JP2004269271A - Production method for inorganic solidified body - Google Patents

Production method for inorganic solidified body Download PDF

Info

Publication number
JP2004269271A
JP2004269271A JP2003058055A JP2003058055A JP2004269271A JP 2004269271 A JP2004269271 A JP 2004269271A JP 2003058055 A JP2003058055 A JP 2003058055A JP 2003058055 A JP2003058055 A JP 2003058055A JP 2004269271 A JP2004269271 A JP 2004269271A
Authority
JP
Japan
Prior art keywords
smelting slag
aggregate
slag
ash
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003058055A
Other languages
Japanese (ja)
Inventor
Koji Kawamoto
孝次 川本
Katsuhiro Tomota
勝博 友田
Mototsugu Matsuno
基次 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003058055A priority Critical patent/JP2004269271A/en
Publication of JP2004269271A publication Critical patent/JP2004269271A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an inorganic solidified body which method uses a stable and low-cost iron source and enables municipal-waste incineration ash to be fired with a rotary kiln to give aggregate of which the inside is prevented from being oxidized during firing and which method contributes to effective reutilization and recycling of municipal-waste incineration ash and a smelting slag and to the solution of environmental problems. <P>SOLUTION: In the method for producing an inorganic solidified body by using ash yielded by incinerating municipal waste as the main material, smelting slag as a composition-adjusting agent is added to the main material; then, the mixture is crushed, granulated into granules with a granule size of about 5-20 mm, dried, and fired in a rotary kiln. As the smelting slag, at least one selected from a copper smelting slag containing 40-55 wt.% iron (in terms of Fe<SB>2</SB>O<SB>3</SB>), a lead/zinc smelting slag, and a shredder dust smelting slag is used. The smelting slag in an amount of 1-35 wt.% is added to the main raw material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、都市ゴミの焼却時に発生する灰を主原料として、建築用または土木用等に使用する骨材(無機質固化体)を製造する方法に関する。
【0002】
【従来の技術】
焼却炉において都市ゴミを焼却すると焼却炉内には主灰が残り、焼却炉の排ガス中に飛散した灰(以下、飛灰という)は電気集塵器で集められる。従来、このようにして集められた飛灰及び前記主灰は、廃棄物として地中に埋めることにより処分されていた。
しかしながら、都市ゴミを焼却して得られた灰、特に、飛灰には鉛、クロム、カドミウム等の有害な重金属類が多量に含まれているため、埋立て後この灰から地中に溶出した重金属類が、環境汚染を引き起こす原因となっていた。
