JP2020140840A - Insulated electric wire and cable - Google Patents

Insulated electric wire and cable Download PDF

Info

Publication number
JP2020140840A
JP2020140840A JP2019035062A JP2019035062A JP2020140840A JP 2020140840 A JP2020140840 A JP 2020140840A JP 2019035062 A JP2019035062 A JP 2019035062A JP 2019035062 A JP2019035062 A JP 2019035062A JP 2020140840 A JP2020140840 A JP 2020140840A
Authority
JP
Japan
Prior art keywords
insulated wire
base polymer
ethylene
cable
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019035062A
Other languages
Japanese (ja)
Other versions
JP7159912B2 (en
Inventor
有 木部
Tamotsu Kibe
有 木部
周 岩崎
Shu Iwasaki
周 岩崎
元治 梶山
Motoharu Kajiyama
元治 梶山
橋本 充
Mitsuru Hashimoto
充 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2019035062A priority Critical patent/JP7159912B2/en
Priority to CN202010075770.8A priority patent/CN111621071A/en
Priority to DE102020105177.8A priority patent/DE102020105177A1/en
Publication of JP2020140840A publication Critical patent/JP2020140840A/en
Application granted granted Critical
Publication of JP7159912B2 publication Critical patent/JP7159912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/448Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from other vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Abstract

To provide an insulated electric wire having good flame retardance, oil resistance, fuel resistance and low temperature characteristics, and obtained using a non-halogen resin composition, and a cable.SOLUTION: An insulated electric wire 11 has a conductor 11a, an inner layer 11b and an outer layer 11c, wherein the inner layer is formed of a resin composition including a first base polymer and a filler, and the outer layer is formed of a resin composition including a second base polymer and a metal hydroxide. The second base polymer includes at least two polymers of an ethylene-vinyl acetate copolymer (EVA) having a vinyl acetate content (VA amount) of 60% or more and a polyolefin-based polymer having a melting point of 85°C or higher, the two kinds of polymers account for 80% or more of the second base polymer, and 150-250 pts.wt. of the metal hydroxide is included with respect to 100 pts.wt. of the base polymer.SELECTED DRAWING: Figure 1

Description

本発明は、ノンハロゲン樹脂組成物を用いた絶縁電線およびケーブルに関するものである。 The present invention relates to an insulated electric wire and a cable using a non-halogen resin composition.

近年の環境保全に対する活動の世界的な高まりから、燃焼時に有毒なガスを発生せず、廃棄処分時の環境汚染が少ないノンハロゲン材料の普及が急速に進んできている。

例えば、特許文献1(特開2010−97881号公報)には、導体と、導体を被覆し、エチレンエチルアクリレート共重合体(EEA)を含む絶縁性を有する内層と、内層を被覆し、エチレン酢酸ビニル共重合体(EVA)とノンハロゲン難燃剤とを含み、架橋して耐油性および難燃性を有する外層とを備える絶縁電線が開示されている。
Due to the worldwide increase in environmental conservation activities in recent years, non-halogen materials that do not generate toxic gas during combustion and have less environmental pollution during disposal are rapidly becoming widespread.

For example, in Patent Document 1 (Japanese Unexamined Patent Publication No. 2010-97881), a conductor is coated, an inner layer having an insulating property containing an ethylene ethyl acrylate copolymer (EEA), and an inner layer are coated, and ethylene acetic acid is used. An insulated wire containing a vinyl copolymer (EVA) and a non-halogen flame retardant and provided with an outer layer that is crosslinked and has oil resistance and flame retardancy is disclosed.

しかしながら、ノンハロゲン材料は一般的にハロゲン材料と比較して難燃性に劣るため、高い難燃性を付与するためには難燃剤を高充填する必要がある。例えば、EN45545、NFPA130等の非常に高い難燃性が要求される規格を満たすためには、難燃剤の添加量を200質量部程度、もしくはそれ以上添加する必要がある。このような難燃剤の添加により、難燃性は向上するものの、材料の伸び特性、低温特性等のその他の特性が低下する傾向にある。 However, since non-halogen materials are generally inferior in flame retardancy as compared with halogen materials, it is necessary to highly fill them with a flame retardant in order to impart high flame retardancy. For example, in order to satisfy the standards requiring very high flame retardancy such as EN455545 and NFPA130, it is necessary to add about 200 parts by mass or more of the flame retardant. By adding such a flame retardant, the flame retardancy is improved, but other properties such as elongation property and low temperature property of the material tend to be deteriorated.

また、金属水酸化物等の難燃剤は吸湿性が高いため、多量に添加することで電気特性が低下し、必要な絶縁性能を維持することが困難な場合がある。 Further, since a flame retardant such as a metal hydroxide has high hygroscopicity, it may be difficult to maintain the required insulation performance due to deterioration of electrical characteristics when a large amount is added.

一方、鉄道車両等に使用される絶縁電線およびケーブルは、高い難燃性、電気絶縁性に加え、使用される環境に応じて、耐燃料性等も要求される。例えばEN60811−2−1に規定されている耐燃料試験では、70℃においてIRM903油に材料を浸漬し、材料の引張強さ、伸びの変化率を測定する。 On the other hand, insulated electric wires and cables used in railway vehicles and the like are required to have high flame retardancy, electrical insulation, and fuel resistance depending on the environment in which they are used. For example, in the fuel resistance test specified in EN60811-2-1, the material is immersed in IRM903 oil at 70 ° C., and the rate of change in tensile strength and elongation of the material is measured.

高い難燃性、電気絶縁性および耐燃料性を両立する方法として、外層を難燃性、耐燃料性の高い層とし、内層を電気絶縁性の高い層とする方法が考えられる。 As a method of achieving both high flame retardancy, electrical insulation and fuel resistance, a method in which the outer layer is a layer having high flame retardancy and fuel resistance and the inner layer is a layer having high electrical insulation is conceivable.

特開2010−97881号公報JP-A-2010-97881

本発明者は、ケーブルの外被層や電線の絶縁層のような被覆材の研究・開発に従事しており、被覆材であるポリマとして、ノンハロゲン材料を用い、難燃性の他、耐油性、耐燃料性、低温特性などが良好な樹脂組成物を検討している。 The present inventor is engaged in research and development of coating materials such as the outer layer of cables and the insulating layer of electric wires, and uses a non-halogen material as the polymer as the coating material, which is flame-retardant and oil-resistant. , We are studying resin compositions with good fuel resistance and low temperature characteristics.

特に、鉄道車両等に使用される絶縁電線およびケーブルは、高い難燃性、電気絶縁性に加え、使用される環境に応じて、耐燃料特性等も要求されている。 In particular, insulated electric wires and cables used for railway vehicles and the like are required to have high flame retardancy and electrical insulation, as well as fuel resistance characteristics depending on the environment in which they are used.

耐燃料性を向上させるためには、試験温度である70℃で溶融しないポリマを使用するか、IRM903油と相溶しにくいポリマを使用することが有効である。前者のポリマを使用することは、耐燃料性の向上に効果はあるが、難燃剤等の添加に伴う伸び特性等の低下が顕著であり、EN45545、NFPA130等の非常に高い難燃性が要求される場合は、難燃性と伸び特性等の諸物性との両立が困難である。 In order to improve the fuel resistance, it is effective to use a polymer that does not melt at the test temperature of 70 ° C. or a polymer that is difficult to be compatible with IRM903 oil. The use of the former polymer is effective in improving fuel resistance, but the elongation characteristics and the like are significantly reduced due to the addition of flame retardants, etc., and extremely high flame retardancy such as EN45545 and NFPA130 is required. If this is the case, it is difficult to achieve both flame retardancy and various physical properties such as elongation characteristics.

後者のIRM903油と相溶しないポリマとしては、ポリマの極性の高いものが有効である。但し、融点の高いものは前述のとおり、難燃性と伸び特性等の諸物性との両立が困難である。低融点であり、極性の高いポリマとしては、高VA量のEVA、高EA量のEEA等が挙げられ、市場での入手性も考慮すると多くのグレードが上市されている高VAのEVAが適している。ただし、高VAのEVAは一般的に引張強さが乏しく、またポリマ同士の融着も激しく、単独の使用には適していない。 As the latter polymer that is incompatible with IRM903 oil, a polymer having a high polarity is effective. However, as described above, it is difficult for a product having a high melting point to have both flame retardancy and various physical properties such as elongation characteristics. Examples of polymers having a low melting point and high polarity include EVA having a high VA amount and EEA having a high EA amount. Considering availability in the market, high VA EVA having many grades on the market is suitable. ing. However, high VA EVA generally has poor tensile strength and severe fusion between polymers, so that it is not suitable for single use.

本発明は、上記課題に鑑みて成されたものであり、難燃性、耐油性、耐燃料性、低温特性が良好な、ノンハロゲン樹脂組成物を用いた絶縁電線およびケーブルを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an insulated wire and cable using a non-halogen resin composition having good flame retardancy, oil resistance, fuel resistance, and low temperature characteristics. And.

(1)本発明の一態様の絶縁電線は、導体と、前記導体を被覆する第1絶縁層と、前記第1絶縁層を被覆する第2絶縁層と、を有する絶縁電線であって、前記第1絶縁層は、第1ベースポリマと、充填剤とを含む第1ノンハロゲン樹脂組成物よりなり、前記第2絶縁層が、第2ベースポリマと、金属水酸化物とを含む第2ノンハロゲン樹脂組成物よりなり、前記第2ベースポリマは、酢酸ビニル含有量(VA量)が60%以上であるエチレン−酢酸ビニル共重合体(EVA)および融点が85℃以上であるポリオレフィン系ポリマの少なくとも2種のポリマを含み、前記2種のポリマが第2ベースポリマの80%以上を占め、前記金属水酸化物は、ベースポリマ100重量部に対して150〜250重量部の割合で含まれる。 (1) The insulated wire according to one aspect of the present invention is an insulated wire having a conductor, a first insulating layer covering the conductor, and a second insulating layer covering the first insulating layer. The first insulating layer comprises a first non-halogen resin composition containing a first base polymer and a filler, and the second insulating layer is a second non-halogen resin containing a second base polymer and a metal hydroxide. The second base polymer comprises at least 2 of an ethylene-vinyl acetate copolymer (EVA) having a vinyl acetate content (VA content) of 60% or more and a polyolefin polymer having a melting point of 85 ° C. or higher. The two types of polymers account for 80% or more of the second base polymer, and the metal hydroxide is contained in a ratio of 150 to 250 parts by weight with respect to 100 parts by weight of the base polymer.

