosity at 25 ° C. exceeding 3000 mPa ⁇ s is used. In this case, flame retardancy and cold resistance are insufficient. This result shows that a silicone oil having a viscosity at 25 ° C. of 3000 mPa ⁇ s or less should be used.
  • the insulation resistance was greatly improved and the wear resistance was also improved as compared with the case without the inner layer. From this result, it is considered that by providing the inner layer, the outer layer can be thinned and the insulating coating can be reduced in weight.
  • the toxicity index (ITC) indicating the toxicity of the combustion gas generated when the insulating coating is burned is 6.0 or less.
  • the toxicity index (ITC) ) Exceeds 6.0, and it has been shown that the formation of an inner layer may increase the toxicity index (ITC).
  • the toxicity index (ITC) was 6 It is shown that the toxicity of the combustion gas can be suppressed by blending a predetermined amount of aluminum silicate.

Abstract

Provided are: a non-halogen flame-resistant resin composition having excellent flame resistance, heat resistance, cold resistance, oil resistance, and mechanical strength such as tensile mechanical characteristics and abrasion resistance, whereby an insulating coating can be formed in which the abovementioned characteristics are balanced to a high degree, the non-halogen flame-resistant resin composition containing 1-20 parts by mass of silicone oil having a viscosity of 3000 mPa∙s or less, 100-250 parts by mass of a metal hydroxide, and 100 parts by mass of a polyolefin resin containing a polyethylene having a density of 0.925-0.945 and a melting point (Tm) of 120-130°C measured by DSC, an ethylene-vinyl acetate copolymer, and an anhydrous maleic acid-modified ethylene α-olefin copolymer having a melting point of 60°C or less measured by DSC in a predetermined composition range; and an insulated electric wire having an insulating coating formed using the non-halogen flame-resistant resin composition, the insulated electric wire being suitable for use in a harness or the like for an automobile or a railroad vehicle.