そこで、従来、これら有害な重金属類の溶出を防ぐ手段として、集められた灰をセメントで固化する方法、有害な重金属類を薬剤で化学的に固定して不溶化する方法、集められた灰を1300°C以上の温度で溶融してガラス質のスラグとする方法等が行われている。
【0003】
また、このようにしてできたスラグを再利用するために、スラグを原料とした焼成骨材の製造方法として、例えば、次の特許文献1に記載のような製鉄の高炉スラグを使用して人工骨材を製造する方法や、特許文献2に記載のような石炭乾留炉で発生するスラグを原料として人工骨材を製造する方法が提案されている。
【0004】
【特許文献1】
特開平09−77543号公報
【特許文献2】
特開2002−60257号公報
【0005】
【発明が解決しようとする課題】
しかし、従来、銅製錬スラグ、鉛・亜鉛製錬スラグ、家電や自動車等を処分する際に最終的に溶融して金属を分離した後のスラグであるシュレッダーダストのように鉄を多量に含有するスラグを用いて再利用可能な骨材を製造する方法については提案されたものがない。
このように、都市ゴミを焼却して得られた灰は、殆どが直接地中に埋められるか、または有害な重金属類を固定化または不溶化して地中に埋めるかして処分されるのが実情で、従来、殆ど再利用されることはなかった。
【0006】
しかるに、本発明者等は、都市ゴミを焼却して得られた灰を焼成することにより、灰の中に含まれる鉛、亜鉛、カドミウム等の重金属類を揮発させて除去すると共に、建築用または土木用等に使用する骨材として再利用する方法を検討してきた。
そして、都市ゴミ焼却灰を骨材として焼成する場合、鉄と炭素が重要な役割を果すことことを見出したが、安価で安定した鉄源を見出す必要がある。
また、都市ゴミ焼却灰は加熱による揮発減量が20〜30wt%と極めて大きく、ロータリーキルンで焼成中に熱源である燃料の燃焼ガス中に含まれる酸素による酸化の影響を受けやすく骨材内部を還元状態に維持することが困難であった。
【0007】
本発明は上記問題点に鑑みてなされたものであり、その目的は安価で安定した鉄源を用い、かつ、ロータリーキルンで焼成中の骨材内部の酸化を防止して都市ゴミ焼却灰を骨材として焼成することができ、都市ゴミ焼却灰や製錬スラグの有効な再利用、再資源化、環境問題の解消に寄与しうる無機質固化体の製造方法を提供することにある。
【0008】
【発明を解決するための手段】
上記目的を達成するため、本発明による無機質固化体の製造方法は、都市ゴミを焼却して得られる灰を主原料とする無機質固化体の製造方法において、前記主原料に組成調整材として製錬スラグを添加し、粉砕後5〜20mm程度に造粒し、乾燥させてロータリーキルンで焼成することを特徴としている。
【0009】
また、本発明の製造方法においては、前記製錬スラグとして、Fe換算で40〜55wt%の鉄を含有する銅製錬スラグ、鉛・亜鉛製錬スラグ、シュレッダーダスト製錬スラグの少なくともいずれかを使用する。
【0010】
また、本発明の製造方法においては、前記主原料に添加する製錬スラグの添加量を1〜35wt%とする。
【0011】
【発明の実施の形態】
実施例の説明に先立ち、本発明の作用効果について説明する。
本発明の製造方法によれば、従来組成調整材として多くが埋め立て処分されている製錬スラグを副原料としての鉄源として有効に利用することができ、かつ焼成中の無機質固化体の酸化を有効に防止できる。
【0012】
都市ゴミを焼却して得られる灰を主原料とする無機質固化体の製造方法において、組成調整材として鉄と還元剤の炭素の使用が必要不可欠である。
鉄は、一般的にはFeまたはFeOとして原料中に存在する。骨材原料ペレットが加熱されて温度が上昇し、共融点温度に達すると液相を生成する。これに伴って原料中のFeはFeOに還元されて液相を形成しているガラスのSiOを骨格とするネットワークの修飾イオンとなり、液相の生成を促進する。一方、骨材原料ペレット表面では燃焼ガス中の酸素により酸化されて鉄はFeの状態を維持するため、耐火度が上昇するように作用する。
このため本発明の製造方法によれば、骨材原料ペレット表面の融着を防止して焼成温度を上昇させて内部の焼結を促進することにより骨材全体の強度を向上させることができる。
【0013】
一般に、焼却飛灰中には、Fe換算で1〜2wt%の鉄が含有されている。一方、骨材を良好に焼成するためには、Fe換算で1〜15wt%の鉄が必要であり、焼却飛灰を主原料として好ましく骨材を焼成するためには、Fe換算で4〜10wt%の鉄が不足している。そのため、従来は、主原料に対する添加用鉄源として、酸化鉄粉末(へマタイト)を添加していた。
【0014】
ところで、銅製錬スラグ、鉛・亜鉛製錬スラグ、シュレッダーダスト製錬スラグは、Fe換算で40〜55wt%の鉄を含有する。この場合の鉄は大半がFeOになっている。
しかるに、本発明者は、これらの製錬スラグを1〜35wt%添加することにより、ヘマタイトを添加した場合と同等かそれ以上の無機質固化体強度が得られること見出した。
【0015】
また、炭素は、一般的に焼却飛灰中に未燃分として1〜3wt%含まれているが、骨材を良好に焼成するためには、1〜12wt%の炭素が必要であり、好ましく骨材を焼成するためには、4〜8wt%の炭素が不足している。そのため、通常は、コークスや石炭粉末を原料に添加して不足分を補う。
【0016】