(2)例えば、前記第1ベースポリマは、融点110℃以上のポリエチレンを50%以上含み、前記充填剤は、ベースポリマ100重量部に対して150重量部以下の割合で含まれる。 (2) For example, the first base polymer contains 50% or more of polyethylene having a melting point of 110 ° C. or higher, and the filler is contained in a ratio of 150 parts by weight or less with respect to 100 parts by weight of the base polymer.

(3)例えば、前記充填剤は、焼成クレーまたはタルクである。 (3) For example, the filler is calcined clay or talc.

(4)例えば、架橋後の引張強さが10MPa以上、かつ伸びが150%以上であり、IRM903油に、70℃で、168時間浸漬した後の引張強さ変化率が±30%以内、かつ伸び変化率が±40%以内である。 (4) For example, the tensile strength after cross-linking is 10 MPa or more and the elongation is 150% or more, and the rate of change in tensile strength after immersion in IRM903 oil at 70 ° C. for 168 hours is within ± 30%. The rate of change in elongation is within ± 40%.

(5)例えば、前記第1ベースポリマに、酸変性されたポリオレフィンが混合されている。 (5) For example, an acid-modified polyolefin is mixed with the first base polymer.

(6)例えば、前記第2ベースポリマに、酸変性されたポリオレフィンが混合され、前記酸変性されたポリオレフィンのガラス転移温度(Tg)が−55℃以下であり、前記2種のポリマと、前記酸変性されたポリオレフィンとの質量比が80:20〜99:1である。 (6) For example, the acid-modified polyolefin is mixed with the second base polymer, and the glass transition temperature (Tg) of the acid-modified polyolefin is −55 ° C. or lower, and the two types of polymers and the above. The mass ratio with the acid-modified polyolefin is 80:20 to 99: 1.

(7)例えば、前記金属水酸化物は、水酸化マグネシウムまたは水酸化アルミニウムを含み、融点が85℃以上であるポリオレフィン系ポリマは、エチレン−酢酸ビニル共重合体(EVA)である。 (7) For example, the metal hydroxide contains magnesium hydroxide or aluminum hydroxide, and the polyolefin-based polymer having a melting point of 85 ° C. or higher is an ethylene-vinyl acetate copolymer (EVA).

(8)本発明の一態様のケーブルは、前記絶縁電線と、前記絶縁電線を被覆するシースとを有するケーブルである。 (8) The cable of one aspect of the present invention is a cable having the insulated wire and a sheath that covers the insulated wire.

(9)本発明の一態様のケーブルは、絶縁電線と、前記絶縁電線を被覆するシースを有するケーブルであって、前記シースは、ベースポリマと、金属水酸化物とを含むノンハロゲン樹脂組成物よりなり、前記ベースポリマは、酢酸ビニル含有量(VA量)が60%以上であるエチレン−酢酸ビニル共重合体(EVA)および融点が85℃以上であるポリオレフィン系ポリマの少なくとも2種のポリマを含み、前記2種のポリマがベースポリマの80%以上を占め、前記金属水酸化物は、ベースポリマ100重量部に対して150〜250重量部の割合で含まれる。 (9) The cable according to one aspect of the present invention is a cable having an insulated wire and a sheath for coating the insulated wire, and the sheath is made of a non-halogen resin composition containing a base polymer and a metal hydroxide. The base polymer comprises at least two polymers, an ethylene-vinyl acetate copolymer (EVA) having a vinyl acetate content (VA amount) of 60% or more and a polyolefin polymer having a melting point of 85 ° C. or more. The two types of polymers account for 80% or more of the base polymer, and the metal hydroxide is contained in a ratio of 150 to 250 parts by weight with respect to 100 parts by weight of the base polymer.

(10)例えば、架橋後の引張強さが10MPa以上、かつ伸びが150%以上であり、IRM903油に、70℃で、168時間浸漬した後の引張強さ変化率が±30%以内、かつ伸び変化率が±40%以内である。 (10) For example, the tensile strength after cross-linking is 10 MPa or more and the elongation is 150% or more, and the rate of change in tensile strength after immersion in IRM903 oil at 70 ° C. for 168 hours is within ± 30%. The rate of change in elongation is within ± 40%.

本発明の一態様の、ノンハロゲン樹脂組成物を用いた絶縁電線およびケーブルによれば、難燃性、耐油性、耐燃料性、低温特性を向上させることができる。 According to the insulated electric wire and cable using the non-halogen resin composition according to one aspect of the present invention, flame retardancy, oil resistance, fuel resistance, and low temperature characteristics can be improved.

絶縁電線の構成例を示す断面図である。It is sectional drawing which shows the structural example of an insulated electric wire. ケーブルの構成例を示す断面図である。It is sectional drawing which shows the structural example of a cable.

(実施の形態1)
図1は、本実施の形態の絶縁電線の構成例を示す断面図である。図1に示す絶縁電線11は、導体11aと、内層11bと、外層11cとを有している。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a configuration example of an insulated wire according to the present embodiment. The insulated wire 11 shown in FIG. 1 has a conductor 11a, an inner layer 11b, and an outer layer 11c.

導体11aとしては、金属線、例えば、銅線、銅合金線の他、アルミニウム線、金線、銀線などを用いることができる。また、金属線の外周に錫やニッケルなどの金属めっきを施したものを用いてもよい。導体11aとしては、複数本の金属線を用いてもよく、また、撚線を用いてもよい。 As the conductor 11a, a metal wire, for example, a copper wire, a copper alloy wire, an aluminum wire, a gold wire, a silver wire, or the like can be used. Further, the outer circumference of the metal wire may be plated with a metal such as tin or nickel. As the conductor 11a, a plurality of metal wires may be used, or stranded wires may be used.

内層(絶縁層)11bとしては、ベースポリマと、充填剤と、その他の添加剤と、を含む樹脂組成物を用いることができる。 As the inner layer (insulating layer) 11b, a resin composition containing a base polymer, a filler, and other additives can be used.

(ベースポリマ)
ベースポリマとしては、電気絶縁性に優れたポリマであるポリエチレン(ポリオレフィン)を用いることができる。ポリエチレンとしては、融点が110℃以上のものを用いることが好ましい。融点は示差走査熱量測定(DSC)法にて測定することができる。融点が110℃を下回ると、耐油試験中に結晶が融解し、ポリマ中への油の拡散を防ぐことが難しくなり、引張特性の変化率が大きくなる。
(Base polymer)
As the base polymer, polyethylene (polyolefin), which is a polymer having excellent electrical insulation, can be used. As the polyethylene, it is preferable to use polyethylene having a melting point of 110 ° C. or higher. The melting point can be measured by the differential scanning calorimetry (DSC) method. If the melting point is lower than 110 ° C., the crystals will melt during the oil resistance test, making it difficult to prevent the oil from diffusing into the polymer, and the rate of change in tensile properties will increase.

結晶化度を向上させるために、融点が120℃以上の結晶性のポリエチレン(ポリオレフィン)を添加することが好ましい。 In order to improve the crystallinity, it is preferable to add crystalline polyethylene (polyolefin) having a melting point of 120 ° C. or higher.

融点が110℃以上のポリエチレンとしては低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレンなどが挙げられる。ベースポリマ中に占める融点110℃以上のポリエチレンの比率は、50%(50重量%)以上であることが好ましく、60〜80%であることがより好ましい。このように、ベースポリマは、融点110℃以上のポリエチレンを主成分として含有する。 Examples of polyethylene having a melting point of 110 ° C. or higher include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, and high-density polyethylene. The ratio of polyethylene having a melting point of 110 ° C. or higher in the base polymer is preferably 50% (50% by weight) or more, and more preferably 60 to 80%. As described above, the base polymer contains polyethylene having a melting point of 110 ° C. or higher as a main component.

充填剤の受容性を考慮するとベースポリマ中にゴム成分が含まれていることが好ましい。即ち、ゴム成分によりポリエチレン(ポリオレフィン)と充填剤との界面が密着し、ポリエチレン(ポリオレフィン)と充填剤との剥離を防止することができる。 Considering the acceptability of the filler, it is preferable that the base polymer contains a rubber component. That is, the rubber component causes the interface between the polyethylene (polyolefin) and the filler to be in close contact with each other, and peeling of the polyethylene (polyolefin) and the filler can be prevented.

ゴム成分としては、エチレンープロピレン共重合体ゴム(EPR)、エチレン−プロピレン−ジエン三元共重合体ゴム(EPDM)、アクリロニトリル−ブタジエンゴム(NBR)、水素添加NBR(HNBR)、アクリルゴム、エチレン−アクリル酸エステル共重合体ゴム、エチレンオクテン共重合体ゴム(EOR)、エチレン−酢酸ビニル共重合体ゴム、エチレン−ブテン−1共重合体ゴム(EBR)、ブタジエン−スチレン共重合体ゴム(SBR)、イソブチレン−イソプレン共重合体ゴム(IIR)、ポリスチレンブロックを含むブロック共重合体ゴム、ウレタンゴムなどが挙げられる。中でもEORやEBRは、二重結合をもたないため、押出し時のスコーチのリスクが無く、また、極性を有しないため、高い電気特性を得ることができる。このように、ゴム成分としてEORやEBRを用いることが好ましい。 The rubber components include ethylene-propylene copolymer rubber (EPR), ethylene-propylene-diene ternary copolymer rubber (EPDM), acrylonitrile-butadiene rubber (NBR), hydrogenated NBR (HNBR), acrylic rubber, and ethylene. -Acrylic acid ester copolymer rubber, ethylene octene copolymer rubber (EOR), ethylene-vinyl acetate copolymer rubber, ethylene-butene-1 copolymer rubber (EBR), butadiene-styrene copolymer rubber (SBR) ), Isobutylene-isoprene copolymer rubber (IIR), block copolymer rubber containing a polystyrene block, urethane rubber and the like. Among them, EOR and EBR do not have a double bond, so there is no risk of scorch at the time of extrusion, and since they do not have polarity, high electrical characteristics can be obtained. As described above, it is preferable to use EOR or EBR as the rubber component.

