JP7372215B2 - Composition for fired body and method for producing fired body using the same - Google Patents

Composition for fired body and method for producing fired body using the same Download PDF

Info

Publication number
JP7372215B2
JP7372215B2 JP2020120723A JP2020120723A JP7372215B2 JP 7372215 B2 JP7372215 B2 JP 7372215B2 JP 2020120723 A JP2020120723 A JP 2020120723A JP 2020120723 A JP2020120723 A JP 2020120723A JP 7372215 B2 JP7372215 B2 JP 7372215B2
Authority
JP
Japan
Prior art keywords
firing
fired body
composition
fired
coal ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020120723A
Other languages
Japanese (ja)
Other versions
JP2022024276A (en
Inventor
裕光 幅口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020120723A priority Critical patent/JP7372215B2/en
Publication of JP2022024276A publication Critical patent/JP2022024276A/en
Application granted granted Critical
Publication of JP7372215B2 publication Critical patent/JP7372215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、焼成体用組成物及びこれを用いた焼成体の製造方法に関する。特に、産業廃棄物である石炭灰、下水汚泥焼却灰、電気炉酸化スラグ、銅スラグ、亜鉛スラグ等の酸化鉄成分含有物を使用した焼成体用組成物及びこれを用いた焼結体の製造方法に関する。 The present invention relates to a composition for a fired body and a method for producing a fired body using the composition. In particular, production of compositions for sintered bodies using materials containing iron oxide components such as industrial wastes such as coal ash, sewage sludge incineration ash, electric furnace oxidation slag, copper slag, zinc slag, etc., and production of sintered bodies using the same. Regarding the method.

石炭灰は、石炭を燃料とする火力発電所から大量に排出されており、その石炭灰の資源化利用については、特にセメント製造原料のうち粘土の代替原料としてセメント工場で多量に使用されている。「石炭灰全国実態調査報告書(平成29年度実績)平成31年3月、一般財団法人石炭エネルギーセンター」の「表10 平成29年度石炭灰有効利用分野別の内容内訳」の利用分野別の内訳よれば、セメント分野におけるセメント原材料としての利用量は、石炭灰の全有効利用量の67.8%である。 Coal ash is emitted in large quantities from thermal power plants that use coal as fuel, and the use of coal ash as a resource is particularly important as it is used in large quantities in cement factories as an alternative to clay among the raw materials for cement production. . Breakdown by field of use in "Table 10 Breakdown of content by field of effective use of coal ash in 2017" of "National Survey Report on Coal Ash (FY2017 results), March 2019, Coal Energy Center, General Incorporated Foundation" According to the report, the amount of coal ash used as a cement raw material in the cement field is 67.8% of the total effective amount of coal ash used.

また、電気炉酸化スラグ及び銅、亜鉛の非金属精錬過程で発生する非鉄金属スラグは、酸化鉄の化学成分を多く含有するものであるが、道路舗装の路盤材及びアスファルトコンクリート舗装用骨材、土工用材、地盤改良用材等として資源化利用されている。 In addition, electric furnace oxidized slag and non-ferrous metal slag generated in the non-metal refining process of copper and zinc contain a large amount of iron oxide chemical components, and are used as road base material for road pavements, asphalt concrete pavement aggregates, It is used as a resource for earthworks, ground improvement, etc.

一方、下水処理場で発生する下水汚泥は、汚泥処理施設における処理工程で脱水汚泥となり、最終的にその脱水汚泥を減容化する目的で焼却炉により焼却して灰(以下、「下水汚泥焼却灰」という。)として排出されている。この下水汚泥焼却灰については、その多くが埋立て条件を満たすために事前に一定の処理を行って、埋立て処分をしている。 On the other hand, sewage sludge generated at a sewage treatment plant becomes dehydrated sludge during the treatment process at a sludge treatment facility, and finally, the dehydrated sludge is incinerated in an incinerator to reduce its volume to ash (hereinafter referred to as "sewage sludge incineration"). It is discharged as "ash"). Most of this sewage sludge incineration ash is disposed of in a landfill after undergoing certain treatments in order to meet the landfill conditions.

なお、石炭灰及び製鋼スラグ並びに非鉄金属スラグの資源化需要は、景気状況や公共投資予算の施行事業内容の影響を受ける要素が高いことから、産業廃棄物の更なる有効利用の研究及び技術開発が喫緊の課題である。そのうえで、新たな石炭灰などの有効利活用の生産環境の実現は、社会課題の一つである産業廃棄物の資源化による循環型社会の形成に寄与し得る。更に、埋立て処分場の延命化に繋がることが期待される。 Furthermore, the demand for resource recovery of coal ash, steelmaking slag, and non-ferrous metal slag is highly influenced by the economic situation and the content of public investment budget implementation projects, so research and technology development for further effective use of industrial waste is required. is an urgent issue. Furthermore, creating a production environment that makes effective use of new coal ash and other resources can contribute to the creation of a recycling-oriented society by turning industrial waste into resources, which is one of the social issues. Furthermore, it is expected that this will lead to extending the lifespan of landfill sites.

以前より、石炭灰を利用した人工骨材の製造方法が種々考案されている。例えば、特許文献1には、土木、建築用普通コンクリート用骨材として使用することができる高強度人工骨材を得るとともに、石炭灰の用途を拡大しその有効利用を図ることを目的として、石炭灰の粒度分布を一定範囲ごとに調整した後、当該石炭灰及び石灰石粉末(炭酸カルシウム)に粘結材と水を加えて造粒し、その造粒物を焼成して高強度人工骨材を得ることが開示されている。 Various methods for producing artificial aggregates using coal ash have been devised for some time. For example, in Patent Document 1, in order to obtain a high-strength artificial aggregate that can be used as an aggregate for ordinary concrete for civil engineering and construction, and to expand the uses of coal ash and aim for its effective use, After adjusting the particle size distribution of the ash within a certain range, the coal ash and limestone powder (calcium carbonate) are granulated by adding a caking agent and water, and the granules are fired to produce high-strength artificial aggregate. It is disclosed that it can be obtained.

また、特許文献2には、高強度及び低吸水率の人工骨材を製造するために、事前に石炭灰に含まれる磁鉄鉱を除去した石炭灰を配合することが開示されている。その焼成体である人工骨材の物性は、絶乾密度が1.50g/cm3以上、2.00g/cm3以下で、吸水率が0.1質量%以上、6質量%以下、圧懐荷重が、粒径5mm以上、10mm未満は0.5kN以上、又は、粒径10mm以上、15mm未満は1.0kN以上の焼成体が得られるとされている。 Further, Patent Document 2 discloses blending coal ash from which magnetite contained in coal ash has been removed in advance in order to produce artificial aggregate with high strength and low water absorption. The physical properties of the artificial aggregate, which is the fired body, are as follows: absolute dry density is 1.50 g/cm3 or more and 2.00 g/cm3 or less, water absorption is 0.1 mass% or more and 6 mass% or less, and compaction load is It is said that a fired product with a grain size of 5 mm or more and less than 10 mm can yield a fired product of 0.5 kN or more, or a grain size of 10 mm or more and less than 15 mm can yield a fired product of 1.0 kN or more.

また、特許文献3には、石炭灰50部、頁岩33部、水17部の配合で、その焼成後の比重は、1.63、圧壊強度は、1600Nの人工軽量骨材、及び、石炭灰47部、下水汚泥焼却灰31部、水22部の配合で、その焼成後の比重は、1.35、圧壊強度は、1450Nの人工軽量骨材、の製造方法が開示されている。この方法においては、天然資源の頁岩を配合すること及び下水汚泥焼却灰を配合することで軽量化を図ることとしている。 Furthermore, Patent Document 3 describes an artificial lightweight aggregate with a composition of 50 parts of coal ash, 33 parts of shale, and 17 parts of water, the specific gravity of which after firing is 1.63, and the crushing strength of 1600N, and coal ash. 47 parts of sewage sludge incineration ash, and 22 parts of water, a method for producing an artificial lightweight aggregate having a specific gravity of 1.35 and a crushing strength of 1450N after firing is disclosed. In this method, weight reduction is achieved by incorporating natural resource shale and sewage sludge incineration ash.

特開平7-206491JP 7-206491 特開2001-151543JP2001-151543 特開2007-269539JP2007-269539

しかしながら、先行特許文献1の方法では、高強度骨材製造の前提として造粒物の主材である石炭灰について、事前に粒度分布範囲を調整することが必要であり、工程が煩雑であった。また、先行特許文献2の方法では、高強度骨材製造の前提として石炭灰から磁鉄鉱の除去を要し、かなり煩雑であった。これら特許文献1及び2に開示された製造方法は、製造工程が多く、発生する費用も割高となる問題があった。更に、先行特許文献3の方法では、需要先が限定されるので天然資源の使用は循環型社会の形成に全面的には寄与せず、また下水汚泥焼却灰を使用しての骨材の軽量化による資源化は、近年の国内における軽量骨材の需要量の低迷から、新たな循環型社会の形成を担う材料資源には至らないという問題があった。 However, in the method of Prior Patent Document 1, it is necessary to adjust the particle size distribution range of coal ash, which is the main material of the granules, in advance as a prerequisite for producing high-strength aggregate, and the process is complicated. . Further, the method of Prior Patent Document 2 requires removal of magnetite from coal ash as a prerequisite for producing high-strength aggregate, which is quite complicated. The manufacturing methods disclosed in Patent Documents 1 and 2 have a problem in that there are many manufacturing steps and the costs involved are relatively high. Furthermore, in the method of Prior Patent Document 3, the use of natural resources does not fully contribute to the formation of a recycling-oriented society because the demand destination is limited, and the use of sewage sludge incineration ash makes the aggregate lightweight. Due to the recent slump in demand for lightweight aggregates in Japan, resource recovery through recycling has not been able to produce the material resources that will play a role in creating a new recycling-oriented society.

そこで、本発明は、煩雑な工程を経ることなく、簡単な製造方法で産業廃棄物の資源化ができ、物性の優れた焼成体の製造方法を実現することを課題とした。例えば、大気下の焼成条件で、比重2.1乃至2.3の焼成体で、吸水率3%以下、好ましくは1%以下、圧壊強度は、2000N以上で、好ましくは4000N以上の人工骨材や、大気下の焼成条件で、比重2.1乃至2.3の焼成体で、吸水率10%以下で、実用強度の土木建築資材の実現である。 Therefore, an object of the present invention is to realize a method for producing a fired body with excellent physical properties, which allows industrial waste to be recycled by a simple production method without going through complicated steps. For example, under atmospheric firing conditions, an artificial aggregate with a specific gravity of 2.1 to 2.3, a water absorption rate of 3% or less, preferably 1% or less, and a crushing strength of 2000N or more, preferably 4000N or more. The goal is to realize a fired body with a specific gravity of 2.1 to 2.3 under atmospheric firing conditions, a water absorption rate of 10% or less, and a civil engineering and construction material with practical strength.

人工骨材は、産業廃棄物のみを原料とした焼成用組成物を使用することができ、産業廃棄物のリサイクル、有効活用する課題がある。焼成用組成物を焼成して人工骨材とするとき、例えば、焼成温度1180℃程度の焼成によって、平均粒径約12.1mm程度の焼成体を得て、吸水率1.0%以下で、圧壊強度が4300Nを超えるものが望まれる。さらに、磯焼け抑制資材(鉄イオン発生材料)及び平板状にした場合などの壁面タイル兼電磁波抑制材等の環境改善材料等の土木・建築資材に広く利用したい。 As the artificial aggregate, a firing composition made only from industrial waste can be used, and there is a problem in recycling and effectively utilizing industrial waste. When firing the firing composition to make artificial aggregate, for example, by firing at a firing temperature of about 1180°C, a fired body with an average particle size of about 12.1 mm is obtained, and the water absorption rate is 1.0% or less. It is desired that the crushing strength exceeds 4300N. Furthermore, we would like to use it widely in civil engineering and construction materials, such as rock-slope suppression materials (ferrous ion-generating materials) and environmental improvement materials such as wall tiles and electromagnetic wave suppression materials when made into flat plates.

