JPWO2019189469A1 - Flame-retardant resin composition, flame-retardant heat-shrinkable tube and flame-retardant insulated wire - Google Patents

Flame-retardant resin composition, flame-retardant heat-shrinkable tube and flame-retardant insulated wire Download PDF

Info

Publication number
JPWO2019189469A1
JPWO2019189469A1 JP2020509255A JP2020509255A JPWO2019189469A1 JP WO2019189469 A1 JPWO2019189469 A1 JP WO2019189469A1 JP 2020509255 A JP2020509255 A JP 2020509255A JP 2020509255 A JP2020509255 A JP 2020509255A JP WO2019189469 A1 JPWO2019189469 A1 JP WO2019189469A1
Authority
JP
Japan
Prior art keywords
flame
mass
retardant
resin composition
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020509255A
Other languages
Japanese (ja)
Other versions
JP7374079B2 (en
Inventor
遼太 福本
遼太 福本
太郎 藤田
太郎 藤田
西川 信也
信也 西川
貞嗣 北村
貞嗣 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Fine Polymer Inc
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Fine Polymer Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Fine Polymer Inc, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Fine Polymer Inc
Publication of JPWO2019189469A1 publication Critical patent/JPWO2019189469A1/en
Application granted granted Critical
Publication of JP7374079B2 publication Critical patent/JP7374079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)

Abstract

ポリエチレン、エチレンエチルアクリレート共重合体及び酸変性ポリエチレンからなる樹脂成分A、金属水酸化物、並びにシリコーンを含有する樹脂組成物であって、樹脂成分A中の、ポリエチレンの含有割合が25質量%以上70質量%以下、エチレンエチルアクリレート共重合体の含有割合が25質量%以上70質量%以下、及び酸変性ポリエチレンの含有割合が5質量%以上35質量%以下であり、前記樹脂成分A100質量部に対し、前記金属水酸化物の含有量が100質量部以上200質量部以下であり、かつ前記シリコーンの含有量が1質量部以上8質量部以下である難燃性樹脂組成物、前記難燃性樹脂組成物により形成された難燃性熱収縮チューブ、前記難燃性樹脂組成物により形成された絶縁層を有する難燃性絶縁電線。A resin composition containing a resin component A composed of polyethylene, an ethylene ethyl acrylate copolymer and an acid-modified polyethylene, a metal hydroxide, and silicone, wherein the content ratio of polyethylene in the resin component A is 25% by mass or more. 70% by mass or less, the content ratio of the ethylene ethyl acrylate copolymer is 25% by mass or more and 70% by mass or less, and the content ratio of the acid-modified polyethylene is 5% by mass or more and 35% by mass or less. On the other hand, a flame-retardant resin composition having a metal hydroxide content of 100 parts by mass or more and 200 parts by mass or less and a silicone content of 1 part by mass or more and 8 parts by mass or less, said flame-retardant. A flame-retardant heat-shrinkable tube formed of a resin composition, and a flame-retardant insulated wire having an insulating layer formed of the flame-retardant resin composition.

Description

本開示は、熱収縮チューブの材料等として用いられる難燃性樹脂組成物、及びその難燃性樹脂組成物により形成された難燃性熱収縮チューブ、難燃性絶縁電線に関する。 The present disclosure relates to a flame-retardant resin composition used as a material for a heat-shrinkable tube, a flame-retardant heat-shrinkable tube formed of the flame-retardant resin composition, and a flame-retardant insulated electric wire.

熱収縮チューブは、加熱により径方向に収縮する樹脂チューブである。熱収縮チューブにより被覆対象物を被覆して加熱すると、被覆される部分の形状に沿って収縮し当該部分に密着した樹脂層が形成される。そこで熱収縮チューブは、絶縁電線の絶縁層の形成や、電線の結束部や配線の端末の保護、絶縁、防水等に用いられている。 The heat-shrinkable tube is a resin tube that shrinks in the radial direction by heating. When the object to be coated is coated with a heat-shrinkable tube and heated, the resin layer shrinks along the shape of the coated portion to form a resin layer in close contact with the portion. Therefore, the heat-shrinkable tube is used for forming an insulating layer of an insulated electric wire, protecting a binding portion of an electric wire and a terminal of a wiring, insulating, waterproofing, and the like.

熱収縮チューブには、収縮により被覆される部分と充分に密着するため、優れた収縮率(加熱による径方向への収縮が大きいこと)が求められる。
熱収縮チューブは、熱可塑性樹脂に難燃剤等を配合した樹脂組成物を押出加工してチューブ状の成形体(中空押出成形体)を形成した後、樹脂の架橋及びチューブの拡径を施して熱収縮性を付与することにより得られる。そこで、熱収縮チューブの形成材料としての樹脂組成物には、押出加工の際に押出されるチューブの径の変動が小さいこと、すなわち優れた押出加工性(寸法安定性)が望まれる。
Since the heat-shrinkable tube is sufficiently adhered to the portion covered by shrinkage, an excellent shrinkage rate (large radial shrinkage due to heating) is required.
The heat-shrinkable tube is formed by extruding a resin composition containing a flame retardant or the like in a thermoplastic resin to form a tubular molded body (hollow extruded molded body), and then cross-linking the resin and expanding the diameter of the tube. Obtained by imparting heat shrinkage. Therefore, it is desired that the resin composition as a material for forming a heat-shrinkable tube has a small variation in the diameter of the tube extruded during extrusion processing, that is, excellent extrusion processability (dimensional stability).

さらに、鉄道車両、自動車等の内部配線に使用される絶縁電線の絶縁保護用の熱収縮チューブやビル、工場等に設置される電気接続箱で用いられるブスバーの絶縁保護に用いられる熱収縮チューブには、ハロゲンフリーであるとともに、高い難燃性、引張強度や引張伸び等の機械的強度が優れることが求められている。例えば、鉄道車両に用いられる熱収縮チューブには、難燃性の指標である酸素指数が所定値以上であることが求められ、又、難燃性としては、燃焼が伝播しにくい性質、具体的には火炎伝播指数が小さいこと、燃焼時に燃焼物のドリップ(落下)がないこと等が求められる場合も多い。さらに、優れた耐油性が求められる場合も多い。 Furthermore, for heat-shrinkable tubes used for insulation protection of insulated wires used for internal wiring of railway vehicles, automobiles, etc., and for heat-shrinkable tubes used for insulation protection of busbars used in electrical junction boxes installed in buildings, factories, etc. Is required to be halogen-free and to have high flame retardancy and excellent mechanical strength such as tensile strength and tensile elongation. For example, a heat-shrinkable tube used in a railroad vehicle is required to have an oxygen index, which is an index of flame retardancy, of a predetermined value or more, and the flame retardancy includes a property that combustion is difficult to propagate, specifically. In many cases, it is required that the flame propagation index is small and that there is no drip (drop) of combustibles during combustion. Further, excellent oil resistance is often required.

高い難燃性と優れた機械的強度を両立するハロゲンフリーの難燃性樹脂組成物としては、ポリオレフィン等の熱可塑性樹脂に難燃剤である金属水酸化物を配合した組成物が広く知られている。例えば、特許文献1には、エチレン−酢酸ビニル共重合体(EVA)等のポリオレフィン樹脂に水酸化マグネシウムを配合したハロゲンフリーの難燃性樹脂組成物からなる熱収縮チューブが開示されている。 As a halogen-free flame-retardant resin composition having both high flame retardancy and excellent mechanical strength, a composition obtained by blending a thermoplastic resin such as polyolefin with a metal hydroxide as a flame retardant is widely known. There is. For example, Patent Document 1 discloses a heat-shrinkable tube made of a halogen-free flame-retardant resin composition in which magnesium hydroxide is mixed with a polyolefin resin such as ethylene-vinyl acetate copolymer (EVA).

特開昭63−77958号公報Japanese Unexamined Patent Publication No. 63-77958

しかし、特許文献1に開示されている難燃性樹脂組成物等の従来の難燃性樹脂組成物には、鉄道車両の内部配線の絶縁保護用の熱収縮チューブを形成する難燃性樹脂組成物に望まれている前記の要請、すなわち、優れた収縮率の熱収縮チューブを形成できること、押出加工性に優れること、酸素指数が所定値以上、火炎伝播指数が所定値以下、燃焼時に燃焼物のドリップ(落下)がない等の高い難燃性を有すること、引張強度や引張伸び等の機械的強度が優れること、耐油性に優れること、を全て充たすものはなく、前記の要請を全て充たす難燃性樹脂組成物の開発が望まれていた。 However, the conventional flame-retardant resin composition such as the flame-retardant resin composition disclosed in Patent Document 1 has a flame-retardant resin composition for forming a heat-shrinkable tube for insulating protection of the internal wiring of a railway vehicle. The above-mentioned requirements for a material, that is, the ability to form a heat-shrinkable tube having an excellent shrinkage rate, excellent extrusion workability, an oxygen index of a predetermined value or more, a flame propagation index of a predetermined value or less, and a combustible product during combustion. There is no one that has high flame retardancy such as no drip, excellent mechanical strength such as tensile strength and tensile elongation, and excellent oil resistance, and all of the above requirements are satisfied. The development of a flame-retardant resin composition has been desired.