また、高い電気特性を得るために酸変性されたポリオレフィン(ポリオレフィンを酸で変性したもの)を用いることが好ましい。酸変性ポリオレフィンの材料となる酸としては、マレイン酸、無水マレイン酸、フマル酸等が挙げられる。酸変性ポリオレフィンの材料となるポリオレフィンとしては、ポリエチレン、エチレン−α−オレフィン、エチレン−エチルアクリレート共重合体、エチレン−メチルアクリレート共重合体、酢酸ビニル共重合体などが挙げられる。中でも、ガラス転移温度(Tg)が−55℃以下の酸変性ポリオレフィンを用いることが好ましい。 Further, it is preferable to use an acid-modified polyolefin (polyolefin modified with acid) in order to obtain high electrical properties. Examples of the acid used as a material for the acid-modified polyolefin include maleic acid, maleic anhydride, fumaric acid and the like. Examples of the polyolefin used as a material for the acid-modified polyolefin include polyethylene, ethylene-α-olefin, ethylene-ethylacrylate copolymer, ethylene-methylacrylate copolymer, and vinyl acetate copolymer. Above all, it is preferable to use an acid-modified polyolefin having a glass transition temperature (Tg) of −55 ° C. or lower.

(充填剤)
ベースポリマには、充填剤が添加される。ここで、本明細書において、充填剤とは、ベースポリマに添加する無機物であって、ベースポリマ100重量部(質量部)に対し、少なくとも20重量部以上添加されるものを言う。但し、充填剤の量が多すぎると破断伸びが低下するため、充填剤の添加量は、ベースポリマ100重量部あたり、150重量部以下とすることが好ましい。
(filler)
A filler is added to the base polymer. Here, in the present specification, the filler refers to an inorganic substance added to the base polymer, which is added at least 20 parts by weight or more with respect to 100 parts by weight (mass part) of the base polymer. However, if the amount of the filler is too large, the elongation at break decreases. Therefore, the amount of the filler added is preferably 150 parts by weight or less per 100 parts by weight of the base polymer.

充填剤を添加しなくても構わないが、充填剤の添加により、樹脂組成物中の有機物の割合を減らすことができる。有機物(ポリマやゴム成分)の割合が低下することにより燃焼時に発生する一酸化炭素や二酸化炭素といった毒性ガスを減少させることができる。充填剤の添加量は、ベースポリマ100重量部あたり、20〜130重量部とすることがより好ましく、50〜100重量部とすることがさらに好ましい。 It is not necessary to add a filler, but the addition of the filler can reduce the proportion of organic substances in the resin composition. By reducing the proportion of organic substances (polymers and rubber components), toxic gases such as carbon monoxide and carbon dioxide generated during combustion can be reduced. The amount of the filler added is more preferably 20 to 130 parts by weight, still more preferably 50 to 100 parts by weight, per 100 parts by weight of the base polymer.

充填剤としては、カオリナイト、カオリンクレー、焼成クレー、タルク、マイカ、ウォラストナイト、パイロフィライトなどの硅酸塩類、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、などの酸化物、炭酸カルシウム、炭酸亜鉛、炭酸バリウムなどの炭酸塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの水酸化物などが挙げられる。これらの材料は、単独で用いても良く、2種類以上を混合して用いてもよい。 Examples of the filler include oxidation of kaolinite, kaolin clay, calcined clay, talc, mica, wollastonite, pyrophyllite and other silicates, silica, alumina, zinc oxide, titanium oxide, calcium oxide and magnesium oxide. Examples include substances, carbonates such as calcium carbonate, zinc carbonate and barium carbonate, and hydroxides such as calcium hydroxide, magnesium hydroxide and aluminum hydroxide. These materials may be used alone or in combination of two or more.

上記材料の中でも、疎水性の焼成クレーやタルクは高い電気特性を示すだけでなく、炭素を含まないため、一酸化炭素の発生を抑えることができ、充填剤として用いて好ましい。また、充填剤として、表面処理を施した材料を用いてもよい。例えば、上記材料にシランを表面処理したものを用いてもよい。シランを表面処理することにより、充填剤とポリマとの密着を強固にすることができ、絶縁性能を向上させることができる。 Among the above materials, hydrophobic fired clay and talc not only exhibit high electrical properties but also do not contain carbon, so that carbon monoxide generation can be suppressed, and they are preferable for use as a filler. Further, as the filler, a surface-treated material may be used. For example, the above material may be surface-treated with silane. By surface-treating the silane, the adhesion between the filler and the polymer can be strengthened, and the insulation performance can be improved.

(他の添加剤)
樹脂組成物には必要に応じて、架橋助剤、難燃助剤、紫外線吸収剤、光安定剤、軟化剤、滑剤、着色剤、補強剤、界面活性剤、可塑剤、金属不活性剤、発泡剤、相溶化剤、加工助剤、安定剤などを添加することができる。
(Other additives)
The resin composition may include cross-linking aids, flame retardant aids, UV absorbers, light stabilizers, softeners, lubricants, colorants, reinforcing agents, surfactants, plasticizers, metal deactivators, as required. Foaming agents, compatibilizers, processing aids, stabilizers and the like can be added.

外層(絶縁層)11cとしては、ベースポリマと、充填剤と、その他の添加剤と、を含むノンハロゲン樹脂組成物を用いることができる。 As the outer layer (insulating layer) 11c, a non-halogen resin composition containing a base polymer, a filler, and other additives can be used.

(ベースポリマ)
ベースポリマは、酢酸ビニル含有量(VA量)が60%以上であるエチレン−酢酸ビニル共重合体(EVA)と、融点が85℃以上であるポリオレフィン系ポリマと、の2種のポリマを含む。ここで言う“2種のポリマ”とは、ポリマのグループを意味し、酢酸ビニル含有量(VA量)が60%以上であるエチレン−酢酸ビニル共重合体(EVA)として、複数種類のポリマを含んでいてもよく、また、融点が85℃以上であるポリオレフィン系ポリマとして、複数種類のポリマを含んでいてもよい。また、融点が85℃以上であるポリオレフィン系ポリマがエチレン−酢酸ビニル共重合体(EVA)であってもよい。
(Base polymer)
The base polymer includes two types of polymers, an ethylene-vinyl acetate copolymer (EVA) having a vinyl acetate content (VA amount) of 60% or more, and a polyolefin-based polymer having a melting point of 85 ° C. or more. The "two types of polymers" referred to here mean a group of polymers, and as an ethylene-vinyl acetate copolymer (EVA) having a vinyl acetate content (VA amount) of 60% or more, a plurality of types of polymers are used. It may be contained, and a plurality of types of polymers may be contained as the polyolefin-based polymer having a melting point of 85 ° C. or higher. Further, the polyolefin-based polymer having a melting point of 85 ° C. or higher may be an ethylene-vinyl acetate copolymer (EVA).

上記EVAとしては、VA量が60%以上であれば特に制限はないが、VA量が高くなるにつれ、低温特性が低下する傾向にあるため、低温特性が必要な場合はVA量を60〜80%とすることが好ましく、60〜70%とすることがより好ましい。“VA量[%]”は、エチレン−酢酸ビニル共重合体の酢酸ビニルの含有量である。このVA量は、JISK7192に基づいて測定することができる。 The EVA amount is not particularly limited as long as the VA amount is 60% or more, but the low temperature characteristics tend to decrease as the VA amount increases. Therefore, when the low temperature characteristics are required, the VA amount is 60 to 80. It is preferably%, and more preferably 60 to 70%. “VA amount [%]” is the content of vinyl acetate in the ethylene-vinyl acetate copolymer. This VA amount can be measured based on JIS K7192.

上記ポリオレフィン系ポリマとしては、融点が85℃以上であれば特に制限はないが、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、直鎖状超低密度ポリエチレン(VLDPE)、高密度ポリエチレン(HDPE)、ポリプロピレン(PP)、エチレン−アクリル酸エチル共重合体(EEA)、エチレン−酢酸ビニル共重合体(EVA)等が挙げられる。中でも、融点85℃以上のEVAを用いることが好ましい。但し、結晶性が高い程、充填剤の添加に伴い伸び等の物性が低下するため、VA量17%程度、融点89℃程度のEVAを用いることがより好ましい。 The polyolefin polymer is not particularly limited as long as it has a melting point of 85 ° C. or higher, but is low density polyethylene (LDPE), linear low density polyethylene (LLDPE), linear ultra low density polyethylene (VLDPE), and high density polyethylene. Examples thereof include high density polyethylene (HDPE), polypropylene (PP), ethylene-ethyl acrylate copolymer (EEA), ethylene-vinyl acetate copolymer (EVA) and the like. Above all, it is preferable to use EVA having a melting point of 85 ° C. or higher. However, the higher the crystallinity, the lower the physical properties such as elongation with the addition of the filler. Therefore, it is more preferable to use EVA having a VA amount of about 17% and a melting point of about 89 ° C.

上記2種のポリマはどちらも必須であり、その比率としては特に制限はないが、VA量が60%以上であるEVAと、融点が85℃以上であるポリオレフィン系ポリマとが、1:2〜2:1(前者が約33%〜66%、後者が約66%〜33%)の割合であることが好ましく、4:6〜6:4(前者が40%〜60%、後者が60%〜40%)の割合であることがより好ましい。 Both of the above two types of polymers are indispensable, and the ratio thereof is not particularly limited. However, EVA having a VA amount of 60% or more and a polyolefin polymer having a melting point of 85 ° C. or more are 1: 2 to 2. The ratio is preferably 2: 1 (the former is about 33% to 66%, the latter is about 66% to 33%), and 4: 6 to 6: 4 (the former is 40% to 60%, the latter is 60%). ~ 40%) is more preferable.