Description

ノンハロゲン難燃樹脂組成物及び絶縁電線Non-halogen flame retardant resin composition and insulated wire
 本発明は、自動車や鉄道車両のハーネスの絶縁被覆を形成する材料として好適なノンハロゲン難燃樹脂組成物、及び前記ノンハロゲン難燃樹脂組成物から形成される絶縁被覆を備えた絶縁電線に関する。 The present invention relates to a non-halogen flame retardant resin composition suitable as a material for forming an insulation coating of a harness for automobiles and railway vehicles, and an insulated wire provided with an insulation coating formed from the non-halogen flame retardant resin composition.
 自動車や鉄道車両用のハーネス等の絶縁電線は、寒冷から高温に及ぶ温度変化や激しい振動を受けるとともに、潤滑油等の油類に晒されたり、機器の発熱や出火等に晒されることもある。このため、このような悪条件下でも安定して使用できるように、その絶縁被覆(絶縁層)には、難燃性、耐熱性、耐寒性(低温特性)、耐油性や、引張機械特性、耐摩耗性等の機械的強度について、所定の基準を充たすことが求められており、国際規格であるISO規格、欧州規格であるEN規格等が規定されている。又、環境問題を考慮して、特に鉄道用途に於いては火災時の発煙による乗客避難の妨げを防ぐために、前記絶縁被覆は、ハロゲンを含有しないこと(ノンハロゲン、ハロゲンフリー)が求められている。 Insulated wires such as harnesses for automobiles and railway vehicles are subject to temperature changes from cold to high temperatures and severe vibrations, and are also exposed to oils such as lubricating oil, and may be exposed to heat generation and fire of equipment. . For this reason, the insulation coating (insulation layer) has flame resistance, heat resistance, cold resistance (low temperature characteristics), oil resistance, tensile mechanical characteristics, Regarding mechanical strength such as wear resistance, it is required to satisfy predetermined standards, and ISO standards that are international standards, EN standards that are European standards, and the like are defined. In consideration of environmental problems, especially in railway applications, the insulation coating is required to contain no halogen (non-halogen, halogen-free) in order to prevent passengers from evacuating due to smoke during a fire. .
 特許文献1には、難燃性、耐熱性等に優れたノンハロゲン樹脂組成物からなる絶縁体を導体に被覆し、鉄道車両用電線、鉄道車両用ケーブルとして用いられる車両用電線(以下、「電線」との語は、ケーブルも含めた意味で用いる)が開示されている。前記樹脂組成物は、ベースポリマーとしてのポリオレフィン系樹脂100質量部に対して、金属水酸化物を100~250質量部、非晶質シリカを3~50質量部含み、前記非晶質シリカが2.1~2.3g/cmの比重と15~50m/gの比表面積を有し、前記ポリオレフィン系樹脂は、無水マレイン酸変性エチレン-α-オレフィン系共重合体10~40質量%及びメルトマスフローレート(メルトフローレイト:MFR)2.0(g/10分)以下、密度0.900~0.925g/cmのポリエチレン60~90質量%を含むことを特徴とする。 In Patent Document 1, a conductor made of a non-halogen resin composition having excellent flame retardancy and heat resistance is coated on a conductor, and used as a railway vehicle wire or a railway vehicle cable (hereinafter referred to as “electric wire”). Is used in the meaning including the cable). The resin composition contains 100 to 250 parts by mass of a metal hydroxide and 3 to 50 parts by mass of amorphous silica with respect to 100 parts by mass of a polyolefin-based resin as a base polymer. Having a specific gravity of 0.1 to 2.3 g / cm 3 and a specific surface area of 15 to 50 m 2 / g, the polyolefin resin comprises 10 to 40% by mass of maleic anhydride-modified ethylene-α-olefin copolymer and Melt mass flow rate (melt flow rate: MFR) 2.0 (g / 10 min) or less, characterized in that it contains 60 to 90% by mass of polyethylene having a density of 0.900 to 0.925 g / cm 3 .
 特許文献2には、難燃性及び優れた機械特性を備えるとともに、耐油性、耐寒性及び常温保管性に優れた架橋成型体の材料となるノンハロゲン架橋性樹脂組成物、並びに、前記架橋成型体からなる被覆層を備えた車両用絶縁電線が開示されている。このノンハロゲン架橋性樹脂組成物は、1種以上のエチレン-酢酸ビニル共重合体(EVA)及びDSC法によるガラス転移点(Tg)が-55℃以下である酸変性ポリオレフィン樹脂を所定範囲の質量比で含有するベースポリマー100質量部に対して、金属水酸化物を100~250質量部含有し、前記EVAは、少なくとも1種がDSC法による融点が70℃以上であり、前記ベースポリマーの酢酸ビニル含有量(VA量)が25~50質量%であることを特徴とする。 Patent Document 2 discloses a non-halogen crosslinkable resin composition that is a material of a cross-linked molded body having flame resistance and excellent mechanical properties, and excellent in oil resistance, cold resistance, and room temperature storage, and the cross-linked molded body An insulated electric wire for vehicles provided with a coating layer made of is disclosed. This non-halogen crosslinkable resin composition comprises one or more kinds of ethylene-vinyl acetate copolymer (EVA) and an acid-modified polyolefin resin having a glass transition point (Tg) by DSC of −55 ° C. or lower within a predetermined range. The EVA contains 100 to 250 parts by mass of a metal hydroxide with respect to 100 parts by mass of the base polymer, and at least one of the EVA has a melting point of 70 ° C. or higher by the DSC method. The content (VA amount) is 25 to 50% by mass.
特許第5617903号公報Japanese Patent No. 5617903 特開2015-21120号公報Japanese Patent Laid-Open No. 2015-21120
 近年、車両用絶縁電線については、EN規格の適用が拡大され、垂直燃焼試験の合格が要求されている。又、動力用ケーブルとして使用するには、EN50264-3-1に規定された難燃性、耐熱性、耐油性、低温特性等の試験に合格しなければならない。これらの試験項目に加えて、常時振動等に曝される使用環境を想定した厳しい耐摩耗試験等の耐久試験の合格が望まれることもある。特に、鉄道車両用ケーブルには、高速化及び省エネルギー化のため軽量化が求められるので、絶縁被覆が薄い場合であっても上記耐久試験に合格することが求められている。 In recent years, the application of EN standards has been expanded for insulated electric wires for vehicles, and passing of the vertical combustion test is required. In addition, in order to be used as a power cable, it must pass tests such as flame retardancy, heat resistance, oil resistance, and low temperature characteristics specified in EN50264-3-1. In addition to these test items, it may be desired to pass a durability test such as a strict wear resistance test that assumes a use environment that is constantly exposed to vibration and the like. In particular, a cable for a railway vehicle is required to be light in weight for speeding up and saving energy, so that it is required to pass the durability test even when the insulation coating is thin.
 耐摩耗性等の耐久性は、絶縁被覆を結晶性の高い樹脂により形成すれば向上させることができる。しかしこの場合は、EN規格の低温特性が不合格となりやすい。このように、既存の絶縁電線では前記の要請を全て満たすものは存在しなかった。 Durability such as wear resistance can be improved if the insulating coating is formed of a highly crystalline resin. In this case, however, the EN standard low temperature characteristics are likely to be rejected. Thus, there is no existing insulated wire that satisfies all of the above requirements.
 本発明は、難燃性、耐熱性、耐寒性(低温特性)、耐油性、及び引張機械特性、耐摩耗性等の機械的強度に優れ、これらを高い次元でバランスさせた絶縁電線の絶縁被覆の形成に用いられるノンハロゲン難燃樹脂組成物を提供することを課題とする。 The present invention is excellent in mechanical strength such as flame resistance, heat resistance, cold resistance (low temperature characteristics), oil resistance, tensile mechanical characteristics, wear resistance, etc. An object of the present invention is to provide a non-halogen flame retardant resin composition used for forming the above.
 本発明は、又、前記ノンハロゲン難燃樹脂組成物を形成材料とし、難燃性、耐熱性、低温特性(耐寒性)、耐油性、及び、引張機械特性、耐摩耗性等の機械的強度に優れ、これらを高い次元でバランスする絶縁被覆を備え、自動車用あるいは鉄道車両用のハーネス等として好適に用いられる絶縁電線を提供することを課題とする。 In the present invention, the non-halogen flame retardant resin composition is used as a forming material, and it has flame resistance, heat resistance, low temperature characteristics (cold resistance), oil resistance, and mechanical strength such as tensile mechanical characteristics and wear resistance. An object of the present invention is to provide an insulated wire that is excellent and has an insulation coating that balances them at a high level, and that is suitably used as a harness for automobiles or railway vehicles.
 本発明の第1の態様は、
 ポリオレフィン樹脂100質量部に対して、金属水酸化物を100質量部以上、250質量部以下、及び25℃における粘度が3000mPa・s以下であるシリコーンオイルを1質量部以上、20質量部以下含有し、
 前記ポリオレフィン樹脂が、
 DSC法による融点(Tm)が120℃以上、130℃以下、かつ密度が0.925以上、0.945以下であるポリエチレンを30質量%以上、85質量%以下、
 エチレン-酢酸ビニル共重合体(EVA)を10質量%以上、60質量%以下、及び
 DSC法による融点が60℃以下である無水マレイン酸変性エチレンαオレフィン系共重合体を5質量%以上、30質量%以下含有するノンハロゲン難燃樹脂組成物である。
The first aspect of the present invention is:
100 parts by mass or more and 250 parts by mass or less of metal hydroxide, and 1 part by mass or more and 20 parts by mass or less of silicone oil having a viscosity at 25 ° C. of 3000 mPa · s or less with respect to 100 parts by mass of polyolefin resin. ,
The polyolefin resin is
30 mass% or more and 85 mass% or less of polyethylene whose melting point (Tm) by DSC method is 120 ° C. or more and 130 ° C. or less and whose density is 0.925 or more and 0.945 or less,
Ethylene-vinyl acetate copolymer (EVA) 10 mass% or more and 60 mass% or less, and maleic anhydride-modified ethylene α-olefin copolymer having a melting point of 60 ° C. or less by DSC method is 5 mass% or more, 30 It is a non-halogen flame retardant resin composition containing at most mass%.
 本発明の第2の態様は、導体及び前記導体を被覆する絶縁被覆を有し、
 前記絶縁被覆が、前記第1の態様のノンハロゲン難燃樹脂組成物の架橋体からなるノンハロゲン難燃絶縁電線である。
The second aspect of the present invention has a conductor and an insulating coating covering the conductor,
The insulating coating is a non-halogen flame retardant insulated wire made of a crosslinked product of the non-halogen flame retardant resin composition of the first aspect.
 本発明の第3の態様は、導体及び絶縁被覆を有し、
 前記絶縁被覆が、導体を被覆する内層及び前記内層を被覆する外層を有し、
 前記内層が、ポリエチレンまたはポリエチレンを主体とする組成物からなり、
 前記外層が、前記第1の態様のノンハロゲン難燃樹脂組成物の架橋体からなるノンハロゲン難燃絶縁電線である。
A third aspect of the present invention has a conductor and an insulation coating,
The insulating coating has an inner layer covering the conductor and an outer layer covering the inner layer;
The inner layer is made of polyethylene or a composition mainly composed of polyethylene,
The outer layer is a non-halogen flame retardant insulated wire made of a crosslinked product of the non-halogen flame retardant resin composition of the first aspect.
 本発明の第1の態様により、絶縁電線の絶縁被覆の材料として用いることができ、EN50264-3-1に規定された難燃性、耐熱性、耐油性、低温特性等の試験項目を満たし、かつ薄肉でも高い耐摩耗性を具備し、かつ難燃性、耐熱性、耐寒性(低温特性)、耐油性、及び引張機械特性、耐摩耗性等の機械的強度を高い次元でバランスさせた絶縁被覆を形成することができるノンハロゲン難燃樹脂組成物が提供される。 According to the first aspect of the present invention, it can be used as a material for insulation coating of insulated wires, satisfying test items such as flame retardancy, heat resistance, oil resistance, low temperature characteristics and the like specified in EN50264-3-1, Insulation that has high wear resistance even at a thin wall and balances mechanical strength such as flame resistance, heat resistance, cold resistance (low temperature characteristics), oil resistance, tensile mechanical characteristics, and wear resistance at a high level. A non-halogen flame retardant resin composition capable of forming a coating is provided.
 本発明の第2の態様により、EN50264-3-1に規定された難燃性、耐熱性、耐油性、低温特性等の試験項目を満たすとともに高い耐摩耗性を具備し、かつ難燃性、耐熱性、低温特性(耐寒性)、耐油性、及び引張機械特性、耐摩耗性等の機械的強度を高い次元でバランスする絶縁被覆を備え、自動車用あるいは鉄道車両用のハーネス等として好適に用いられるノンハロゲン難燃絶縁電線が提供される。 According to the second aspect of the present invention, it satisfies the test items such as flame retardancy, heat resistance, oil resistance, and low temperature characteristics specified in EN50264-3-1 and has high wear resistance, and flame retardancy, Equipped with an insulation coating that balances mechanical strength such as heat resistance, low temperature characteristics (cold resistance), oil resistance, tensile mechanical characteristics, and wear resistance at a high level, and is suitable for use as a harness for automobiles or railway vehicles A non-halogen flame retardant insulated wire is provided.
 本発明の第3の態様により、EN50264-3-1に規定された難燃性、耐熱性、耐油性、低温特性等の試験項目を満たし、かつ難燃性、耐熱性、低温特性(耐寒性)、耐油性、及び、引張機械特性、耐摩耗性等の機械的強度を高い次元でバランスする絶縁被覆を備えるとともに、絶縁被覆が薄い場合であっても、高い耐摩耗性等の耐久性を具備し、かつ高い絶縁特性を有して、自動車用あるいは鉄道車両用のハーネス等として好適に用いられるノンハロゲン難燃絶縁電線が提供される。 According to the third aspect of the present invention, the test items such as flame retardancy, heat resistance, oil resistance, and low temperature characteristics specified in EN50264-3-1 are satisfied, and flame retardancy, heat resistance, low temperature characteristics (cold resistance) ), Oil resistance, and insulation coating that balances mechanical strength such as tensile mechanical properties and wear resistance at a high level, and high durability such as wear resistance even when the insulation coating is thin. Provided is a non-halogen flame retardant insulated wire that has high insulation characteristics and is suitably used as a harness for automobiles or railway vehicles.
本発明(第3の態様)の絶縁電線の一例の断面図である。It is sectional drawing of an example of the insulated wire of this invention (3rd aspect).
 次に、本発明を実施するための形態を具体的に説明する。なお、本発明は下記の形態及び後述の実施例に限定されるものではなく、特許請求の範囲内及び特許請求の範囲と均等の意味の範囲内での全ての変更が含まれる。 Next, a mode for carrying out the present invention will be specifically described. In addition, this invention is not limited to the following form and the below-mentioned Example, All the changes within the range of a claim and the meaning equivalent to a claim are included.
[第1の態様(ノンハロゲン難燃樹脂組成物)]
 本発明の第1の態様は、
 ポリオレフィン樹脂100質量部に対して、金属水酸化物を100質量部以上、250質量部以下、及び25℃における粘度が3000mPa・s以下であるシリコーンオイルを1質量部以上、20質量部以下含有し、
 前記ポリオレフィン樹脂が、
 DSC法による融点(Tm)が120℃以上、130℃以下、かつ密度が0.925以上、0.945以下であるポリエチレンを30質量%以上、85質量%以下、
 エチレン-酢酸ビニル共重合体(EVA)を10質量%以上、60質量%以下、及び
 DSC法による融点が60℃以下である無水マレイン酸変性エチレンαオレフィン系共重合体を5質量%以上、30質量%以下含有するノンハロゲン難燃樹脂組成物である。
[First Embodiment (Non-Halogen Flame Retardant Resin Composition)]
The first aspect of the present invention is:
100 parts by mass or more and 250 parts by mass or less of metal hydroxide, and 1 part by mass or more and 20 parts by mass or less of silicone oil having a viscosity at 25 ° C. of 3000 mPa · s or less with respect to 100 parts by mass of polyolefin resin. ,
The polyolefin resin is
30 mass% or more and 85 mass% or less of polyethylene whose melting point (Tm) by DSC method is 120 ° C. or more and 130 ° C. or less and whose density is 0.925 or more and 0.945 or less,
Ethylene-vinyl acetate copolymer (EVA) 10 mass% or more and 60 mass% or less, and maleic anhydride-modified ethylene α-olefin copolymer having a melting point of 60 ° C. or less by DSC method is 5 mass% or more, 30 It is a non-halogen flame retardant resin composition containing at most mass%.
 本発明者は、前記の課題を解決するため鋭意検討した結果、ポリオレフィン樹脂と金属水酸化物を含有するノンハロゲン難燃樹脂組成物であって、