発明者は、鋭意検討の結果、次発明を提供するものである。
[1] 石炭灰(a)を主材に、焼成による緻密化を促進する媒融物として、下水汚泥焼却灰(b)と、酸化鉄含有成分として、電気炉酸化スラグ、磁鉄鉱粉末、使用した使い捨てカイロから選ばれた1種以上(c)と、を含むことを特徴とする焼成用組成物、を提供する。
[2] [1]に記載の焼成用組成物に、結合剤を加えて、造粒成形し、又は型枠内で加圧成形した後、大気中で焼成して得られることを特徴とする焼成体の製造法、を提供する。
[3] 前記媒融物が、更に、酸化鉄成分として、銅スラグ、亜鉛スラグのうち、1種類以上を含むことを特徴とする[2]に記載の焼成体の製造法、を提供する。
[4] 前記媒融物中の酸化鉄成分(c)が、焼成用組成物中5重量%~20重量%であることを特徴とするの[2]に記載の焼成体の製造法、を提供する。
[5] 前記媒融物中の下水汚泥焼却灰(b)が、焼成用組成物中、5重量%以上~20重量%以下であり、酸化鉄成分(c)が、焼成用組成物中5重量%~10重量%であることを特徴とするの[2]に記載の焼成体の製造法、を提供する。
[6] 前記焼成組成物中の石炭灰(a)が、1100℃で焼成したとき、比重が1.5以下であることを特徴とする[2]乃至[5]のいずれかに記載の焼成体の製造方法を、提供する。
[7] 造粒成形した粒形が、6mm~24mmの造粒成形物であり、大気中で焼成して人工骨材として用いることを特徴とするの[2]乃至[5]のいずれかに記載の焼成体の製造法、を提供する。
[8] 大気中の焼成温度が1080℃~1220℃であり、焼成後の比重が1.4~2.4であることを特徴とする[2] 乃至[5]記載の焼成体の製造方法、を提供する。
[9] 製鋼スラグの破砕物と、石炭灰と、[3]乃至[5]の媒融物を有する焼成用組成物を、造粒成形し、又は型枠内で加圧成形した後、大気中で焼成して得られることを特徴とするの焼成体の製造法、を提供する。
As a result of intensive study, the inventor provides the following invention.
[1] Coal ash (a) was used as the main material, sewage sludge incineration ash (b) was used as a medium to promote densification by calcination, and electric furnace oxidized slag and magnetite powder were used as iron oxide-containing components. To provide a baking composition characterized by containing one or more types (c) selected from disposable body warmers.
[2] It is characterized in that it is obtained by adding a binder to the firing composition described in [1], granulating it or press-molding it in a mold, and then firing it in the atmosphere. A method for producing a fired body is provided.
[3] The method for producing a fired body according to [2] is provided, wherein the medium further contains one or more of copper slag and zinc slag as an iron oxide component.
[4] The method for producing a fired body according to [2], wherein the iron oxide component (c) in the medium is 5% to 20% by weight in the firing composition. provide.
[5] The sewage sludge incineration ash (b) in the medium melt is 5% by weight or more and 20% by weight or less in the baking composition, and the iron oxide component (c) is 5% by weight or less in the baking composition. Provided is a method for producing a fired body according to item [2], characterized in that the amount is from 10% by weight to 10% by weight.
[6] The firing method according to any one of [2] to [5], wherein the coal ash (a) in the firing composition has a specific gravity of 1.5 or less when fired at 1100°C. A method for manufacturing a body is provided.
[7] Any one of [2] to [5], wherein the granulated product has a particle size of 6 mm to 24 mm, and is characterized by being fired in the atmosphere and used as an artificial aggregate. A method for manufacturing the fired body described above is provided.
[8] The method for producing a fired body according to [2] to [5], characterized in that the firing temperature in the atmosphere is 1080°C to 1220°C, and the specific gravity after firing is 1.4 to 2.4. ,I will provide a.
[9] A firing composition containing crushed steelmaking slag, coal ash, and the medium melts of [3] to [5] is granulated or press-formed in a mold, and then exposed to the atmosphere. Provided is a method for producing a fired body, characterized in that the fired body is obtained by firing in a sintered body.

本発明は、各種産業廃棄物のうち、下水汚泥焼却灰、酸化鉄成分等が、主材の石炭灰の焼成に際し、緻密化を促進させる媒融物として機能し石炭灰成形物の空隙を埋めるため、その間詰材料として、好適であり、多くの産業廃棄物に適用可能であることを見出したものである。 The present invention uses sewage sludge incineration ash, iron oxide components, etc. from various industrial wastes to function as a medium that promotes densification during the firing of coal ash, which is the main material, and fills the voids in coal ash molded products. Therefore, it has been found that it is suitable as an infill material and can be applied to many industrial wastes.

石炭灰
特に、限定するものでないが、JISフライアッシュ(2種)であって、超々臨界圧(USC)石炭火力発電所から搬出された石炭灰が好ましい。未燃炭素分が少ないからである。超々臨界圧(USC)石炭火力発電所では、石炭の燃焼過程でボイラー及び煙道等の設備に発生するスラッギング及びファウリングの防止のため、その対策として燃料に使用する石炭については、その燃焼により発生する灰は高温の溶融温度領域であることや排出される灰分量その他影響成分を分析して燃料用石炭を選定している。本願発明の石炭灰は、高い溶融温度の石炭灰を主に使用した。しかし、石炭灰の溶融温度が1,250℃程度以下である低い溶融温度の石炭灰を使用することについては、本発明において妨げるものではない。石炭灰の主要成分の代表値を表1に示した。未燃炭素量は、4.5質量%以下であることが好ましい。焼成雰囲気が還元雰囲気になりにくいことが好ましいからである。
Coal ash is particularly preferably, but not limited to, JIS fly ash (class 2), which is coal ash carried out from an ultra-supercritical (USC) coal-fired power plant. This is because the unburned carbon content is low. In ultra-supercritical (USC) coal-fired power plants, in order to prevent slagging and fouling that occur in equipment such as boilers and flues during the coal combustion process, the coal used as fuel is Fuel coal is selected based on the fact that the ash generated is in a high melting temperature range, the amount of ash emitted, and other influencing components. The coal ash of the present invention mainly used coal ash having a high melting temperature. However, the present invention does not preclude the use of coal ash having a low melting temperature of about 1,250° C. or lower. Table 1 shows representative values of the main components of coal ash. The amount of unburned carbon is preferably 4.5% by mass or less. This is because it is preferable that the firing atmosphere is unlikely to become a reducing atmosphere.

下水汚泥焼却灰
脱水汚泥を減容化する目的で高温焼却炉により焼却して灰にし、発生した灰を集塵機で捕集したものである。媒融剤として構成される。媒融剤としての効果は、主成分に石炭灰との共通成分であるK2O量の影響が大である。その含有範囲は、1.9~3.6重量%が好ましい。下水汚泥焼却灰の粒径は、粒径の範囲が1μm~300μmで、粒径100μm以下の粒径の重量累計が90%以上であることが好ましい。また、石炭灰の平均粒径より小さいことが好ましい。主材である石炭灰の粒子間隙に酸化鉄成分ともに入り込む態様となるからである。下水汚泥焼却灰の主要成分の代表値を表2に示した。
Sewage sludge incineration ash Dehydrated sludge is incinerated into ash in a high-temperature incinerator to reduce its volume, and the generated ash is collected with a dust collector. Constructed as a medium. The effect as a fluxing agent is largely influenced by the amount of K2O, which is a common component with coal ash as a main component. The content range is preferably 1.9 to 3.6% by weight. The particle size of the sewage sludge incineration ash is preferably in the range of 1 μm to 300 μm, and the cumulative weight of particles with a particle size of 100 μm or less is 90% or more. Moreover, it is preferable that the average particle size is smaller than the average particle size of coal ash. This is because iron oxide components also enter into the interparticle gaps of coal ash, which is the main material. Table 2 shows representative values of the main components of sewage sludge incineration ash.

都市ごみ焼却灰
なお、都市ごみについて清掃工場で焼却処理されて焼却灰、焼却飛灰となり、更に溶融処理によって溶融スラグ、溶融メタル、溶融飛灰が排出される。これらの産業廃棄物に(「都市ごみ等に含まれる金属資源の挙動に関する研究(1)~(4)東京都環境科学研究所年報 2012~2014」より)についても、下水汚泥焼却灰と同様の化学組成物及び元素組成物を含むため、本発明における目的の機能を果たす材料に含めるものとする。特に、K2Oが、1.9~3.6質量%含まれることが好ましい。
Municipal waste incineration ash Furthermore, municipal waste is incinerated at an incineration plant to become incinerated ash and incinerated fly ash, and furthermore, molten slag, molten metal, and molten fly ash are discharged through melting processing. These industrial wastes (from "Study on the behavior of metal resources contained in municipal waste, etc. (1) to (4) Tokyo Metropolitan Institute of Environmental Science Annual Report 2012 to 2014") are similar to sewage sludge incineration ash. Since it includes a chemical composition and an elemental composition, it is included in the materials that perform the intended function in the present invention. In particular, it is preferable that K2O be contained in an amount of 1.9 to 3.6% by mass.

下水汚泥焼却灰は、酸化鉄成分とともに、5重量%以上~20重量%以下用いることが好ましい。 The sewage sludge incineration ash is preferably used in an amount of 5% by weight or more and 20% by weight or less together with the iron oxide component.

酸化鉄含有成分
酸化鉄含有成分として、電気炉酸化スラグ、磁鉄鉱粉末、使用した使い捨てカイロが好ましい。鉄酸化物系の結晶質の鉱物、あるいはガラス組成で良いが、化学成分表示で、FeOと表示される部位を有する酸化鉄、FeOを含む複合酸化物、又は水酸化鉄やその脱水和物である酸化鉄含有成分が好ましい。Fe・FeO(磁鉄鉱:Fe)で表されるものを含む。しかし、酸化が進んだヘマタイトは含まない。本願では、低炭素量の石炭灰も利用可能で、還元雰囲気になりにくい条件下での焼成であっても発泡の原因となるガス発生が比較的抑制できて、焼成温度等の焼成条件が制御しやすく、目指す比重で比較的高強度の焼成体が得られる。酸化鉄含有成分は、媒融剤として、下水汚泥焼却灰ともに、5重量%以上~20重量%以下用いることが好ましい。
Iron oxide-containing component As the iron oxide-containing component, electric furnace oxidized slag, magnetite powder, and used disposable body warmers are preferred. Iron oxide-based crystalline minerals or glass compositions may be used, but iron oxides with a site indicated as FeO in the chemical composition display, composite oxides containing FeO, iron hydroxide or its dehydrates may be used. Certain iron oxide containing components are preferred. Including those represented by Fe 2 O 3 .FeO (magnetite: Fe 3 O 4 ). However, it does not include highly oxidized hematite. In this application, coal ash with a low carbon content can also be used, and even when firing under conditions that do not easily create a reducing atmosphere, gas generation that causes foaming can be relatively suppressed, and firing conditions such as firing temperature can be controlled. It is easy to produce a sintered body with relatively high strength and the desired specific gravity. The iron oxide-containing component is preferably used as a fluxing agent in an amount of 5% by weight or more and 20% by weight or less in both sewage sludge incineration ash.