ベースポリマは、その他のポリマを含んでいてもよい。その他のポリマは、規定の範囲内で添加することができる。即ち、ベースポリマとして、必須である酢酸ビニル含有量(VA量)が60%以上であるエチレン−酢酸ビニル共重合体(EVA)と、融点が85℃以上であるポリオレフィン系ポリマと、の2種のポリマを80%以上含むため、残りの20%未満の範囲において、上記2種のポリマと重複しない範囲において、その他のポリマを含むことができる。その他のポリマとしては、例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、直鎖状超低密度ポリエチレン(VLDPE)、高密度ポリエチレン(HDPE)、ポリプロピレン(PP)、エチレン−アクリル酸エチル共重合体(EEA)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−スチレン共重合体、エチレン−グリシジルメタクリレート共重合体、エチレン−ブテン−1共重合体、エチレン−ブテン−ヘキセン三元共重合体、エチレン−プロピレン−ジエン三元共重合体(EPDM)、エチレン−オクテン共重合体(EOR)、エチレン共重合ポリプロピレン、エチレン−プロピレン共重合体(EPR)、ポリ−4−メチル−ペンテン−1、マレイン酸グラフト低密度ポリエチレン、水素添加スチレン−ブタジエン共重合体(H−SBR)、マレイン酸グラフト直鎖状低密度ポリエチレン、エチレンと炭素数が4〜20のαオレフィンとの共重合体、エチレン−スチレン共重合体、マレイン酸グラフトエチレン−メチルアクリレート共重合体、マレイン酸グラフトエチレン−酢酸ビニル共重合体、エチレン−無水マレイン酸共重合体、エチレン−エチルアクリレート−無水マレイン酸三元共重合体、ブテン−1を主成分とするエチレン−プロピレン−ブテン−1三元共重合体などが挙げられる。 The base polymer may include other polymers. Other polymers can be added within the specified range. That is, two types of base polymers are an ethylene-vinyl acetate copolymer (EVA) having an essential vinyl acetate content (VA amount) of 60% or more and a polyolefin polymer having a melting point of 85 ° C. or more. Since 80% or more of the polymer is contained, other polymers can be contained in the remaining range of less than 20% and in a range not overlapping with the above two types of polymers. Other copolymers include, for example, low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), linear ultra-low-density polyethylene (VLDPE), high-density polyethylene (HDPE), polypropylene (PP), and ethylene-. Ethyl acrylate copolymer (EEA), ethylene-vinyl acetate copolymer (EVA), ethylene-styrene copolymer, ethylene-glycidyl methacrylate copolymer, ethylene-butene-1 copolymer, ethylene-butene-hexene Three-way copolymer, ethylene-propylene-diene ternary copolymer (EPDM), ethylene-octene copolymer (EOR), ethylene copolymer polypropylene, ethylene-propylene copolymer (EPR), poly-4-methyl -Penten-1, maleic acid graft low density polyethylene, hydrogenated styrene-butadiene copolymer (H-SBR), maleic acid graft linear low density polyethylene, ethylene and α-olefin having 4 to 20 carbon atoms Polymer, ethylene-styrene copolymer, maleic acid grafted ethylene-methylacrylate copolymer, maleic acid grafted ethylene-vinyl acetate copolymer, ethylene-maleic anhydride copolymer, ethylene-ethylacrylate-maleic anhydride tri Examples thereof include a former copolymer and an ethylene-propylene-butene-1 ternary copolymer containing butene-1 as a main component.

また、その他のポリマとして、酸変性されたポリオレフィン(ポリオレフィンを酸で変性したもの)を用いてもよい。特に、ガラス転移温度が−55℃以下である酸変性ポリオレフィンを用いることが好ましい。ガラス転移温度とは、DSC法により測定されたガラス転移温度を指す。酸変性ポリオレフィンは、無水マレイン酸等の酸とポリオレフィンとを、グラフトもしくは共重合させたものである。酸変性ポリオレフィンの材料であるポリオレフィンとしては、天然ゴム、ブチルゴム、エチレンプロピレンゴム、エチレンαオレフィンコポリマ、スチレンブタジエンゴム、ニトリルゴム、アクリルゴム、シリコーンゴム、ウレタンゴム、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、ポリ酢酸ビニル、エチレンアクリル酸エチル共重合体、エチレンアクリル酸エステル共重合体、ポリウレタン、超低密度ポリエチレン、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブテン−1共重合体、エチレン−ヘキセン−1共重合体、エチレン−オクテン−1共重合体などが挙げられる。特に、エチレンプロピレンゴム、エチレンαオレフィン共重合体、エチレンアクリル酸エチル共重合体を用いることが好ましい。 Further, as another polymer, acid-modified polyolefin (polyolefin modified with acid) may be used. In particular, it is preferable to use an acid-modified polyolefin having a glass transition temperature of −55 ° C. or lower. The glass transition temperature refers to the glass transition temperature measured by the DSC method. The acid-modified polyolefin is obtained by grafting or copolymerizing an acid such as maleic anhydride with a polyolefin. Polyolefins that are materials for acid-modified polyolefins include natural rubber, butyl rubber, ethylene propylene rubber, ethylene α-olefin copolymer, styrene butadiene rubber, nitrile rubber, acrylic rubber, silicone rubber, urethane rubber, polyethylene, polypropylene, and ethylene-vinyl acetate. Polymers, polyvinyl acetate, ethyl ethylene acrylate copolymers, ethylene acrylic acid ester copolymers, polyurethanes, ultra-low density polyethylenes, ethylene-methyl acrylate copolymers, ethylene-ethyl acrylate copolymers, ethylene-butene- Examples thereof include 1 copolymer, ethylene-hexene-1 copolymer, and ethylene-octene-1 copolymer. In particular, it is preferable to use ethylene propylene rubber, an ethylene α-olefin copolymer, or an ethyl ethylene acrylate copolymer.

また、酸変性ポリオレフィンの材料である酸としては、上記無水マレイン酸の他、マレイン酸、フマル酸などが挙げられる。これらの酸変性ポリオレフィンは、単独で添加してもよく、2種以上を添加してもよい。 Examples of the acid that is the material of the acid-modified polyolefin include maleic anhydride, fumaric acid, and the like, in addition to maleic anhydride. These acid-modified polyolefins may be added alone or in combination of two or more.

また、上記2種のポリマと、上記酸変性されたポリオレフィンとの質量比は、80:20〜99:1であることが好ましい。 The mass ratio of the two types of polymers to the acid-modified polyolefin is preferably 80:20 to 99: 1.

(充填剤)
ベースポリマには、充填剤が添加される。充填剤として、金属水酸化物を添加する。金属水酸化物は、難燃剤としての役割を有する。金属水酸化物としては、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム等が挙げられる。中でも水酸化マグネシウムを用いることが好ましい。また、上記金属水酸化物は、単独で用いてもよく、複数を組み合わせて用いてもよい。また、金属水酸化物として、シランカップリング剤、チタネート系カップリング剤、ステアリン酸やステアリン酸カルシウム等の脂肪酸又は、脂肪酸金属塩等によって表面処理されたものを用いてもよい。
(filler)
A filler is added to the base polymer. A metal hydroxide is added as a filler. The metal hydroxide has a role as a flame retardant. Examples of the metal hydroxide include magnesium hydroxide, aluminum hydroxide, calcium hydroxide and the like. Of these, magnesium hydroxide is preferably used. Further, the above-mentioned metal hydroxide may be used alone or in combination of two or more. Further, as the metal hydroxide, those surface-treated with a silane coupling agent, a titanate-based coupling agent, a fatty acid such as stearic acid or calcium stearate, or a fatty acid metal salt may be used.

金属水酸化物の添加量は、ベースポリマ100重量部あたり、150〜250重量部とすることが好ましく、180〜220重量部とすることがより好ましい。150重量部未満では十分な難燃性を得ることができず、250重量部より多いと伸び特性等が低下する。 The amount of the metal hydroxide added is preferably 150 to 250 parts by weight, more preferably 180 to 220 parts by weight, per 100 parts by weight of the base polymer. If it is less than 150 parts by weight, sufficient flame retardancy cannot be obtained, and if it is more than 250 parts by weight, the elongation characteristics and the like are deteriorated.

(その他の添加剤)
ベースポリマには、必要に応じてその他の添加剤が添加される。その他の添加剤としては、酸化防止剤、金属不活性剤、上記金属水酸化物以外の難燃剤、架橋剤、架橋助剤、滑剤、上記充填剤以外の充填剤、相溶化剤、安定剤、カーボンブラック、着色剤等が挙げられる。
(Other additives)
Other additives are added to the base polymer as needed. Other additives include antioxidants, metal deactivators, flame retardants other than the above metal hydroxides, cross-linking agents, cross-linking aids, lubricants, fillers other than the above fillers, compatibilizers, stabilizers, etc. Examples include carbon black and colorants.

酸化防止剤としては、例えばフェノール系、硫黄系、アミン系、リン系酸化防止剤が挙げられる。 Examples of the antioxidant include phenol-based, sulfur-based, amine-based, and phosphorus-based antioxidants.

フェノール系酸化防止剤としては、例えばジブチルヒドロキシトルエン(BHT)、ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジル)−s−トリアジン−2,4,6−(1H,3H,5H)トリオン、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]等が挙げられる。中でもペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を用いることが好ましい。 Examples of the phenolic antioxidant include dibutylhydroxytoluene (BHT), pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], and 1,3,5-tris (3). , 5-Di-t-butyl-4-hydroxy-benzyl) -s-triazine-2,4,6- (1H, 3H, 5H) trione, thiodiethylenebis [3- (3,5-di-tert-) Butyl-4-hydroxyphenyl) propionate] and the like. Of these, pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] is preferably used.

硫黄系酸化防止剤としては、例えばジドデシル3,3’−チオジプロピオネート、ジトリデシル3,3’−チオジプロピオネート、ジオクタデシル3,3’−チオジプロピオネート、テトラキス[メチレン−3−(ドデシルチオ)プロピオネート]メタン等が挙げられる。中でもテトラキス[メチレン−3−(ドデシルチオ)プロピオネート]メタンを用いることが好ましい。 Examples of the sulfur-based antioxidant include didodecyl 3,3'-thiodipropionate, ditridecyl 3,3'-thiodipropionate, dioctadecyl 3,3'-thiodipropionate, and tetrakis [methylene-3-( Dodecylthio) Propionate] Methane and the like. Of these, tetrakis [methylene-3- (dodecylthio) propionate] methane is preferably used.

これらの酸化防止剤は、単独で添加してもよく、2種以上を添加してもよい。 These antioxidants may be added alone or in combination of two or more.