 粘度が所定範囲内にあるシリコーンオイルを所定量含有しており、
 前記ポリオレフィン樹脂として、ベースポリマーのポリエチレンにEVA及び無水マレイン酸変性エチレンαオレフィン系共重合体を所定範囲の組成で含有するものを用い、
 前記ポリエチレンが、結晶性の高いもの、すなわち融点が120℃以上、130℃以下で、密度が0.925以上、0.945以下のポリエチレンである
ノンハロゲン難燃樹脂組成物を用いること、により、
 EN50264-3-1に規定された難燃性、耐熱性、耐油性、低温特性等の試験項目を満たすとともに高い耐摩耗性を具備し、かつ難燃性、耐熱性、耐寒性(低温特性)、耐油性、及び引張機械特性、耐摩耗性等の機械的強度を高い次元でバランスさせた絶縁被覆を形成できることを見出し、本発明を完成した。例えば、結晶性の高いポリエチレンを用いて絶縁被覆を形成すれば耐摩耗性等を向上させることができるが、この場合に生じる低温性の低下を、シリコーンオイルを加えることにより防ぐことができ、規格を満たす耐久性と低温性が共に達成できることを見出したのである。
As a result of intensive studies to solve the above problems, the present inventor is a non-halogen flame retardant resin composition containing a polyolefin resin and a metal hydroxide,
Contains a predetermined amount of silicone oil whose viscosity is within a predetermined range,
As the polyolefin resin, a material containing EVA and maleic anhydride-modified ethylene α-olefin copolymer in a predetermined range composition in polyethylene as a base polymer,
By using a non-halogen flame retardant resin composition in which the polyethylene is highly crystalline, that is, polyethylene having a melting point of 120 ° C. or higher and 130 ° C. or lower and a density of 0.925 or higher and 0.945 or lower,
Satisfies test items such as flame retardancy, heat resistance, oil resistance, and low temperature characteristics specified in EN50264-3-1 and has high wear resistance, and also flame resistance, heat resistance, cold resistance (low temperature characteristics) The present inventors have found that an insulating coating can be formed that balances mechanical strength such as oil resistance, tensile mechanical properties, and wear resistance at a high level. For example, if an insulating coating is formed using highly crystalline polyethylene, it is possible to improve the wear resistance, etc., but the low-temperature deterioration that occurs in this case can be prevented by adding silicone oil. It was found that both durability and low temperature that satisfy the above conditions can be achieved.
(ポリオレフィン樹脂)
1)ポリエチレン
 ポリオレフィン樹脂を構成するベースポリマーであるポリエチレンは、結晶性が高いポリエチレンである。具体的には、DSC法による融点(Tm)が120℃以上、130℃以下であり、密度が0.925以上、0.945以下の範囲内のものである。結晶性が高いポリエチレンを用いることにより、優れた耐摩耗性が得られる。融点(Tm)が120℃未満で、密度が0.925未満のポリエチレンを用いた場合は、規格を満たすような耐摩耗性は得られない。一方、融点(Tm)が130℃を超え、密度が0.945を超えるポリエチレンを用いた場合は、耐寒性が低下し近年求められているような規格を満たすことが困難になる。さらに、メルトフローレイト(MFR)は、0.1g/10minより大きく、5.0g/10minより小さいことが好ましい。MFRが0.1g/10min以下であると押出時に外観荒れを生じることがあり、また、5.0g/10min以上であると十分な引張強度を得られないことがある。
(Polyolefin resin)
1) Polyethylene Polyethylene, which is a base polymer constituting the polyolefin resin, is highly crystalline polyethylene. Specifically, the melting point (Tm) by DSC method is 120 ° C. or higher and 130 ° C. or lower, and the density is in the range of 0.925 or higher and 0.945 or lower. By using polyethylene having high crystallinity, excellent wear resistance can be obtained. When polyethylene having a melting point (Tm) of less than 120 ° C. and a density of less than 0.925 is used, abrasion resistance that satisfies the standard cannot be obtained. On the other hand, when a polyethylene having a melting point (Tm) exceeding 130 ° C. and a density exceeding 0.945 is used, the cold resistance is lowered and it is difficult to meet the standards required in recent years. Further, the melt flow rate (MFR) is preferably larger than 0.1 g / 10 min and smaller than 5.0 g / 10 min. If the MFR is 0.1 g / 10 min or less, the appearance may be roughened during extrusion, and if it is 5.0 g / 10 min or more, sufficient tensile strength may not be obtained.
2)エチレン-酢酸ビニル共重合体(EVA)
 EVAの含有量は、ポリエチレン、EVA及び無水マレイン酸変性エチレンαオレフィン系共重合体の合計質量を基準として、10質量%以上、60質量%以下の範囲である。EVAの含有量が、10質量%未満の場合は、耐寒性が低下し近年求められているような規格を満たすことが困難になる。一方、EVAの含有量が60質量%を超える場合は、耐摩耗性が低下し、規格を満たすような耐摩耗性は得られない。
2) Ethylene-vinyl acetate copolymer (EVA)
The content of EVA is in the range of 10% by mass or more and 60% by mass or less based on the total mass of polyethylene, EVA and maleic anhydride-modified ethylene α-olefin copolymer. When the content of EVA is less than 10% by mass, the cold resistance is lowered and it is difficult to satisfy the standards required in recent years. On the other hand, when the content of EVA exceeds 60% by mass, the wear resistance decreases, and the wear resistance that satisfies the standard cannot be obtained.
 ここで用いられるEVAとしては、VA量(酢酸ビニル含有量)が20質量%より大きく、40質量%より小さい範囲内にあるものが好ましい。又、DSC法による融点(Tm)が40℃より高く、85℃より低いものが好ましい。EVAのVA量が20質量%以下あるいは融点が85℃以上であると耐寒性が悪化する恐れがあり、EVAのVA量が40質量%以上あるいは融点が40℃以下であるとペレットにベタツキが生じて夏場にペレットがブロッキングして押出加工しづらくなることがある。さらに、MFRが0.1g/10minより大きく、5.0g/10minより小さいことが好ましい。MFRが0.1g/10min以下であると押出時に外観荒れを生じることがあり、また、5.0g/10min以上であると十分な引張強度を得られないことがある。1種類のEVAを単独で使用してもよいし、2種以上を併用しても良い。 The EVA used here is preferably one having a VA amount (vinyl acetate content) in the range of more than 20% by mass and less than 40% by mass. Moreover, the melting point (Tm) by DSC method is preferably higher than 40 ° C and lower than 85 ° C. If the EVA VA content is 20% by mass or less or the melting point is 85 ° C. or more, cold resistance may be deteriorated. If the EVA VA content is 40% by mass or more or the melting point is 40 ° C. or less, the pellets become sticky. In the summer, pellets may be blocked, making extrusion difficult. Furthermore, it is preferable that MFR is larger than 0.1 g / 10min and smaller than 5.0 g / 10min. If the MFR is 0.1 g / 10 min or less, the appearance may be roughened during extrusion, and if it is 5.0 g / 10 min or more, sufficient tensile strength may not be obtained. One type of EVA may be used alone, or two or more types may be used in combination.
3)無水マレイン酸変性エチレンαオレフィン系共重合体
 無水マレイン酸変性エチレンαオレフィン系共重合体とは、無水マレイン酸をエチレンαオレフィン共重合体にグラフトさせたものであり、無水マレイン酸とエチレンαオレフィン共重合体に過酸化物を添加して二軸押出機等で混練することで得ることができる。ここで用いられるαオレフィンとしては、ブテン、プロピレン、オクテン等を挙げることができる。
3) Maleic anhydride-modified ethylene α-olefin copolymer A maleic anhydride-modified ethylene α-olefin copolymer is obtained by grafting maleic anhydride onto an ethylene α-olefin copolymer. It can be obtained by adding a peroxide to the α-olefin copolymer and kneading with a twin screw extruder or the like. Examples of the α-olefin used here include butene, propylene, and octene.
 無水マレイン酸変性したエチレン-α-オレフィン系共重合体は、DSC法による融点が60℃以下であることを特徴とする。DSC法による融点が60℃を超えるものを用いた場合は、耐寒性が低下し近年求められているような規格を満たすことが困難になる。 The maleic anhydride-modified ethylene-α-olefin copolymer has a melting point of 60 ° C. or less by DSC method. When the DSC method has a melting point exceeding 60 ° C., the cold resistance is lowered, and it becomes difficult to satisfy the standards required in recent years.
 無水マレイン酸変性したエチレン-α-オレフィン系共重合体の含有量は、ポリエチレン、EVA及び無水マレイン酸変性エチレンαオレフィン系共重合体の合計質量を基準として、5質量%以上、30質量%以下の範囲である。5質量%未満の場合は、耐寒性が低下し近年求められているような規格を満たすことが困難になる。一方、30質量%を超える場合は、耐摩耗性や引張強さ等の機械的強度が低下し、規格を満たすような耐摩耗性、引張強さは得られない。 The content of the maleic anhydride-modified ethylene-α-olefin copolymer is 5% by mass or more and 30% by mass or less based on the total mass of polyethylene, EVA and maleic anhydride-modified ethylene α-olefin copolymer. Range. When the amount is less than 5% by mass, the cold resistance is lowered and it becomes difficult to satisfy the standards required in recent years. On the other hand, if it exceeds 30% by mass, the mechanical strength such as wear resistance and tensile strength is lowered, and the wear resistance and tensile strength satisfying the standard cannot be obtained.
(金属水酸化物(難燃剤))
 第1の態様のノンハロゲン難燃樹脂組成物は、難燃剤として、金属水酸化物を、ポリオレフィン樹脂の100質量部に対して100質量部以上、250質量部以下含有する。添加量が100質量部未満の場合は、十分な難燃性が得られず、250質量部より多い場合は、引張強さ等の機械的強度が低下する。又、耐寒性が低下する。金属水酸化物の添加量は、130質量部以上、220質量部以下であることが好ましく、150質量部以上、200質量部以下であることがさらに好ましい。
(Metal hydroxide (flame retardant))
The non-halogen flame retardant resin composition of the first aspect contains a metal hydroxide as a flame retardant, in an amount of 100 parts by mass to 250 parts by mass with respect to 100 parts by mass of the polyolefin resin. When the addition amount is less than 100 parts by mass, sufficient flame retardancy cannot be obtained, and when it is more than 250 parts by mass, mechanical strength such as tensile strength is lowered. Moreover, cold resistance falls. The addition amount of the metal hydroxide is preferably 130 parts by mass or more and 220 parts by mass or less, and more preferably 150 parts by mass or more and 200 parts by mass or less.
 金属水酸化物としては、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム等を挙げることができる。中でも、水酸化マグネシウム、水酸化アルミニウムが好ましい。これらは、1種の単独使用でもよいし又は2種以上を併用しても良い。また、これらの金属水酸化物は、シランカップリング剤、チタネート系カップリング剤、ステアリン酸やステアリン酸カルシウム等の脂肪酸、脂肪酸金属塩等により表面処理されているものを用いても差し支えない。また、これら以外の金属水酸化物を適量加えても良い。 Examples of the metal hydroxide include magnesium hydroxide, aluminum hydroxide, calcium hydroxide and the like. Of these, magnesium hydroxide and aluminum hydroxide are preferable. These may be used alone or in combination of two or more. These metal hydroxides may be silane coupling agents, titanate coupling agents, fatty acids such as stearic acid and calcium stearate, fatty acid metal salts, and the like. Further, an appropriate amount of metal hydroxide other than these may be added.
(シリコーンオイル)
 第1の態様のノンハロゲン難燃樹脂組成物は、25℃における粘度が3000mPa・s以下であるシリコーンオイルを、ポリオレフィン樹脂の100質量部に対して、1質量部以上、20質量部以下含有することを特徴とする。シリコーンオイルを含有することにより、難燃性を向上させることができ、金属水酸化物の含有量が、ポリオレフィン樹脂の100質量部に対して、180質量部程度であっても優れた難燃性が得られる。又、結晶性の高いポリエチレンの使用により生じる耐寒性の低下を防ぐことができる。シリコーンオイルの含有量が、1質量部未満の場合は、難燃性が不十分になり、耐寒性の低下も充分防ぐことができない。シリコーンオイルの含有量が、20質量部を超える場合は、耐摩耗性が低下する。
(Silicone oil)
The halogen-free flame retardant resin composition of the first aspect contains 1 to 20 parts by mass of silicone oil having a viscosity at 25 ° C. of 3000 mPa · s or less with respect to 100 parts by mass of the polyolefin resin. It is characterized by. By containing silicone oil, flame retardancy can be improved, and excellent flame retardancy even when the content of metal hydroxide is about 180 parts by mass with respect to 100 parts by mass of the polyolefin resin. Is obtained. In addition, it is possible to prevent a decrease in cold resistance caused by the use of highly crystalline polyethylene. When the content of the silicone oil is less than 1 part by mass, the flame retardancy becomes insufficient, and the decrease in cold resistance cannot be prevented sufficiently. When the content of the silicone oil exceeds 20 parts by mass, the wear resistance decreases.
 使用されるシリコーンオイルは、25℃における粘度が3000mPa・s以下のものである。25℃における粘度が3000mPa・sを超えるシリコーンオイルを用いた場合は、含有量が1~20質量部の範囲であっても、難燃性が不十分になり、耐寒性の低下も防ぐことができない。 The silicone oil used has a viscosity at 25 ° C. of 3000 mPa · s or less. When a silicone oil having a viscosity at 25 ° C. exceeding 3000 mPa · s is used, even if the content is in the range of 1 to 20 parts by mass, the flame retardancy becomes insufficient, and the decrease in cold resistance can be prevented. Can not.
 シリコーンオイルとは、シロキサン結合の主骨格を持つシリコーンのオイルであり、通常、シロキサン結合が2000程度以下の直鎖構造のシリコーンである。シリコーンオイルとしては、アルキル基、エステル基、ビニル基、カルボキシル基、エポキシ基、ヒドロキシアルキル基、アミノ基で変性されたシリコーンオイルが、樹脂あるいは金属水酸化物に馴染みやすいために好ましい。そこで、前記シリコーンオイルが、これらの変性されたシリコーンオイルである第1の態様のノンハロゲン難燃樹脂組成物が好ましい態様として提供される。 Silicone oil is a silicone oil having a main skeleton of a siloxane bond, and is usually a linear structure silicone having a siloxane bond of about 2000 or less. As the silicone oil, a silicone oil modified with an alkyl group, an ester group, a vinyl group, a carboxyl group, an epoxy group, a hydroxyalkyl group or an amino group is preferable because it can be easily adapted to a resin or a metal hydroxide. Therefore, the non-halogen flame retardant resin composition according to the first aspect, in which the silicone oil is a modified silicone oil, is provided as a preferred aspect.
 第1の態様の好ましい態様として、前記の必須成分に加えて、球形シリカを、前記ポリオレフィン樹脂100質量部に対して、1質量部以上、35質量部未満、より好ましくは3質量部以上、30質量部以下含有するノンハロゲン難燃樹脂組成物が提供される。球形シリカを含有することにより、耐摩耗性を更に高めることができる。球形シリカの含有量が1質量部未満の場合は十分な耐摩耗性向上効果が得られず、35質量部以上の場合は、耐寒性が不十分となる。 As a preferable aspect of the first aspect, in addition to the essential components, spherical silica is added in an amount of 1 part by weight or more and less than 35 parts by weight, more preferably 3 parts by weight or more, 30 parts by weight with respect to 100 parts by weight of the polyolefin resin. A non-halogen flame retardant resin composition containing not more than part by mass is provided. By containing spherical silica, the wear resistance can be further improved. When the content of spherical silica is less than 1 part by mass, a sufficient effect of improving wear resistance cannot be obtained, and when it is 35 parts by mass or more, cold resistance is insufficient.
 球形シリカとは、一次粒子が球形であるシリカを意味する。球形シリカとしては、一次粒子径が100μm以上であるものが好ましい。球形シリカの代わりに一次粒子が鎖状であるシリカを用いた場合は、耐摩耗性は向上するものの、耐寒性が低下し、含有量が35質量部未満であっても、十分な耐寒性は得られない。 Spherical silica means silica whose primary particles are spherical. As the spherical silica, those having a primary particle diameter of 100 μm or more are preferable. When silica with primary particles in a chain form is used instead of spherical silica, the wear resistance is improved, but the cold resistance is lowered, and even if the content is less than 35 parts by mass, sufficient cold resistance is not I can't get it.