しかるに、本発明者は、スラグを鉄源として添加することにより、骨材を良好に焼成するための炭素量を1〜10wt%に低減することができることを見出した。
製錬スラグ中の鉄の含有量はFe換算で40〜55wt%であり、骨材を良好に焼成するためのFe換算で1〜15wt%の鉄量と、骨材を良好に焼成するためのスラグ量1〜35wt%におけるFe換算での鉄量とがほぼ一致する。
【0017】
本発明のように、製錬スラグを鉄源とすると、へマタイトを鉄源とするのに比べて比較的高強度な骨材が得られるのは次の理由によるものと考えられる。
製錬スラグ中の鉄の大半が2価のウスタイト(FeO)として存在していて、へマタイト(Fe)に比べて酸化の程度が低いことが考えられる。また、スラグは常温からガラス状態となっていて軟化しやすく比較的低温から焼結が緩慢に進むため、高強度化しやすいと考えられる。また、比較的低温から焼結が進むために、燃焼ガス中の酸素による酸化が防止しやすいことが考えられる。
また、鉄の形態がウスタイトの2価となっていてへマタイトの3価より還元が進んでいる点でも酸化防止性能が高いものと考えられる。さらには、製錬スラグ中において骨材の強度を弱めるアルカリ金属類(NaO+KOとして約0.5〜2.5wt%)が主原料の焼却飛灰(NaO+KOとして約15〜25wt%)と比較して極めて低い点も骨材の高強度化に寄与していると考えられる。
また、製錬スラグの添加量を増加すると、焼成温度は骨材表面の軟化が製錬スラグにより若干早まるために低下するが、骨材の強度発現効果の方がより促進されるため、その結果として骨材強度が増加できると考えられる。
【0018】
なお、製錬スラグの添加率は、1wt%未満ではFeの強度発現効果を得るには不十分である。一方、35wt%よりも多くなると、骨材強度向上効果は増加しないのに対して骨材表面の液相生成が進んで焼成温度を低下させるため骨材強度が低下する。
また、製錬スラグ中には鉛を1〜2wt%含有することがあるが、骨材焼成中に鉛を揮発除去することは十分可能であり、キルン排ガスから回収して資源としてリサイクルすることができる。
【0019】
【実施例】
以下、本発明の実施例を説明する。
都市ゴミを焼却して得られた飛灰を主原料とし、その組成を組成調整材などにより調整してロータリーキルンに供給して焼成することにより、下記のような無機質固化体を製造した。実験に使用した焼却飛灰,組成調整材としての石炭灰とへマタイトと鉛・亜鉛製錬スラグとアルミナ、還元剤としてのコークスについて、それらの化学組成を次の表1に示す。

Figure 2004269271
【0020】
これらの原料を次の表2に示す配合割合となるように計量し、振動ミルで粉砕し混合した。得られた各原料混合物に水を加えて混練し、押出成形機で直径10mmの円柱状に成形し、乾燥させた後ロータリーキルン(煉瓦壁の内径920〜700mm × 長さ12000mm)に原料を供給して焼成することにより骨材を製造した。
Figure 2004269271
【0021】
得られた各骨材について、強度及び比重を測定し、焼成温度と共に次の表3に示した。なお、骨材強度は、円柱状骨材の門柱軸に直角方向から加圧し、破壊時の荷重を試料毎に20個ずつ測定し、その平均値を圧潰強度として示した。骨材の比重は、JISA1110に基づいて測定した。
そして、表3に示す焼成温度、比重及び強度につき実施例と比較例とを比較した。
Figure 2004269271
【0022】
表3より、本発明の製造方法による実施例1〜7では、骨材強度400N以上の高強度な骨材が得られることがわかる。
表2に示すように、比較例1は実施例1と、比較例2は実施例4と、比較例3は実施例7と、夫々原料の鉄を含む化学組成がほぼ同じであり、かつ、夫々の実施例とは異なりスラグではなくへマタイトを添加した例である。表3において、比較例1と実施例1、比較例2と実施例4、比較例3と実施例7とを夫々比べると、へマタイトを添加した比較例1〜3の骨材よりも、比較例に対応するスラグを使用した実施例1,4,7の骨材の方の強度が高い値を示していることがわかる。
比較例4は表2に示すようにスラグ、へマタイトが共に無添加の例であるが、表3に示すように骨材強度が251Nと低くなった。
比較例5は、表2に示すようにスラグ添加率が36%と多い例であるが、表3に示すように、骨材強度が306Nと低くなった。
【0023】
【発明の効果】
本発明によれば、都市ゴミの焼却灰を主原料として、焼結固化させて、建築又は土木材料の骨材として使用し得る高強度な無機質固化体を製造する際に、現在、大半が埋め立て処分されている製錬スラグを骨材原料として使用することができる。また、高価なへマタイトを使用しなくてすむため、大幅なコスト削減が可能となる。
これにより、従来は廃棄されていた都市ゴミ焼却灰や製錬スラグを有効に再利用でき、再資源化や環境問題の解消に大いに寄与することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an aggregate (inorganic solidified body) used for construction or civil engineering, using ash generated during incineration of municipal waste as a main raw material.