本開示は、難燃剤としての金属水酸化物を含有するハロゲンフリーの樹脂組成物であって、押出加工性に優れるとともに、高い酸素指数、小さな火炎伝播指数、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有し、機械的強度、耐油性に優れ、優れた収縮率の熱収縮チューブを形成できる難燃性樹脂組成物を提供することを課題とする。 The present disclosure is a halogen-free resin composition containing a metal hydroxide as a flame retardant, which is excellent in extrusion processability, has a high oxygen index, a small flame propagation index, and drip (drops) of combustibles during combustion. It is an object of the present invention to provide a flame-retardant resin composition which has excellent flame retardancy in the absence of metal, has excellent mechanical strength and oil resistance, and can form a heat-shrinkable tube having an excellent shrinkage rate.

本開示は、又、前記難燃性樹脂組成物から形成されるハロゲンフリーの難燃性熱収縮チューブであって優れた機械的強度、優れた耐油性、優れた収縮率を有するとともに、難燃性に優れ、高い酸素指数、小さな火炎伝播指数を有し、燃焼時に燃焼物のドリップ(落下)がない難燃性熱収縮チューブを提供することも課題とする。 The present disclosure is also a halogen-free flame-retardant heat-shrinkable tube formed from the flame-retardant resin composition, which has excellent mechanical strength, excellent oil resistance, and excellent shrinkage rate, and is also flame-retardant. It is also an object to provide a flame-retardant heat-shrinkable tube having excellent properties, a high oxygen index, a small flame propagation index, and no drip (drop) of combustibles during combustion.

本開示は、さらに、導体及び前記難燃性樹脂組成物から形成される絶縁層を有し、前記絶縁層は、優れた機械的強度、優れた耐油性を有するとともに、高い酸素指数、小さな火炎伝播指数を有し、燃焼時に燃焼物のドリップ(落下)がない絶縁電線を提供することも課題とする。 The present disclosure further comprises an insulating layer formed from a conductor and the flame-retardant resin composition, which has excellent mechanical strength, excellent oil resistance, a high oxygen index, and a small flame. It is also an issue to provide an insulated wire having a propagation index and no drip (drop) of combustibles during combustion.

本発明者は、以上の課題を解決するため鋭意研究を行った結果、ポリエチレン(PE)、エチレンエチルアクリレート共重合体(EEA)、酸変性ポリエチレン(酸変性PE)、金属水酸化物、及びシリコーンを含有する樹脂組成物であって、PE、EEA、酸変性PE、金属水酸化物、シリコーンの含有量が所定の範囲内にある樹脂組成物により、前記の課題が達成できることを見出し、本開示の発明を完成した。 As a result of diligent research to solve the above problems, the present inventor has made polyethylene (PE), ethylene ethyl acrylate copolymer (EEA), acid-modified polyethylene (acid-modified PE), metal hydroxide, and silicone. The present disclosure has been found that the above-mentioned problems can be achieved by a resin composition containing PE, EEA, acid-modified PE, metal hydroxide, and silicone having a content within a predetermined range. Completed the invention of.

本開示の第1の態様は、
PE、EEA及び酸変性PEからなる樹脂成分A、金属水酸化物、並びにシリコーンを含有する樹脂組成物であって、樹脂成分A中の、PEの含有割合が25質量%以上70質量%以下、EEAの含有割合が25質量%以上70質量%以下、及び酸変性PEの含有割合が5質量%以上35質量%以下であり、前記樹脂成分A100質量部に対し、前記金属水酸化物の含有量が100質量部以上200質量部以下であり、かつ前記シリコーンの含有量が1質量部以上8質量部以下である難燃性樹脂組成物である。
The first aspect of the present disclosure is
A resin composition containing a resin component A composed of PE, EEA and acid-modified PE, a metal hydroxide, and silicone, wherein the content ratio of PE in the resin component A is 25% by mass or more and 70% by mass or less. The content ratio of EEA is 25% by mass or more and 70% by mass or less, and the content ratio of acid-modified PE is 5% by mass or more and 35% by mass or less, and the content of the metal hydroxide is relative to 100 parts by mass of the resin component A. Is 100 parts by mass or more and 200 parts by mass or less, and the content of the silicone is 1 part by mass or more and 8 parts by mass or less.

本開示の第2の態様は
第1の態様の難燃性樹脂組成物をチューブ状に成形した成形品であって、前記成形品を拡径することにより熱収縮性が付与されている難燃性熱収縮チューブである。
The second aspect of the present disclosure is a molded product obtained by molding the flame-retardant resin composition of the first aspect into a tube shape, and the flame-retardant property is imparted by expanding the diameter of the molded product. It is a heat-shrinkable tube.

本開示の第3の態様は、導体と前記導体を被覆する絶縁層を有する絶縁電線であって、前記絶縁層が、第1の態様の難燃性樹脂組成物からなる難燃性絶縁電線である。 A third aspect of the present disclosure is an insulated wire having a conductor and an insulating layer covering the conductor, wherein the insulating layer is a flame-retardant insulated wire made of the flame-retardant resin composition of the first aspect. is there.

本開示の第1の態様により、ハロゲンフリーであって、酸素指数が高く、火炎伝播指数が小さく、燃焼時に燃焼物のドリップ(落下)がない優れた難燃性や優れた押出加工性を有するとともに、機械的強度、耐油性及び収縮率が優れた熱収縮チューブを形成できる難燃性樹脂組成物が提供される。 According to the first aspect of the present disclosure, it is halogen-free, has a high oxygen index, a small flame propagation index, and has excellent flame retardancy and excellent extrusion workability without dripping of combustibles during combustion. At the same time, a flame-retardant resin composition capable of forming a heat-shrinkable tube having excellent mechanical strength, oil resistance and shrinkage rate is provided.

本開示の第2の態様により、ハロゲンフリーであって、酸素指数が高く、火炎伝播指数が小さく、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有するとともに、機械的強度、耐油性及び収縮率に優れる難燃性熱収縮チューブが提供される。 According to the second aspect of the present disclosure, it is halogen-free, has a high oxygen index, a small flame propagation index, has excellent flame retardancy without drip (drop) of combustibles during combustion, and is mechanical. A flame-retardant heat-shrinkable tube having excellent strength, oil resistance and shrinkage rate is provided.

本開示の第3の態様により、ハロゲンフリーであって、高い酸素指数、小さな火炎伝播指数、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有するとともに、機械的強度及び耐油性に優れる絶縁層により導体が被覆された難燃性絶縁電線が提供される。 According to the third aspect of the present disclosure, it is halogen-free, has a high oxygen index, a small flame propagation index, excellent flame retardancy with no drip of combustibles during combustion, and mechanical strength and mechanical strength. Provided is a flame-retardant insulated electric wire in which a conductor is coated with an insulating layer having excellent oil resistance.

以下、本開示の発明を実施するための形態について具体的に説明する。なお、本開示の発明は下記の実施形態に限定されるものではなく、特許請求の範囲内及び特許請求の範囲と均等の意味、範囲内での全ての変更が含まれる。 Hereinafter, embodiments for carrying out the invention of the present disclosure will be specifically described. The invention of the present disclosure is not limited to the following embodiments, and includes all modifications within the scope of the claims and in the same meaning and scope as the claims.

本開示の第1の態様は、
PE、EEA及び酸変性PEからなる樹脂成分A、金属水酸化物、及びシリコーンを含有する樹脂組成物であって、樹脂成分A中の、PEの含有割合が25質量%以上70質量%以下、EEAの含有割合が25質量%以上70質量%以下、及び酸変性PEの含有割合が5質量%以上35質量%以下であり、かつ前記樹脂成分A100質量部に対し、前記金属水酸化物の含有量が100質量部以上200質量部以下であり、前記シリコーンの含有量が1質量部以上8質量部以下である難燃性樹脂組成物である。
The first aspect of the present disclosure is
A resin composition containing a resin component A composed of PE, EEA and acid-modified PE, a metal hydroxide, and silicone, wherein the content ratio of PE in the resin component A is 25% by mass or more and 70% by mass or less. The content ratio of EEA is 25% by mass or more and 70% by mass or less, the content ratio of acid-modified PE is 5% by mass or more and 35% by mass or less, and the content of the metal hydroxide is contained in 100 parts by mass of the resin component A. A flame-retardant resin composition having an amount of 100 parts by mass or more and 200 parts by mass or less and a silicone content of 1 part by mass or more and 8 parts by mass or less.