 第1の態様のノンハロゲン難燃樹脂組成物には、さらに、発明の趣旨を損なわない範囲で、必要に応じて、架橋助剤、酸化防止剤、滑剤、着色剤(着色顔料等)、軟化剤、可塑剤、無機充填剤、相溶化剤、安定剤、カーボンブラック等の添加剤を加えることが可能である。また、さらに難燃性を向上させるために、本発明の趣旨を損なわない範囲で、上記の金属水酸化物以外の難燃剤や難燃助剤を添加してもよい。 The non-halogen flame retardant resin composition of the first aspect further includes a crosslinking aid, an antioxidant, a lubricant, a colorant (coloring pigment, etc.), a softening agent, as necessary, within a range that does not impair the spirit of the invention. It is possible to add additives such as plasticizers, inorganic fillers, compatibilizers, stabilizers and carbon black. Further, in order to further improve the flame retardancy, flame retardants and flame retardant aids other than the above metal hydroxides may be added within the range not impairing the gist of the present invention.
 第1の態様のノンハロゲン樹脂組成物に架橋を施すことにより、樹脂組成物の成型体の機械的強度が向上する。架橋方法には、成型後に電子線を照射する電子線架橋法、もしくは予め樹脂組成物に架橋剤を配合しておき、成型後加熱して架橋させる化学架橋等が採用される。 By subjecting the non-halogen resin composition of the first aspect to crosslinking, the mechanical strength of the molded body of the resin composition is improved. As the crosslinking method, an electron beam crosslinking method in which an electron beam is irradiated after molding, or a chemical crosslinking in which a crosslinking agent is blended in advance in the resin composition and then crosslinked by heating after molding is employed.
(ノンハロゲン樹脂組成物の調製)
 第1の態様のノンハロゲン樹脂組成物は、前記の構成材料をロール混合機、単軸混練押出機、二軸混練押出機、加圧ニーダー、バンバリーミキサー等の既知の溶融混合機を用いて混合することにより調製することができる。
(Preparation of non-halogen resin composition)
In the non-halogen resin composition of the first aspect, the constituent materials are mixed using a known melt mixer such as a roll mixer, a single screw kneading extruder, a twin screw kneading extruder, a pressure kneader, or a Banbury mixer. Can be prepared.
[第2の態様(絶縁電線)]
 本発明の第2の態様は、導体及び前記導体を被覆する絶縁被覆を有し、
 前記絶縁被覆が、前記第1の態様のノンハロゲン難燃樹脂組成物の架橋体からなるノンハロゲン難燃絶縁電線である。
[Second aspect (insulated wire)]
The second aspect of the present invention has a conductor and an insulating coating covering the conductor,
The insulating coating is a non-halogen flame retardant insulated wire made of a crosslinked product of the non-halogen flame retardant resin composition of the first aspect.
 この絶縁電線は、EN50264-3-1に規定された難燃性、耐熱性、耐油性、低温特性等の試験項目を満たすとともに高い耐摩耗性を具備し、かつ難燃性、耐熱性、低温特性(耐寒性)、耐油性、及び、引張機械特性、耐摩耗性等の機械的強度を高い次元でバランスする絶縁被覆を備える。従って、自動車用あるいは鉄道車両用のハーネス等として好適に用いられる電線又はケーブルである。 This insulated wire satisfies the test items such as flame retardancy, heat resistance, oil resistance, and low temperature characteristics specified in EN50264-3-1, has high wear resistance, and has flame resistance, heat resistance, low temperature. It has an insulation coating that balances mechanical strength such as properties (cold resistance), oil resistance, tensile mechanical properties, and wear resistance at a high level. Therefore, the electric wire or cable is preferably used as a harness or the like for automobiles or railway vehicles.
(導体)
 第2の態様の絶縁電線を構成する導体としては、導電性に優れる銅、アルミ等を挙げることができる。導体は単線であってもよいし、複数の素線の撚り線であってもよい。
(conductor)
Examples of the conductor constituting the insulated wire of the second aspect include copper and aluminum having excellent conductivity. The conductor may be a single wire or a stranded wire of a plurality of strands.
(絶縁被覆)
 第2の態様の絶縁電線を構成する絶縁被覆は、前記第1の態様のノンハロゲン難燃樹脂組成物の架橋体からなる。絶縁被覆は、溶融押出機等の既知の押出成型機を用いて前記の第1の態様のノンハロゲン樹脂組成物を導体の線上にその表面を被覆するように押出成型した後、ノンハロゲン難燃樹脂組成物を構成するポリオレフィン樹脂を架橋することにより形成することができる。ポリオレフィン樹脂を架橋することにより、絶縁被覆の引張強さ、耐摩耗性等の機械的強度が向上する。
(Insulation coating)
The insulating coating constituting the insulated wire of the second aspect is a crosslinked product of the non-halogen flame retardant resin composition of the first aspect. The insulating coating is formed by extruding the non-halogen resin composition of the first aspect so as to cover the surface of the conductor on the wire using a known extruder such as a melt extruder, and then the non-halogen flame-retardant resin composition. It can be formed by crosslinking a polyolefin resin constituting the product. By crosslinking the polyolefin resin, the mechanical strength such as tensile strength and abrasion resistance of the insulating coating is improved.
 ポリオレフィン樹脂を架橋する方法としては、予め樹脂組成物に過酸化物等の架橋剤を配合しておき、成型後加熱して架橋させる化学架橋も考えられるが、絶縁被覆に放射線を照射する方法(樹脂の照射架橋)が好ましい。樹脂の照射架橋に使用される放射線としては、電子線、X線、γ線、粒子線等が挙げられる。電子線発生装置はランニングコストが低く、又大出力の電子線が得られ、制御も容易であるので、放射線の中では電子線が好ましく用いられる。 As a method of crosslinking the polyolefin resin, chemical crosslinking in which a crosslinking agent such as a peroxide is previously blended in the resin composition and then heated and crosslinked after the molding may be considered, but a method of irradiating the insulating coating with radiation ( Resin irradiation crosslinking) is preferred. Examples of the radiation used for irradiation crosslinking of the resin include electron beam, X-ray, γ-ray, and particle beam. The electron beam generator is low in running cost, can produce a high-power electron beam, and is easy to control. Therefore, an electron beam is preferably used in radiation.
 絶縁被覆(絶縁層)の厚みは、導体径や絶縁電線の用途等に応じて、所望の絶縁性、機械的強度が得られる範囲で、適宜選択することができる。自動車や鉄道車両のハーネスに用いられる場合は、0.2mm以上の厚みで被覆される場合が多い。 The thickness of the insulating coating (insulating layer) can be appropriately selected within a range in which desired insulating properties and mechanical strength can be obtained according to the conductor diameter and the use of the insulated wire. When used in harnesses for automobiles and railway vehicles, they are often covered with a thickness of 0.2 mm or more.
[第3の態様(絶縁電線)]
 本発明の第3の態様は、導体及び絶縁被覆を有し、
 前記絶縁被覆が、導体を被覆する内層及び前記内層を被覆する外層を有し、
 前記内層が、ポリエチレンまたはポリエチレンを主体とする組成物からなり、
 前記外層が、前記第1の態様のノンハロゲン難燃樹脂組成物の架橋体からなるノンハロゲン難燃絶縁電線である。このノンハロゲン難燃絶縁電線は、EN50264-3-1に規定された難燃性、耐熱性、耐油性、低温特性等の試験項目を満たし、かつ難燃性、耐熱性、低温特性(耐寒性)、耐油性、及び、引張機械特性、耐摩耗性等の機械的強度を高い次元でバランスする絶縁被覆を備えるとともに、絶縁被覆が薄い場合であっても、高い耐摩耗性等の耐久性を具備し、かつ高い絶縁特性を有する。従って、自動車用あるいは鉄道車両用のハーネス等として好適に用いられる電線、ケーブルである。
[Third aspect (insulated wire)]
A third aspect of the present invention has a conductor and an insulation coating,
The insulating coating has an inner layer covering the conductor and an outer layer covering the inner layer;
The inner layer is made of polyethylene or a composition mainly composed of polyethylene,
The outer layer is a non-halogen flame retardant insulated wire made of a crosslinked product of the non-halogen flame retardant resin composition of the first aspect. This non-halogen flame retardant insulated wire satisfies the test items such as flame retardancy, heat resistance, oil resistance, and low temperature characteristics specified in EN50264-3-1 and is also flame retardant, heat resistance, low temperature characteristics (cold resistance) Insulation coating that balances mechanical strength such as oil resistance, tensile mechanical properties, and wear resistance at a high level, and has high durability such as wear resistance even when the insulation coating is thin. In addition, it has high insulation characteristics. Therefore, it is an electric wire or cable suitably used as a harness or the like for automobiles or railway vehicles.
(導体)
 前記の第2の態様の絶縁電線の導体と同様である。
(conductor)
This is the same as the conductor of the insulated wire of the second aspect.
(絶縁被覆)
1)内層
 内層は、ポリエチレンまたはポリエチレンを主体とする組成物からなる。ポリエチレンを主体とする組成物とは、ポリエチレンのみからなる、またはポリエチレンを50質量%以上、好ましくは80質量%以上含む樹脂成分と、難燃剤等の他の成分からなる組成物を意味する。発明の趣旨を損ねない範囲で、必要に応じてポリエチレンに酸化防止剤等の他の成分を加えることもできる。
(Insulation coating)
1) Inner layer The inner layer is made of polyethylene or a composition mainly composed of polyethylene. The composition mainly composed of polyethylene means a composition composed of only polyethylene or a resin component containing 50% by mass or more, preferably 80% by mass or more of polyethylene and other components such as a flame retardant. Other components such as antioxidants can be added to polyethylene as necessary within the range not impairing the gist of the invention.
 内層を設けることにより、外層が薄い場合であっても、高い絶縁抵抗や優れた耐摩耗性等の機械的強度を絶縁被覆に与えることができる。すなわち、内層を設けることにより、外層を薄くすることができ、絶縁被覆を軽量化することができる。 By providing the inner layer, even if the outer layer is thin, mechanical strength such as high insulation resistance and excellent wear resistance can be imparted to the insulating coating. That is, by providing the inner layer, the outer layer can be thinned and the insulating coating can be reduced in weight.
 内層は、溶融押出機等の既知の押出成型機を用いて、ポリエチレンまたはポリエチレンを主体とする組成物(必要に応じて加えられる他の成分を含む場合もある)を導体の線上にその表面を被覆するように押出成型して形成することができる。ポリエチレンとしては、薄肉で押出被覆できるという観点では、MFR(190℃2.16kgf)が0.5g/10分以上、5.0g/10分以下の範囲にあることが好ましく、また、耐摩耗性の観点では、密度が0.94g/cm以上であることが好ましい。 The inner layer is made of polyethylene or a composition mainly composed of polyethylene (which may contain other components added as necessary) on a conductor line using a known extruder such as a melt extruder. It can be formed by extrusion molding so as to be coated. As polyethylene, from the viewpoint that it can be extrusion coated with a thin wall, it is preferable that MFR (190 ° C. 2.16 kgf) is in the range of 0.5 g / 10 min or more and 5.0 g / 10 min or less, and wear resistance From this point of view, the density is preferably 0.94 g / cm 3 or more.
 内層の形成材料である、ポリエチレンまたはポリエチレンを主体とする組成物としては、ポリエチレンおよび前記ポリエチレン100質量部に対して5質量部以上、200質量部以下の珪酸アルミニウムを含有する樹脂組成物が好ましい。内層を形成することにより、絶縁被覆を燃焼させたとき発生する燃焼ガスの毒性を示す毒性指数(ITC)が増大する場合があるが、珪酸アルミニウムをポリエチレン100質量部に対して5質量部以上含有させることにより、毒性指数(ITC)の増大を抑制し、規格を満たす(燃焼ガス毒性試験に合格する)ようになる。珪酸アルミニウムの代わりに、水酸化マグネシウムを用いた場合では、毒性指数(ITC)を抑制する効果は得られず、また、内層を設けることによる絶縁抵抗を向上させる効果が得られなくなる。 As a composition mainly composed of polyethylene or polyethylene, which is a material for forming the inner layer, a resin composition containing polyethylene and 5 parts by mass or more and 200 parts by mass or less of aluminum silicate with respect to 100 parts by mass of the polyethylene is preferable. By forming the inner layer, the toxicity index (ITC) indicating the toxicity of the combustion gas generated when the insulating coating is burned may increase, but aluminum silicate is contained in an amount of 5 parts by mass or more with respect to 100 parts by mass of polyethylene. By suppressing the increase in the toxicity index (ITC), the standard is satisfied (passes the combustion gas toxicity test). When magnesium hydroxide is used instead of aluminum silicate, the effect of suppressing the toxicity index (ITC) cannot be obtained, and the effect of improving the insulation resistance by providing the inner layer cannot be obtained.
 珪酸アルミニウムの量が、ポリエチレン100質量部に対して200質量部を超えると引張強度や特に引張伸びが低下し、規格外となる場合もあるので、200質量部以下が好ましい。そこで、第3の態様の好ましい態様として、前記内層が、ポリエチレンおよび前記ポリエチレン100質量部に対して5質量部以上200質量部以下の珪酸アルミニウムを含有する樹脂組成物からなるノンハロゲン難燃樹脂組成物の架橋体からなるノンハロゲン難燃絶縁電線が提供される。 When the amount of aluminum silicate exceeds 200 parts by mass with respect to 100 parts by mass of polyethylene, the tensile strength and particularly the tensile elongation is lowered and may become out of specification, so 200 parts by mass or less is preferable. Therefore, as a preferred embodiment of the third embodiment, the non-halogen flame retardant resin composition, wherein the inner layer is made of a resin composition containing 5 parts by mass or more and 200 parts by mass or less of aluminum silicate with respect to 100 parts by mass of polyethylene and the polyethylene. There is provided a non-halogen flame retardant insulated wire comprising a crosslinked product of
2)外層
 外層は、前記第1の態様のノンハロゲン難燃樹脂組成物の架橋体からなる。外層は、溶融押出機等の既知の押出成型機を用いて前記の第1の態様のノンハロゲン樹脂組成物を、内層が形成された導体の前記内層上にその表面を被覆するように押出成型した後、ノンハロゲン難燃樹脂組成物を構成するポリオレフィン樹脂を架橋することにより形成することができる。ポリオレフィン樹脂を前記のようにして架橋することにより、絶縁被覆の引張強さ、耐摩耗性等の機械的強度が向上する。
2) Outer layer The outer layer is made of a crosslinked product of the non-halogen flame retardant resin composition of the first aspect. The outer layer was formed by extruding the non-halogen resin composition of the first aspect using a known extruder such as a melt extruder so as to cover the surface of the inner layer of the conductor on which the inner layer was formed. Then, it can form by bridge | crosslinking the polyolefin resin which comprises a non-halogen flame retardant resin composition. By crosslinking the polyolefin resin as described above, the mechanical strength such as tensile strength and abrasion resistance of the insulating coating is improved.
3)内層、外層の厚み
 絶縁被覆全体の厚みは、導体径や絶縁電線の用途等に応じて、所望の絶縁性、機械的強度が得られる範囲で、適宜選択することができる。自動車や鉄道車両のハーネスに用いられる場合は、0.2mm以上の厚みで被覆される場合が多い。内層と外層の厚みの比は、特に限定されないが、自動車や鉄道車両のハーネスに用いられる場合は、内層の厚みは、十分な絶縁性を確保するために0.03mm以上が好ましく、難燃性を悪化させないために0.1mm以下が好ましい。
3) Thickness of inner layer and outer layer The thickness of the entire insulation coating can be appropriately selected within a range in which desired insulating properties and mechanical strength can be obtained according to the conductor diameter, use of the insulated wire, and the like. When used in harnesses for automobiles and railway vehicles, they are often covered with a thickness of 0.2 mm or more. The ratio of the thickness of the inner layer to the outer layer is not particularly limited, but when used for the harness of automobiles and railway vehicles, the thickness of the inner layer is preferably 0.03 mm or more in order to ensure sufficient insulation, and flame retardancy Is preferably 0.1 mm or less.
(第3の態様の絶縁電線の構造)
 図1は、第3の態様の絶縁電線の一例の断面図である。図中1は導体を表し、2は導体表面を被覆する内層を表し、3は外層を表す。4は、絶縁電線を表す。
(Structure of insulated wire of the third aspect)
FIG. 1 is a cross-sectional view of an example of the insulated wire of the third aspect. In the figure, 1 represents a conductor, 2 represents an inner layer covering the conductor surface, and 3 represents an outer layer. 4 represents an insulated wire.
[1]絶縁被覆の構成材料(ノンハロゲン樹脂組成物の構成材料)
 先ず、下記実験1~40で用いた各材料を以下に示す。
[1] Constituent material for insulation coating (constituent material for non-halogen resin composition)