電気炉酸化スラグ
鉄スクラップを溶解、精錬する際に発生するスラグのうち、酸化精錬工程から排出される酸化スラグである。徐冷スラグも急冷スラグも含む。還元スラグように遊離石灰を多量に含まず、比較的安定な組成であり、FeO成分を有することが条件である。
Electric Furnace Oxidized Slag Among the slags generated when iron scrap is melted and refined, this is oxidized slag discharged from the oxidation refining process. It includes both slowly cooled slag and rapidly cooled slag. The conditions are that it does not contain a large amount of free lime like reduced slag, has a relatively stable composition, and has an FeO component.

磁鉄鉱粉末
天然磁鉄鉱の化学成分Feを有する。これを含有する黒浜土等の顔料を用いることも可能である。実験例では、黒浜土顔料(以下、黒浜土。)を用いた。
Magnetite powder has the chemical component of natural magnetite Fe3O4 . It is also possible to use pigments containing this, such as Kurohama soil. In the experimental example, Kurohama soil pigment (hereinafter referred to as Kurohama soil) was used.

使用した使い捨てカイロ
発熱後の金属鉄粉末の処理粉末である。例えば、使用した使い捨てカイロの内容処理物で、水酸化第一鉄、水酸化第二鉄、それらの脱水和物、残留鉄を含んでも良い。
This is a processed powder of metal iron powder after the disposable body warmer used generated heat. For example, the processed contents of a used disposable hand warmer may include ferrous hydroxide, ferric hydroxide, dehydrated products thereof, and residual iron.

電気炉酸化スラグ、磁鉄鉱粉末、使用した使い捨てカイロ(以下、使い捨てカイロ)は、石炭灰の平均粒径より小さい平均粒径を有することが好ましい。媒融剤としての効果を発揮しやすいからである。粒度分布としては、特に、200メッシュ以下(74μm目開き篩全通)であることが好ましい。 It is preferable that the electric furnace oxidized slag, magnetite powder, and the used disposable warmer (hereinafter referred to as disposable warmer) have an average particle size smaller than the average particle size of coal ash. This is because it is easy to exhibit its effect as a medium. The particle size distribution is particularly preferably 200 mesh or less (passed through a 74 μm mesh sieve).

造粒成形し、又は型枠内で加圧成形した後、大気中で焼成して得られることを特徴とする焼成体の製造法であるが、造粒成形は、噴霧ドライ方式、パンペレタイジング方式等であり、加圧成形する型枠の形状は、平板、矩形体、直方体等で、土木建築材料としての形状に対応するものである。 This is a method for producing a fired product characterized by granulation molding or pressure molding in a mold and then firing in the atmosphere. The shape of the formwork for pressure forming is a flat plate, a rectangular body, a rectangular parallelepiped, etc., and corresponds to the shape of a civil engineering and construction material.

結合材
結合剤は、各種の配合材料を混練成形した後に、乾燥して焼成の炙りに入るまでの一連の製造工程間で、成形品のハンドリング中における破損を防止する目的で配合の材料に添加するものであり、例えば澱粉糊、廃糖蜜、メチルセルローズ、カルボキシルメチルセルローズ、ポリビニルアルコール、酢酸ビニル、デキストリン、パルプ廃液等の有機質材料のほかに、ベントナイト、珪酸ソーダ、珪酸カリ、燐酸アルミニュウム等の無機質材料等も使用できる。
Binder Binders are added to the compounded materials during the series of manufacturing processes from kneading and forming various compounded materials to drying and baking to prevent breakage during handling of the molded product. For example, in addition to organic materials such as starch paste, blackstrap molasses, methyl cellulose, carboxyl methyl cellulose, polyvinyl alcohol, vinyl acetate, dextrin, and pulp waste liquid, inorganic materials such as bentonite, sodium silicate, potassium silicate, and aluminum phosphate. Materials etc. can also be used.

造粒成形、型枠内加圧成形には、水や有機溶媒を用いることができる。加圧成形には、自重による放置成形が含まれる。また、本願発明での焼成は大気中で行い、還元性雰囲気を必要としない。また、炉形式で、一部還元雰囲気となることを妨げるものではない。 Water or an organic solvent can be used for granulation molding and pressure molding within a mold. Pressure molding includes left molding using its own weight. Furthermore, the firing in the present invention is performed in the air and does not require a reducing atmosphere. In addition, this does not preclude the use of a furnace to create a partially reducing atmosphere.

銅スラグ、亜鉛スラグは、FeOで示される第一鉄イオンを有する酸化鉄を有するものであれば、本願で使用することができる。 Copper slag and zinc slag can be used in the present application as long as they have iron oxide containing ferrous ions represented by FeO.

電気炉酸化スラグ、磁鉄鉱粉末、使用した使い捨てカイロから選ばれた1種以上(c)が、焼成用組成物中5重量%~20重量%であって、10重量%~20重量%が好ましい。 One or more types (c) selected from electric furnace oxidized slag, magnetite powder, and used disposable warmers are present in the firing composition in an amount of 5% to 20% by weight, preferably 10% to 20% by weight.

石炭灰(a)が、1100℃で焼成したとき、比重が1.5以下であることが好ましい。この焼成温度の昇温過程の制御が容易で、焼成体の良好な密度が得られるからである。 It is preferable that the coal ash (a) has a specific gravity of 1.5 or less when fired at 1100°C. This is because the heating process of the firing temperature can be easily controlled and a good density of the fired body can be obtained.

造粒成形した粒径が、6mm~24mmの造粒成形物であり、大気中で焼成して圧壊強度が大であり、比重、吸水率が適切であれば、人工骨材等に適している。人工骨材に特化すれば、造粒する粒径が6mm未満及び24mmを超えるとコンクリート用骨材の粗骨材の粒径範囲である13mmから20mmの範囲を焼成造粒物がその粒径を逸脱するからである。より好ましくは、13mm~15mmである。24mmより大きいと焼成に時間がかかり、6mmより小さいと実用性に欠けるからである If the granulated product has a particle size of 6 mm to 24 mm, has high crushing strength when fired in the atmosphere, and has an appropriate specific gravity and water absorption rate, it is suitable for artificial aggregate, etc. . If we specialize in artificial aggregates, if the particle size to be granulated is less than 6 mm or greater than 24 mm, then the fired granules will have a particle size in the range of 13 mm to 20 mm, which is the particle size range of coarse aggregate for concrete. This is because it deviates from the More preferably, it is 13 mm to 15 mm. This is because if it is larger than 24 mm, it takes time to fire, and if it is smaller than 6 mm, it is not practical.

大気中の焼成温度が1080℃~1220℃であり、焼結後の比重が1.4~2.4であることが好ましく、また、1170℃~1190℃の焼成温度で、2.1~2.3であること、が好ましい。この範囲で安定的な焼成が可能であるからである。 It is preferable that the firing temperature in the atmosphere is 1080°C to 1220°C, and the specific gravity after sintering is 1.4 to 2.4, and the specific gravity is 2.1 to 2. .3 is preferred. This is because stable firing is possible within this range.

製鋼スラグの破砕物と、石炭灰と、[3]乃至[5]の媒融物を有する焼成用組成物を、造粒成形し、又は型枠内で加圧成形して焼成した。 A firing composition containing crushed steelmaking slag, coal ash, and the medium melts [3] to [5] was granulated or press-molded in a mold and fired.

人工骨材としての吸水率
本願発明を人工骨材として用いるとき、1170℃~1190℃の焼成温度で、吸水率が1.0%以下であることが好ましい。粒状の人工骨材では、水/セメント比を低く設定することが可能となり、固化体の調製やその制御が容易となり、セメント固化体の物性にも良い影響があるからである。
Water absorption rate as artificial aggregate When the present invention is used as an artificial aggregate, the water absorption rate is preferably 1.0% or less at a firing temperature of 1170°C to 1190°C. This is because granular artificial aggregate allows the water/cement ratio to be set low, making it easier to prepare and control the solidified material, and having a positive effect on the physical properties of the cement solidified material.

他の用途での吸水率
人工骨材用途以外の土木建築用途での焼成体の利用及び活用は、比重1.55程度で吸水率を20%超と高めに設定して緑化の際の土壌保水材料に使用することができるが、吸水率を3%以下にすることによって、人工骨材以外にも防犯砂利として、敷地内に撒きだして使用した場合には、人が歩き難く、高い音がするので防犯効果が期待できる。
このとき、材料に、高い強度(3400N~5200N)が求められる。
Water absorption rate for other uses The use and utilization of fired bodies for civil engineering and construction purposes other than artificial aggregate uses is to set the water absorption rate to a high value of over 20% with a specific gravity of about 1.55 to retain soil water during greening. It can be used as a material, but by keeping the water absorption rate below 3%, it can be used as crime prevention gravel in addition to artificial aggregate, making it difficult for people to walk on and emitting high-pitched noise. Therefore, a crime prevention effect can be expected.
At this time, the material is required to have high strength (3400N to 5200N).

圧壊強度が、2000N以上であれば、種々の土木建築資材として実用可能であるが、人工骨材としては、4000N以上が好ましく、4300N以上が特に、好ましい。 If the crushing strength is 2000N or more, it can be put to practical use as various civil engineering and construction materials, but as an artificial aggregate, it is preferably 4000N or more, and particularly preferably 4300N or more.

本発明は、煩雑な工程を経ることなく、簡単な製造方法で石炭灰(a)、下水汚泥焼却灰(b)と、電気炉酸化スラグ、磁鉄鉱粉末、使い捨てカイロ等の廃棄物のみを原料として焼成用組成物を構成でき、例えば、大気下の焼成条件で、比重2.1乃至2.3の焼成体で、吸水率3%以下、好ましくは1%以下、圧壊強度は、2000N以上で、好ましくは4000N以上の人工骨材や、大気下の焼成条件で、比重1.85程度の焼成体で、吸水率10%以下の、実用強度の土木建築資材が得られ、更に高吸水率で裏込め材や保水材も製造できる。 The present invention uses only coal ash (a), sewage sludge incineration ash (b), and wastes such as electric furnace oxidized slag, magnetite powder, and disposable body warmers as raw materials using a simple manufacturing method without going through complicated processes. A composition for firing can be formed, for example, under atmospheric firing conditions, a fired body with a specific gravity of 2.1 to 2.3, a water absorption of 3% or less, preferably 1% or less, and a crushing strength of 2000N or more, Preferably, using artificial aggregate of 4,000N or more and a fired body with a specific gravity of about 1.85 under atmospheric firing conditions, a civil engineering and construction material with a water absorption rate of 10% or less and a practical strength can be obtained, and a backing material with a high water absorption rate can be obtained. We can also manufacture filling materials and water retention materials.

本焼成用組成物を焼成して人工骨材とするとき、例えば、焼成温度1180℃程度の焼成によって、平均粒径約12.1mm程度の焼成体を得ると、その物性は吸水率1.0%以下で、圧壊強度が4300Nを超える。また、本人工骨材は、産業廃棄物のみを原料とした焼成用組成物を使用することができ、産業廃棄物のリサイクル、有効活用に好適である。また、磯焼け抑制資材(鉄イオン発生材料)及び平板状にした場合などの壁面タイル兼電磁波抑制材等の環境改善材料及び土木・建築資材に利用できる。 When the main firing composition is fired to produce artificial aggregate, for example, if a fired body with an average particle size of about 12.1 mm is obtained by firing at a firing temperature of about 1180°C, the physical property is a water absorption rate of 1.0. % or less, the crushing strength exceeds 4300N. In addition, the present artificial aggregate can use a firing composition made only from industrial waste, and is suitable for recycling and effective utilization of industrial waste. In addition, it can be used as environmental improvement materials such as rock eroding suppression materials (iron ion generating materials), wall tiles and electromagnetic wave suppression materials when made into flat plates, and civil engineering and construction materials.