先ず、第1の態様の難燃性樹脂組成物を構成する各組成について説明する。
PEとしては、高密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレン等の各種のPEのいずれも使用することができる。
PEの中でも、メルトフローレート(JIS K 7210−1999によるメルトマスフローレート(g/10min))が0.08以上であるPEが好ましく使用できる。メルトフローレートが0.08以上であるPEを使用すると、押出成形により熱収縮チューブを作製するとき、押出したチューブの外観が良好となり、又絶縁電線の絶縁層の形成に用いたときには絶縁層の印字性が向上するので好ましい。
又、ゲル浸透クロマトグラフィー(GPC)で測定した数平均分子量をMn、重量平均分子量をMwとしたときのMw/Mnが8以上のPEが好ましい。Mw/MnはPEの分子量分布の広さを表す指標であるが、Mw/Mnが8以上である分子量分布の広いPEを使用すると、押出成形により熱収縮チューブを作製するとき、押出したチューブの外観が良好となり、又絶縁電線の絶縁層の形成に用いたときには絶縁層の印字性が向上するので好ましい。
First, each composition constituting the flame-retardant resin composition of the first aspect will be described.
As the PE, any of various PEs such as high-density polyethylene, medium-density polyethylene, and linear low-density polyethylene can be used.
Among PEs, PE having a melt flow rate (melt mass flow rate (g / 10 min) according to JIS K 7210-1999) of 0.08 or more can be preferably used. When PE having a melt flow rate of 0.08 or more is used, the appearance of the extruded tube becomes good when a heat-shrinkable tube is produced by extrusion molding, and when used for forming an insulating layer of an insulated wire, the insulating layer This is preferable because it improves printability.
Further, PE having Mw / Mn of 8 or more when the number average molecular weight measured by gel permeation chromatography (GPC) is Mn and the weight average molecular weight is Mw is preferable. Mw / Mn is an index showing the breadth of the molecular weight distribution of PE. However, when PE having a wide molecular weight distribution of Mw / Mn of 8 or more is used, when a heat-shrinkable tube is produced by extrusion molding, the extruded tube is used. It is preferable because the appearance is good and the printability of the insulating layer is improved when it is used for forming the insulating layer of the insulated wire.

EEAは、エチレンとアクリル酸エチルの共重合体である。エチレンとアクリル酸エチルの共重合比の範囲は特に限定されないが、通常、全構成モノマーの中のアクリル酸エチルの質量比が5〜25%程度のものが用いられる。アクリル酸エチルの比が増大すると融点が低下するが、通常、融点83〜107℃のものが用いられる。EEAの分子量の範囲や密度(比重)の範囲も特に限定されないが、通常、190℃、荷重21.6kgで測定したメルトフローレイト(MFR)が0.3〜25(g/10min)であり、比重0.92〜0.95のものが用いられる。 The EEA is a copolymer of ethylene and ethyl acrylate. The range of the copolymerization ratio of ethylene and ethyl acrylate is not particularly limited, but usually, one having a mass ratio of ethyl acrylate in all the constituent monomers of about 5 to 25% is used. The melting point decreases as the ratio of ethyl acrylate increases, but those with a melting point of 83 to 107 ° C. are usually used. The range of the molecular weight and the range of the density (specific gravity) of the EEA are not particularly limited, but usually, the melt flow rate (MFR) measured at 190 ° C. and a load of 21.6 kg is 0.3 to 25 (g / 10 min). Those having a specific gravity of 0.92 to 0.95 are used.

酸変性PEとは、無水マレイン酸等の酸がポリマー鎖にグラフトしている、又はポリマー鎖の末端にカルボン酸基が存在するPEである。 The acid-modified PE is a PE in which an acid such as maleic anhydride is grafted on the polymer chain or a carboxylic acid group is present at the end of the polymer chain.

金属水酸化物としては、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム等を挙げることができる。中でも水酸化マグネシウム、水酸化アルミニウムが好ましく、より好ましくは水酸化マグネシウムである。金属水酸化物としては、粒径が0.1μm以上5.0μm以下の範囲にあるものが好ましく、特に樹脂中への分散性と分散した時の難燃性、機械強度の観点から粒径が0.5μm以上2.0μm以下の範囲にあるものが好ましく用いられる。粒径が前記範囲より大きい場合は樹脂の引張伸びを低下させる傾向があり、前記範囲より小さい場合は金属水酸化物が凝集しやすい。又、シランカップリング剤で表面処理した金属水酸化物やアニオン界面活性剤で表面処理した金属水酸化物も用いることができる。 Examples of the metal hydroxide include magnesium hydroxide, aluminum hydroxide, calcium hydroxide and the like. Of these, magnesium hydroxide and aluminum hydroxide are preferable, and magnesium hydroxide is more preferable. The metal hydroxide preferably has a particle size in the range of 0.1 μm or more and 5.0 μm or less, and the particle size is particularly large from the viewpoint of dispersibility in the resin, flame retardancy when dispersed, and mechanical strength. Those in the range of 0.5 μm or more and 2.0 μm or less are preferably used. If the particle size is larger than the above range, the tensile elongation of the resin tends to decrease, and if it is smaller than the above range, the metal hydroxide tends to aggregate. Further, a metal hydroxide surface-treated with a silane coupling agent or a metal hydroxide surface-treated with an anionic surfactant can also be used.

シリコーンとしては、その種類は特に限定されないが、樹脂成分への相溶性の観点から、変性シリコーンが好ましい。変性シリコーンとは、シリコーンのポリマー鎖の末端、側鎖の少なくともいずれかに1以上の官能基を有するシリコーンを意味する。変性シリコーンとしては、例えば、ビニル変性シリコーン、アルキル変性シリコーンを挙げることができる。 The type of silicone is not particularly limited, but modified silicone is preferable from the viewpoint of compatibility with the resin component. The modified silicone means a silicone having one or more functional groups at at least one of the terminal and side chains of the polymer chain of the silicone. Examples of the modified silicone include vinyl-modified silicone and alkyl-modified silicone.

ビニル変性シリコーンとは、シリコーンのポリマー鎖の末端、側鎖の少なくともいずれかに、1以上の炭素−炭素二重結合を有する官能基を結合させたシリコーンである。ポリマー鎖の末端又は側鎖に結合する炭素−炭素二重結合を有する官能基としては、−CH=CH、−OCO−C(CH)=CH(メタクリレート基)、−OCO−CH=CH(アクリレート基)等を挙げることができる。中でも、アクリレート基、メタクリレート基が好ましい。ビニル変性シリコーンとしては、例えば、特開2005−132855号公報に記載のものを挙げることができる。又、TEGOMER V−Si4042(EVONIK社製)等の市販品も用いることができる。
アルキル変性シリコーンとは、シリコーンのポリマー鎖の末端、側鎖の少なくともいずれかに、炭素数が3以上のアルキル基を1以上結合させたシリコーンである。
The vinyl-modified silicone is a silicone in which a functional group having one or more carbon-carbon double bonds is bonded to at least one of the terminal and side chains of the polymer chain of the silicone. Examples of the functional group having a carbon-carbon double bond bonded to the terminal or side chain of the polymer chain include -CH = CH 2 , -OCO-C (CH 3 ) = CH 2 (methacrylate group), and -OCO-CH =. CH 2 (acrylate group) and the like can be mentioned. Of these, an acrylate group and a methacrylate group are preferable. Examples of the vinyl-modified silicone include those described in JP-A-2005-132855. Further, a commercially available product such as TEGOMER V-Si4042 (manufactured by EVONIK) can also be used.
The alkyl-modified silicone is a silicone in which one or more alkyl groups having three or more carbon atoms are bonded to at least one of the terminal and side chains of the polymer chain of the silicone.

本態様の難燃性樹脂組成物には、発明の趣旨を損なわない限り、各種の特性を改良する目的で、エチレンメチルアクリレート共重合体(EMA)、エチレンメチルメタクリレート共重合体(EMMA)、エチレン・プロピレン・ジエンゴム(EPDM)、エチレンブチルアクリレート(EBA)、エチレンアクリルゴム、ポリオレフィンエラストマー、スチレン系エラストマー等の各種樹脂を配合してもよい。又、発明の趣旨を損なわない限り、酸化防止剤、滑剤、加工安定剤、着色剤(着色顔料)、発泡剤、補強剤、炭酸カルシウム、タルク等の充填剤、多官能性モノマー(架橋助剤)等の各種の添加剤を配合することが出来る。 The flame-retardant resin composition of this embodiment contains an ethylene methyl acrylate copolymer (EMA), an ethylene methyl methacrylate copolymer (EMMA), and ethylene for the purpose of improving various properties as long as the gist of the invention is not impaired. -Various resins such as propylene diene rubber (EPDM), ethylene butyl acrylate (EBA), ethylene acrylic rubber, polyolefin elastomer, and styrene elastomer may be blended. Further, as long as the gist of the invention is not impaired, antioxidants, lubricants, processing stabilizers, colorants (color pigments), foaming agents, reinforcing agents, fillers such as calcium carbonate and talc, and polyfunctional monomers (crosslinking aids) ) And other various additives can be blended.