金属不活性剤は、金属イオンをキレート形成により安定化し酸化劣化を抑制する効果がある。金属不活性剤としては、例えばN−(2H−1,2,4−トリアソール−5−イル)サリチルアミド、ドデカンニ酸ビス[N2−(2−ヒドロキシベンゾイル)ヒドラジド]、2’,3−ビス[[3−[3,5−ジ−tert−ブチル−4−ヒドロキシフェニル]プロピオニル]]プロピオノヒドラジド等が挙げられる。中でも2’,3−ビス[[3−[3,5−ジ−tert−ブチル−4−ヒドロキシフェニル]プロピオニル]]プロピオノヒドラジドを用いることが好ましい。 The metal inactive agent has the effect of stabilizing metal ions by chelating and suppressing oxidative deterioration. Examples of the metal deactivator include N- (2H-1,2,4-triasole-5-yl) salicylamide, bis dodecanoate [N2- (2-hydroxybenzoyl) hydrazide], 2', 3-bis [ [3- [3,5-di-tert-butyl-4-hydroxyphenyl] propionyl]] Propionohydrazide and the like can be mentioned. Of these, it is preferable to use 2', 3-bis [[3- [3,5-di-tert-butyl-4-hydroxyphenyl] propionyl]] propionohydrazide.

金属水酸化物以外の難燃剤としては、例えば非晶質シリカ、スズ酸亜鉛、ヒドロキシスズ酸亜鉛、ホウ酸亜鉛、酸化亜鉛等の亜鉛化合物等、ホウ酸カルシウム、ホウ酸バリウム、メタホウ酸バリウム等のホウ酸化合物、リン系難燃剤、メラミンシアヌレート等の窒素系難燃剤、燃焼時に発泡する成分と固化する成分の混合物からなるインテュメッセント系難燃剤が挙げられる。 Examples of flame retardants other than metal hydroxides include amorphous silica, zinc nitrate, zinc hydroxytinate, zinc borate, zinc oxide and other zinc compounds, calcium borate, barium borate, barium borate and the like. Examples thereof include boric acid compounds, phosphorus-based flame retardants, nitrogen-based flame retardants such as melamine cyanurate, and intumescent flame retardants composed of a mixture of a component that foams during combustion and a component that solidifies.

架橋助剤としては、例えばトリメチロールプロパントリメタクリレート(TMPT)や、トリアリルイソシアヌレート(TAIC)を用いることが好ましい。 As the cross-linking aid, for example, trimethylolpropane trimethacrylate (TMPT) or triallyl isocyanurate (TAIC) is preferably used.

滑剤としては、例えば脂肪酸、脂肪酸金属塩、脂肪酸アミド等があげられる。具体的にはステアリン酸亜鉛を用いることができる。これらの滑剤は、単独で添加してもよく、2種以上を添加してもよい。 Examples of the lubricant include fatty acids, fatty acid metal salts, fatty acid amides and the like. Specifically, zinc stearate can be used. These lubricants may be added alone or in combination of two or more.

カーボンブラックとしては、例えばゴム用カーボンブラック(N900−N100:ASTM D 1765−01)を用いることができる。 As the carbon black, for example, carbon black for rubber (N900-N100: ASTM D 1765-01) can be used.

着色剤としては、例えば外層11c用のカラーマスターバッチ等を用いることができる。 As the colorant, for example, a color masterbatch for the outer layer 11c or the like can be used.

(架橋)
上記絶縁電線に用いられる内層11bおよび外層11cは、上記材料の混合物(樹脂組成物)を架橋することで得られる。架橋方法としては、上記材料の混合物(樹脂組成物)の成形後に、電子線や放射線等を照射して架橋させる照射架橋法が挙げられる。照射架橋法を実施する場合、あらかじめ架橋助剤を、上記材料の混合物(樹脂組成物)中に添加しておいてもよい。また、加熱により架橋させる化学架橋法を用いてもよい。化学架橋法を実施する場合、あらかじめ架橋剤を、上記材料の混合物(樹脂組成物)中に添加しておいてもよい。架橋剤としては、有機過酸化物を用いることができる。有機過酸化物としては、例えば1,3−ビス(2−t−ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド(DCP)等を用いることができる。
(Crosslink)
The inner layer 11b and the outer layer 11c used for the insulated wire are obtained by cross-linking a mixture (resin composition) of the above materials. Examples of the cross-linking method include an irradiation cross-linking method in which a mixture (resin composition) of the above materials is formed and then cross-linked by irradiating an electron beam, radiation, or the like. When carrying out the irradiation cross-linking method, a cross-linking aid may be added in advance to the mixture (resin composition) of the above materials. Moreover, you may use the chemical cross-linking method of cross-linking by heating. When carrying out the chemical cross-linking method, a cross-linking agent may be added in advance to the mixture (resin composition) of the above materials. An organic peroxide can be used as the cross-linking agent. As the organic peroxide, for example, 1,3-bis (2-t-butylperoxyisopropyl) benzene, dicumyl peroxide (DCP) and the like can be used.

なお、内層11bおよび外層11cを同時に架橋してもよく、また、内層11bを架橋した後、外層11cをその外周に形成し、架橋してもよい。 The inner layer 11b and the outer layer 11c may be crosslinked at the same time, or after the inner layer 11b is crosslinked, the outer layer 11c may be formed on the outer periphery thereof and crosslinked.

(応用例1)
図1においては、導体11aを2層構造の絶縁層(内層11bと外層11c)で覆う例を示したが、導体11aを単層の絶縁層で覆う構成としてもよい。この場合も、単層の絶縁層を、前述した外層11cと同様の材料を用いて構成することで、特性の良好な絶縁電線を得ることができる。
(Application example 1)
In FIG. 1, an example in which the conductor 11a is covered with an insulating layer having a two-layer structure (inner layer 11b and outer layer 11c) is shown, but the conductor 11a may be covered with a single-layer insulating layer. In this case as well, an insulated wire having good characteristics can be obtained by forming the single-layer insulating layer using the same material as the outer layer 11c described above.

(応用例2)
図1および上記応用例1においては、絶縁電線に適用するノンハロゲン樹脂組成物を例に説明したが、本実施の形態のノンハロゲン樹脂組成物をケーブルのシースとして用いてもよい。
(Application example 2)
Although the non-halogen resin composition applied to the insulated electric wire has been described as an example in FIG. 1 and the above application example 1, the non-halogen resin composition of the present embodiment may be used as the sheath of the cable.

図2は、応用例2のケーブルの構成例を示す断面図である。図2に示すケーブル12は、撚り合わせた2本の絶縁電線11(撚線、図1参照)と、撚線の外側に設けられたシース(外被層、被覆層)12dとを有する。このシース12dの材料として、前述した外層11cと同様の材料を用いることができる。なお、ケーブル12中の絶縁電線11は1本としてもよく、また、3本以上としてもよい。また、撚り合わせた2本の絶縁電線11とシース12dとの間に、セパレータやシールド編組を設けてもよい。セパレータの材質は特に限定されず、シールド編組の内側または外側に設けることができる。 FIG. 2 is a cross-sectional view showing a configuration example of the cable of Application Example 2. The cable 12 shown in FIG. 2 has two twisted insulated wires 11 (twisted wire, see FIG. 1) and a sheath (coating layer, coating layer) 12d provided on the outside of the stranded wire. As the material of the sheath 12d, the same material as the above-mentioned outer layer 11c can be used. The number of insulated wires 11 in the cable 12 may be one, or three or more. Further, a separator or a shield braid may be provided between the two twisted insulated wires 11 and the sheath 12d. The material of the separator is not particularly limited and may be provided inside or outside the shield braid.

上記絶縁電線およびケーブルは、ノンハロゲン絶縁電線またはノンハロゲンケーブルとして使用することができる。具体的用途としては、例えば、鉄道車両用の用途が考えられる。即ち、鉄道車両用のノンハロゲン絶縁電線や鉄道車両用のノンハロゲンケーブルとして使用することができる。 The above-mentioned insulated wire and cable can be used as a non-halogen insulated wire or a non-halogen cable. As a specific application, for example, an application for a railway vehicle can be considered. That is, it can be used as a non-halogen insulated electric wire for railway vehicles and a non-halogen cable for railway vehicles.

[実施例]
以下に、本実施の形態のノンハロゲン樹脂組成物を用いた絶縁電線を、実施例を用いてさらに具体的に説明する。
[Example]
Hereinafter, the insulated electric wire using the non-halogen resin composition of the present embodiment will be described in more detail with reference to Examples.

ノンハロゲン樹脂組成物を用いた絶縁電線を以下のように作製した。 An insulated wire using a non-halogen resin composition was produced as follows.