以下、本発明を、さらに詳細な実験例に基づき説明する。 The present invention will be explained below based on more detailed experimental examples.

JISフライアッシュ(2種)に該当する石炭灰(A)、石炭灰(B)、石炭灰(C)を使用した。超々臨界圧(USC)石炭火力発電所で排出された石炭灰である。石炭灰(B)は、単味での焼成体の色合いが、薄いベージュ色であり、他の石炭灰(A),(C)の2種類では、こげ茶色であることと比較すると石炭灰(B)は含有する酸化鉄が、目視による色別判断から少ない。粒子径は、ともに、97%頻度累計が200μm以下、72%頻度累計が80μm以下である。 Coal ash (A), coal ash (B), and coal ash (C) that correspond to JIS fly ash (class 2) were used. This is coal ash discharged from ultra-supercritical (USC) coal-fired power plants. Coal ash (B) has a light beige color in its fired product, and compared to the other two types of coal ash (A) and (C), which are dark brown. B) contains less iron oxide as determined visually by color. Regarding the particle diameters, the 97% frequency cumulative total is 200 μm or less, and the 72% frequency cumulative total is 80 μm or less.

用いた下水汚泥焼却灰は、下水汚泥焼却灰(A)、下水汚泥焼却灰(B)である。なお、下水汚泥焼却灰(A)は焼却炉内フリーボード部での焼却温度が800℃の焼却炉から得た焼却灰であり、下水汚泥焼却灰(B)は焼却炉内フリーボード部での焼却温度が850℃の焼却炉から得た焼却灰である。焼却温度850℃で焼却するのは、温室効果ガスであるNO(一酸化二窒素)の排出を削減できるからである。粒度分布は、最大粒径400μm程度で、粒径100μm以下の粒径の重量累計が90%以上であるものを使用した。下水汚泥を流動層焼却炉で焼却して排ガスに含まれる飛灰を廃熱ボイラー及び微細飛灰をサイクロン、乾式電気集塵機で捕集して各灰を移送等コンベアで灰ホッパに収容したものである。下水汚泥焼却灰(A)の主要物質の化学成分は、表3の通りである。 The sewage sludge incineration ash used was sewage sludge incineration ash (A) and sewage sludge incineration ash (B). Incidentally, sewage sludge incineration ash (A) is incineration ash obtained from an incinerator with an incineration temperature of 800°C in the freeboard part of the incinerator, and sewage sludge incineration ash (B) is incineration ash obtained in the freeboard part of the incinerator. This is incinerated ash obtained from an incinerator with an incineration temperature of 850°C. The reason for incinerating at an incineration temperature of 850°C is that emissions of N 2 O (nitrous oxide), which is a greenhouse gas, can be reduced. The particle size distribution used was such that the maximum particle size was about 400 μm and the cumulative weight of particles with a particle size of 100 μm or less was 90% or more. The sewage sludge is incinerated in a fluidized bed incinerator, the fly ash contained in the exhaust gas is collected in a waste heat boiler, the fine fly ash is collected in a cyclone, and a dry electrostatic precipitator, and each ash is transferred and stored in an ash hopper using a conveyor. be. The chemical components of the main substances of the sewage sludge incineration ash (A) are shown in Table 3.

電気炉酸化スラグは、製品名:CKハイパー7号(株式会社星野産商製造)で、最大粒径が300μm以下の原粉を用意した。これを加工し、粉末程度を変えたものを2種類作製して使用した。各配合表では、電気炉酸化スラグ(A)、電気炉酸化スラグ(B)と表示した。 The electric furnace oxidation slag was product name: CK Hyper No. 7 (manufactured by Hoshino Sansho Co., Ltd.), and raw powder with a maximum particle size of 300 μm or less was prepared. This was processed and two types of powders with different degrees of powder were produced and used. In each recipe, electric furnace oxidized slag (A) and electric furnace oxidized slag (B) were indicated.

なお、電気炉酸化スラグ(A)は、当該製品の粒径範囲が300μm以下であるものを目開き150μmの篩を使用して、当該スラグがその篩を通過した部分を焼成体用組成物材料としたものである。電気炉酸化スラグ(B)は、当該製品の粒径範囲が300μm以下であるものを粉砕専用機器(ディスク型振動ミル)で10分間、粉砕して焼成体用組成物材料とし200メッシュ以下(74μm目開き篩全通)としたものである。電気炉酸化スラグの成分について、主要な化学成分組成を表4に示した。酸化鉄成分材料は、石炭灰の平均粒径、下水汚泥焼却灰の平均粒径より小さい平均粒径を有するものを用いることが好ましい。 The electric furnace oxidized slag (A) is prepared by using a sieve with an opening of 150 µm to obtain a product with a particle size range of 300 µm or less, and the part where the slag passes through the sieve is used as a composition material for fired bodies. That is. Electric furnace oxidized slag (B) is a product whose particle size range is 300 μm or less, and is crushed for 10 minutes using a dedicated crushing device (disc-type vibrating mill) to produce a composition material for fired bodies with a particle size of 200 mesh or less (74 μm). This is a sieve with open mesh sieves. Table 4 shows the main chemical composition of the electric furnace oxidized slag. It is preferable to use an iron oxide component material having an average particle size smaller than the average particle size of coal ash and the average particle size of sewage sludge incineration ash.

使い捨てカイロ
市販の使い捨てカイロから、使用後3日経過で、粉体を取り出し、洗浄後、乾燥加熱し、粉砕後、目開き150μm篩を通過させて使用した。
Disposable Warmer: The powder was taken out from a commercially available disposable body warmer 3 days after use, washed, dried and heated, pulverized, and passed through a 150 μm sieve before use.

焼成温度パターンは、常温から1000℃までを120分で昇温し、1020℃までは、その昇温速度を維持して、各焼成最高温度である、1020℃から1220℃までは、各温度に応じて、5分から100分間で昇温し、その後、各焼成最高温度の保持時間を15分間とし、自然徐冷により焼成物を得た。以下、焼成最高温度を焼成温度と略して表現することがある。電気炉は、モトヤマ製:SH-2035Dである。 The firing temperature pattern is to raise the temperature from room temperature to 1000°C in 120 minutes, maintain that temperature increase rate up to 1020°C, and change the temperature at each temperature from 1020°C to 1220°C, which is the maximum temperature for each firing. Accordingly, the temperature was raised for 5 minutes to 100 minutes, and then the maximum temperature for each firing was held for 15 minutes, and a fired product was obtained by natural slow cooling. Hereinafter, the maximum firing temperature may be abbreviated as firing temperature. The electric furnace is SH-2035D manufactured by Motoyama.

本願発明で、比重及び吸水率の測定は、島津分析天びんAUX120及び比重測定キットSMK‐401(株式会社島津製作所製)を使用して行った。比重とは、SMK-401を使用して本装置の測定方法に準拠して測定した値であり、密度(g/cm3)で表現される値と同値である。また、圧壊強度の測定は、JSCE-C505(高強度フライアッシュ人工骨材の圧かい荷重試験方法)に準拠して行った。 In the present invention, specific gravity and water absorption were measured using Shimadzu analytical balance AUX120 and specific gravity measurement kit SMK-401 (manufactured by Shimadzu Corporation). Specific gravity is a value measured using SMK-401 according to the measurement method of this device, and is the same value as the value expressed in density (g/cm3). Furthermore, the crushing strength was measured in accordance with JSCE-C505 (compressive load test method for high-strength fly ash artificial aggregate).

実験例32は、石炭灰(A)と酸化鉄の黒浜(以下、黒浜土)及び下水汚泥焼却灰(A)の配合比率(以下、配合比率という。)は、90:5:5、実験例33の配合比率は、85:10:5、実験例34は、配合比率は、85:5:10、実験例35の配合比率は、80:10:10、実験例36は、80:5:15である。実験例37は、75:10:15である。 In Experimental Example 32, the blending ratio (hereinafter referred to as blending ratio) of coal ash (A), iron oxide Kurohama (hereinafter referred to as Kurohama soil), and sewage sludge incineration ash (A) was 90:5:5. The blending ratio of Experimental Example 33 is 85:10:5, the blending ratio of Experimental Example 34 is 85:5:10, the blending ratio of Experimental Example 35 is 80:10:10, and the blending ratio of Experimental Example 36 is 80:5: It is 15. Experimental example 37 is 75:10:15.

上記の各配合に対して、表5に示したそれぞれ結合剤と水を所定量(単位:g)加えて造粒物(各試料9個)を作製した。 To each of the above formulations, predetermined amounts (unit: g) of the binder and water shown in Table 5 were added to produce granules (nine samples for each).

石炭灰(A)、石炭灰(C)に対して表5に示した配合の焼成体用組成物を前記焼成パターンにより焼成した。表6には、焼成体の比重、7には、吸水率(wt%)を示した。 Compositions for fired bodies having the formulations shown in Table 5 for coal ash (A) and coal ash (C) were fired according to the firing pattern described above. Table 6 shows the specific gravity of the fired body, and Table 7 shows the water absorption rate (wt%).

焼成体の比重の変化
表5の組成の造粒物を焼成温度1020℃から1220℃間において、40℃間隔で6回実験した焼成による焼成体の比重及び吸水率の物性試験結果を示した。焼成体の緻密化の主要尺度として、比重を用いた。比重は、1170℃か、これを超えて速やかに(1180℃に達する前に)2.0以上となること、好ましくは2.1以上2.3以下となること、容易に溶融発泡化しないことを基準とした。石炭灰と下水汚泥焼却灰等を配合した造粒物について、石炭灰と下水汚泥焼却灰等の組成成分の変動の影響を受けて、造粒物の焼成溶融温度が低くなって、その緻密化が過度に促進されて焼成制御が困難になるからである。
Change in Specific Gravity of Fired Body The physical property test results of the specific gravity and water absorption rate of the fired body are shown in which the granules having the composition shown in Table 5 were tested six times at 40°C intervals at a firing temperature of 1020°C to 1220°C. Specific gravity was used as the main measure of densification of the fired body. The specific gravity should be 1170°C or more than 2.0 quickly (before reaching 1180°C), preferably 2.1 or more and 2.3 or less, and should not easily melt and foam. was the standard. Regarding granules that are a mixture of coal ash and sewage sludge incineration ash, etc., due to the influence of fluctuations in the composition of the coal ash and sewage sludge incineration ash, etc., the calcination melting temperature of the granules becomes lower, resulting in densification. This is because firing is accelerated excessively and baking control becomes difficult.

黒浜土を添加することにより、下水汚泥焼却灰が自ら持つ媒融剤としての機能と相まって、さらに高めて作用した結果、焼成体が緻密化された。また、実験例32と実験例33の黒浜土の配合比率の違いによる焼成体の変化については、酸化鉄の比率を高くして、下水汚泥焼却灰による酸化鉄の媒融剤としての機能を高められ、緻密化が更に促進された。なお、実験例34、35の焼成体用組成物は、焼成最高温度1180℃を超えた昇温過程で、比重は最高値に達したものと想定できる。 The addition of Kurohama soil combined with the function of sewage sludge incineration ash as a medium to further enhance its function, resulting in a densified sintered body. In addition, regarding the change in the fired body due to the difference in the blending ratio of Kurohama soil between Experimental Example 32 and Experimental Example 33, the ratio of iron oxide was increased to increase the function of the iron oxide as a medium by the sewage sludge incineration ash. densification was further promoted. In addition, it can be assumed that the specific gravity of the compositions for fired bodies of Experimental Examples 34 and 35 reached the maximum value during the heating process in which the maximum firing temperature exceeded 1180°C.