第1の態様の難燃性樹脂組成物は、前記の必須の構成成分を特定の組成範囲内で配合することを特徴とする。次に、この特定の組成範囲について説明する。
PEの含有割合は、PE、EEA及び酸変性PEの合計配合量(すなわち樹脂成分Aの配合量)を100質量部としたとき、25質量部以上70質量部以下、すなわち樹脂成分A中の25質量%以上70質量%以下である。
PEの配合により、難燃性樹脂組成物より形成される熱収縮チューブや絶縁電線の絶縁層の耐油性が向上する。PEの含有割合が25質量%未満の場合は、充分な耐油性が得られない。一方PEの含有割合が70質量%を超える場合は、火炎伝播性試験においてドリップを生じやすくなり、又引張伸びやチューブの収縮率も低下し不十分となりやすい。好ましくは30質量%以上50質量%以下であり、この範囲内でより優れた耐油性が得られ、又ドリップをより抑制し、引張伸びやチューブの収縮率も充分なものとなる。
The flame-retardant resin composition of the first aspect is characterized in that the above-mentioned essential constituent components are blended within a specific composition range. Next, this specific composition range will be described.
The content ratio of PE is 25 parts by mass or more and 70 parts by mass or less, that is, 25 in the resin component A, when the total amount of PE, EEA and acid-modified PE (that is, the amount of the resin component A is mixed) is 100 parts by mass. It is mass% or more and 70 mass% or less.
The blending of PE improves the oil resistance of the insulating layer of the heat-shrinkable tube and the insulated wire formed from the flame-retardant resin composition. If the PE content is less than 25% by mass, sufficient oil resistance cannot be obtained. On the other hand, when the content ratio of PE exceeds 70% by mass, drip is likely to occur in the flame propagation test, and the tensile elongation and the shrinkage rate of the tube are also likely to be lowered to be insufficient. It is preferably 30% by mass or more and 50% by mass or less, and more excellent oil resistance can be obtained within this range, drip is further suppressed, and tensile elongation and tube shrinkage are also sufficient.

EEAの含有割合は、PE、EEA及び酸変性PEの合計配合量(すなわち樹脂成分Aの配合量)を100質量部としたとき、25質量部以上70質量部以下、すなわち樹脂成分A中の25質量%以上70質量%以下である。
EEAの配合により、火炎伝播性試験においてドリップが抑制される。EEAの代わりに従来技術で用いられているEVAを用いた場合は、ドリップが生じやすい。EVAの場合は、燃焼時にエステル結合が切断された際に水酸基が主鎖に残るために金属水酸化物による樹脂間の凝集力が弱いが、EEAの場合は、燃焼時にエステル結合が切断された際にカルボキシ基が主鎖に残るために金属水酸化物による樹脂間の凝集力が強く、その結果ドリップが抑制されるものと考えられる。
EEAの含有割合が25質量%未満の場合は、充分なドリップ抑制効果が得られない。一方EEAの含有割合が70質量%を超える場合は、耐油性が低下し、チューブの収縮率も不十分なものとなる。好ましくは30質量%以上50質量%以下であり、この範囲内でより優れたドリップ抑制効果が得られ、又耐油性やチューブの収縮率も充分となる。
The content ratio of EEA is 25 parts by mass or more and 70 parts by mass or less, that is, 25 in the resin component A, when the total amount of PE, EEA and acid-modified PE (that is, the amount of the resin component A is mixed) is 100 parts by mass. It is mass% or more and 70 mass% or less.
The EEA formulation suppresses drip in flame propagation tests. When EVA used in the prior art is used instead of EEA, drip is likely to occur. In the case of EVA, the cohesive force between the resins due to the metal hydroxide is weak because the hydroxyl group remains in the main chain when the ester bond is broken during combustion, but in the case of EEA, the ester bond is broken during combustion. It is considered that the carboxy group remains in the main chain, so that the cohesive force between the resins due to the metal hydroxide is strong, and as a result, drip is suppressed.
When the content ratio of EEA is less than 25% by mass, a sufficient drip suppressing effect cannot be obtained. On the other hand, when the content ratio of EEA exceeds 70% by mass, the oil resistance is lowered and the shrinkage rate of the tube is insufficient. It is preferably 30% by mass or more and 50% by mass or less, and a more excellent drip suppressing effect can be obtained within this range, and oil resistance and tube shrinkage are also sufficient.

酸変性PEの含有割合は、PE、EEA及び酸変性PEの合計配合量(すなわち樹脂成分Aの配合量)を100質量部としたとき、5質量部以上35質量部以下、すなわち樹脂成分A中の5質量%以上35質量%以下である。
酸変性PEの配合により、金属水酸化物の分散性が向上し、その結果引張強度、引張伸びが向上する。又、チューブの収縮率も向上する。
酸変性PEの含有割合が5質量%未満の場合、引張強度、引張伸びが低下し、充分な機械的強度(引張特性)が得られない場合がある。又チューブの収縮率も不十分なものとなる。一方、酸変性PEの含有割合が35質量%を超える場合は、火炎伝播性試験においてドリップが生じやすくなり、又耐油性も低下し不充分となりやすい。好ましくは10質量%以上30質量%以下であり、この範囲内でより優れた引張強度、引張伸び、チューブの収縮率が得られ、火炎伝播性試験でのドリップも抑制され充分な耐油性も得られる。
The content ratio of the acid-modified PE is 5 parts by mass or more and 35 parts by mass or less, that is, in the resin component A, when the total amount of PE, EEA and the acid-modified PE (that is, the amount of the resin component A) is 100 parts by mass. It is 5% by mass or more and 35% by mass or less.
By blending the acid-modified PE, the dispersibility of the metal hydroxide is improved, and as a result, the tensile strength and the tensile elongation are improved. Also, the shrinkage rate of the tube is improved.
If the content ratio of the acid-modified PE is less than 5% by mass, the tensile strength and tensile elongation may decrease, and sufficient mechanical strength (tensile characteristics) may not be obtained. Also, the shrinkage rate of the tube becomes insufficient. On the other hand, when the content ratio of the acid-modified PE exceeds 35% by mass, drip is likely to occur in the flame propagation test, and the oil resistance is also lowered, which is likely to be insufficient. It is preferably 10% by mass or more and 30% by mass or less, and more excellent tensile strength, tensile elongation, and tube shrinkage can be obtained within this range, drip in the flame propagation test is suppressed, and sufficient oil resistance is also obtained. Be done.

金属水酸化物は、前記樹脂成分Aの配合量(すなわちPE、EEA及び酸変性PEの配合量の合計)100質量部に対し、100質量部以上200質量部以下配合される。金属水酸化物は、酸素指数や火炎伝播指数等で表される難燃性を向上させ、鉄道車両、自動車等の内部配線に使用される車載用絶縁電線についての各種の規格を満たす難燃性を達成するために配合される。
金属水酸化物の配合量が、樹脂成分Aの100質量部に対し、100質量部未満の場合は、火炎伝播指数が高くなり、又酸素指数等が不充分となり、車載用絶縁電線についての各種の規格を満たす難燃性が得られにくくなる。
一方、金属水酸化物の配合量が200質量部を超える場合は、引張強度、引張伸びが低下して不十分なものとなり、又チューブの収縮率も低下して不十分となりやすい。
The metal hydroxide is blended in an amount of 100 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the resin component A (that is, the total amount of PE, EEA and acid-modified PE). Metal hydroxides improve flame retardancy represented by oxygen index, flame propagation index, etc., and meet various standards for in-vehicle insulated wires used for internal wiring of railway vehicles, automobiles, etc. Formulated to achieve.
When the blending amount of the metal hydroxide is less than 100 parts by mass with respect to 100 parts by mass of the resin component A, the flame propagation index becomes high, the oxygen index, etc. becomes insufficient, and various types of insulating electric wires for vehicles are used. It becomes difficult to obtain flame retardancy that meets the above standards.
On the other hand, when the blending amount of the metal hydroxide exceeds 200 parts by mass, the tensile strength and the tensile elongation are lowered to be insufficient, and the shrinkage rate of the tube is also lowered to be insufficient.

シリコーンは、前記樹脂成分Aの配合量(すなわちPE、EEA及び酸変性PEの配合量の合計)100質量部に対し、1質量部以上8質量部以下配合される。
シリコーンは、酸素指数等で表される難燃性を向上させるために配合されるが、シリコーンの配合量が、樹脂成分Aの100質量部に対し、1質量部未満の場合は、酸素指数が低下し難燃性が不充分なものとなる。一方8質量部を超える場合は、押出加工性が低下し、チューブ状に押出成形する際にチューブ径が不安定となり充分な寸法安定性が得られない。
The silicone is blended in an amount of 1 part by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the resin component A (that is, the total amount of PE, EEA and acid-modified PE).
Silicone is blended to improve the flame retardancy represented by the oxygen index or the like, but when the blending amount of silicone is less than 1 part by mass with respect to 100 parts by mass of the resin component A, the oxygen index is high. It decreases and the flame retardancy becomes insufficient. On the other hand, if it exceeds 8 parts by mass, the extrusion processability is lowered, and the tube diameter becomes unstable when extrusion molding into a tube shape, so that sufficient dimensional stability cannot be obtained.