First, each material used in the following Experiments 1 to 40 is shown below.
(ポリオレフィン樹脂)
1)ポリエチレン
・エボリューSP2320(プライムポリマー社製):融点(DSC法による融点Tmを表す。以下も同じである。)118℃、密度0.920、MFR1.9(表中では「ポリエチレン-1」と表す。)
・エボリューSP2520(プライムポリマー社製):融点122℃、密度0.925、MFR1.9(表中では「ポリエチレン-2」と表す。)
・DGDN3364(NUC社製):融点129℃、密度0.945、MFR0.75(表中では「ポリエチレン-3」と表す。)
・ハイゼックス5000S(プライムポリマー社製):融点131℃、密度0.950、MFR0.82(表中では「ポリエチレン-4」と表す。)
・スミカセンC215(住友化学社製):LDPE、融点110℃、密度0.920、MFR1.4(表中では「ポリエチレン-5」と表す。)
(Polyolefin resin)
1) Polyethylene Evolue SP2320 (manufactured by Prime Polymer Co., Ltd.): Melting point (representing melting point Tm by DSC method, the same applies hereinafter) 118 ° C., density 0.920, MFR 1.9 (“polyethylene-1” in the table) Expressed as)
Evolu SP2520 (manufactured by Prime Polymer Co., Ltd.): melting point 122 ° C., density 0.925, MFR 1.9 (indicated in the table as “polyethylene-2”)
DGDN3364 (manufactured by NUC): melting point 129 ° C., density 0.945, MFR 0.75 (referred to as “polyethylene-3” in the table)
Hi-Zex 5000S (manufactured by Prime Polymer Co., Ltd.): melting point 131 ° C., density 0.950, MFR 0.82 (referred to as “polyethylene-4” in the table)
Sumikasen C215 (manufactured by Sumitomo Chemical Co., Ltd.): LDPE, melting point 110 ° C., density 0.920, MFR 1.4 (in the table, represented as “polyethylene-5”)
2)エチレン-酢酸ビニル共重合体(EVA)
  UBEポリエチレンV322(宇部丸善ポリエチレン社製):VA量22%
2) Ethylene-vinyl acetate copolymer (EVA)
UBE polyethylene V322 (manufactured by Ube Maruzen Polyethylene): 22% VA
3)無水マレイン酸変性エチレンαオレフィン系共重合体
・タフマーMH5020(三井化学社製):融点50℃以下
・タフマーMH7020(三井化学社製):融点55℃
・タフマーMA8510(三井化学社製):融点66℃
3) Maleic anhydride-modified ethylene α-olefin copolymer / Tuffmer MH5020 (manufactured by Mitsui Chemicals): Melting point 50 ° C. or less / Toughmer MH7020 (manufactured by Mitsui Chemicals): Melting point 55 ° C.
・ Tuffmer MA8510 (Mitsui Chemicals): melting point 66 ° C.
(金属水酸化物(難燃剤))
・水酸化マグネシウム:マグシーズS-6(神島化学社製)
・水酸化アルミニウム:マーティナルOL-104 LEO(アルベマール社製)
(Metal hydroxide (flame retardant))
・ Magnesium hydroxide: Magseeds S-6 (manufactured by Kamishima Chemical Co., Ltd.)
Aluminum hydroxide: Martinal OL-104 LEO (Albemarle)
(シリカ)
・球形シリカ:Sidistar U(エルケムジャパン社製):比重2.2g/cm、比表面積40m/g
・鎖状シリカ:アエロジルRX200(日本アエロジル社製):比重2.2g/cm、比表面積140m/g
(silica)
Spherical silica: Sidistar U (manufactured by Elchem Japan): specific gravity 2.2 g / cm 3 , specific surface area 40 m 2 / g
Chain silica: Aerosil RX200 (manufactured by Nippon Aerosil Co., Ltd.): specific gravity 2.2 g / cm 3 , specific surface area 140 m 2 / g
(シリコーンオイル)
・エステル変性シリコーンオイル:TSF410(MOMENTIVE社製):粘度(25℃)30mPa・s(表中では「TSF410」と表す。)
・ビニル変性シリコーンオイル:テゴマーV-Si 4022(EVONIK社製):粘度(25℃)1500mPa・s(表中では「V-Si」と表す。)
・カルボキシル変性シリコーンオイル:テゴマーC-Si 2342(EVONIK社製):粘度(25℃)500mPa・s(表中では「C-Si」と表す。)
・エポキシ変性シリコーンオイル:テゴマーE-Si 2330(EVONIK社製):粘度(25℃)500mPa・s(表中では「E-Si」と表す。)
・アルキル変性シリコーンオイル:TSF4421(MOMENTIVE社製):粘度(25℃)500mPa・s(表中では「TSF4421」と表す。)
・ヒドロキシアルキル変性シリコーンオイル:テゴマーH-Si 2311(EVONIK社製):粘度(25℃)100mPa・s(表中では「H-Si」と表す。)
・アミノ変性シリコーンオイル:テゴマーA-Si 2322(EVONIK社製):粘度(25℃)35mPa・s(表中では「A-Si」と表す。)
・アミノ変性シリコーンオイル:BY16-208(東レダウコーニングシリコーン社製):粘度(25℃)3000mPa・s(表中では「BY16」と表す。)
・アミノ変性シリコーンオイル:FZ-3785(東レダウコーニングシリコーン社製):粘度(25℃)4000mPa・s(表中では「FZ」と表す。)
(Silicone oil)
Ester-modified silicone oil: TSF410 (manufactured by MOMENTIVE): Viscosity (25 ° C.) 30 mPa · s (indicated in the table as “TSF410”)
Vinyl-modified silicone oil: Tegomer V-Si 4022 (manufactured by EVONIK): Viscosity (25 ° C.) 1500 mPa · s (shown as “V-Si” in the table)
Carboxyl-modified silicone oil: Tegomer C-Si 2342 (manufactured by EVONIK): Viscosity (25 ° C.) 500 mPa · s (shown as “C-Si” in the table)
Epoxy-modified silicone oil: Tegomer E-Si 2330 (manufactured by EVONIK): Viscosity (25 ° C.) 500 mPa · s (shown as “E-Si” in the table)
Alkyl-modified silicone oil: TSF4421 (manufactured by MOMENTIVE): Viscosity (25 ° C.) 500 mPa · s (represented as “TSF4421” in the table)
Hydroxyalkyl-modified silicone oil: Tegomer H—Si 2311 (manufactured by EVONIK): Viscosity (25 ° C.) 100 mPa · s (shown as “H—Si” in the table)
Amino-modified silicone oil: Tegomer A-Si 2322 (manufactured by EVONIK): Viscosity (25 ° C.) 35 mPa · s (shown as “A-Si” in the table)
Amino-modified silicone oil: BY16-208 (manufactured by Toray Dow Corning Silicone): Viscosity (25 ° C.) 3000 mPa · s (shown as “BY16” in the table)
Amino-modified silicone oil: FZ-3785 (manufactured by Toray Dow Corning Silicone): Viscosity (25 ° C.) 4000 mPa · s (shown as “FZ” in the table)
(その他の含有成分)
・珪酸アルミニウム:バーゲス#30(白石カルシウム社製)
・架橋助剤:トリメチロールプロパントリメタクリレート(TMPTMA):多官能性モノマー
・アデカスタブAO-60(ADEKA社製):ヒンダードフェノール系酸化防止剤
・アデカスタブAO-503(ADEKA社製):チオエーテル系酸化防止剤
・滑剤:ステアリン酸
・着色顔料:シースト3(東海カーボン社製):平均粒子径28nm
(Other ingredients)
Aluminum silicate: Burgess # 30 (manufactured by Shiroishi Calcium)
Crosslinking aid: Trimethylolpropane trimethacrylate (TMPTMA): Multifunctional monomer Adekastab AO-60 (ADEKA): Hindered phenol antioxidant Adekastab AO-503 (ADEKA): Thioether oxidation Inhibitor / Lubricant: Stearic acid / Color pigment: Seest 3 (manufactured by Tokai Carbon Co., Ltd.): Average particle size 28 nm
[2]絶縁電線の作製
1.ノンハロゲン樹脂組成物のペレットの作製
 表1~8の絶縁被覆(外層)作製用樹脂組成物処方の欄に示す処方(単位:質量部)に、架橋助剤(TMPTMA)を5質量部、アデカスタブAO-60を2質量部、アデカスタブAO-503を0.5質量部、滑剤を0.5質量部、着色顔料を2質量部を加え、二軸押出機(45mmφ、L/D=42)を使用し、シリンダー温度160℃ 、スクリュー回転数200rpmで溶融混合し、ストランド状に溶融押出し、次いで、溶融ストランドを冷却した後切断してノンハロゲン樹脂組成物のペレットを作製した。
[2] Production of insulated wire Preparation of non-halogen resin composition pellets In the formulations (units: parts by mass) shown in the column of resin composition prescription for insulation coating (outer layer) preparation in Tables 1 to 8, 5 parts by mass of a crosslinking aid (TMPTMA), ADK STAB AO Add 2 parts by weight of -60, 0.5 parts by weight of ADK STAB AO-503, 0.5 parts by weight of lubricant and 2 parts by weight of color pigment, and use a twin screw extruder (45 mmφ, L / D = 42) Then, the mixture was melt-mixed at a cylinder temperature of 160 ° C. and a screw rotation speed of 200 rpm, melt-extruded into a strand shape, then cooled and cut to produce pellets of a non-halogen resin composition.
2.実験1~20、実験27~40での絶縁電線の作製
 前記で作製したノンハロゲン樹脂組成物のペレットと単軸押出機(30mmφ、L/D=24)を用いて、断面積0.96mmの導体(0.254mmφのスズめっき軟銅線TAの19本撚り:TA19/0.254)上に、絶縁被覆を押出被覆した。冷却後、電子線を150kGy照射して樹脂の架橋を行い絶縁電線を作成した。なお、絶縁被覆の厚みは、0.665mmであり、絶縁電線の外径は2.6mmであった。
2. Production of insulated wires in Experiments 1 to 20 and Experiments 27 to 40 Using the non-halogen resin composition pellets produced above and a single screw extruder (30 mmφ, L / D = 24), the cross-sectional area was 0.96 mm 2 . An insulating coating was extrusion coated on a conductor (19 strands of tin-plated annealed copper wire TA with a diameter of 0.254 mm: TA19 / 0.254). After cooling, an electron beam was irradiated at 150 kGy to crosslink the resin to produce an insulated wire. In addition, the thickness of the insulation coating was 0.665 mm, and the outer diameter of the insulated wire was 2.6 mm.
3.実験21~26での絶縁電線の作製
 表5の内層作製用樹脂組成物処方の欄に示した処方(単位:質量部)に、アデカスタブAO-60を2質量部、アデカスタブAO-503を0.5質量部を加え、前記のノンハロゲン樹脂組成物のペレットの作製と同じ条件、方法により内層用樹脂組成物のペレットを作製した。このペレットと単軸押出機(30mmφ、L/D=24)を用いて、断面積0.96mmの導体(0.254mmφのスズめっき軟銅線TAの19本撚り:TA19/0.254)の表面上に押出被覆し、厚み0.05mmの内層を形成した。
3. Preparation of insulated wires in Experiments 21 to 26 In the prescription (unit: parts by mass) shown in the column of the resin composition prescription for inner layer preparation in Table 5, 2 parts by mass of Adekastab AO-60 and 0. 5 parts by mass were added, and pellets of the resin composition for the inner layer were prepared by the same conditions and methods as those for the preparation of the non-halogen resin composition pellets. The pellet and a single-screw extruder (30mmφ, L / D = 24 ) with (19 pieces of tin-plated annealed copper wire TA of 0.254mmφ twist: TA19 / 0.254) conductor cross-sectional area 0.96 mm 2 of An extrusion coating was performed on the surface to form an inner layer having a thickness of 0.05 mm.
 この形成された内層の表面上に、前記で作製したノンハロゲン樹脂組成物のペレットと単軸押出機(30mmφ、L/D=24)を用いて、外層(絶縁被覆)を押出被覆した。冷却後、電子線を150kGy照射して樹脂の架橋を行い絶縁電線を作成した。なお、外層の厚みは0.615mmであり、内層と外層の合計の厚みは、0.665mmであり、絶縁電線の外径は2.6mmであった。 The outer layer (insulating coating) was extrusion coated on the surface of the formed inner layer using the non-halogen resin composition pellets prepared above and a single screw extruder (30 mmφ, L / D = 24). After cooling, an electron beam was irradiated at 150 kGy to crosslink the resin to produce an insulated wire. The outer layer had a thickness of 0.615 mm, the total thickness of the inner layer and the outer layer was 0.665 mm, and the outer diameter of the insulated wire was 2.6 mm.
[3]絶縁電線の評価
 前記のようにして作製された絶縁電線について、以下の評価(試験、測定)を行った。その結果を、表1~8に示す。
[3] Evaluation of insulated wires The following evaluations (tests and measurements) were performed on the insulated wires produced as described above. The results are shown in Tables 1-8.
(引張試験)
 前記のようにして作製された絶縁電線より、導体を引抜いた後の絶縁被覆について、JIS C3005で規定された方法により、200mm/minで引張り、引張強度および引張伸びを測定した。そして、引張強度が≧10MPa、引張伸びが≧150%を合格とし、それぞれ10MPa未満、150%未満のものを不合格とした。表中では、合格をA、不合格をCで表した。
(Tensile test)
The insulation coating after the conductor was drawn out from the insulated wire produced as described above was pulled at 200 mm / min by the method defined in JIS C3005, and the tensile strength and tensile elongation were measured. And, the tensile strength was ≧ 10 MPa and the tensile elongation was ≧ 150%, and those with less than 10 MPa and less than 150% were rejected. In the table, “A” indicates pass and “C” indicates failure.
(絶縁抵抗の測定)
 JIS C3667に準拠して実施する。6m以上の電線サンプルの5mを水中に1時間以上浸した状態で、DC80~500Vの電圧を1分以上5分以内で印可し、導体と水中間の絶縁抵抗R(Ω)を測定する。そして、R/1000000/200の計算式で(MΩ・km)に単位換算する。この測定を20℃と90℃で行う。20℃の場合は、絶縁抵抗Rが11.4MΩ・km以上、90℃の場合は、絶縁抵抗Rが0.114MΩ・km以上が求められている。
(Measurement of insulation resistance)
Implemented in accordance with JIS C3667. A voltage of 80 to 500 VDC is applied within 1 to 5 minutes with 5 m of a wire sample of 6 m or more immersed in water for 1 hour or more, and the insulation resistance R (Ω) between the conductor and water is measured. Then, the unit is converted to (MΩ · km) by the calculation formula of R / 1000000/200. This measurement is performed at 20 ° C. and 90 ° C. In the case of 20 ° C., the insulation resistance R is required to be 11.4 MΩ · km or more, and in the case of 90 ° C., the insulation resistance R is required to be 0.114 MΩ · km or more.
(難燃性試験)
 IEC 60332-1 垂直一条燃焼試験(JIS C 3665-1)による。具体的には、絶縁電線を支持材(上部支持材)により垂直に保持し、ブンゼンバーナーによる内炎部を45°の角度で所定の時間(JIS C 3665-1に示す時間。絶縁電線の外径により変動するが、本実験では25mm以下であるので60秒)接炎させた後、バーナーを取り除き、炎を消し試料の燃焼の程度を調べる。上部支持材の下端と炭化の開始点の距離が50mm以上のときを合格とする。さらに、燃焼が上部支持材の下端から540mmより下方に広がったときは不合格とした。表中では、合格をA、不合格をCで表した。
(Flame retardancy test)
According to IEC 603322-1 vertical single-line combustion test (JIS C 3665-1). Specifically, the insulated wire is held vertically by the support material (upper support material), and the inner flame part by the Bunsen burner is set at a 45 ° angle for a predetermined time (time shown in JIS C 3665-1. Although it varies depending on the diameter, since it is 25 mm or less in this experiment, 60 seconds) After the flame contact, the burner is removed, the flame is turned off, and the degree of combustion of the sample is examined. A case where the distance between the lower end of the upper support and the carbonization start point is 50 mm or more is considered acceptable. Furthermore, when combustion spreads below 540 mm from the lower end of the upper support material, it was determined as rejected. In the table, “A” indicates pass and “C” indicates failure.
(耐摩耗性の測定)
 EN50305-2002:5.2 Abrasion resistanceに基づいて行った。直径0 .45 mmφ のバネ鋼線(ピアノ線)のブレードを使用し、ブレードを絶縁電線に荷重9N(20℃)で押し付けて10~20mm移動させる操作を1分間に50~60サイクルで繰り返す。絶縁被覆の摩耗によりブレードが導体に接するまでの摩耗回数を表中に示した。摩耗回数150回以上が求められている。
(Measurement of wear resistance)
EN50305-2002: 5.2 Based on Abrasion resistance. Diameter 0. Using a blade of 45 mmφ spring steel wire (piano wire), pressing the blade against an insulated wire with a load of 9 N (20 ° C.) and moving it by 10 to 20 mm is repeated at 50 to 60 cycles per minute. The number of wear until the blade contacts the conductor due to wear of the insulation coating is shown in the table. A wear frequency of 150 times or more is required.
(耐油試験)
 作製した絶縁電線を、EN60811-1-3に準拠し、耐油試験用油IRM902に浸漬し、100℃の恒温槽で72時間加熱した後、室温で16時間程度放置した。その後引張試験を実施し、初期の値に対する油浸漬加熱後の値の変化で評価した。引張強さの変化は、初期に対して±30%以内を合格とし、±30%を超える場合は不合格とした。引張伸びの変化は、初期に対して±30%以内を合格とし、±30%を超える場合は不合格とした。表中では、合格をA、不合格をCで表した。
(Oil resistance test)
The produced insulated wire was immersed in oil resistance test oil IRM902 in accordance with EN60881-1-3, heated in a constant temperature bath at 100 ° C. for 72 hours, and then allowed to stand at room temperature for about 16 hours. Thereafter, a tensile test was carried out, and the change in the value after oil immersion heating relative to the initial value was evaluated. The change in tensile strength was accepted within ± 30% of the initial value, and rejected when exceeding ± 30%. The change in tensile elongation was accepted within ± 30% of the initial value, and rejected when it exceeded ± 30%. In the table, “A” indicates pass and “C” indicates failure.
(耐寒試験)
 作製した電線について、EN60811-1-4 8.1に準拠して-40℃にて低温曲げ試験を行った。方法としては、-40℃の低温槽に電線サンプルを4時間投入した後に、低温槽中で-40℃に保持したまま、電線の絶縁外径の4倍の直径を有する金属マンドレルに電線を10回巻付けた。そして、曲げ時にクラックが発生したものを不合格とし、クラックが発生しなかったものを合格とした。表中では、合格をA、不合格をCで表した。
(Cold resistance test)