[0002]
[Prior art]
When municipal waste is incinerated in an incinerator, main ash remains in the incinerator, and ash scattered in exhaust gas from the incinerator (hereinafter referred to as fly ash) is collected by an electric dust collector. Conventionally, fly ash and the main ash collected in this manner have been disposed of by burying them underground as waste.
However, ashes obtained from the incineration of municipal waste, especially fly ash, contain a large amount of harmful heavy metals such as lead, chromium, and cadmium. Heavy metals have caused environmental pollution.
Therefore, conventionally, as a means for preventing the elution of these harmful heavy metals, a method of solidifying the collected ash with cement, a method of chemically fixing harmful heavy metals with a chemical and insolubilizing the collected ash, A method of melting glassy slag at a temperature of not less than ° C and the like has been performed.
[0003]
Further, in order to reuse the slag thus produced, as a method for producing a fired aggregate using slag as a raw material, for example, an artificial steel blast furnace slag as described in Patent Document 1 is used. A method for producing an aggregate and a method for producing an artificial aggregate using slag generated in a coal carbonization furnace as described in Patent Document 2 have been proposed.
[0004]
[Patent Document 1]
JP-A-09-77543 [Patent Document 2]
JP-A-2002-60257
[Problems to be solved by the invention]
However, conventionally, copper smelting slag, lead / zinc smelting slag, a large amount of iron, such as shredder dust, which is slag after metal is finally melted and separated from metals when disposing of home appliances and automobiles No method has been proposed for producing reusable aggregate using slag.
In this way, most of the ash obtained from the incineration of municipal waste is either directly buried in the ground or buried in the ground by fixing or insolubilizing harmful heavy metals. Conventionally, it has hardly been reused.
[0006]
However, the present inventors volatilize and remove heavy metals such as lead, zinc, and cadmium contained in the ash by burning the ash obtained by incinerating the municipal garbage, and also for building or We have been studying ways to reuse it as aggregate for civil engineering.
Then, when firing municipal incineration ash as aggregate, it was found that iron and carbon play an important role, but it is necessary to find an inexpensive and stable iron source.
In addition, municipal waste incineration ash has an extremely large volatilization loss of 20 to 30 wt% due to heating, and is susceptible to oxidation by oxygen contained in fuel gas as a heat source during firing in a rotary kiln, and the inside of the aggregate is reduced. Was difficult to maintain.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to use an inexpensive and stable iron source, and to prevent oxidization of the inside of the aggregate during firing in a rotary kiln to reduce municipal waste incineration ash. It is an object of the present invention to provide a method for producing an inorganic solidified material which can be fired as a waste and can contribute to effective reuse and recycling of municipal waste incineration ash and smelting slag, and elimination of environmental problems.
[0008]
[Means for Solving the Invention]
In order to achieve the above object, a method for producing an inorganic solidified body according to the present invention is a method for producing an inorganic solidified body mainly containing ash obtained by incinerating municipal garbage. It is characterized in that slag is added, granulated to about 5 to 20 mm after pulverization, dried, and fired in a rotary kiln.