本態様の難燃性樹脂組成物は、前記の必須の成分及び任意に配合される成分を、公知の方法で、公知の混合機、混錬機を用いて混合することにより得ることができる。 The flame-retardant resin composition of this embodiment can be obtained by mixing the above-mentioned essential components and optionally blended components by a known method using a known mixer and kneader.

本態様の難燃性樹脂組成物は、ハロゲンフリーであって、高い酸素指数、小さな火炎伝播指数、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有し、押出加工性に優れるとともに、機械的強度、耐油性及び収縮率が優れた熱収縮チューブを形成できる難燃性樹脂組成物である。 The flame-retardant resin composition of this embodiment is halogen-free, has a high oxygen index, a small flame propagation index, and has excellent flame retardancy with no drip (drop) of combustibles during combustion, and is extruded. It is a flame-retardant resin composition capable of forming a heat-shrinkable tube having excellent properties, mechanical strength, oil resistance, and shrinkage rate.

本開示の第2の態様は
第1の態様の難燃性樹脂組成物をチューブ状に成形した成形品であって、前記成形品を拡径することにより熱収縮性が付与されている難燃性熱収縮チューブである。
The second aspect of the present disclosure is a molded product obtained by molding the flame-retardant resin composition of the first aspect into a tube shape, and the flame-retardant property is imparted by expanding the diameter of the molded product. It is a heat-shrinkable tube.

本態様の難燃性熱収縮チューブは、第1の態様の難燃性樹脂組成物をチューブ状に成形する工程(成形工程)、成形工程で得られた樹脂チューブ(成形品)を径方向に膨張させる工程(拡径工程)を有する方法により製造することができる。成形工程は押出成形により行うことができるが、この押出成形は、従来の熱収縮チューブを作製する際に通常使用される公知の方法と同様にして行うことができる。 The flame-retardant heat-shrinkable tube of the present embodiment is a step of molding the flame-retardant resin composition of the first aspect into a tube shape (molding step), and a resin tube (molded product) obtained in the molding step in the radial direction. It can be manufactured by a method having a step of expanding (diameter expanding step). The molding step can be carried out by extrusion molding, which can be carried out in the same manner as a known method usually used when producing a conventional heat-shrinkable tube.

好ましくは、前記拡径工程の前に、樹脂を架橋する架橋工程が行われる。樹脂を架橋することにより、熱収縮チューブとしての収縮特性がより発現される。樹脂を架橋する方法としては、樹脂に放射線を照射する方法(樹脂の照射架橋)が好ましい。放射線の照射により樹脂材料を架橋した後は成形が困難になるので、放射線の照射(架橋工程)は押出成形(成形工程)後に行われる。押出成形後に放射線の照射を行うことにより、成形が容易であり、かつ放射線の照射による効果を充分に得ることができる。 Preferably, a cross-linking step of cross-linking the resin is performed before the diameter-expanding step. By cross-linking the resin, the shrinkage characteristics as a heat-shrinkable tube are more exhibited. As a method for cross-linking the resin, a method of irradiating the resin with radiation (irradiation cross-linking of the resin) is preferable. Since molding becomes difficult after the resin material is crosslinked by irradiation with radiation, irradiation with radiation (crosslinking step) is performed after extrusion molding (molding step). By irradiating radiation after extrusion molding, molding is easy and the effect of irradiation with radiation can be sufficiently obtained.

樹脂の照射架橋に使用される放射線としては、X線、γ線等の高エネルギー電磁波、電子線等の粒子線を挙げることができる。電子線発生装置はランニングコストが低く、又大出力の電子線が得られ、制御も容易であるので、放射線の中では電子線が好ましく用いられる。 Examples of the radiation used for irradiation cross-linking of the resin include high-energy electromagnetic waves such as X-rays and γ-rays, and particle beams such as electron beams. Since the electron beam generator has a low running cost, can obtain a high output electron beam, and is easy to control, the electron beam is preferably used in radiation.

放射線照射量は、特に限定されないが、放射線照射量が多すぎるときは分解反応が架橋反応に対して優勢となり逆に架橋度が低下し又強度が低下する場合がある。一方、放射線照射量が少なすぎるときは、熱収縮チューブとしての収縮特性を充分に発現させるために必要な架橋度が得られない場合がある。そこで、収縮特性が充分に発現する範囲で、なるべく小さい放射線照射量を選択することが好ましく、通常は10kGy〜300kGyの範囲が好ましい。 The irradiation amount is not particularly limited, but when the irradiation amount is too large, the decomposition reaction becomes dominant over the cross-linking reaction, and conversely, the degree of cross-linking may decrease and the intensity may decrease. On the other hand, when the irradiation amount is too small, the degree of cross-linking required to sufficiently exhibit the shrinkage characteristics of the heat-shrinkable tube may not be obtained. Therefore, it is preferable to select a radiation irradiation amount as small as possible within the range in which the contraction characteristics are sufficiently exhibited, and usually, the range of 10 kGy to 300 kGy is preferable.

架橋されたチューブ状成形体の拡径の方法としては、従来の熱収縮チューブの作製に通常使用されている公知の拡径方法を用いることができる。例えば、樹脂チューブを融点以上の温度に加熱した後、内圧(チューブ内の圧力)を加えてチューブを膨張し、その後冷却する方法を挙げることができる。 As a method for expanding the diameter of the crosslinked tubular molded product, a known diameter-expanding method usually used for producing a conventional heat-shrinkable tube can be used. For example, a method may be mentioned in which a resin tube is heated to a temperature equal to or higher than the melting point, an internal pressure (pressure inside the tube) is applied to expand the tube, and then the tube is cooled.

本開示の第2の態様の難燃性熱収縮チューブは、ハロゲンフリーであり、高い酸素指数、小さな火炎伝播指数、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有するとともに、機械的強度、耐油性及び収縮率に優れる熱収縮チューブである。 The flame-retardant heat-shrink tubing of the second aspect of the present disclosure is halogen-free and has excellent flame retardancy with a high oxygen index, a small flame propagation index, and no drip of combustibles during combustion. At the same time, it is a heat-shrinkable tube having excellent mechanical strength, oil resistance and shrinkage rate.

本開示の第3の態様は、導体と前記導体を被覆する絶縁層を有する絶縁電線であって、前記絶縁層が、第1の態様の難燃性樹脂組成物からなる難燃性絶縁電線である。 A third aspect of the present disclosure is an insulated wire having a conductor and an insulating layer covering the conductor, wherein the insulating layer is a flame-retardant insulated wire made of the flame-retardant resin composition of the first aspect. is there.

導体とは、銅等の導電体からなる線である。本態様の難燃性絶縁電線の絶縁層を形成する方法としては、導体上に第1の態様の難燃性樹脂組成物を押出被覆する方法等を挙げることができる。鉄道車両、自動車の内部配線では、使用中に高温にさらされることもあるため、難燃性樹脂組成物を押出被覆した後に電子線照射等を行って架橋させ、高温時の変形等を抑えることが好ましい。又、絶縁層は、第2の態様の難燃性熱収縮チューブにより導体を被覆して熱収縮させる方法によっても形成できる。 A conductor is a wire made of a conductor such as copper. Examples of the method for forming the insulating layer of the flame-retardant insulated electric wire of the present embodiment include a method of extrusion-coating the flame-retardant resin composition of the first aspect on a conductor. Since the internal wiring of railway vehicles and automobiles may be exposed to high temperatures during use, the flame-retardant resin composition should be extruded and coated, and then cross-linked by irradiating with electron beams to suppress deformation at high temperatures. Is preferable. The insulating layer can also be formed by a method of coating the conductor with the flame-retardant heat-shrinkable tube of the second aspect and heat-shrinking it.

本開示の第3の難燃性絶縁電線は、ハロゲンフリーであり、高い酸素指数、小さな火炎伝播指数、燃焼時に燃焼物のドリップ(落下)がないとの優れた難燃性を有するとともに、機械的強度及び耐油性に優れる絶縁層により導体が被覆された絶縁電線である。従って、鉄道車両、自動車等の内部配線等に好適に使用できる。 The third flame-retardant insulated wire of the present disclosure is halogen-free, has a high oxygen index, a small flame propagation index, excellent flame retardancy with no drip of combustibles during combustion, and a machine. It is an insulated wire whose conductor is coated with an insulating layer having excellent strength and oil resistance. Therefore, it can be suitably used for internal wiring of railway vehicles, automobiles, and the like.