また、実験例34と実験例35の比較でも、下水汚泥焼却灰による酸化鉄の媒融剤としての機能を高めた結果、焼成体の比重は大きくなった。 Further, in a comparison between Experimental Example 34 and Experimental Example 35, the specific gravity of the fired body increased as a result of enhancing the function of the sewage sludge incineration ash as a medium for iron oxide.

比較例9と実験例36、37の結果も上記と同様であるが、実験例36、37の最高焼成温度1180℃における焼成においては、比重が低下したことから焼成体が発泡化し、実験例36、37の焼成体用組成物の造粒焼成体は、焼成最高温度1140℃を超えた昇温過程で、比重は最高値に達したものと想定できる。 The results of Comparative Example 9 and Experimental Examples 36 and 37 are also the same as above, but in the firing at the maximum firing temperature of 1180°C in Experimental Examples 36 and 37, the fired body foamed due to the decrease in specific gravity. It can be assumed that the specific gravity of the granulated fired body of the fired body composition of No. 37 reached its maximum value during the heating process exceeding the maximum firing temperature of 1140°C.

主材である石炭灰(A)を配合して造粒した焼成体用組成物を焼成した結果から、主材である石炭灰(A)に黒浜土を焼成体用組成物の全体量に対して、内割りで5重量%以上~10重量%以下及び下水汚泥焼却灰を焼成体用組成物の全体量に対して、内割りで5重量%以上~15重量%以下を配合して効果があることを確認した。 From the results of firing a composition for fired body made by blending coal ash (A), which is the main material, and granulating it, it was found that Kurohama soil was added to the coal ash (A), which is the main material, relative to the total amount of the composition for fired body. Therefore, it is effective to combine 5% by weight or more and 10% by weight or less and sewage sludge incineration ash in an amount of 5% by weight or more and 15% by weight or less based on the total amount of the composition for a fired body. I confirmed that there is.

比較例7は、石炭灰(C)と酸化鉄(黒浜土)及び下水汚泥焼却灰(A)の配合比率を90:0:10とした配合であり、黒浜土を除いた。実験例44は、石炭灰(C)と酸化鉄(黒浜土)及び下水汚泥焼却灰(A)の配合比率は、90:5:5で、実験例45の配合比率は、85:10:5で、実験例46は、85:5:10である。実験例47は、80:10:10である。実験例48は、80:5:15で、実験例49は、75:10:15である。 Comparative Example 7 had a blending ratio of coal ash (C), iron oxide (Kurohama soil), and sewage sludge incineration ash (A) of 90:0:10, and Kurohama soil was excluded. In Experimental Example 44, the blending ratio of coal ash (C), iron oxide (Kurohama soil), and sewage sludge incineration ash (A) was 90:5:5, and in Experimental Example 45, the blending ratio was 85:10:5. In Experimental Example 46, the ratio is 85:5:10. In Experimental Example 47, the ratio is 80:10:10. Experimental example 48 has a ratio of 80:5:15, and experimental example 49 has a ratio of 75:10:15.

石炭灰(C)を用いても、石炭灰(A)を用いたときと、同様の傾向の効果が得られた。 Even when coal ash (C) was used, effects with the same tendency as when coal ash (A) were used were obtained.

このことから、黒浜土を造粒物の作製において、石炭灰(C)においても、その焼成体用組成物に添加することにより、下水汚泥焼却灰が自ら持つ媒融剤としての機能と相まって、焼成体の緻密化が、顕著に現れた。 From this, in the production of granulated products, by adding Kurohama soil to the composition for the fired body even in coal ash (C), in combination with the function of the sewage sludge incineration ash as a medium, The sintered body became noticeably denser.

石炭灰(A)を配合して造粒した成形物を焼成した結果と同様の配合割合で効果が得られた。即ち、酸化鉄(黒浜土)を焼成体用組成物の全体量に対して、内割りで5重量%以上~10重量%以下、下水汚泥焼却灰を焼成体用組成物の全体量に対して、内割りで5重量%以上~15重量%以下含有させることが好ましい。 Effects were obtained with the same blending ratio as the result of firing a molded product made by blending coal ash (A) and granulating it. That is, iron oxide (Kurohama clay) is contained in an amount of 5% by weight or more and 10% by weight or less based on the total amount of the composition for fired bodies, and sewage sludge incineration ash is contained in the total amount of the composition for fired bodies. It is preferable that the content is from 5% by weight to 15% by weight.

表8に、石炭灰(B)も加えて、酸化鉄を含有配合した焼成体用組成物の造粒物の配合組成、表9に各焼成体用組成物の焼成温度1140℃から1190℃間において、10℃間隔で6回実施した焼成による焼成体の比重、表10に各配合(単位:g)の焼成体の吸水率(wt%)測定結果、表11に圧壊強度(N)の物性試験結果を示す。圧壊強度は各造粒焼成物5個の測定結果の平均値で、最大圧壊強度でリミッター設定の4500Nを超えた場合は、その個数を記載した。 Table 8 shows the blending composition of the granulated composition of the fired body composition containing iron oxide in addition to coal ash (B), and Table 9 shows the firing temperature range of 1140°C to 1190°C for each fired body composition. Table 10 shows the water absorption rate (wt%) measurement results for each composition (unit: g), and Table 11 shows the physical properties of crushing strength (N). Show the test results. The crushing strength is the average value of the measurement results of 5 pieces of each granulated fired product, and when the maximum crushing strength exceeds the limiter setting of 4500N, the number of pieces is recorded.

実験例50は、石炭灰(A)と下水汚泥焼却灰(B)の配合比率を90:10とした比較例である。実験例51は、石炭灰(A)と酸化鉄(黒浜土)、下水汚泥焼却灰(B)の配合比率を82.5:7.5:10とした。実験例52は、石炭灰(A)と電気炉酸化スラグ(A)及び下水汚泥焼却灰(B)の配合比率を80:10:10とした。実験例53は、石炭灰(B)と下水汚泥焼却灰(B)の配合比率を80:20とした比較例である。実験例54は、石炭灰(B)と黒浜土、下水汚泥焼却灰(B)の配合比率を72.5:7.5:20とした。実験例55は、石炭灰(B)と電気炉酸化スラグ(A)、下水汚泥焼却灰(B)の配合比率を70:10:20とした配合である。実験例56は、石炭灰(C)と下水汚泥焼却灰(B)の配合比率を90:10とした比較例である。実験例57は、石炭灰(C)と黒浜土、下水汚泥焼却灰(B)の配合比率を82.5:7.5:10とした配合である。 Experimental example 50 is a comparative example in which the blending ratio of coal ash (A) and sewage sludge incineration ash (B) was 90:10. In Experimental Example 51, the blending ratio of coal ash (A), iron oxide (Kurohamada), and sewage sludge incineration ash (B) was 82.5:7.5:10. In Experimental Example 52, the blending ratio of coal ash (A), electric furnace oxidized slag (A), and sewage sludge incineration ash (B) was 80:10:10. Experimental example 53 is a comparative example in which the blending ratio of coal ash (B) and sewage sludge incineration ash (B) was 80:20. In Experimental Example 54, the blending ratio of coal ash (B), Kurohama soil, and sewage sludge incineration ash (B) was 72.5:7.5:20. Experimental example 55 is a mixture in which the blending ratio of coal ash (B), electric furnace oxidized slag (A), and sewage sludge incineration ash (B) is 70:10:20. Experimental example 56 is a comparative example in which the blending ratio of coal ash (C) and sewage sludge incineration ash (B) was 90:10. Experimental example 57 has a blending ratio of coal ash (C), Kurohama soil, and sewage sludge incineration ash (B) of 82.5:7.5:10.

造粒物は、焼成最高温度1140℃から1190℃の間、10℃間隔で焼成して得られた焼成体の比重と吸水率、圧壊荷重を測定した。 The granulated material was fired at a maximum firing temperature of 1140°C to 1190°C at intervals of 10°C, and the specific gravity, water absorption, and crushing load of the resulting fired body were measured.

実験例54、55は、酸化鉄を含むが、実験例51、52、57に比べて比重や吸水率の発現において、若干見劣りする。
このことから、黒浜土及び電気炉酸化スラグ(A)を造粒物の作製において、下水汚泥焼却灰が自ら持つ媒融剤としての機能と相まって、酸化鉄の媒融剤としての機能を高めるが、石炭灰(B)を用いた実験例54、55については、FeOを有する酸化鉄を用いてもなお、改善の余地のあることが判った。
Experimental Examples 54 and 55 contain iron oxide, but are slightly inferior to Experimental Examples 51, 52, and 57 in terms of specific gravity and water absorption.
From this, when using Kurohama soil and electric furnace oxidized slag (A) to produce granules, combined with the function of sewage sludge incineration ash as a medium, it is possible to enhance the function of iron oxide as a medium. Regarding Experimental Examples 54 and 55 using coal ash (B), it was found that there was still room for improvement even when iron oxide containing FeO was used.

また、酸化鉄を焼成体用組成物に加えたことにより、高比重(2.1程度)及び低吸水率(3.0%未満)を確保する焼成の踊り場現象(焼成温度範囲1170℃~1190℃)が発現した。焼成の踊り場が発現したことは、下水汚泥焼却灰の持つ自らの媒融剤としての機能と相まって、酸化鉄の媒融剤としての機能を高める活性剤となって作用した結果により、発現した特徴となる効果である。このことは、造粒物等の成形体の焼成において、焼成の温度管理に余裕が生じ、製品の品質管理が容易にできる効果がある。 In addition, by adding iron oxide to the composition for fired bodies, a plateau phenomenon in firing (firing temperature range of 1170°C to 1190°C) that ensures high specific gravity (about 2.1) and low water absorption (less than 3.0%) is achieved. °C) was expressed. The appearance of a lull in calcination is due to the fact that sewage sludge incineration ash acts as an activator that enhances the function of iron oxide as a flux, combined with its own function as a flux. This is the effect. This has the effect that, in the firing of molded bodies such as granules, there is a margin for temperature control during firing, and the quality of the product can be easily controlled.

平均圧壊強度
実験例53の造粒焼成体の平均圧壊強度は、1993Nから3527Nと大きくなった。実験例54の造粒焼成体の平均圧壊強度は、2312Nから1180℃の最高焼成温度で3946Nとなり、1190℃ではリミットの圧壊荷重である4500Nを超えた。
Average crushing strength The average crushing strength of the granulated sintered body of Experimental Example 53 increased from 1993N to 3527N. The average crushing strength of the granulated fired body of Experimental Example 54 was 3946N at the maximum firing temperature of 2312N to 1180°C, and exceeded the crushing load limit of 4500N at 1190°C.

石炭灰(A)と、200メッシュ目開き篩全通の酸化鉄、下水汚泥焼却灰(B)の配合表(単位:g)を表12に示す。酸化鉄には電気炉酸化スラグ(B)を用いた。酸化鉄を含有しない例は、実験例58、63、67である。造粒物を焼成温度1140℃から1190℃の間において10℃間隔で、焼成して得られた比重と吸水率、圧壊強度の試験結果は、表13、表14(単位:wt%)、表15(単位:N)に示したとおりである。また、表16には、焼成後の造粒径の測定値(mm)を示した。表17には、焼成前後の粒径比の参考値、表18は、1180℃での造粒径の変化(収縮測定結果)を示し、表19は、実験例の組成表(単位:g)をまとめた。 Table 12 shows a blending table (unit: g) of coal ash (A), iron oxide passed through a 200-mesh sieve, and sewage sludge incineration ash (B). Electric furnace oxidation slag (B) was used as iron oxide. Examples containing no iron oxide are Experimental Examples 58, 63, and 67. The test results of specific gravity, water absorption, and crushing strength obtained by firing the granules at a firing temperature of 1140°C to 1190°C at 10°C intervals are shown in Table 13, Table 14 (unit: wt%), and Table 14. 15 (unit: N). Table 16 also shows the measured values (mm) of the granulation diameter after firing. Table 17 shows the reference value of the particle size ratio before and after firing, Table 18 shows the change in granulation size at 1180°C (shrinkage measurement results), and Table 19 shows the composition table of the experimental example (unit: g) I have summarized.