The produced electric wire was subjected to a low-temperature bending test at −40 ° C. according to EN60881-1-4 8.1. As a method, after putting a wire sample in a low temperature bath at −40 ° C. for 4 hours, the wire was placed on a metal mandrel having a diameter four times the insulation outer diameter of the wire while being kept at −40 ° C. in the low temperature bath. Wound around. And the thing which the crack generate | occur | produced at the time of bending was made disqualified, and the thing in which the crack did not generate | occur | produced was made acceptable. In the table, “A” indicates pass and “C” indicates failure.
(燃焼ガス毒性試験)
 前記のようにして作製された絶縁電線の絶縁被覆について、EN50305 9.2に準拠して以下のようにして燃焼ガス毒性試験を行い、毒性指数を算出した。すなわち、実験1~20、実験27~40については、表1~4、表6~8に示す絶縁被覆作製用樹脂組成物より作製した厚さ1mmのシートを、実験21~26については、表5に示す内層作製用樹脂組成物からなる厚さ0.08mmの層と外層作製用樹脂組成物からなる厚さ0.92mmの層を積層した厚さ1mmのシートを、5mm角にカットし、23℃・相対湿度50%の室内で48時間保管後、800℃の炉内で20分間分解させた。シアン化水素、一酸化炭素、二酸化炭素、窒素酸化物、二酸化硫黄の発生量とそれぞれに規定された毒性の重み付けから毒性指数(ITC)を算出した。ITCが6.0以下のものを合格とした。
(Combustion gas toxicity test)
About the insulation coating of the insulated wire produced as described above, a combustion gas toxicity test was performed as follows in accordance with EN50305 9.2, and a toxicity index was calculated. That is, for Experiments 1 to 20 and Experiments 27 to 40, sheets having a thickness of 1 mm prepared from the resin compositions for forming an insulating coating shown in Tables 1 to 4 and Tables 6 to 8, and for Experiments 21 to 26, A 1 mm thick sheet obtained by laminating a 0.08 mm thick layer composed of the inner layer preparing resin composition shown in FIG. 5 and a 0.92 mm thick layer composed of the outer layer preparing resin composition was cut into 5 mm squares, After being stored for 48 hours in a room at 23 ° C. and 50% relative humidity, it was decomposed in an oven at 800 ° C. for 20 minutes. The toxicity index (ITC) was calculated from the generation amounts of hydrogen cyanide, carbon monoxide, carbon dioxide, nitrogen oxides, and sulfur dioxide and the weighting of toxicity specified for each. An ITC of 6.0 or less was accepted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記の表に記載の結果より、ポリオレフィン樹脂(ポリエチレン+EVA+無水マレイン酸変性エチレンαオレフィン系共重合体)100質量部に対し、EVAを10質量%以上、60質量%以下、DSC法による融点が60℃以下である無水マレイン酸変性エチレンαオレフィン系共重合体を5質量%以上、30質量%以下、難燃剤(金属水酸化物)を100質量部以上、250質量部以下、及び25℃における粘度が3000mPa・s以下であるシリコーンオイルを1質量部以上、20質量部以下含有し、ベースポリマーとして、融点が120℃以上、130℃以下、かつ密度が0.925以上、0.945以下であるポリエチレン2又はポリエチレン3を用いている実験1~26のノンハロゲン難燃樹脂組成物により絶縁被覆(又は絶縁被覆の外層)を形成した場合は、近年の要請(EN規格等)を満たす引張強さ、引張伸び、絶縁抵抗、耐摩耗性が得られており、難燃性試験、耐油試験、耐寒試験にも合格している、ことが示されている。 From the results shown in the above table, EVA is 10% by mass or more and 60% by mass or less with respect to 100 parts by mass of polyolefin resin (polyethylene + EVA + maleic anhydride-modified ethylene α-olefin copolymer), and the melting point by DSC method is 60%. 5 mass% or more and 30 mass% or less of maleic anhydride-modified ethylene α-olefin copolymer having a temperature of ≦ ° C. or less, 100 to 250 parts by mass or less of a flame retardant (metal hydroxide), and viscosity at 25 ° C. Containing 1 part by mass or more and 20 parts by mass or less of silicone oil having a viscosity of 3000 mPa · s or less, and the base polymer has a melting point of 120 ° C. or more and 130 ° C. or less and a density of 0.925 or more and 0.945 or less. Insulation coating (or non-halogen flame retardant resin composition of Experiments 1 to 26 using polyethylene 2 or polyethylene 3 (or When the outer layer of the insulation coating is formed, tensile strength, tensile elongation, insulation resistance, and wear resistance that meet recent requirements (EN standards, etc.) have been obtained. Flame resistance test, oil resistance test, cold resistance test Has also been shown to pass.
 中でも、球形シリカを、前記ポリオレフィン樹脂100質量部に対して、35質量部未満添加している実験17、実験18では、耐摩耗性がさらに向上している。 Above all, in Experiments 17 and 18 in which spherical silica is added in an amount of less than 35 parts by mass with respect to 100 parts by mass of the polyolefin resin, the wear resistance is further improved.
 又、実験1~8の結果より、25℃における粘度が3000mPa・s以下であるシリコーンオイルとしては、アルキル基、エステル基、ビニル基、カルボキシル基、エポキシ基、ヒドロキシアルキル基、アミノ基で変性されたいずれの種類のシリコーンオイルも使用でき、前記の効果が達成できることが示されている。 From the results of Experiments 1 to 8, the silicone oil having a viscosity at 25 ° C. of 3000 mPa · s or less is modified with an alkyl group, an ester group, a vinyl group, a carboxyl group, an epoxy group, a hydroxyalkyl group, or an amino group. It has been shown that any type of silicone oil can be used and that the above effects can be achieved.
 一方、ベースポリマーとして、融点が120℃未満でかつ密度が0.925未満のポリエチレン1を用いた実験27では、耐摩耗性が不十分であり近年の要請を充たさない。又、ベースポリマーとして、融点が130℃を超えかつ密度が0.945を超えるポリエチレン4を用いた実験28では、耐寒性が不十分である。 On the other hand, in Experiment 27 using a polyethylene 1 having a melting point of less than 120 ° C. and a density of less than 0.925 as the base polymer, the wear resistance is insufficient and the recent request is not satisfied. In Experiment 28 using polyethylene 4 having a melting point exceeding 130 ° C. and a density exceeding 0.945 as the base polymer, the cold resistance is insufficient.
 EVAの量が、ポリオレフィン樹脂100質量部に対し10質量部未満の実験29では、耐寒性が不十分である。一方、EVAの量が、ポリオレフィン樹脂100質量部に対し60質量部を超える実験30では、耐摩耗性が不十分である。この結果は、耐摩耗性及び耐寒性をともに満たすために、EVAの量は、ポリオレフィン樹脂100質量部に対し10質量%以上、60質量%以下とするべきことを示している。 In Experiment 29 where the amount of EVA is less than 10 parts by mass with respect to 100 parts by mass of the polyolefin resin, the cold resistance is insufficient. On the other hand, in Experiment 30 in which the amount of EVA exceeds 60 parts by mass with respect to 100 parts by mass of the polyolefin resin, the wear resistance is insufficient. This result shows that the amount of EVA should be 10% by mass or more and 60% by mass or less with respect to 100 parts by mass of the polyolefin resin in order to satisfy both wear resistance and cold resistance.
 無水マレイン酸変性エチレンαオレフィン系共重合体の量が、ポリオレフィン樹脂100質量部に対し、5質量部未満の実験31では、耐寒性が不十分である。一方、無水マレイン酸変性エチレンαオレフィン系共重合体の量が、ポリオレフィン樹脂100質量部に対し30質量部を超える実験32では、耐摩耗性、引張強さが不十分である。この結果は、耐摩耗性、引張強さ及び耐寒性をともに満たすために、無水マレイン酸変性エチレンαオレフィン系共重合体の量は、ポリオレフィン樹脂100質量部に対し5質量%以上、30質量%以下とするべきことを示している。 In Experiment 31 where the amount of the maleic anhydride-modified ethylene α-olefin copolymer is less than 5 parts by mass with respect to 100 parts by mass of the polyolefin resin, cold resistance is insufficient. On the other hand, in Experiment 32 in which the amount of the maleic anhydride-modified ethylene α-olefin copolymer exceeds 30 parts by mass with respect to 100 parts by mass of the polyolefin resin, the wear resistance and tensile strength are insufficient. As a result, in order to satisfy both the wear resistance, the tensile strength and the cold resistance, the amount of the maleic anhydride-modified ethylene α-olefin copolymer is 5% by mass or more and 30% by mass with respect to 100 parts by mass of the polyolefin resin. The following should be indicated.
 実験33は、無水マレイン酸変性エチレンαオレフィン系共重合体として融点が60℃を超えるタフマーMA8510を用いた場合であり、耐寒性が不十分である。この結果は、近年の要請を充たす耐寒性を得るために、無水マレイン酸変性エチレンαオレフィン系共重合体として融点が60℃以下のものを用いるべきことを示している。 Experiment 33 is a case where Tafmer MA8510 having a melting point exceeding 60 ° C. was used as the maleic anhydride-modified ethylene α-olefin copolymer, and the cold resistance was insufficient. This result indicates that a maleic anhydride-modified ethylene α-olefin copolymer having a melting point of 60 ° C. or lower should be used in order to obtain cold resistance satisfying recent requirements.
 金属水酸化物の量が、ポリオレフィン樹脂100質量部に対し、100質量部未満の実験34では、難燃性が規格を満たさない。一方、金属水酸化物の量が、ポリオレフィン樹脂100質量部に対し、250質量部を超える実験35では、引張強さ及び耐寒性が不十分となる。この結果は、難燃性、引張強さ及び耐寒性をともに満たすために、金属水酸化物の量は、ポリオレフィン樹脂100質量部に対し100質量部以上、250質量部以下とするべきことを示している。 In Experiment 34 in which the amount of metal hydroxide is less than 100 parts by mass with respect to 100 parts by mass of the polyolefin resin, the flame retardancy does not meet the standard. On the other hand, in Experiment 35 in which the amount of metal hydroxide exceeds 250 parts by mass with respect to 100 parts by mass of the polyolefin resin, the tensile strength and cold resistance are insufficient. This result indicates that the amount of the metal hydroxide should be 100 parts by mass or more and 250 parts by mass or less with respect to 100 parts by mass of the polyolefin resin in order to satisfy both flame retardancy, tensile strength and cold resistance. ing.
 実験36は、球形シリカの含有量が、ポリオレフィン樹脂100質量部に対し、35質量部以上の場合であって、この場合は耐寒性が不十分となる。この結果は、耐寒性を低下させないために、球形シリカの含有量は35質量部未満とするべきことを示している。又実験37は、球形シリカの代わりに鎖状シリカを用いた場合であり、この場合は含有量が30質量部であっても耐寒性が不十分となる。この結果は、耐寒性を低下させないために、鎖状シリカではなく、球形シリカを用いるべきことを示している。 Experiment 36 is a case where the content of spherical silica is 35 parts by mass or more with respect to 100 parts by mass of the polyolefin resin, and in this case, the cold resistance is insufficient. This result indicates that the content of spherical silica should be less than 35 parts by mass in order not to lower the cold resistance. Experiment 37 is a case where chain silica is used instead of spherical silica. In this case, even if the content is 30 parts by mass, cold resistance is insufficient. This result indicates that spherical silica should be used instead of chain silica in order not to reduce cold resistance.
 実験38は、シリコーンオイルの量が、ポリオレフィン樹脂100質量部に対し、20質量部を超える場合であって、耐摩耗性が不十分である。一方実験39は、シリコーンオイルを添加しない場合(すなわち、シリコーンオイルの量が、ポリオレフィン樹脂100質量部に対し、1質量部未満の場合)であって、難燃性が不十分である。この結果より、難燃性、耐摩耗性をともに満たすために、シリコーンオイルの量は、ポリオレフィン樹脂100質量部に対し、1質量部以上、20質量部以下とするべきことが示されている。 Experiment 38 is a case where the amount of silicone oil exceeds 20 parts by mass with respect to 100 parts by mass of the polyolefin resin, and the abrasion resistance is insufficient. On the other hand, Experiment 39 is a case where silicone oil is not added (that is, the amount of silicone oil is less than 1 part by mass with respect to 100 parts by mass of polyolefin resin), and the flame retardancy is insufficient. This result indicates that the amount of silicone oil should be 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polyolefin resin in order to satisfy both flame retardancy and wear resistance.
 実験40は、シリコーンオイルとして、25℃における粘度が3000mPa・sを超えるものを用いた場合である。この場合は、難燃性及び耐寒性が不十分となる。この結果より、シリコーンオイルとしては、25℃における粘度が3000mPa・s以下のものを用いるべきことが示されている。 Experiment 40 is a case where a silicone oil having a viscosity at 25 ° C. exceeding 3000 mPa · s is used. In this case, flame retardancy and cold resistance are insufficient. This result shows that a silicone oil having a viscosity at 25 ° C. of 3000 mPa · s or less should be used.
 内層を有する実験21~25では、内層を有しない場合より、絶縁抵抗が大きく向上しており、又、耐摩耗性も向上している。この結果より、内層を設けることにより、外層を薄くすることができ、絶縁被覆を軽量化できると考えられる。 In the experiments 21 to 25 having the inner layer, the insulation resistance was greatly improved and the wear resistance was also improved as compared with the case without the inner layer. From this result, it is considered that by providing the inner layer, the outer layer can be thinned and the insulating coating can be reduced in weight.
 一方、内層を有しない場合では、絶縁被覆を燃焼させたとき発生する燃焼ガスの毒性を示す毒性指数(ITC)は、6.0以下であるが、内層を有する実験21では、毒性指数(ITC)は、6.0を超えており、内層を形成することにより、毒性指数(ITC)が増大する場合があることが示されている。しかし、内層を形成する材料として、ポリエチレン100質量部に対して5質量部以上、200質量部以下の珪酸アルミニウムを含有する樹脂組成物を用いた実験23~24では、毒性指数(ITC)は6.0以下であり、珪酸アルミニウムの所定量の配合により燃焼ガスの毒性を抑制できることが示されている。 On the other hand, when the inner layer is not provided, the toxicity index (ITC) indicating the toxicity of the combustion gas generated when the insulating coating is burned is 6.0 or less. However, in Experiment 21 having the inner layer, the toxicity index (ITC) ) Exceeds 6.0, and it has been shown that the formation of an inner layer may increase the toxicity index (ITC). However, in Experiments 23 to 24 using a resin composition containing 5 to 200 parts by mass of aluminum silicate with respect to 100 parts by mass of polyethylene as a material for forming the inner layer, the toxicity index (ITC) was 6 It is shown that the toxicity of the combustion gas can be suppressed by blending a predetermined amount of aluminum silicate.
 珪酸アルミニウムの含有量がポリエチレン100質量部に対して5質量部未満の実験22では、毒性指数(ITC)は6.0を超えており、燃焼ガスの毒性の抑制が不十分である。珪酸アルミニウムの含有量がポリエチレン100質量部に対して200質量部を超える実験25では、毒性指数(ITC)は十分低下しているものの、引張強度や引張伸びが低下している。また、珪酸アルミニウムの代わりに、水酸化マグネシウムを用いた実験26では、毒性指数(ITC)を抑制する効果は得られない。さらに、絶縁抵抗も低く、内層を設けることによる絶縁抵抗を向上させる効果が得られていない。以上の結果より、毒性指数(ITC)を抑制するためには、内層を形成する材料として、ポリエチレン100質量部に対して5質量部以上、200質量部以下の珪酸アルミニウムを含有する樹脂組成物が好ましいことが示されている。 In Experiment 22 in which the content of aluminum silicate is less than 5 parts by mass with respect to 100 parts by mass of polyethylene, the toxicity index (ITC) exceeds 6.0, and the suppression of the toxicity of the combustion gas is insufficient. In Experiment 25 in which the content of aluminum silicate exceeds 200 parts by mass with respect to 100 parts by mass of polyethylene, although the toxicity index (ITC) is sufficiently reduced, the tensile strength and the tensile elongation are reduced. In Experiment 26 using magnesium hydroxide instead of aluminum silicate, the effect of suppressing the toxicity index (ITC) cannot be obtained. Furthermore, the insulation resistance is low, and the effect of improving the insulation resistance by providing the inner layer is not obtained. From the above results, in order to suppress the toxicity index (ITC), as a material for forming the inner layer, a resin composition containing 5 parts by mass or more and 200 parts by mass or less of aluminum silicate with respect to 100 parts by mass of polyethylene. It has been shown to be preferred.
1 導体
2 内層
3 外層
4 絶縁電線
1 Conductor 2 Inner layer 3 Outer layer 4 Insulated wire