[0009]
Further, in the production method of the present invention, the smelting slag is at least one of a copper smelting slag containing 40 to 55 wt% of iron in terms of Fe 2 O 3 , a lead / zinc smelting slag, and a shredder dust smelting slag. Or use.
[0010]
In the production method of the present invention, the amount of the smelting slag added to the main raw material is set to 1 to 35 wt%.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Prior to the description of the embodiments, the operation and effect of the present invention will be described.
According to the production method of the present invention, smelting slag, which is conventionally disposed of in landfill as a composition adjusting material, can be effectively used as an iron source as an auxiliary material, and oxidation of the inorganic solidified body during firing is suppressed. It can be effectively prevented.
[0012]
In a method for producing an inorganic solidified product using ash obtained by incineration of municipal waste as a main raw material, it is essential to use iron and carbon as a reducing agent as a composition adjusting material.
Iron is generally present in the feed as Fe 2 O 3 or FeO. The aggregate raw material pellets are heated to increase the temperature, and when the eutectic temperature is reached, a liquid phase is formed. Along with this, Fe 2 O 3 in the raw material is reduced to FeO and becomes a modifying ion of a network having SiO 2 as a skeleton of the glass forming the liquid phase, thereby promoting the generation of the liquid phase. On the other hand, on the surface of the aggregate raw material pellets, iron is oxidized by oxygen in the combustion gas, and iron maintains the state of Fe 2 O 3 , and thus acts to increase the fire resistance.
Therefore, according to the production method of the present invention, the strength of the aggregate as a whole can be improved by preventing fusion of the surface of the aggregate raw material pellets, increasing the firing temperature, and promoting internal sintering.
[0013]
Generally, incinerated fly ash contains 1 to 2 wt% of iron in terms of Fe 2 O 3 . Meanwhile, in order to satisfactorily calcined aggregate, it is necessary to 1 to 15 wt% of iron calculated as Fe 2 O 3, in order of firing the preferably aggregate the incineration fly ash as the main raw material, Fe 2 O There is a shortage of 4 to 10 wt% iron in 3 conversion. Therefore, conventionally, iron oxide powder (hematite) has been added as an iron source for addition to the main raw material.
[0014]
Meanwhile, copper smelting slag, lead-zinc smelting slag, shredder dust smelting slag contains 40~55Wt% iron calculated as Fe 2 O 3. Most of the iron in this case is FeO.
However, the present inventor has found that the addition of these smelting slags in an amount of 1 to 35 wt% can provide an inorganic solidified material having a strength equal to or higher than the case of adding hematite.
[0015]
Carbon is generally contained in the incinerated fly ash in an amount of 1 to 3 wt% as unburned matter. However, in order to sinter the aggregates satisfactorily, 1 to 12 wt% of carbon is required, and it is preferable. In order to fire the aggregate, 4 to 8 wt% of carbon is insufficient. Therefore, usually, coke or coal powder is added to the raw material to compensate for the shortage.
[0016]
However, the present inventor has found that by adding slag as an iron source, the amount of carbon for sintering the aggregate satisfactorily can be reduced to 1 to 10 wt%.
The content of iron in the smelting slag is 40~55Wt% in terms of Fe 2 O 3, and 1 to 15 wt% of the iron content calculated as Fe 2 O 3 for favorably sintered aggregate, the aggregate The amount of iron in terms of Fe 2 O 3 in the amount of slag of 1 to 35 wt% for good firing substantially coincides.
[0017]
When the smelting slag is used as the iron source as in the present invention, the relatively high-strength aggregate can be obtained as compared with the case where hematite is used as the iron source, for the following reasons.
Most of the iron in the smelting slag is present as divalent wustite (FeO), and it is considered that the degree of oxidation is lower than that of hematite (Fe 2 O 3 ). Further, it is considered that the slag is in a glassy state from room temperature and is easily softened, and sintering proceeds slowly from a relatively low temperature. In addition, since sintering proceeds at a relatively low temperature, it is considered that oxidation by oxygen in the combustion gas is easily prevented.