実験例58は、石炭灰(A)と電気炉酸化スラグ(B)、下水汚泥焼却灰(B)の配合比率を90:0:10とした比較例であり、実験例59は、82.5:7.5:10とし、実験例60は、80:10:10とした焼成体用組成物である。比重、吸水率、圧壊強度を比較した結果、1150℃からの昇温過程で実験例59、60は実験例58の諸物性試験数値を概ね上回る結果となった。 Experimental example 58 is a comparative example in which the blending ratio of coal ash (A), electric furnace oxidized slag (B), and sewage sludge incineration ash (B) is 90:0:10, and experimental example 59 is 82.5. :7.5:10, and Experimental Example 60 is a composition for a fired body having a ratio of 80:10:10. As a result of comparing specific gravity, water absorption rate, and crushing strength, Experimental Examples 59 and 60 generally exceeded the various physical property test values of Experimental Example 58 in the process of increasing the temperature from 1150°C.

このことから、電気炉酸化スラグ(B)(200メッシュ全通)を造粒物の作製において、その焼成体用組成物に添加することにより、下水汚泥焼却灰が自ら持つ媒融剤としての機能と相まって、焼成体の緻密化が、電気炉酸化スラグ(A)を配合した場合より更に顕著に現れた結果となった。また、酸化鉄を焼成体用組成物に加えたことにより、高比重(2.2程度)及び低吸水率(3.0%未満)を確保する焼成の踊り場現象(焼成温度範囲1170℃~1190℃)が発現し、造粒物等の成形体の焼成において、焼成の温度管理に余裕が生じ、製品の品質管理が容易にできる効果がある。 Therefore, by adding electric furnace oxidation slag (B) (200 mesh all through) to the composition for the fired body in the production of granules, it is possible to improve the function of the sewage sludge incineration ash as a medium. Coupled with this, the result was that the densification of the fired body was even more remarkable than when electric furnace oxidized slag (A) was blended. In addition, by adding iron oxide to the composition for fired bodies, a plateau phenomenon in firing (firing temperature range of 1170°C to 1190°C) that ensures high specific gravity (about 2.2) and low water absorption (less than 3.0%) is achieved. °C), and in the firing of molded bodies such as granules, there is a margin for temperature control during firing, which has the effect of making it easier to control the quality of the product.

実験例63は、石炭灰(B)と電気炉酸化スラグ(B)、下水汚泥焼却灰(B)の配合比率を80:0:20とした比較例である。実験例64は、石炭灰(B)と電気炉酸化スラグ(B)及び下水汚泥焼却灰(B)の配合比率を72.5:7.5:20とし、実験例65は、70:10:20とした配合である。 Experimental example 63 is a comparative example in which the blending ratio of coal ash (B), electric furnace oxidized slag (B), and sewage sludge incineration ash (B) was 80:0:20. In Experimental Example 64, the blending ratio of coal ash (B), electric furnace oxidized slag (B), and sewage sludge incineration ash (B) was 72.5:7.5:20, and in Experimental Example 65, it was 70:10: The composition was set at 20.

石炭灰(B)と酸化鉄、下水汚泥焼却灰(A)を用いると、比重や吸水率が石炭灰(A)、石炭灰(C)を用いた実験例に比べて、若干焼成温度を高めにする必要があったが、200メッシュ全通の電気炉酸化スラグ(B)、下水汚泥焼却灰(B)の使用によって低めにシフトした。この改善効果は、FeO含有酸化鉄の微粒化効果によるものであると考える。 When coal ash (B), iron oxide, and sewage sludge incineration ash (A) are used, the specific gravity and water absorption rate are slightly higher than in the experimental examples using coal ash (A) and coal ash (C). However, by using 200 mesh electric furnace oxidized slag (B) and sewage sludge incineration ash (B), it was shifted to a lower value. This improvement effect is thought to be due to the atomization effect of FeO-containing iron oxide.

造粒品の焼成による粒径変化等に関連して、実験例63の造粒焼成体の焼成温度1140℃から1190℃の各焼成最高温度において得られた焼成体の粒径の変化は、焼成前の粒径範囲が14.89mmから15.13mmであったが、焼成温度の上昇過程で、14.44mmから13.10mmへと焼成により緻密化し、粒径は縮小した。平均圧壊強度は焼成最高温度1140℃での1531Nから焼成最高温度1180℃で2355Nと大きくなり、1190℃の焼成最高温度では、2223Nであった。 Regarding the change in particle size due to firing of the granulated product, the change in particle size of the fired product obtained at each maximum firing temperature of 1140°C to 1190°C for the granulated fired product of Experimental Example 63 is as follows: The previous particle size range was from 14.89 mm to 15.13 mm, but in the process of increasing the firing temperature, it became denser and decreased from 14.44 mm to 13.10 mm due to firing. The average crushing strength increased from 1531N at the maximum firing temperature of 1140°C to 2355N at the maximum firing temperature of 1180°C, and was 2223N at the maximum firing temperature of 1190°C.

実験例64の造粒焼成体の焼成温度1140℃から1190℃の各焼成最高温度において得られた焼成体の粒径の変化は、焼成前の粒径範囲が14.87mmから15.03mmであったが、焼成温度1140℃から1190℃までの焼成最高温度の上昇により、13.57mmから12.29mmmと昇温により緻密化し、粒径が縮小した。また、平均圧壊強度は焼成最高温度1140℃での1970Nから焼成最高温度1180℃で4808Nと大きくなり、1190℃の焼成最高温度では、4717Nであった。 The change in grain size of the granulated fired body of Experimental Example 64 obtained at each maximum firing temperature of 1140°C to 1190°C was that the particle size range before firing was 14.87 mm to 15.03 mm. However, as the maximum firing temperature increased from 1140°C to 1190°C, the grain size became densified and decreased from 13.57 mm to 12.29 mm. Moreover, the average crushing strength increased from 1970 N at the maximum firing temperature of 1140°C to 4808 N at the maximum firing temperature of 1180°C, and was 4717 N at the maximum firing temperature of 1190°C.

実験例65の造粒焼成体の焼成温度1140℃から1190℃の各焼成最高温度において得られた焼成体の粒径の変化は、焼成前の粒径範囲が14.65mmから14.91mmであったが、焼成温度1140℃から1190℃までの焼成最高温度の上昇により、13.47mmから12.32mmと昇温により緻密化し、粒径が縮小した。また、平均圧壊強度は焼成最高温度1140℃での2062Nから焼成最高温度1170℃で4620Nとなり、1180℃では、4800Nと大きくなった。なお、1190℃の焼成最高温度では、4378Nであった。 The change in grain size of the granulated fired body of Experimental Example 65 obtained at each maximum firing temperature of 1140°C to 1190°C shows that the particle size range before firing was 14.65 mm to 14.91 mm. However, as the maximum firing temperature increased from 1140° C. to 1190° C., the grain size became denser and decreased from 13.47 mm to 12.32 mm. Further, the average crushing strength increased from 2062N at the maximum firing temperature of 1140°C to 4620N at the maximum firing temperature of 1170°C, and increased to 4800N at 1180°C. In addition, at the maximum firing temperature of 1190°C, it was 4378N.

実験例67は、石炭灰(C)と電気炉酸化スラグ(B)、下水汚泥焼却灰(B)の配合比率を90:0:10とした比較例である。実験例68は、石炭灰(C)と電気炉酸化スラグ(B)及び下水汚泥焼却灰(B)の配合比率を82.5:7.5:10とし、実験例69は、80:10:10とした焼成体用組成物である。 Experimental example 67 is a comparative example in which the blending ratio of coal ash (C), electric furnace oxidized slag (B), and sewage sludge incineration ash (B) was 90:0:10. In Experimental Example 68, the blending ratio of coal ash (C), electric furnace oxidized slag (B), and sewage sludge incineration ash (B) was 82.5:7.5:10, and in Experimental Example 69, it was 80:10: This is a composition for a fired body with a rating of 10.

実験例67と比べて実験例68、69の比重、吸水率、平均圧壊強度は、1140℃からの昇温過程で比重、吸水率、圧壊強度の試験結果のすべてで、良好な数値となり、更に200メッシュ全通としなかった酸化鉄の場合に比べて、比重、吸水率での効果改善が認められた。 Compared to Experimental Example 67, the specific gravity, water absorption rate, and average crushing strength of Experimental Examples 68 and 69 showed favorable values in all of the test results of specific gravity, water absorption rate, and crushing strength in the process of increasing the temperature from 1140 ° C. Compared to the case of iron oxide, which did not have 200 mesh, improvements in specific gravity and water absorption were observed.

このことから、電気炉酸化スラグ(B)(200メッシュ全通)の造粒物の作製において、その焼成体用組成物に添加することにより、下水汚泥焼却灰が自ら持つ媒融剤としての機能と相まって、酸化鉄の媒融剤としての機能を高める活性剤として作用した結果、焼成体の緻密化が、電気炉酸化スラグ(A)を配合した場合より更に顕著に現れた結果となった。
また、酸化鉄を焼成体用組成物に加えたことにより、高比重(2.2程度)及び低吸水率(3.0%未満)を安定的に得られる焼成の踊り場現象(焼成温度範囲1170℃~1190℃)が発現した。造粒物等の成形(型)品の焼成において、焼成の温度管理に余裕が生じ、製品の品質管理が容易にできる効果がある。
From this, in the production of granules of electric furnace oxidized slag (B) (200 mesh), by adding it to the composition for the fired body, it is possible to improve the function of the sewage sludge incineration ash as a medium. Coupled with this, as a result of acting as an activator that enhances the function of iron oxide as a fluxing agent, the densification of the fired body was more pronounced than when electric furnace oxidized slag (A) was blended.
In addition, by adding iron oxide to the composition for fired bodies, a plateau phenomenon in firing (firing temperature range of 1170 °C to 1190 °C). In the firing of molded products such as granules, there is a margin for temperature control during firing, which has the effect of making it easier to control the quality of the product.

造粒物の粒径
実験例61は、石炭灰(A)と酸化鉄(使い捨てカイロ)及び下水汚泥焼却灰(B)の配合比率を82.5:7.5:10とし、実験例62は、石炭灰(A)と酸化鉄(使い捨てカイロ)及び下水汚泥焼却灰(B)の配合比率を80:10:10とした焼成体用組成物である。それぞれに結合剤と水を加えて造粒物(各試料9個)を作製した。
Particle size of granules Experimental example 61 has a blending ratio of coal ash (A), iron oxide (disposable warmer), and sewage sludge incineration ash (B) of 82.5:7.5:10, and experimental example 62 has This is a composition for a fired body in which the blending ratio of coal ash (A), iron oxide (disposable warmer), and sewage sludge incineration ash (B) is 80:10:10. A binder and water were added to each to produce granules (nine samples for each).