(材料名)
実施例および比較例で用いた材料を表1、表3に示す。具体的な材料名は以下に示すとおりである。
・PE1):プライムポリマ社製「エボリューSP1510」(融点117℃)
・PE2):プライムポリマ社製「エボリューSP4030」(融点127℃)
・EBR3):三井化学社製「タフマーDF840」
・酸変性ポリオレフィン4):三井化学社製「タフマーMH7020」(ガラス転移温度(Tg)≦−55℃)
・焼成クレー5):BASF社製「トランスリンク37」
・酸化防止剤6):アデカ社製「AO−18」
・銅害防止剤7):アデカ社製「CDA−6」
・滑剤8):日東化成社製「ステアリン酸亜鉛」
・EVA9):ランクセス社製「レバプレン600」(VA量:60%、融点:無)
・EVA10):ランクセス社製「レバプレン800」(VA量:80%、融点:無)
・EVA11):三井・デュポンポリケミカル社製「エバフレックスV5274」
(VA量:17%、融点:89℃)
・EVA12):三井・デュポンポリケミカル社製「エバフレックスP1007」
(VA量:10%、融点:94℃)
・EEA13):日本ポリエチレン社製「レクスパールA1150」
(EA量:15%、融点:100℃)
・酸変性ポリオレフィン14):三井化学社製「タフマーMH7020」(ガラス転移温度(Tg)≦−55℃)
・水酸化マグネシウム15):神島化学工業社製「マグシーズS4」
・酸化防止剤16):アデカ社製「AO−18」
・カーボンブラック17):旭カーボン社製「FTカーボン」
・滑剤18):日東化成社製「ステアリン酸亜鉛」
・PE19):プライムポリマ社製「エボリューSP0510」(融点98℃)
・EVA20):三井・デュポンポリケミカル社製「エバフレックスV9000」
(VA量:41%、融点:無)
・EVA21):三井・デュポンポリケミカル社製「エバフレックスEV260」
(VA量:28%、融点:72℃)
(絶縁電線の作製)
実施例1〜10においては、表1に示す配合で、また、比較例1〜7においては、表3に示す配合で、内層、外層を製造した(図1参照)。すなわち、表1、表3に示された内層用の配合用材料または外層用の配合用材料を、加圧ニーダによって開始温度40℃、終了温度190℃で混練し、混練物をペレット状にした。このペレット状の樹脂組成物を用いて、絶縁電線を形成した。
(Material name)
The materials used in Examples and Comparative Examples are shown in Tables 1 and 3. The specific material names are as shown below.
-PE 1) : "Evolu SP1510" manufactured by Prime Polymer (melting point 117 ° C)
-PE 2) : "Evolu SP4030" manufactured by Prime Polymer (melting point 127 ° C)
・ EBR 3) : "Toughmer DF840" manufactured by Mitsui Chemicals, Inc.
-Acid-modified polyolefin 4) : "Toughmer MH7020" manufactured by Mitsui Chemicals, Inc. (glass transition temperature (Tg) ≤ -55 ° C)
-Baking clay 5) : "Translink 37" manufactured by BASF
-Antioxidant 6) : "AO-18" manufactured by ADEKA CORPORATION
-Copper damage inhibitor 7) : "CDA-6" manufactured by ADEKA CORPORATION
-Glidant 8) : "Zinc stearate" manufactured by Nitto Kasei Co., Ltd.
-EVA 9) : "Lanxess 600" (VA amount: 60%, melting point: none)
-EVA 10) : "Lanxess 800" (VA amount: 80%, melting point: none)
・ EVA 11) : “Evaflex V5274” manufactured by Mitsui / DuPont Polychemicals
(VA amount: 17%, melting point: 89 ° C)
・ EVA 12) : “Evaflex P1007” manufactured by Mitsui / DuPont Polychemicals
(VA amount: 10%, melting point: 94 ° C.)
・ EEA 13) : "Lexpearl A1150" manufactured by Japan Polyethylene Corporation
(EA amount: 15%, melting point: 100 ° C.)
-Acid-modified polyolefin 14) : "Toughmer MH7020" manufactured by Mitsui Chemicals, Inc. (glass transition temperature (Tg) ≤ -55 ° C)
-Magnesium hydroxide 15) : "Magnesium S4" manufactured by Konoshima Chemical Co., Ltd.
-Antioxidant 16) : "AO-18" manufactured by ADEKA CORPORATION
・ Carbon black 17) : "FT carbon" manufactured by Asahi Carbon Co., Ltd.
-Glidant 18) : "Zinc stearate" manufactured by Nitto Kasei Co., Ltd.
-PE 19) : "Evolu SP0510" manufactured by Prime Polymer (melting point 98 ° C)
・ EVA 20) : “Evaflex V9000” manufactured by Mitsui / DuPont Polychemicals
(VA amount: 41%, melting point: none)
・ EVA 21) : “Evaflex EV260” manufactured by Mitsui and DuPont Polychemicals
(VA amount: 28%, melting point: 72 ° C)
(Making an insulated wire)
In Examples 1 to 10, the inner layer and the outer layer were produced with the formulations shown in Table 1 and in Comparative Examples 1 to 7 with the formulations shown in Table 3 (see FIG. 1). That is, the compounding material for the inner layer or the compounding material for the outer layer shown in Tables 1 and 3 was kneaded with a pressure kneader at a start temperature of 40 ° C. and an end temperature of 190 ° C. to pelletize the kneaded product. .. An insulated wire was formed using this pellet-shaped resin composition.

ここでは、直径0.18mmのスズめっき導体を37本用いた導体の周りに、厚さ0.3mmの内層、厚さ0.47mmの外層を、40mm押出機を用い、2層押出しを行うことで、内層および外層を同時に形成した。その後、電子線を7.5MRad照射し、内層および外層を架橋した。 Here, a two-layer extrusion is performed using a 40 mm extruder to extrude an inner layer with a thickness of 0.3 mm and an outer layer with a thickness of 0.47 mm around a conductor using 37 tin-plated conductors with a diameter of 0.18 mm. The inner layer and the outer layer were formed at the same time. Then, the electron beam was irradiated with 7.5 MRad to crosslink the inner layer and the outer layer.

(1)引張試験
絶縁電線から導体を引き抜き、内層および外層よりなるチューブを作製した。このチューブを切断し、所定の距離(間隔)を置いて標線を付けた試験片を得た。室温(25℃)にて、試験片を250mm/minの変位速度で引張り、破断するまでの荷重および伸びを測定した。上記荷重から引張強さ(単位[MPa])を算出した。また、当初長さ(標線距離)Laと伸び(破断時の標線間の長さ)Lbとから、破断伸び((Lb−La/La)×100[%])を算出した。引張強さが10MPa以上、伸びが150%以上を○(合格)とした。
(1) Tensile test A conductor was pulled out from an insulated wire to prepare a tube composed of an inner layer and an outer layer. This tube was cut to obtain test pieces marked with a predetermined distance (interval). At room temperature (25 ° C.), the test piece was pulled at a displacement rate of 250 mm / min, and the load and elongation until fracture were measured. The tensile strength (unit [MPa]) was calculated from the above load. Further, the breaking elongation ((Lb-La / La) × 100 [%]) was calculated from the initial length (marked line distance) La and the elongation (length between the marked lines at the time of breaking) Lb. A tensile strength of 10 MPa or more and an elongation of 150% or more were evaluated as ◯ (pass).

(2)耐燃料試験
絶縁電線から導体を引き抜き、内層および外層よりなるチューブを作製した。このチューブを切断し、所定の間隔を置いて標線を付けた試験片を得た。試験片を、70℃に熱したIRM903試験油に168時間浸漬した後、室温で16時間程度放置し、試験片を250mm/minの変位速度で引張り、破断するまでの荷重および伸びを測定した。試験油に浸漬する前の試験片の引張強さ(A1)、破断伸び(B1)と、試験油に浸漬した後の試験片の引張強さ(A2)、破断伸び(B2)と、から耐油引張強さ変化率((A2−A1)/A1)×100[%])、耐燃料破断伸び変化率((B2−B1)/B1)×100[%])を算出した。浸漬後において、「引張強さ」または「破断伸び」が低下したものは、“−(マイナス)”とした。耐燃料引張強さ変化率(引張強さ残率)が±30%以内であれば○(合格)とし、耐燃料破断伸び変化率(引張伸び残率)が±40%以内であれば○(合格)とした。
(2) Fuel resistance test A conductor was drawn from an insulated wire to prepare a tube composed of an inner layer and an outer layer. This tube was cut to obtain test strips marked at predetermined intervals. The test piece was immersed in IRM903 test oil heated to 70 ° C. for 168 hours, left at room temperature for about 16 hours, the test piece was pulled at a displacement rate of 250 mm / min, and the load and elongation until breakage were measured. Oil resistance from the tensile strength (A1) and breaking elongation (B1) of the test piece before being immersed in the test oil, and the tensile strength (A2) and breaking elongation (B2) of the test piece after being immersed in the test oil. The rate of change in tensile strength ((A2-A1) / A1) × 100 [%]) and the rate of change in elongation at break with fuel ((B2-B1) / B1) × 100 [%]) were calculated. Those whose "tensile strength" or "break elongation" decreased after immersion were defined as "-(minus)". If the rate of change in fuel tensile strength (residual tensile strength) is within ± 30%, it is evaluated as ○ (pass), and if the rate of change in fuel breaking elongation (residual tensile strength) is within ± 40%, it is ○ ( Passed).

(3)耐油試験
絶縁電線から導体を引き抜き、内層および外層よりなるチューブを作製した。このチューブを切断し、所定の間隔を置いて標線を付けた試験片を得た。試験片を、100℃に熱したIRM902試験油に72時間浸漬した後、室温で16時間程度放置し、試験片を250mm/minの変位速度で引張り、破断するまでの荷重および伸びを測定した。試験油に浸漬する前の試験片の引張強さ(A1)、破断伸び(B1)と、試験油に浸漬した後の試験片の引張強さ(A2)、破断伸び(B2)と、から耐油引張強さ変化率((A2−A1)/A1)×100[%])、耐油破断伸び変化率((B2−B1)/B1)×100[%])を算出した。浸漬後において、「引張強さ」または「破断伸び」が低下したものは、“−(マイナス)”とした。耐油引張強さ変化率(引張強さ残率)が±30%以内であれば○(合格)とし、耐油破断伸び変化率(引張伸び残率)が±40%以内であれば○(合格)とした。
(3) Oil resistance test A conductor was pulled out from an insulated wire to prepare a tube composed of an inner layer and an outer layer. This tube was cut to obtain test strips marked at predetermined intervals. The test piece was immersed in IRM902 test oil heated to 100 ° C. for 72 hours and then left at room temperature for about 16 hours. The test piece was pulled at a displacement rate of 250 mm / min, and the load and elongation until breaking were measured. Oil resistance from the tensile strength (A1) and breaking elongation (B1) of the test piece before being immersed in the test oil, and the tensile strength (A2) and breaking elongation (B2) of the test piece after being immersed in the test oil. The rate of change in tensile strength ((A2-A1) / A1) × 100 [%]) and the rate of change in oil-resistant elongation at break ((B2-B1) / B1) × 100 [%]) were calculated. Those whose "tensile strength" or "break elongation" decreased after immersion were defined as "-(minus)". If the oil resistance tensile strength change rate (tensile strength residual rate) is within ± 30%, it is evaluated as ○ (pass), and if the oil resistance fracture elongation change rate (tensile elongation residual rate) is within ± 40%, it is ○ (pass). And said.

(4)低温試験
絶縁電線から導体を引き抜き、内層および外層よりなるチューブを作製した。このチューブを切断し、所定の間隔を置いて標線を付けた試験片を得た。試験片を−40℃に保持し、−40℃の雰囲気下において試験片を30mm/minの変位速度で引張り、破断するまでの伸び(L2)を測定した。当初長さL1と伸びL2とから、低温伸び((L2/L1)×100[%])を算出した。低温伸びが、30%以上のものを○(合格)とした。
(4) Low temperature test A conductor was pulled out from the insulated wire to prepare a tube composed of an inner layer and an outer layer. This tube was cut to obtain test strips marked at predetermined intervals. The test piece was held at −40 ° C., the test piece was pulled at a displacement rate of 30 mm / min in an atmosphere of −40 ° C., and the elongation (L2) until fracture was measured. The low temperature elongation ((L2 / L1) × 100 [%]) was calculated from the initial length L1 and elongation L2. Those with a low temperature elongation of 30% or more were marked with ◯ (pass).