実施例1〜15及び比較例1〜11
(使用材料)
・高密度ポリエチレン:ノバテックHD320、三菱ケミカル社製、メルトフローレート=0.3、Mw/Mn=44、密度0.947g/mL、表中では「HDPE」と表す。
・中密度ポリエチレン:ノバテックSD911、三菱ケミカル社製、メルトフローレート=0.1、Mw/Mn=38、密度0.937g/mL、表中では「MDPE」と表す。
・直鎖状低密度ポリエチレン:DFDJ7540、NUC社製、メルトフローレート=0.8、Mw/Mn=10、密度0.920g/mL、表中では「LLDPE」と表す。
・EEA:レクスパールA4250、三菱ケミカル社製、EA量25wt%、メルトフローレート=5、密度0.934g/mL、表中では「EEA」と表す。
・EVA:エバフレックスEV360、三井デュポンポリケミカル社製、VA量25wt%、メルトフローレート=2、密度0.94g/mL、表中では「EVA」と表す。
・酸変性PE:タフマーMH5020、密度0.860g/mLの酸変性VLDPE、表中では「酸変性PE」と表す。
・水酸化マグネシウム:キスマ5L(協和化学社製)
・水酸化アルミニウム:ハイジライトH42STM(昭和電工社製)
・酸化防止剤:イルガノックス1010(BASFジャパン社製)
・滑剤:ステアリン酸亜鉛
・ビニル変性シリコーン:TEGOMER V−Si4042(EVONIK社製)
・アルキル変性シリコーン:TSF4421(モメンティブ・パフォーマンス・マテリアルズ社製)
Examples 1 to 15 and Comparative Examples 1 to 11
(Material used)
-High-density polyethylene: Novatec HD320, manufactured by Mitsubishi Chemical Corporation, melt flow rate = 0.3, Mw / Mn = 44, density 0.947 g / mL, represented by "HDPE" in the table.
-Medium density polyethylene: Novatec SD911, manufactured by Mitsubishi Chemical Corporation, melt flow rate = 0.1, Mw / Mn = 38, density 0.937 g / mL, represented by "MDPE" in the table.
Linear low density polyethylene: DFDJ7540, manufactured by NUC, melt flow rate = 0.8, Mw / Mn = 10, density 0.920 g / mL, represented by "LLDPE" in the table.
-EEA: Lexpearl A4250, manufactured by Mitsubishi Chemical Corporation, EA amount 25 wt%, melt flow rate = 5, density 0.934 g / mL, expressed as "EEA" in the table.
-EVA: EVAflex EV360, manufactured by Mitsui DuPont Polychemical Co., Ltd., VA amount 25 wt%, melt flow rate = 2, density 0.94 g / mL, represented by "EVA" in the table.
-Acid-modified PE: Toughmer MH5020, acid-modified VLDPE with a density of 0.860 g / mL, represented as "acid-modified PE" in the table.
・ Magnesium hydroxide: Kisuma 5L (manufactured by Kyowa Chemical Industry Co., Ltd.)
-Aluminum hydroxide: Heidilite H42STM (manufactured by Showa Denko)
-Antioxidant: Irganox 1010 (manufactured by BASF Japan Ltd.)
-Lidant: Zinc stearate / Vinyl-modified silicone: TEGOMER V-Si4042 (manufactured by EVONIK)
-Alkyl-modified silicone: TSF4421 (manufactured by Momentive Performance Materials)

前記の使用材料を、表1〜5に示す配合(質量比)で、オープンロールにて180℃で混練した後、ペレタイザによってペレット状にした。その後、50mmφ押出機にて、内径3mmφ、外径4mmφ(肉厚0.5mm)のチューブ形状に押出した。得られたチューブに60kGyの電子線を照射した後、150℃でチューブ内に空気を吹き込み加圧して外径6mmφになるまで径方向に膨張させてチューブ状成形体を得た。 The materials used were kneaded in an open roll at 180 ° C. with the formulations (mass ratio) shown in Tables 1 to 5, and then pelletized by a pelletizer. Then, it was extruded into a tube shape having an inner diameter of 3 mmφ and an outer diameter of 4 mmφ (thickness 0.5 mm) with a 50 mmφ extruder. After irradiating the obtained tube with an electron beam of 60 kGy, air was blown into the tube at 150 ° C. to pressurize the tube and expand it in the radial direction until the outer diameter became 6 mmφ to obtain a tubular molded product.

得られたチューブについて、押出加工性、酸素指数(難燃性)、火炎伝播性(火炎伝播指数及びドリップの有無)、引張強度、引張伸び、耐油性、拡径させたチューブの収縮率の評価を行った。評価方法は下記の通りである。 Evaluation of extrusion processability, oxygen index (flame retardancy), flame propagation property (flame propagation index and presence / absence of drip), tensile strength, tensile elongation, oil resistance, and shrinkage rate of expanded tube for the obtained tube. Was done. The evaluation method is as follows.

(押出加工性)
レーザー式外径測定器にて外径変動幅を測定し、外径変動幅が設計値±10%以内の場合を合格とした。
(Extrusion workability)
The outer diameter fluctuation width was measured with a laser outer diameter measuring device, and the case where the outer diameter fluctuation width was within ± 10% of the design value was regarded as acceptable.

(酸素指数)
酸素指数とは、材料の燃焼持続に必要な最低酸素濃度(容積%、材料の燃焼を維持しうる酸素と窒素の混合物における酸素の最低濃度)を示し、JIS K 7201:2007に規格化されており、材料の燃えやすさの指標となる。実施例、比較例では、酸素指数を、JIS K 7201:2007(酸素指数法による高分子材料の燃焼試験方法)に準じて測定した。高難燃材料としては一般的には酸素指数30以上が望まれており、特に鉄道車両用客室用材料規格BS6853では、酸素指数34以上の規格が設けられているので、酸素指数34以上が合格と判定される。
(Oxygen index)
The oxygen index indicates the minimum oxygen concentration (volume%, minimum oxygen concentration in a mixture of oxygen and nitrogen that can maintain the combustion of the material) required to sustain the combustion of the material, and is standardized in JIS K 7201: 2007. It is an indicator of the flammability of the material. In Examples and Comparative Examples, the oxygen index was measured according to JIS K 7201: 2007 (combustion test method for polymer materials by the oxygen index method). As a high flame retardant material, an oxygen index of 30 or more is generally desired. In particular, the BS6853 material standard for passenger cabins for railway vehicles has an oxygen index of 34 or more, so an oxygen index of 34 or more is passed. Is determined.

(火炎伝播性試験)
ASTM E162:2016(輻射熱エネルギー源による材料の表面燃焼性)に準じて行った。具体的には、サイズ152mm×457mmのサンプルを6枚使用して次の試験を行った。
垂直に設置されたラジアントパネル(輻射板)に対してサンプルを30°傾斜させてセットし、輻射板をあらかじめ670℃まで加熱し、サンプル上部にあるパイロットフレームを使用してサンプルに着火させる。着火後炎は、サンプルの表面を下方へ拡がるが、ラジアントパネルからの輻射熱が除々に減少し、炎の伝播を継続出来なくなる点まで進行する。サンプルの表面を炎が伝わっていく速度(炎拡散係数:Fs)と、装置の上部にある排気管の熱放出係数(Q)を求め、下式より火炎伝播指数Isを求めた。
Is=Fs×Q
炎の伝播中の燃焼物の落下(ドリップ)の有無を目視により観察した。
火炎伝播指数Isが35以下でかつ燃焼物の落下(ドリップ)がない場合を合格と判定した。
(Flame propagation test)
This was done according to ASTM E162: 2016 (Surface flammability of material by radiant heat energy source). Specifically, the following test was performed using six samples having a size of 152 mm × 457 mm.
The sample is set at an angle of 30 ° with respect to a vertically installed radiant panel (radiant plate), the radiant plate is preheated to 670 ° C., and the sample is ignited using the pilot frame at the top of the sample. After ignition, the flame spreads downward on the surface of the sample, but progresses to the point where the radiant heat from the radiant panel gradually decreases and the flame cannot continue to propagate. The speed at which the flame propagated on the surface of the sample (flame diffusion coefficient: Fs) and the heat release coefficient (Q) of the exhaust pipe at the top of the device were obtained, and the flame propagation index Is was obtained from the following equation.
Is = Fs × Q
The presence or absence of falling (drip) of combustibles during flame propagation was visually observed.
When the flame propagation index Is was 35 or less and there was no drip of combustibles, it was judged to be acceptable.

(引張強度、引張伸び)
長さ120mmのチューブを切り取り、引張速度500mm/分で引張強度(破断時の強度)と引張伸び(破断時の伸び)を測定した。引張強度が7.0MPa以上、引張伸びが200%以上が合格と判定される。
(Tensile strength, tensile elongation)
A tube having a length of 120 mm was cut out, and tensile strength (strength at break) and tensile elongation (elongation at break) were measured at a tensile speed of 500 mm / min. If the tensile strength is 7.0 MPa or more and the tensile elongation is 200% or more, it is judged to be acceptable.

(耐油性)
軽油に70℃で168時間浸漬後、引張強さ、引張伸びを測定して、浸漬後の引張強さが4.9MPa以上でかつ引張伸びが120%以上の場合を合格と判定した。
(Oil resistance)
After immersing in light oil at 70 ° C. for 168 hours, the tensile strength and tensile elongation were measured, and the case where the tensile strength after immersion was 4.9 MPa or more and the tensile elongation was 120% or more was judged to be acceptable.