Claims (6)

  1.  ポリオレフィン樹脂100質量部に対して、金属水酸化物を100質量部以上、250質量部以下、及び25℃における粘度が3000mPa・s以下であるシリコーンオイルを1質量部以上、20質量部以下含有し、
     前記ポリオレフィン樹脂が、
     DSC法による融点(Tm)が120℃以上、130℃以下、かつ密度が0.925以上、0.945以下であるポリエチレンを30質量%以上、85質量%以下、
     エチレン-酢酸ビニル共重合体を10質量%以上、60質量%以下、及び
     DSC法による融点が60℃以下である無水マレイン酸変性エチレンαオレフィン系共重合体を5質量%以上、30質量%以下含有するノンハロゲン難燃樹脂組成物。
    100 parts by mass or more and 250 parts by mass or less of metal hydroxide, and 1 part by mass or more and 20 parts by mass or less of silicone oil having a viscosity at 25 ° C. of 3000 mPa · s or less with respect to 100 parts by mass of polyolefin resin. ,
    The polyolefin resin is
    30 mass% or more and 85 mass% or less of polyethylene whose melting point (Tm) by DSC method is 120 ° C. or more and 130 ° C. or less and whose density is 0.925 or more and 0.945 or less,
    An ethylene-vinyl acetate copolymer of 10% by mass to 60% by mass, and a maleic anhydride-modified ethylene α-olefin copolymer having a melting point by DSC of 60 ° C. or less of 5% by mass to 30% by mass Non-halogen flame retardant resin composition to be contained.
  2.  前記シリコーンオイルが、アルキル基、エステル基、ビニル基、カルボキシル基、エポキシ基、ヒドロキシアルキル基、アミノ基で変性されたシリコーンオイルである請求項1に記載のノンハロゲン難燃樹脂組成物。 The non-halogen flame retardant resin composition according to claim 1, wherein the silicone oil is a silicone oil modified with an alkyl group, an ester group, a vinyl group, a carboxyl group, an epoxy group, a hydroxyalkyl group or an amino group.
  3.  さらに、一次粒子が球形であるシリカを、前記ポリオレフィン樹脂100質量部に対して1質量部以上、35質量部未満含有する請求項1又は請求項2に記載のノンハロゲン難燃樹脂組成物。 Furthermore, the non-halogen flame-retardant resin composition according to claim 1 or 2, further comprising 1 part by mass or more and less than 35 parts by mass of silica whose primary particles are spherical with respect to 100 parts by mass of the polyolefin resin.
  4.  導体及び前記導体を被覆する絶縁被覆を有し、
     前記絶縁被覆が、請求項1ないし請求項3のいずれか1項に記載のノンハロゲン難燃樹脂組成物の架橋体からなるノンハロゲン難燃絶縁電線。
    A conductor and an insulating coating covering the conductor;
    A non-halogen flame-retardant insulated electric wire comprising the cross-linked product of the non-halogen flame-retardant resin composition according to any one of claims 1 to 3, wherein the insulating coating.
  5.  導体及び絶縁被覆を有し、
     前記絶縁被覆が、導体を被覆する内層及び前記内層を被覆する外層を有し、
     前記内層が、ポリエチレンまたはポリエチレンを主体とする組成物からなり、
     前記外層が、請求項1ないし請求項3のいずれか1項に記載のノンハロゲン難燃樹脂組成物の架橋体からなるノンハロゲン難燃絶縁電線。
    With conductor and insulation coating,
    The insulating coating has an inner layer covering the conductor and an outer layer covering the inner layer;
    The inner layer is made of polyethylene or a composition mainly composed of polyethylene,
    The non-halogen flame-retardant insulated electric wire which the said outer layer consists of a crosslinked body of the non-halogen flame-retardant resin composition of any one of Claim 1 thru | or 3.
  6.  前記内層が、ポリエチレンおよび前記ポリエチレン100質量部に対して5質量部以上200質量部以下の珪酸アルミニウムを含有する樹脂組成物からなる請求項5に記載のノンハロゲン難燃樹脂組成物の架橋体からなるノンハロゲン難燃絶縁電線。 The said inner layer consists of a crosslinked body of the non-halogen flame-retardant resin composition according to claim 5, wherein the inner layer is made of a resin composition containing 5 parts by mass or more and 200 parts by mass or less of aluminum silicate with respect to 100 parts by mass of polyethylene. Non-halogen flame retardant insulated wire.
PCT/JP2016/062259 2015-04-28 2016-04-18 Non-halogen flame-resistant resin composition and insulated electric wire WO2016175076A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680001487.2A CN106414593A (en) 2015-04-28 2016-04-18 Non-halogen flame-resistant resin composition and insulated electric wire
JP2016554892A JPWO2016175076A1 (en) 2015-04-28 2016-04-18 Non-halogen flame retardant resin composition and insulated wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-091554 2015-04-28
JP2015091554 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016175076A1 true WO2016175076A1 (en) 2016-11-03