(5)難燃性試験
(5−1)垂直燃焼試験
EN60332−1−2に準拠した難燃性試験として垂直燃焼試験(VFT)を行なった。長さ600mmの絶縁電線を試験片として切り出し、試験片を垂直にて保ち、炎を60秒あてた後、炎を取り去った場合に、60秒以内に消化したものを○(合格)とし、60秒以内に消化しなかったものを×(不合格)とした。
(5) Flame-retardant test (5-1) Vertical combustion test A vertical combustion test (VFT) was conducted as a flame-retardant test based on EN60332-1-2. An insulated wire with a length of 600 mm is cut out as a test piece, the test piece is kept vertical, the flame is applied for 60 seconds, and when the flame is removed, the one digested within 60 seconds is marked as ○ (pass), and 60 Those that did not digest within seconds were marked as x (failed).

(5−2)垂直トレイ燃焼試験
EN50266−2−4に準拠した垂直トレイ燃焼試験(VTFT)を行った。長さ3.5mの絶縁電線を7本準備し、これを撚って1束のコアとし、11束を等間隔で垂直に並べた。下端より20分間燃焼させた後、自己消炎させ、下端からの炭化長を測定した。炭化長が2.5m以下のものを○(合格)とし、炭化長が2.5mを超えたものを×(不合格)とした。なお、炭化長が1.5m以下のものについては、◎(優)とした。
(5-2) Vertical Tray Combustion Test A vertical tray combustion test (VTFT) was conducted in accordance with EN50266-2-4. Seven insulated wires with a length of 3.5 m were prepared and twisted to form a bundle of cores, and 11 bundles were arranged vertically at equal intervals. After burning for 20 minutes from the lower end, the flame was extinguished by itself, and the carbonization length from the lower end was measured. Those having a carbonization length of 2.5 m or less were evaluated as ◯ (pass), and those having a carbonization length of more than 2.5 m were evaluated as x (fail). Those having a carbonization length of 1.5 m or less were rated as ⊚ (excellent).

(6)絶縁性試験
EN50305 6.7に準拠して直流安定試験を行った。絶縁破壊しなかったものを○(合格)とし、絶縁破壊したものを×(不合格)とした。
(6) Insulation test A DC stability test was conducted in accordance with EN50305 6.7. Those that did not break down were marked with ◯ (pass), and those that did not break down were marked with × (fail).

実施例1〜10の各試験結果を表2に、比較例1〜7の各試験結果を表4に示す。 The test results of Examples 1 to 10 are shown in Table 2, and the test results of Comparative Examples 1 to 7 are shown in Table 4.

Figure 2020140840
Figure 2020140840

Figure 2020140840
Figure 2020140840

Figure 2020140840
Figure 2020140840

Figure 2020140840
Figure 2020140840

(考察)
上記実施例および比較例から以下の事項が考察される。
(Discussion)
The following matters are considered from the above-mentioned Examples and Comparative Examples.

表1、表2に示すように、実施例1〜10では、高い難燃性を維持しつつ、耐燃料性、絶縁特性その他特性(引張特性、耐油性、低温特性など)も良好であることが確認された。 As shown in Tables 1 and 2, in Examples 1 to 10, fuel resistance, insulation characteristics and other characteristics (tensile characteristics, oil resistance, low temperature characteristics, etc.) are also good while maintaining high flame retardancy. Was confirmed.

実施例1と比較し、内層の充填剤(無機充てん剤)の添加量が多い実施例2、実施例4では、充填剤の添加量が増加するに伴い、引張強さが向上している。また、充填剤の添加量を多く、150重量部として実施例4では、難燃性試験において、垂直燃焼試験(VFT)が、○(合格)、垂直トレイ燃焼試験(VTFT)が、◎(優)であり、良好な結果が得られた。 In Examples 2 and 4, in which the amount of the filler (inorganic filler) added to the inner layer is larger than that of Example 1, the tensile strength is improved as the amount of the filler added is increased. Further, the amount of the filler added was large, and 150 parts by weight was used. In Example 4, the vertical combustion test (VFT) was ○ (passed) and the vertical tray combustion test (VTFT) was ⊚ (excellent) in the flame retardancy test. ), And good results were obtained.

実施例1と比較し、内層のベースポリマ(ポリマ)として、高融点のPE(融点127℃)を用いた実施例3では、耐油性が向上している。 Compared with Example 1, in Example 3 in which a high melting point PE (melting point 127 ° C.) was used as the base polymer (polymer) of the inner layer, the oil resistance was improved.

外層の難燃剤を150または250重量部の添加量で添加した実施例5、6では、特性がすべて良好であり、他の実施例、比較例との対比から150〜250重量部の範囲内であれば金属水酸化物の添加量を増減しても良いことが判明した。金属水酸化物が少ないほど、伸び特性、低温特性が向上する傾向にあり、多いほど難燃性が向上する傾向にあることが判明した。 In Examples 5 and 6 in which the flame retardant of the outer layer was added in an amount of 150 or 250 parts by weight, all the characteristics were good, and within the range of 150 to 250 parts by weight from the comparison with other Examples and Comparative Examples. If so, it was found that the amount of metal hydroxide added may be increased or decreased. It was found that the smaller the amount of metal hydroxide, the better the elongation property and the low temperature property, and the larger the amount, the better the flame retardancy.

外層のポリマ種、添加量を変更した実施例7〜10においても特性は良好であり、酸変性ポリオレフィンの添加量が20重量部と多い実施例8では低温特性が向上することが判明した。 It was found that the characteristics were also good in Examples 7 to 10 in which the polymer species and the addition amount of the outer layer were changed, and the low temperature characteristics were improved in Example 8 in which the addition amount of the acid-modified polyolefin was as large as 20 parts by weight.

一方、比較例1では内層に融点110℃以上のポリエチレンを添加しておらず、耐油性が不合格となった。この事項および他の実施例、比較例から、内層に、融点110℃以上のポリエチレンを含むことが好ましいことが判明した。また、内層に、酸変性されたポリオレフィンが混合されていることがより好ましいことが判明した。 On the other hand, in Comparative Example 1, polyethylene having a melting point of 110 ° C. or higher was not added to the inner layer, and the oil resistance was unacceptable. From this matter and other examples and comparative examples, it was found that it is preferable that the inner layer contains polyethylene having a melting point of 110 ° C. or higher. Further, it was found that it is more preferable that the inner layer is mixed with the acid-modified polyolefin.

比較例2は、外層に融点85℃以上のポリオレフィン(EVA10))を添加しておらず、引張強さ、低温特性が不合格となった。また、比較例2では、2層押出し後、架橋前の絶縁電線において電線間の融着(粘着)が見られた。比較例3は、外層にVA量60%以上のEVAを添加しておらず、伸び特性、難燃性が不合格となった。融点85℃以上のポリオレフィンおよびVA量60%以上のEVAのどちらも添加していない比較例4、および2種の合計がポリマ重量の80%に満たない比較例5では耐燃料性が不合格となった。これらの事項等から、外層に、酢酸ビニル含有量(VA量)が60%以上であるエチレン−酢酸ビニル共重合体(EVA)、および融点が85℃以上であるポリオレフィン系ポリマの少なくとも2種のポリマがポリマ全体の80%以上を占めるベースポリマを用いることが好ましいことが判明した。 In Comparative Example 2, polyolefin (EVA 10) having a melting point of 85 ° C. or higher was not added to the outer layer, and the tensile strength and low temperature characteristics were unacceptable. Further, in Comparative Example 2, fusion (adhesion) between the wires was observed in the insulated wires after the two-layer extrusion and before the cross-linking. In Comparative Example 3, EVA having a VA amount of 60% or more was not added to the outer layer, and the elongation characteristics and flame retardancy were rejected. Fuel resistance was rejected in Comparative Example 4 in which neither polyolefin having a melting point of 85 ° C. or higher and EVA having a VA amount of 60% or higher was added, and Comparative Example 5 in which the total of the two types was less than 80% of the polymer weight. became. Based on these matters, at least two types of ethylene-vinyl acetate copolymer (EVA) having a vinyl acetate content (VA amount) of 60% or more and a polyolefin polymer having a melting point of 85 ° C. or more are used in the outer layer. It has been found that it is preferable to use a base polymer in which the polymer accounts for 80% or more of the total polymer.

また、外層の金属水酸化物が120重量部と少ない比較例6では難燃性が不合格となり、外層の金属水酸化物が280重量部と多い比較例7では伸び特性、低温特性が不合格となった。これらの事項および他の実施例等から、外層の金属水酸化物としては、150〜250重量部とすることが好ましいことが判明した。 Further, in Comparative Example 6 in which the metal hydroxide in the outer layer was as small as 120 parts by weight, the flame retardancy was rejected, and in Comparative Example 7 in which the metal hydroxide in the outer layer was as large as 280 parts by weight, the elongation characteristics and the low temperature characteristics were rejected. It became. From these matters and other examples, it was found that the amount of the metal hydroxide in the outer layer is preferably 150 to 250 parts by weight.

本発明は上記実施の形態および実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、上記実施例においては、絶縁電線を例に説明したが、ケーブルを作製し、評価してもよい。例えば、ケーブルからシースの内部の構造物を引き抜き、絶縁電線の場合と同様に評価することができる。 The present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the gist thereof. For example, in the above embodiment, the insulated electric wire has been described as an example, but a cable may be manufactured and evaluated. For example, the structure inside the sheath can be pulled out from the cable and evaluated in the same manner as in the case of an insulated wire.