(チューブの収縮率)
拡径前のチューブ内径、収縮前のチューブ内径、収縮後のチューブ内径を測定した。チューブの収縮率とは、次式により計算される値(%)である。
{[(収縮前のチューブ内径)−(収縮後のチューブ内径)]/[(収縮前のチューブ内径)−(拡径前のチューブ内径)]}×100
(Tube shrinkage rate)
The inner diameter of the tube before expansion, the inner diameter of the tube before shrinkage, and the inner diameter of the tube after shrinkage were measured. The shrinkage rate of the tube is a value (%) calculated by the following equation.
{[(Inner diameter of tube before contraction)-(Inner diameter of tube after contraction)] / [(Inner diameter of tube before contraction)-(Inner diameter of tube before expansion)]} x 100

Figure 2019189469
Figure 2019189469

Figure 2019189469
Figure 2019189469

Figure 2019189469
Figure 2019189469

Figure 2019189469
Figure 2019189469

Figure 2019189469
Figure 2019189469

前記表1〜5に示された評価結果より、
樹脂成分中のPEの含有割合が25質量%以上70質量%以下、EEAの含有割合が25質量%以上70質量%以下及び酸変性PEの含有割合が5質量%以上35質量%以下であり、前記樹脂成分100質量部に対し、前記金属水酸化物の配合量が100質量部以上200質量部以下であり、かつ前記シリコーンの配合量が1質量部以上8質量部以下である(第1の態様の範囲内の組成である)実施例1〜15の難燃性樹脂組成物は、押出成形時の寸法の安定性(押出加工性)が合格であること、この樹脂組成物より得られる難燃性熱収縮チューブは、酸素指数、火炎伝播指数も合格基準以上であり、燃焼時に燃焼物のドリップ(落下)もなく優れた難燃性を有していること、機械的強度、耐油性及び収縮率も優れていることが示されている。
From the evaluation results shown in Tables 1 to 5 above,
The content ratio of PE in the resin component is 25% by mass or more and 70% by mass or less, the content ratio of EEA is 25% by mass or more and 70% by mass or less, and the content ratio of acid-modified PE is 5% by mass or more and 35% by mass or less. The amount of the metal hydroxide compounded is 100 parts by mass or more and 200 parts by mass or less, and the amount of the silicone compounded is 1 part by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the resin component (first). The flame-retardant resin compositions of Examples 1 to 15 (which have a composition within the range of aspects) have passed the dimensional stability (extrusion processability) at the time of extrusion molding, and the difficulty obtained from this resin composition. The flammable heat-shrinkable tube has an oxygen index and a flame propagation index that are above the acceptance criteria, has excellent flame retardancy without drip (drop) of combustibles during combustion, mechanical strength, oil resistance, and It has also been shown to have excellent shrinkage.

一方、PEの含有割合が25質量%未満である比較例1では、耐油性が不合格である。又PEの含有割合が70質量%を超える比較例7では、火炎伝播性試験においてドリップを生じ、火炎伝播性試験は不合格と判定される。そして、引張伸びも合格基準の200%以上よりはるかに低い80%であり、チューブの収縮率も合格基準の90%以上に対し78%であり、ともに不充分な結果となっている。 On the other hand, in Comparative Example 1 in which the PE content is less than 25% by mass, the oil resistance is unacceptable. Further, in Comparative Example 7 in which the PE content exceeds 70% by mass, drip occurs in the flame propagating test, and the flame propagating test is determined to be unacceptable. The tensile elongation is 80%, which is much lower than the acceptance standard of 200% or more, and the shrinkage rate of the tube is 78% of the acceptance standard of 90% or more, both of which are insufficient results.

EEAの含有割合が25質量%未満である比較例2では、火炎伝播性試験においてドリップを生じ、火炎伝播性試験は不合格と判定される。一方EEAの含有割合が70質量%を超える比較例8では、耐油性の判定が不合格であり、又、チューブの収縮率も合格基準の90%以上に対し83%であり不充分な結果となっている。
なお、EEAの代わりにEVAを50質量%配合した以外は実施例1と同様である比較例3では、火炎伝播性試験においてドリップを生じ、火炎伝播性試験は不合格と判定される。
In Comparative Example 2 in which the content ratio of EEA is less than 25% by mass, drip occurs in the flame propagation test, and the flame transmission test is determined to be unacceptable. On the other hand, in Comparative Example 8 in which the content ratio of EEA exceeds 70% by mass, the judgment of oil resistance is unacceptable, and the shrinkage rate of the tube is 83%, which is 83% of the acceptance standard of 90% or more, which is an insufficient result. It has become.
In Comparative Example 3, which is the same as in Example 1 except that EVA is blended in an amount of 50% by mass instead of EEA, drip occurs in the flame propagation test, and the flame propagation test is determined to be unacceptable.

酸変性PEの含有割合が5質量%未満である比較例6では、引張強度、引張伸びが合格基準の値より低く、充分な機械的強度(引張特性)が得られていない。又、チューブの収縮率も合格基準の90%以上に対し73%であり不充分な結果となっている。一方、酸変性PEの含有割合が35質量%を超える比較例2では、火炎伝播性試験においてドリップを生じており、比較例9では、耐油性が不合格と判定されている。 In Comparative Example 6 in which the content ratio of the acid-modified PE is less than 5% by mass, the tensile strength and the tensile elongation are lower than the values of the acceptance criteria, and sufficient mechanical strength (tensile characteristics) is not obtained. In addition, the shrinkage rate of the tube is 73%, which is insufficient compared to 90% or more of the acceptance standard. On the other hand, in Comparative Example 2 in which the content ratio of the acid-modified PE exceeds 35% by mass, drip occurs in the flame propagation test, and in Comparative Example 9, the oil resistance is determined to be unacceptable.

金属水酸化物の含有量が、前記樹脂成分100質量部に対し100質量部未満である比較例10では、火炎伝播指数が合格基準を超えており火炎伝播性試験は不合格と判定され、又酸素指数は合格基準未満であり、車載用絶縁電線についての各種の規格を満たす難燃性は得られていない。一方、金属水酸化物の含有量が200質量部を超える比較例11は、引張強度、引張伸びが合格基準の値より低く、又チューブの収縮率も合格基準の90%より低く不十分である。 In Comparative Example 10 in which the content of the metal hydroxide is less than 100 parts by mass with respect to 100 parts by mass of the resin component, the flame propagation index exceeds the acceptance standard, and the flame propagation test is determined to be unacceptable. The oxygen index is less than the acceptance standard, and flame retardancy that meets various standards for in-vehicle insulated wires has not been obtained. On the other hand, in Comparative Example 11 in which the content of the metal hydroxide exceeds 200 parts by mass, the tensile strength and tensile elongation are lower than the values of the acceptance standard, and the shrinkage rate of the tube is also lower than 90% of the acceptance standard, which is insufficient. ..

シリコーンの含有量が、前記樹脂成分100質量部に対し1質量部未満である比較例4は、酸素指数は合格基準未満であり、車載用絶縁電線についての各種の規格を満たす難燃性は得られていない。一方シリコーン(ビニル変性シリコーン)の含有量が8質量部を超える比較例5は、押出加工性が低く、チューブ状に押出成形する際に、チューブ系が不安定となり、充分な寸法安定性が得られていない。 In Comparative Example 4 in which the silicone content is less than 1 part by mass with respect to 100 parts by mass of the resin component, the oxygen index is less than the acceptance standard, and flame retardancy satisfying various standards for in-vehicle insulated wires is obtained. Not done. On the other hand, in Comparative Example 5 in which the content of silicone (vinyl-modified silicone) exceeds 8 parts by mass, the extrusion processability is low, and when extrusion molding into a tube shape, the tube system becomes unstable and sufficient dimensional stability is obtained. Not done.