Family

ID=57198366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062259 WO2016175076A1 (en) 2015-04-28 2016-04-18 Non-halogen flame-resistant resin composition and insulated electric wire

Country Status (3)

Country Link
JP (1) JPWO2016175076A1 (en)
CN (1) CN106414593A (en)
WO (1) WO2016175076A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480829A1 (en) * 2017-11-07 2019-05-08 Hitachi Metals, Ltd. Insulated electric wire
WO2019181398A1 (en) * 2018-03-20 2019-09-26 株式会社オートネットワーク技術研究所 Composition for wire covering materials, insulated wire and wiring harness
WO2019189469A1 (en) * 2018-03-28 2019-10-03 住友電気工業株式会社 Flame-retardant resin composition, flame-retardant heat shrink tube, and flame-retardant insulated electrical wire
JP2020140840A (en) * 2019-02-28 2020-09-03 日立金属株式会社 Insulated electric wire and cable
JP2020176163A (en) * 2019-04-15 2020-10-29 日立金属株式会社 Power transmission cable using non-halogen flame-retardant resin composition
JP2020181827A (en) * 2020-07-09 2020-11-05 株式会社オートネットワーク技術研究所 Composition for wire coating material, insulation wire and wire harness
WO2021150070A1 (en) * 2020-01-22 2021-07-29 엘에스전선 주식회사 Insulating composition for vehicle cable and vehicle cable manufactured by using same
WO2022044469A1 (en) * 2020-08-31 2022-03-03 住友電気工業株式会社 Core wire for multicore cables, multicore cable, and multicore cable with sensor
WO2023089826A1 (en) 2021-11-22 2023-05-25 古河電気工業株式会社 Resin composition, resinous coating material, insulated electrical wire, automotive wire harness, and method for producing insulated electrical wire for use in automotive wire harness

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083454A (en) * 1994-06-16 1996-01-09 Shin Etsu Chem Co Ltd Synthetic resin composition
JP2000191911A (en) * 1998-12-28 2000-07-11 Dow Corning Toray Silicone Co Ltd Silicone oil composition
JP2002003656A (en) * 2000-06-22 2002-01-09 Yazaki Corp Non-halogenic flame retardant resin composition and flame retardant electric wire
JP2002124140A (en) * 2000-10-19 2002-04-26 Sumitomo Wiring Syst Ltd Insulated electric cable
JP2014011140A (en) * 2012-07-03 2014-01-20 Hitachi Cable Ltd Insulated electric wire for vehicle and cable for vehicle
JP2014024910A (en) * 2012-07-25 2014-02-06 Hitachi Metals Ltd Halogen-free flame-retardant resin composition, insulated electric wire, and cable

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4416165B2 (en) * 2004-01-26 2010-02-17 信越化学工業株式会社 Non-halogen flame retardant resin composition
CN102336953A (en) * 2011-08-16 2012-02-01 河北中联塑胶科技发展有限公司 Environmentally-friendly low-smoke halogen-free flame-retardant photovoltaic cable insulation and sheath and preparation method thereof
JP5652452B2 (en) * 2012-09-27 2015-01-14 日立金属株式会社 Non-halogen flame retardant insulated wire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083454A (en) * 1994-06-16 1996-01-09 Shin Etsu Chem Co Ltd Synthetic resin composition
JP2000191911A (en) * 1998-12-28 2000-07-11 Dow Corning Toray Silicone Co Ltd Silicone oil composition
JP2002003656A (en) * 2000-06-22 2002-01-09 Yazaki Corp Non-halogenic flame retardant resin composition and flame retardant electric wire
JP2002124140A (en) * 2000-10-19 2002-04-26 Sumitomo Wiring Syst Ltd Insulated electric cable
JP2014011140A (en) * 2012-07-03 2014-01-20 Hitachi Cable Ltd Insulated electric wire for vehicle and cable for vehicle
JP2014024910A (en) * 2012-07-25 2014-02-06 Hitachi Metals Ltd Halogen-free flame-retardant resin composition, insulated electric wire, and cable

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480829A1 (en) * 2017-11-07 2019-05-08 Hitachi Metals, Ltd. Insulated electric wire
WO2019181398A1 (en) * 2018-03-20 2019-09-26 株式会社オートネットワーク技術研究所 Composition for wire covering materials, insulated wire and wiring harness
JP2019163406A (en) * 2018-03-20 2019-09-26 株式会社オートネットワーク技術研究所 Composition for wire coating material, insulation wire and wire harness
JPWO2019189469A1 (en) * 2018-03-28 2021-04-01 住友電気工業株式会社 Flame-retardant resin composition, flame-retardant heat-shrinkable tube and flame-retardant insulated wire
WO2019186784A1 (en) * 2018-03-28 2019-10-03 住友電気工業株式会社 Flame-retardant resin composition, flame-retardant heat shrink tube, and flame-retardant insulated electrical wire
WO2019189469A1 (en) * 2018-03-28 2019-10-03 住友電気工業株式会社 Flame-retardant resin composition, flame-retardant heat shrink tube, and flame-retardant insulated electrical wire
JP7374079B2 (en) 2018-03-28 2023-11-06 住友電気工業株式会社 Flame retardant resin composition, flame retardant heat shrinkable tube and flame retardant insulated wire
JP2020140840A (en) * 2019-02-28 2020-09-03 日立金属株式会社 Insulated electric wire and cable
JP7159912B2 (en) 2019-02-28 2022-10-25 日立金属株式会社 insulated wire and cable
JP2020176163A (en) * 2019-04-15 2020-10-29 日立金属株式会社 Power transmission cable using non-halogen flame-retardant resin composition
JP7092090B2 (en) 2019-04-15 2022-06-28 日立金属株式会社 Power transmission cable using non-halogen flame-retardant resin composition
WO2021150070A1 (en) * 2020-01-22 2021-07-29 엘에스전선 주식회사 Insulating composition for vehicle cable and vehicle cable manufactured by using same
JP2020181827A (en) * 2020-07-09 2020-11-05 株式会社オートネットワーク技術研究所 Composition for wire coating material, insulation wire and wire harness
JP7067590B2 (en) 2020-07-09 2022-05-16 株式会社オートネットワーク技術研究所 Compositions for wire coverings, insulated wires and wire harnesses
WO2022044469A1 (en) * 2020-08-31 2022-03-03 住友電気工業株式会社 Core wire for multicore cables, multicore cable, and multicore cable with sensor
WO2023089826A1 (en) 2021-11-22 2023-05-25 古河電気工業株式会社 Resin composition, resinous coating material, insulated electrical wire, automotive wire harness, and method for producing insulated electrical wire for use in automotive wire harness

Also Published As

Publication number Publication date
JPWO2016175076A1 (en) 2017-05-18
CN106414593A (en) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2016175076A1 (en) Non-halogen flame-resistant resin composition and insulated electric wire
JP6050788B2 (en) Insulated wire and cable using halogen-free flame-retardant resin composition
JP6376463B2 (en) cable
JP6229942B2 (en) Insulated wires for railway vehicles and cables for railway vehicles
JP6082741B2 (en) Non-halogen flame retardant resin composition and insulated wire / cable having the resin composition
JP2015000913A (en) Non-halogen flame-retardant resin composition, and wires and cables prepared using the same
JP2015021120A (en) Insulated electric wire for vehicle and cable for vehicle each using non-halogen crosslinkable resin composition
JP2015097210A (en) Phosphorus-free non-halogen fire-resistant insulated wire and phosphorus-free non-halogen fire-resistant cable
JP5907015B2 (en) Railway vehicle wires and railway vehicle cables
WO2015159788A1 (en) Insulating resin composition and insulated wire
JP2011233459A (en) Insulated wire
JP2015130348A (en) Railway vehicle insulated electric wire and cable using halogen-free flame-retardant resin composition
JP6868420B2 (en) Flame-retardant crosslinked resin composition and wiring material
JP7374079B2 (en) Flame retardant resin composition, flame retardant heat shrinkable tube and flame retardant insulated wire
WO2018139374A1 (en) Flame-retardant resin composition, and molded component and wiring material both including same
US20170330644A1 (en) Charging cable having flexibility at low tempeature and oil resistance
JP2015021058A (en) Flame-retardant resin composition, and flame-retardant article including flame-retardant resin molded body produced by molding the same
JP2012124061A (en) Flame retardant wire/cable
JP2013222518A (en) Wire/cable for railway vehicle
JP6756692B2 (en) Insulated wire
JP2012018830A (en) Photovoltaic power collecting cable
JP7037280B2 (en) Insulated wire
JP2007329012A (en) Flame-retardant insulated wire and wire harness
JP2007326959A (en) Polyolefin-based flame retardant resin composition, flame-retardant insulated electric wire and wire harness
JP2015028899A (en) Insulated wire

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016554892

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786353

Country of ref document: EP

Kind code of ref document: A1