実験例70は、石炭灰(C)と使い捨てカイロ、下水汚泥焼却灰(B)の配合比率を82.5:7.5:10とし、実験例71は、配合比率を80:10:10とした。実験例70の焼成温度1140℃から1190℃の各焼成最高温度において得られた焼成体の粒径の変化は、焼成前の粒径範囲が14.35mmから14.57mmであったが、焼成最高温度の上昇により、13.38mmから12.08mmと焼成による緻密化により縮小した。実験例71の焼成温度1140℃から1180℃の各焼成最高温度において得られた焼成体の粒径変化は、焼成前の粒径範囲が14.21mmから14.31mmであったが、焼成最高温度の上昇により、13.18mmから11.95mmと焼成による緻密化により縮小した。なお、1190℃の最高焼成温度での粒径が12.12mmであったことから、若干の過焼成となった。すると、緻密化すると強度も高くなる傾向も考慮して、造粒成形した粒形が、13mm~15mmの造粒成形物であり、大気中で焼成して人工骨材として用いることが好ましい。 In Experimental Example 70, the blending ratio of coal ash (C), disposable warmer, and sewage sludge incineration ash (B) was 82.5:7.5:10, and in Experimental Example 71, the blending ratio was 80:10:10. did. The change in particle size of the fired body obtained at each maximum firing temperature of 1140°C to 1190°C in Experimental Example 70 was that the grain size range before firing was 14.35 mm to 14.57 mm, but the maximum firing temperature was 14.35 mm to 14.57 mm. Due to the rise in temperature, the size decreased from 13.38 mm to 12.08 mm due to densification due to firing. The particle size change of the fired body obtained at each maximum firing temperature of 1140°C to 1180°C in Experimental Example 71 was that the grain size range before firing was 14.21 mm to 14.31 mm, but at the highest firing temperature Due to the increase in the temperature, the size decreased from 13.18 mm to 11.95 mm due to densification due to firing. Note that since the particle size at the maximum firing temperature of 1190° C. was 12.12 mm, there was some over-firing. Then, taking into account the tendency for the strength to increase with densification, it is preferable that the granules are granulated and molded to have a particle size of 13 mm to 15 mm, and that they are fired in the atmosphere and used as an artificial aggregate.

実験例67と実験例70、71の焼成により緻密化して粒径が縮小することについて、昇温過程の焼成最高温度1140℃から1180℃における粒径の測定結果は、すべての焼成最高温度で、実験例70、71は実験例67の測定数値を上回って緻密化する結果となった。電気炉酸化スラグ(B)を造粒物の作製において、その焼成体用組成物に添加することにより、下水汚泥焼却灰が自ら持つ媒融剤としての機能と相まって、酸化鉄の媒融剤としての機能を高める活性剤として作用した結果、焼成体の緻密化が造粒径に現れた結果となった。また、使い捨てカイロを酸化鉄とする造粒物の作製において、その焼成体用組成物に添加することにより、その焼成体の緻密化を促進させることも、焼成による粒径の縮小現象から確認できた。 Regarding the particle size reduction due to densification due to firing in Experimental Example 67 and Experimental Examples 70 and 71, the measurement results of the particle size at the maximum firing temperature of 1140°C to 1180°C in the temperature raising process show that at all maximum firing temperatures, Experimental Examples 70 and 71 resulted in densification exceeding the measured value of Experimental Example 67. By adding electric furnace oxidized slag (B) to the composition for the fired body in the production of granules, it can be used as a medium for iron oxide, in combination with the function of sewage sludge incineration ash as a medium. As a result of acting as an activator to enhance the functions of In addition, when producing granules of disposable body warmers using iron oxide, adding it to the composition for the fired body promotes the densification of the fired body, which can be confirmed from the particle size reduction phenomenon caused by firing. Ta.

酸化鉄を含有しない実験例58、63、67に比べて、酸化鉄を焼成体用組成物に加えたことにより、高比重(2.2程度)及び低吸水率(3.0%未満)を安定的に得られる焼成の踊り場現象(焼成温度範囲1170℃~1190℃)が発現した。造粒物等の成形体の焼成において、焼成の温度管理に余裕が生じ、製品の品質管理が容易にできる効果がある。 Compared to Experimental Examples 58, 63, and 67, which did not contain iron oxide, by adding iron oxide to the composition for fired bodies, a high specific gravity (about 2.2) and a low water absorption rate (less than 3.0%) were achieved. A plateau phenomenon (firing temperature range: 1170° C. to 1190° C.) was observed in stable firing. In the firing of molded bodies such as granules, there is a margin for temperature control during firing, which has the effect of making it easier to control the quality of the product.

上記表17は、実験例58乃至71(66を除く)において、焼成後粒径平均値を焼成前粒径中央値で除した数値であり、焼成前後の粒径比の参考値である。1180℃焼成において、実験例58、63、67を除く、石炭灰、電気炉酸化スラグ(B)又は使い捨てカイロ、下水汚泥焼却灰(B)を用いた実験例において、0.82から0.85を保ち、ほぼ、0.84から0.85である The above Table 17 shows the values obtained by dividing the average value of the particle size after calcination by the median value of the particle size before calcination in Experimental Examples 58 to 71 (excluding 66), and is a reference value of the particle size ratio before and after calcination. When fired at 1180°C, in experimental examples using coal ash, electric furnace oxidized slag (B), disposable body warmers, and sewage sludge incineration ash (B), excluding Experimental Examples 58, 63, and 67, 0.82 to 0.85 and is approximately 0.84 to 0.85.

表18には、石炭灰(B)と下水汚泥焼却灰(A)を80:20として、1180℃で同様の収縮を測定した結果である。組成が一定であれば、一定温度の焼成で粒径が変化しても収縮率が一定で、焼成前後の粒径比が保たれることが示される。 Table 18 shows the results of similar shrinkage measurements at 1180° C. using an 80:20 ratio of coal ash (B) and sewage sludge incineration ash (A). This shows that if the composition is constant, the shrinkage rate is constant even if the particle size changes due to firing at a constant temperature, and the particle size ratio before and after firing is maintained.

仮に、1180℃での収縮率を84%とすると、造粒物の焼成後の粒径を、5mm~20mmとした場合、焼成前の造粒粒径は、6mm~24mmとなる。表19に実験例58乃至71の組成(単位:g)を纏めた。 If the shrinkage rate at 1180° C. is 84%, and the particle size of the granulated material after firing is 5 mm to 20 mm, the granulated particle size before firing is 6 mm to 24 mm. Table 19 summarizes the compositions (unit: g) of Experimental Examples 58 to 71.

主材の石炭灰の選定方法
大気中の焼成温度が1080℃~1220℃であり、焼結後の比重が1.4~2.4であることが好ましく、また、1170℃~1190℃の焼成温度で、2.1~2.3であること、を満たすための主材石炭の選定を行った。表20の焼成体用組成物表(単位:g)によって作製した造粒物を焼成最高温度範囲1020℃~1220℃間において、40℃間隔の昇温で6回の焼成により得られた造粒焼成体を調製した。
Method for selecting coal ash as the main material It is preferable that the firing temperature in the atmosphere is 1080°C to 1220°C, and the specific gravity after sintering is 1.4 to 2.4. The main coal was selected to satisfy the temperature requirement of 2.1 to 2.3. Granules obtained by firing the granules prepared according to the composition table for fired bodies (unit: g) in Table 20 six times at a temperature increase of 40°C in the maximum firing temperature range of 1020°C to 1220°C. A fired body was prepared.

主材の石炭灰A,B,C配合表であり、表22(単位:g)に示した。この焼成体用組成物によって作成した造粒物を焼成最高温度範囲1140℃~1190℃間において、10℃間隔の昇温で6回の焼成により得られた造粒焼成体を製造した。各焼成体の比重、吸水率(wt%)の試験結果を表23示す。 This is a blending table of coal ash A, B, and C, which are the main materials, and is shown in Table 22 (unit: g). The granulated product prepared from this composition for a fired product was fired six times at a temperature increase of 10°C in the maximum firing temperature range of 1140°C to 1190°C to produce a granulated fired product. Table 23 shows the test results of specific gravity and water absorption rate (wt%) of each fired body.

1140℃における比重の最高値は、石炭灰(A)の1.541である。前記各種石炭灰を主材にして下水汚泥焼却灰(A)を配合した造粒物で、実験例2の配合の場合、比重が1.5を超えてから最大の比重となる2.2程度までの焼成温度範囲は60℃程度であり、他の実験例の比重変化も同様の傾向である。 The highest value of specific gravity at 1140°C is 1.541 for coal ash (A). A granulated product made of the above-mentioned various coal ash as the main material and mixed with sewage sludge incineration ash (A), in the case of the combination of Experimental Example 2, the specific gravity reaches the maximum after exceeding 1.5, which is about 2.2. The firing temperature range up to 60° C. is about 60° C., and the changes in specific gravity in other experimental examples have a similar tendency.

酸化鉄及び下水汚泥焼却灰(A)を配合した実験例59、64、68の焼成体の場合、比重が1.6を超えてから最大の比重となる2.2程度までの焼成温度範囲は40℃程度であり、他の実験例の比重変化も同様の傾向である。上記に記載の焼成結果の内容を踏まえ、主材の石炭灰については、例えば人為的に、高温溶融温度の石炭灰と低温溶融温度の石炭灰をブレンドして得た石炭灰を単味で配合して作製した、造粒物を焼成して比重を調整することができた。 In the case of the calcined bodies of Experimental Examples 59, 64, and 68, which contained iron oxide and sewage sludge incineration ash (A), the firing temperature range from the specific gravity exceeding 1.6 to the maximum specific gravity of about 2.2 was The temperature was about 40° C., and the changes in specific gravity in other experimental examples had a similar tendency. Based on the above-mentioned firing results, the main material, coal ash, is a single blend of coal ash, which is obtained by artificially blending coal ash with a high melting temperature and coal ash with a low melting temperature, for example. It was possible to adjust the specific gravity by firing the granulated material produced in this way.

このような石炭灰を使用することによって焼成温度範囲を低くして資源化材料を生産することは、省エネにつながる効果がある。このことから本発明においては、主材として使用する石炭灰の性質(特に主材単味の造粒物の焼成結果による比重の値)を特定することは、本発明による産業廃棄物の資源化方法における重要な技術要素である。 Using such coal ash to lower the firing temperature range to produce resource-recycling materials has the effect of leading to energy savings. Therefore, in the present invention, specifying the properties of the coal ash used as the main material (particularly the specific gravity value based on the result of firing the granules of the main material) is important for the recycling of industrial waste according to the present invention. It is an important technical element in the method.

石炭灰単味で、焼成温度1100℃の焼成造粒物の比重で1.5以上だと、溶融温度が低く、緻密化がはやすぎて焼成制御が困難であるので、本発明において使用する主材の石炭灰は、当該石炭灰を単味で配合して造粒した焼成体の焼成最高温度1100℃における比重が、1.5未満である石炭灰を主材として使用した。 If the specific gravity of the fired granules made of coal ash alone is 1.5 or more at a firing temperature of 1100°C, the melting temperature will be low and densification will be too rapid, making it difficult to control firing, so it is not used in the present invention. The coal ash used as the main material was coal ash whose specific gravity at the maximum firing temperature of 1100° C. of the fired body obtained by blending the coal ash alone and granulating it was less than 1.5.