11 絶縁電線
11a 導体
11b 内層
11c 外層
12 ケーブル
12d シース
11 Insulated wire 11a Conductor 11b Inner layer 11c Outer layer 12 Cable 12d Sheath

Claims (10)

導体と、前記導体を被覆する第1絶縁層と、前記第1絶縁層を被覆する第2絶縁層と、を有する絶縁電線であって、
前記第1絶縁層は、第1ベースポリマと、充填剤とを含む第1ノンハロゲン樹脂組成物よりなり、
前記第2絶縁層が、第2ベースポリマと、金属水酸化物とを含む第2ノンハロゲン樹脂組成物よりなり、
前記第2ベースポリマは、酢酸ビニル含有量(VA量)が60%以上であるエチレン−酢酸ビニル共重合体(EVA)および融点が85℃以上であるポリオレフィン系ポリマの少なくとも2種のポリマを含み、前記2種のポリマが第2ベースポリマの80%以上を占め、
前記金属水酸化物は、ベースポリマ100重量部に対して150〜250重量部の割合で含まれる、絶縁電線。
An insulated wire having a conductor, a first insulating layer covering the conductor, and a second insulating layer covering the first insulating layer.
The first insulating layer comprises a first non-halogen resin composition containing a first base polymer and a filler.
The second insulating layer comprises a second non-halogen resin composition containing a second base polymer and a metal hydroxide.
The second base polymer contains at least two types of polymers, an ethylene-vinyl acetate copolymer (EVA) having a vinyl acetate content (VA amount) of 60% or more and a polyolefin-based polymer having a melting point of 85 ° C. or more. , The above two types of polymers account for more than 80% of the second base polymer.
An insulated wire in which the metal hydroxide is contained in a ratio of 150 to 250 parts by weight with respect to 100 parts by weight of the base polymer.
請求項1記載の絶縁電線において、
前記第1ベースポリマは、融点110℃以上のポリエチレンを50%以上含み、前記充填剤は、ベースポリマ100重量部に対して150重量部以下の割合で含まれる、絶縁電線。
In the insulated wire according to claim 1,
The first base polymer contains 50% or more of polyethylene having a melting point of 110 ° C. or higher, and the filler is contained in a ratio of 150 parts by weight or less with respect to 100 parts by weight of the base polymer.
請求項2記載の絶縁電線において、
前記充填剤は、焼成クレーまたはタルクである、絶縁電線。
In the insulated wire according to claim 2,
The filler is an insulated wire, which is calcined clay or talc.
請求項2記載の絶縁電線において、
架橋後の引張強さが10MPa以上、かつ伸びが150%以上であり、
IRM903油に、70℃で、168時間浸漬した後の引張強さ変化率が±30%以内、かつ伸び変化率が±40%以内である、絶縁電線。
In the insulated wire according to claim 2,
The tensile strength after cross-linking is 10 MPa or more, and the elongation is 150% or more.
An insulated wire having a tensile strength change rate of ± 30% or less and an elongation change rate of ± 40% or less after being immersed in IRM903 oil at 70 ° C. for 168 hours.
請求項2記載の絶縁電線において、
前記第1ベースポリマに、酸変性されたポリオレフィンが混合されている、絶縁電線。
In the insulated wire according to claim 2,
An insulated wire in which an acid-modified polyolefin is mixed with the first base polymer.
請求項2記載の絶縁電線において、
前記第2ベースポリマに、酸変性されたポリオレフィンが混合され、
前記酸変性されたポリオレフィンのガラス転移温度(Tg)が−55℃以下であり、
前記2種のポリマと、前記酸変性されたポリオレフィンとの質量比が80:20〜99:1である、絶縁電線。
In the insulated wire according to claim 2,
An acid-modified polyolefin is mixed with the second base polymer,
The glass transition temperature (Tg) of the acid-modified polyolefin is −55 ° C. or lower.
An insulated wire having a mass ratio of the two types of polymers to the acid-modified polyolefin of 80:20 to 99: 1.
請求項2記載の絶縁電線において、
前記金属水酸化物は、水酸化マグネシウムまたは水酸化アルミニウムを含み、
前記融点が85℃以上であるポリオレフィン系ポリマは、エチレン−酢酸ビニル共重合体(EVA)である、絶縁電線。
In the insulated wire according to claim 2,
The metal hydroxide contains magnesium hydroxide or aluminum hydroxide.
The polyolefin-based polymer having a melting point of 85 ° C. or higher is an insulated wire which is an ethylene-vinyl acetate copolymer (EVA).
絶縁電線と、前記絶縁電線を被覆するシースとを有するケーブルであって、
前記絶縁電線として、請求項1乃至7のいずれか1項に記載の絶縁電線を有する、ケーブル。
A cable having an insulated wire and a sheath that covers the insulated wire.
A cable having the insulated wire according to any one of claims 1 to 7 as the insulated wire.
絶縁電線と、前記絶縁電線を被覆するシースとを有するケーブルであって、
前記シースは、ベースポリマと、金属水酸化物とを含むノンハロゲン樹脂組成物よりなり、
前記ベースポリマは、酢酸ビニル含有量(VA量)が60%以上であるエチレン−酢酸ビニル共重合体(EVA)および融点が85℃以上であるポリオレフィン系ポリマの少なくとも2種のポリマを含み、前記2種のポリマがベースポリマの80%以上を占め、
前記金属水酸化物は、ベースポリマ100重量部に対して150〜250重量部の割合で含まれる、ケーブル。
A cable having an insulated wire and a sheath that covers the insulated wire.
The sheath comprises a non-halogen resin composition containing a base polymer and a metal hydroxide.
The base polymer contains at least two types of polymers, an ethylene-vinyl acetate copolymer (EVA) having a vinyl acetate content (VA amount) of 60% or more and a polyolefin-based polymer having a melting point of 85 ° C. or more. Two types of polymers account for more than 80% of the base polymer,
A cable in which the metal hydroxide is contained in a ratio of 150 to 250 parts by weight with respect to 100 parts by weight of the base polymer.
請求項9記載のケーブルにおいて、
架橋後の引張強さが10MPa以上、かつ伸びが150%以上であり、
IRM903油に、70℃で、168時間浸漬した後の引張強さ変化率が±30%以内、かつ伸び変化率が±40%以内である、ケーブル。
In the cable according to claim 9,
The tensile strength after cross-linking is 10 MPa or more, and the elongation is 150% or more.
A cable having a tensile strength change rate of ± 30% or less and an elongation change rate of ± 40% or less after being immersed in IRM903 oil at 70 ° C. for 168 hours.
JP2019035062A 2019-02-28 2019-02-28 insulated wire and cable Active JP7159912B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019035062A JP7159912B2 (en) 2019-02-28 2019-02-28 insulated wire and cable
CN202010075770.8A CN111621071A (en) 2019-02-28 2020-01-22 Insulated wire and cable
DE102020105177.8A DE102020105177A1 (en) 2019-02-28 2020-02-27 Insulated electrical wire and cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019035062A JP7159912B2 (en) 2019-02-28 2019-02-28 insulated wire and cable

Publications (2)

Publication Number Publication Date
JP2020140840A true JP2020140840A (en) 2020-09-03
JP7159912B2 JP7159912B2 (en) 2022-10-25

Family

ID=72046204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019035062A Active JP7159912B2 (en) 2019-02-28 2019-02-28 insulated wire and cable

Country Status (3)

Country Link
JP (1) JP7159912B2 (en)
CN (1) CN111621071A (en)
DE (1) DE102020105177A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149681A1 (en) * 2021-01-11 2022-07-14 엘에스전선 주식회사 Composition for insulating layer or sheath layer of solar cable and solar cable comprising insulating layer or sheath layer formed therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773719A (en) * 2022-03-28 2022-07-22 金发科技股份有限公司 Polyolefin material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239901A (en) * 2007-03-28 2008-10-09 Furukawa Electric Co Ltd:The Flame-retardant resin composition and insulated electric wire coated with the resin composition
JP2014024910A (en) * 2012-07-25 2014-02-06 Hitachi Metals Ltd Halogen-free flame-retardant resin composition, insulated electric wire, and cable
JP2016021360A (en) * 2014-06-19 2016-02-04 日立金属株式会社 Insulation wire
WO2016175076A1 (en) * 2015-04-28 2016-11-03 住友電気工業株式会社 Non-halogen flame-resistant resin composition and insulated electric wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972836B2 (en) * 2013-06-14 2016-08-17 日立金属株式会社 Non-halogen flame retardant wire cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239901A (en) * 2007-03-28 2008-10-09 Furukawa Electric Co Ltd:The Flame-retardant resin composition and insulated electric wire coated with the resin composition
JP2014024910A (en) * 2012-07-25 2014-02-06 Hitachi Metals Ltd Halogen-free flame-retardant resin composition, insulated electric wire, and cable
JP2016021360A (en) * 2014-06-19 2016-02-04 日立金属株式会社 Insulation wire
WO2016175076A1 (en) * 2015-04-28 2016-11-03 住友電気工業株式会社 Non-halogen flame-resistant resin composition and insulated electric wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149681A1 (en) * 2021-01-11 2022-07-14 엘에스전선 주식회사 Composition for insulating layer or sheath layer of solar cable and solar cable comprising insulating layer or sheath layer formed therefrom

Also Published As

Publication number Publication date
JP7159912B2 (en) 2022-10-25
CN111621071A (en) 2020-09-04
DE102020105177A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP6376463B2 (en) cable
JP6082741B2 (en) Non-halogen flame retardant resin composition and insulated wire / cable having the resin composition
US10510468B2 (en) LAN cable
JP2015000913A (en) Non-halogen flame-retardant resin composition, and wires and cables prepared using the same
JP2015072743A (en) Wire and cable
JP7159912B2 (en) insulated wire and cable
JP7103111B2 (en) Non-halogen flame-retardant resin composition, insulated wires, and cables
US9984792B2 (en) Electric wire and cable
US9812232B2 (en) Electric wire and cable
US9640301B2 (en) Electric wire and cable
CN108511127B (en) LAN cable
CN115274205B (en) LAN cable
JP5765316B2 (en) Non-halogen flame retardant resin composition and electric wire / cable using the same
JP6658236B2 (en) LAN cable
US9991027B2 (en) Electric wire and cable
JP2015117318A (en) Flame-retardant resin composition, and wire and cable using the same
JP2015117317A (en) Flame-retardant resin composition, and wire and cable using the same
JP7156417B2 (en) LAN cable
JP2015067819A (en) Non-halogen resin composition, insulated wire and cable
JP2018200902A (en) Wire and cable
JP2017137378A (en) Resin composition and insulated wire and cable using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7159912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350