Claims (8)

ポリエチレン、エチレンエチルアクリレート共重合体及び酸変性ポリエチレンからなる樹脂成分A、金属水酸化物、並びにシリコーンを含有する樹脂組成物であって、樹脂成分A中の、ポリエチレンの含有割合が25質量%以上70質量%以下、エチレンエチルアクリレート共重合体の含有割合が25質量%以上70質量%以下、及び酸変性ポリエチレンの含有割合が5質量%以上35質量%以下であり、前記樹脂成分A100質量部に対し、前記金属水酸化物の含有量が100質量部以上200質量部以下であり、かつ前記シリコーンの含有量が1質量部以上8質量部以下である難燃性樹脂組成物。 A resin composition containing a resin component A composed of polyethylene, an ethylene ethyl acrylate copolymer and an acid-modified polyethylene, a metal hydroxide, and silicone, wherein the content ratio of polyethylene in the resin component A is 25% by mass or more. 70% by mass or less, the content ratio of the ethylene ethyl acrylate copolymer is 25% by mass or more and 70% by mass or less, and the content ratio of the acid-modified polyethylene is 5% by mass or more and 35% by mass or less. On the other hand, a flame-retardant resin composition in which the content of the metal hydroxide is 100 parts by mass or more and 200 parts by mass or less, and the content of the silicone is 1 part by mass or more and 8 parts by mass or less. 前記ポリエチレンが、メルトフローレートが0.08以上のポリエチレンである請求項1に記載の難燃性樹脂組成物。 The flame-retardant resin composition according to claim 1, wherein the polyethylene is polyethylene having a melt flow rate of 0.08 or more. 前記ポリエチレンの分子量分布(Mw/Mn)が、8以上である請求項1又は請求項2に記載の難燃性樹脂組成物。 The flame-retardant resin composition according to claim 1 or 2, wherein the polyethylene has a molecular weight distribution (Mw / Mn) of 8 or more. 前記金属水酸化物が、水酸化マグネシウム又は水酸化アルミニウムである請求項1ないし請求項3のいずれか1項に記載の難燃性樹脂組成物。 The flame-retardant resin composition according to any one of claims 1 to 3, wherein the metal hydroxide is magnesium hydroxide or aluminum hydroxide. 前記シリコーンが、変性シリコーンである請求項1ないし請求項4のいずれか1項に記載の難燃性樹脂組成物。 The flame-retardant resin composition according to any one of claims 1 to 4, wherein the silicone is a modified silicone. 前記変性シリコーンが、ビニル変性シリコーン又はアルキル変性シリコーンである請求項5に記載の難燃性樹脂組成物。 The flame-retardant resin composition according to claim 5, wherein the modified silicone is a vinyl-modified silicone or an alkyl-modified silicone. 請求項1から請求項6のいずれか1項に記載の難燃性樹脂組成物をチューブ状に成形した成形品であって、前記成形品を拡径することにより熱収縮性が付与されている難燃性熱収縮チューブ。 A molded product obtained by molding the flame-retardant resin composition according to any one of claims 1 to 6 into a tube shape, and heat shrinkage is imparted by expanding the diameter of the molded product. Flame-retardant heat-shrinkable tube. 導体と前記導体を被覆する絶縁層を有する絶縁電線であって、前記絶縁層が、請求項1から請求項6のいずれか1項に記載の難燃性樹脂組成物からなる難燃性絶縁電線。 An insulated wire having a conductor and an insulating layer covering the conductor, wherein the insulating layer is a flame-retardant insulated wire made of the flame-retardant resin composition according to any one of claims 1 to 6. ..
JP2020509255A 2018-03-28 2019-03-27 Flame retardant resin composition, flame retardant heat shrinkable tube and flame retardant insulated wire Active JP7374079B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/012835 WO2019186784A1 (en) 2018-03-28 2018-03-28 Flame-retardant resin composition, flame-retardant heat shrink tube, and flame-retardant insulated electrical wire
JPPCT/JP2018/012835 2018-03-28
PCT/JP2019/013369 WO2019189469A1 (en) 2018-03-28 2019-03-27 Flame-retardant resin composition, flame-retardant heat shrink tube, and flame-retardant insulated electrical wire

Publications (2)

Publication Number Publication Date
JPWO2019189469A1 true JPWO2019189469A1 (en) 2021-04-01
JP7374079B2 JP7374079B2 (en) 2023-11-06

Family

ID=68061944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020509255A Active JP7374079B2 (en) 2018-03-28 2019-03-27 Flame retardant resin composition, flame retardant heat shrinkable tube and flame retardant insulated wire

Country Status (2)

Country Link
JP (1) JP7374079B2 (en)
WO (2) WO2019186784A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434043B2 (en) * 2020-04-15 2024-02-20 古河電気工業株式会社 Flat electric wire and its manufacturing method, flat electric wire with terminal and wire harness
CN114736450A (en) * 2022-03-10 2022-07-12 金发科技股份有限公司 High-thermal-shrinkage-resistance and high-toughness thermo-oxidative-aging-resistance polyolefin material and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210149A (en) * 1985-07-09 1987-01-19 Nippon Petrochem Co Ltd Composition for flame-retardant electrical material having excellent wear resistance
JPS6211745A (en) * 1985-07-10 1987-01-20 Nippon Petrochem Co Ltd Flame-retardant olefin polymer composition having excellent heat-resistance
JP2001151952A (en) * 1999-11-25 2001-06-05 Fujikura Ltd Nonhalogen flame-retardant resin composition
JP2001335665A (en) * 2000-05-30 2001-12-04 Nippon Unicar Co Ltd Flame-retardant ethylenic resin composition and cable and wire coated therewith
JP2006241182A (en) * 2005-02-28 2006-09-14 Furukawa Electric Co Ltd:The Insulating resin composition and insulated electric wire
JP2010520937A (en) * 2007-03-09 2010-06-17 ダウ グローバル テクノロジーズ インコーポレイティド Stress crack / thermal crack resistant cable sheathing material
WO2014046165A1 (en) * 2012-09-20 2014-03-27 住友電気工業株式会社 Flame-retardant resin composition, flame-retardant heat shrinkable tube and flame-retardant insulated wire
WO2016175076A1 (en) * 2015-04-28 2016-11-03 住友電気工業株式会社 Non-halogen flame-resistant resin composition and insulated electric wire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210149A (en) * 1985-07-09 1987-01-19 Nippon Petrochem Co Ltd Composition for flame-retardant electrical material having excellent wear resistance
JPS6211745A (en) * 1985-07-10 1987-01-20 Nippon Petrochem Co Ltd Flame-retardant olefin polymer composition having excellent heat-resistance
JP2001151952A (en) * 1999-11-25 2001-06-05 Fujikura Ltd Nonhalogen flame-retardant resin composition
JP2001335665A (en) * 2000-05-30 2001-12-04 Nippon Unicar Co Ltd Flame-retardant ethylenic resin composition and cable and wire coated therewith
JP2006241182A (en) * 2005-02-28 2006-09-14 Furukawa Electric Co Ltd:The Insulating resin composition and insulated electric wire
JP2010520937A (en) * 2007-03-09 2010-06-17 ダウ グローバル テクノロジーズ インコーポレイティド Stress crack / thermal crack resistant cable sheathing material
WO2014046165A1 (en) * 2012-09-20 2014-03-27 住友電気工業株式会社 Flame-retardant resin composition, flame-retardant heat shrinkable tube and flame-retardant insulated wire
WO2016175076A1 (en) * 2015-04-28 2016-11-03 住友電気工業株式会社 Non-halogen flame-resistant resin composition and insulated electric wire

Also Published As

Publication number Publication date
WO2019186784A1 (en) 2019-10-03
WO2019189469A1 (en) 2019-10-03
JP7374079B2 (en) 2023-11-06

Similar Documents

Publication Publication Date Title
JP5343327B2 (en) Method for producing flame retardant silane-crosslinked olefin resin, insulated wire and method for producing insulated wire
US7586043B2 (en) Non-halogenous insulated wire and a wiring harness
JP6152110B2 (en) Flame retardant resin composition, flame retardant heat shrinkable tube, and flame retardant insulated wire
CN101341553B (en) Electric cable comprising foaming polyolefin isolator and manufacturing method thereof
EP2684677B1 (en) Advanced halogen free flame retardant composition for heat shrinkable material and method of making the same
JP5733352B2 (en) Insulated electric wire for vehicle and cable for vehicle using non-halogen crosslinkable resin composition
JP6902205B2 (en) cable
JP2014024910A (en) Halogen-free flame-retardant resin composition, insulated electric wire, and cable
JP6407339B2 (en) Heat-resistant silane cross-linked resin molded product and method for producing the same, heat-resistant silane cross-linked resin composition and method for producing the same, and heat-resistant product using heat-resistant silane cross-linked resin molded product
JP4255368B2 (en) Cross-linked flame retardant resin composition, insulated wire and wire harness using the same
WO2016031789A1 (en) Flame-retardant resin composition, cable using same, and optical fiber cable
WO2006057120A1 (en) Nonhalogen electric wire, electric wire bundle, and automobile wire harness
WO2012124589A1 (en) Non-halogen flame-retardant resin composition, and insulating wire and tube in which same is used
JP6344200B2 (en) Flame retardant resin composition and flame retardant insulated wire / cable
JPH0554723A (en) Flame retardant electric insulating composition and flame retardant wire & cable
JP7374079B2 (en) Flame retardant resin composition, flame retardant heat shrinkable tube and flame retardant insulated wire
JP5858351B2 (en) Insulated wires and cables for railway vehicles using halogen-free flame-retardant resin composition
JP2015021058A (en) Flame-retardant resin composition, and flame-retardant article including flame-retardant resin molded body produced by molding the same
JP2012124061A (en) Flame retardant wire/cable
KR101808828B1 (en) Sheath composite for electric cable and elcetric cable using the same
JP2004075993A (en) Flame-retardant resin composition and insulated electric wire coated therewith
JP3953694B2 (en) Insulated wire / cable
JPH07304909A (en) Flame-retardant resin composition, heat-shrinkable tube, and insulated wire
JPH08195127A (en) Insulated electric wire
JP7064697B2 (en) Flame-retardant electrical insulation composition and electric wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231024

R150 Certificate of patent or registration of utility model

Ref document number: 7374079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150