実験例75は、電気炉酸化スラグ等を目開き500μm篩で全通に破砕又は粉砕化した。この実験例において空隙の間詰材として使用した、石炭灰(B)と下水汚泥焼却灰(A)の配合比率は、87対13である。実験例75の電気炉酸化スラグの破砕材料と間詰材の配合比率は、90対10である。実験例76の配合比率は、80対20である。実験例77の配合比率は、75対25である。表24に、実験例75乃至77の組成と比重、吸水率、強度を示した。 In Experimental Example 75, electric furnace oxidized slag and the like were completely crushed or pulverized using a 500 μm sieve. In this experimental example, the blending ratio of coal ash (B) and sewage sludge incineration ash (A) used as a gap filler was 87:13. The mixing ratio of the crushed material and the filler material for the electric furnace oxidized slag in Experimental Example 75 was 90:10. The blending ratio of Experimental Example 76 was 80:20. The blending ratio of Experimental Example 77 was 75:25. Table 24 shows the composition, specific gravity, water absorption, and strength of Experimental Examples 75 to 77.

焼成最高温度1170℃、1180℃、1190℃による3回の焼成の結果、得られた造粒焼成体の物性ついて、焼成体用組成物実験例75、実験例76の造粒物においては、焼成最高温度の上昇とともに比重は大きくなり、吸水率は低くなった。また、圧壊強度は高くなる傾向はあったが、焼成体用組成物実験例76における電気炉酸化スラグの破砕材料と間詰材の配合比率が80対20程度までは、焼成による緻密化は少ない。 Regarding the physical properties of the granulated fired bodies obtained as a result of three firings at maximum firing temperatures of 1170°C, 1180°C, and 1190°C, the granulated bodies of compositions for fired bodies Experimental Example 75 and Experimental Example 76 had As the maximum temperature increased, the specific gravity increased and the water absorption rate decreased. In addition, although the crushing strength tended to increase, densification due to firing was small until the mixing ratio of the crushed material and filler material of the electric furnace oxidized slag in Experimental Example 76 for fired body composition was about 80:20. .

しかし、焼成体用組成物実験例77の配合による造粒物を焼成最高温度1170℃、1180℃、1190℃で3回実験した焼成の結果、焼成最高温度1190℃で得られた造粒焼成体は、比重は大きくなり、吸水率は低くなり、圧壊強度は高くなった。このことから、焼成体用組成物実験例77の配合である電気炉酸化スラグの破砕材料と間詰材の配合比率は75対25であり、この配合比率を基準値として、この配合以上に間詰材の量を多くすることにより、造粒物の焼成による空隙部分の焼結緻密化及び粉砕物間の焼成固着が実現する。 However, as a result of firing the granulated material with the composition of experimental example 77 for fired body composition at the maximum firing temperature of 1170°C, 1180°C, and 1190°C three times, the granulated fired body obtained at the maximum firing temperature of 1190°C was found. The specific gravity increased, the water absorption rate decreased, and the crushing strength increased. From this, the blending ratio of the crushed material and filler material of the electric furnace oxidized slag, which is the blend of Experimental Example 77 of the composition for fired bodies, is 75:25, and with this blending ratio as the reference value, the By increasing the amount of filler material, sintering and densification of the void portions by firing the granules and sintering and fixation between the pulverized materials are realized.

これにより、産業廃棄物である電気炉酸化スラグ等を破砕又は粉砕した材料を使用して造粒物や平板状等に成形し、焼成体を製造することで、更に産業廃棄物の資源化利用が高まった。
As a result, by using materials obtained by crushing or pulverizing industrial waste such as electric furnace oxidized slag and forming it into granules or flat plates to produce fired bodies, we will be able to further utilize industrial waste as a resource. has increased.

Claims (9)

石炭灰(a)を、含有率が70重量%以上の主材とし、焼成による緻密化を促進する媒融物として、下水汚泥焼却灰(b)と、酸化鉄含有成分として、電気炉酸化スラグ、磁鉄鉱粉末、使用した使い捨てカイロから選ばれた1種以上(c)と、を含むことを特徴とする焼成用組成物。 Coal ash (a) is the main material with a content of 70% by weight or more , sewage sludge incineration ash (b) is used as a medium to promote densification by firing, and electric furnace oxidized slag is used as an iron oxide-containing component. , magnetite powder, and one or more types (c) selected from used disposable body warmers. 請求項1に記載の焼成用組成物に、結合剤を加えて、造粒成形し、又は型枠内で加圧成形した後、大気中で焼成して得られることを特徴とする焼成体の製造法。 A fired body obtained by adding a binder to the firing composition according to claim 1, granulating it or press-molding it in a mold, and then firing it in the atmosphere. Manufacturing method. 前記媒融物が、更に、酸化鉄成分として、銅スラグ、亜鉛スラグのうち、1種類以上を含むことを特徴とする請求項2に記載の焼成体の製造法。 3. The method for producing a fired body according to claim 2, wherein the medium further contains one or more of copper slag and zinc slag as an iron oxide component. 前記媒融物中の酸化鉄成分(c)が、焼成用組成物中5重量%~20重量%であることを特徴とする請求項2に記載の焼成体の製造法。 The method for producing a fired body according to claim 2, wherein the iron oxide component (c) in the medium is 5% to 20% by weight of the firing composition. 前記媒融物中の下水汚泥焼却灰(b)が、焼成用組成物中、5重量%以上~20重量%以下であり、酸化鉄成分(c)が、焼成用組成物中5重量%~10重量%であることを特徴とする請求項2に記載の焼成体の製造法。 The sewage sludge incineration ash (b) in the medium is 5% by weight or more and 20% by weight or less in the firing composition, and the iron oxide component (c) is 5% by weight or less in the firing composition. The method for producing a fired body according to claim 2, wherein the content is 10% by weight. 前記焼成組成物中の石炭灰(a)が、1100℃で焼成したとき、比重が1.5以下であることを特徴とする請求項2乃至請求項5のいずれかに記載の焼成体の製造方法。 The fired body according to any one of claims 2 to 5, wherein the coal ash (a) in the firing composition has a specific gravity of 1.5 or less when fired at 1100°C. Production method. 造粒成形した粒径が、6mm~24mmの造粒成形物であり、大気中で焼成して人工骨材として用いることを特徴とする請求項2乃至請求項5のいずれかに記載の焼成体の製造法。 The fired product according to any one of claims 2 to 5, which is a granulated product having a particle size of 6 mm to 24 mm, and is used as an artificial aggregate by being fired in the atmosphere. manufacturing method. 大気中の焼成温度が1080℃~1220℃であり、焼成後の比重が1.4~2.4であることを特徴とする請求項2乃至請求項5のいずれかに記載の焼成体の製造方法。 Production of the fired body according to any one of claims 2 to 5, characterized in that the firing temperature in the atmosphere is 1080°C to 1220°C, and the specific gravity after firing is 1.4 to 2.4. Method. 製鋼スラグの破砕物と、石炭灰と、請求項2乃至請求項5のいずれかの媒融物を有する焼成用組成物を、造粒成形し、又は型枠内で加圧成形した後、大気中で焼成して得られることを特徴とする焼成体の製造法。 A composition for firing comprising crushed steelmaking slag, coal ash, and the medium according to any one of claims 2 to 5 is granulated or pressure-formed in a mold, and then exposed to air. 1. A method for producing a fired body, characterized in that it is obtained by firing inside a fired body.
JP2020120723A 2020-07-14 2020-07-14 Composition for fired body and method for producing fired body using the same Active JP7372215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020120723A JP7372215B2 (en) 2020-07-14 2020-07-14 Composition for fired body and method for producing fired body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020120723A JP7372215B2 (en) 2020-07-14 2020-07-14 Composition for fired body and method for producing fired body using the same

Publications (2)

Publication Number Publication Date
JP2022024276A JP2022024276A (en) 2022-02-09
JP7372215B2 true JP7372215B2 (en) 2023-10-31

Family

ID=80265357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020120723A Active JP7372215B2 (en) 2020-07-14 2020-07-14 Composition for fired body and method for producing fired body using the same

Country Status (1)

Country Link
JP (1) JP7372215B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247698A (en) 1999-02-26 2000-09-12 Nippon Mesaraito Kogyo Kk Production of artificial lightweight aggregate
JP2001146444A (en) 1999-11-17 2001-05-29 Nippon Mesaraito Kogyo Kk Method for producing artificial lightweight aggregate
JP2001151543A (en) 1999-11-26 2001-06-05 Kajima Corp Production process of artificial lightweight aggregate
KR20020044899A (en) 2000-12-07 2002-06-19 김정환 Composition for lightweight aggregate and method for manufacturing the same
JP2004262728A (en) 2003-03-04 2004-09-24 Ube Ind Ltd Manufacturing process of lightweight aggregate which uses coal ash and sewage sludge incineration ash as raw materials
JP2004269271A (en) 2003-03-05 2004-09-30 Sumitomo Metal Mining Co Ltd Production method for inorganic solidified body
JP2016132586A (en) 2015-01-19 2016-07-25 裕光 幅口 Expandable burned body, and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123845A (en) * 1986-11-12 1988-05-27 日本碍子株式会社 Method of sintering incineration ash

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247698A (en) 1999-02-26 2000-09-12 Nippon Mesaraito Kogyo Kk Production of artificial lightweight aggregate
JP2001146444A (en) 1999-11-17 2001-05-29 Nippon Mesaraito Kogyo Kk Method for producing artificial lightweight aggregate
JP2001151543A (en) 1999-11-26 2001-06-05 Kajima Corp Production process of artificial lightweight aggregate
KR20020044899A (en) 2000-12-07 2002-06-19 김정환 Composition for lightweight aggregate and method for manufacturing the same
JP2004262728A (en) 2003-03-04 2004-09-24 Ube Ind Ltd Manufacturing process of lightweight aggregate which uses coal ash and sewage sludge incineration ash as raw materials
JP2004269271A (en) 2003-03-05 2004-09-30 Sumitomo Metal Mining Co Ltd Production method for inorganic solidified body
JP2016132586A (en) 2015-01-19 2016-07-25 裕光 幅口 Expandable burned body, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2022024276A (en) 2022-02-09

Similar Documents

Publication Publication Date Title
US7704317B2 (en) Pyroprocessed aggregates comprising IBA and PFA and methods for producing such aggregates
US8206504B2 (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
US7780781B2 (en) Pyroprocessed aggregates comprising IBA and low calcium silicoaluminous materials and methods for producing such aggregates
JP2008538347A (en) Synthetic aggregates containing sewage sludge and other waste and methods for producing such aggregates
JP2008538347A5 (en)
JP5896836B2 (en) Method for producing fired product
Lu et al. The different properties of lightweight aggregates with the fly ashes of fluidized-bed and mechanical incinerators
WO2014068643A1 (en) Method for removing radioactive cesium, and method for producing fired material
WO2006074944A1 (en) Pyroprocessed aggregates comprising iba and pfa and methods for producing such aggregates
JP2005320188A (en) Inorganic foamed, fired body and its production method
JP7372215B2 (en) Composition for fired body and method for producing fired body using the same
JP2007260503A (en) Manufacturing method of burned matter
JP2007223841A (en) Method for producing artificial aggregate using waste slag as main raw material
CN104676595B (en) Method for lowering quantity and toxicity of flying ash of household garbage incineration plant
JP2003012355A (en) Method for producing artificial lightweight aggregate
JP2008273749A (en) Artificial aggregate and its manufacturing method
JP5109060B2 (en) Method for producing inorganic solidified body with detoxification of lead glass
JPH11292611A (en) Production of brick effectively using sludge and municipal refuse
JP2023142727A (en) Composition for calcination body and production method of calcination body using the same
US6416251B1 (en) Process for the stabilization of soluble chromium contaminated solid by down draft sintering
JP2000034179A (en) Production of water-holding granular sintered compact
JP2005007220A (en) Material production method by using incineration ash
JP2008156197A (en) Method for producing fired material
JP2005255515A (en) Method for manufacturing sintered compact
JP2003095713A (en) Method of producing inorganic compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230327

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231019

R150 Certificate of patent or registration of utility model

Ref document number: 7372215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150