Further, it is considered that the antioxidant performance is high also in that the iron form is divalent of wustite and reduction is more advanced than trivalent of hematite. Furthermore, about the incineration fly ash (Na 2 O + K 2 O of the main raw material (about 0.5-2.5% as Na 2 O + K 2 O) alkali metals weaken the strength of the aggregate during the smelting slag 15 (25 wt%) is considered to also contribute to the high strength of the aggregate.
Also, when the amount of smelting slag is increased, the sintering temperature decreases because the smelting slag accelerates the softening of the aggregate surface, but the strength development effect of the aggregate is further promoted. It is considered that the aggregate strength can be increased.
[0018]
In addition, if the addition rate of the smelting slag is less than 1 wt%, it is insufficient to obtain the effect of developing the strength of Fe 2 O 3 . On the other hand, if the content is more than 35 wt%, the effect of improving the aggregate strength does not increase, but the generation of the liquid phase on the aggregate surface proceeds and the firing temperature decreases, so that the aggregate strength decreases.
In addition, although smelting slag may contain 1 to 2 wt% of lead, it is possible to volatilize and remove lead during sintering of aggregate, and it is possible to collect lead from kiln exhaust gas and recycle it as a resource. it can.
[0019]
【Example】
Hereinafter, examples of the present invention will be described.
Fly ash obtained by incineration of municipal garbage was used as a main raw material, the composition of which was adjusted with a composition adjusting material or the like, supplied to a rotary kiln, and fired to produce the following inorganic solidified body. The chemical compositions of the incineration fly ash, coal ash and hematite, lead and zinc smelting slag and alumina, and coke as a reducing agent used in the experiment are shown in Table 1 below.
Figure 2004269271
[0020]
These raw materials were weighed so as to have the mixing ratios shown in Table 2 below, pulverized by a vibration mill, and mixed. Water is added to each of the obtained raw material mixtures, kneaded, formed into a cylindrical shape having a diameter of 10 mm by an extruder, dried, and then supplied to a rotary kiln (brick wall inner diameter 920 to 700 mm × length 12000 mm). The aggregate was manufactured by firing.
Figure 2004269271
[0021]
The strength and specific gravity of each of the obtained aggregates were measured, and the results are shown in Table 3 below together with the firing temperature. The aggregate strength was measured by applying a pressure from a direction perpendicular to the column axis of the columnar aggregate, measuring the load at the time of destruction by 20 pieces for each sample, and indicating the average value as the crush strength. The specific gravity of the aggregate was measured based on JIS A1110.
Then, the firing temperature, specific gravity and strength shown in Table 3 were compared between the example and the comparative example.
Figure 2004269271
[0022]
Table 3 shows that in Examples 1 to 7 according to the production method of the present invention, a high-strength aggregate having an aggregate strength of 400 N or more can be obtained.
As shown in Table 2, Comparative Example 1 is substantially the same as Example 1, Comparative Example 2 is Example 4, and Comparative Example 3 is Example 7, and the chemical composition including iron as a raw material is substantially the same. Unlike each of the examples, this is an example in which hematite is added instead of slag. In Table 3, when comparing Comparative Example 1 and Example 1, Comparative Example 2 and Example 4, and Comparative Example 3 and Example 7, respectively, the comparative examples 1 to 3 were compared with Comparative Examples 1 to 3 to which hematite was added. It can be seen that the aggregates of Examples 1, 4 and 7 using the slag corresponding to the example show higher strength values.
Comparative Example 4 was an example in which neither slag nor hematite was added as shown in Table 2, but as shown in Table 3, the aggregate strength was as low as 251N.
Comparative Example 5 is an example in which the slag addition rate was as large as 36% as shown in Table 2, but as shown in Table 3, the aggregate strength was as low as 306N.
[0023]
【The invention's effect】
According to the present invention, when incinerated ash of municipal garbage is used as a main raw material and sintered and solidified to produce a high-strength inorganic solidified body that can be used as an aggregate of building or civil engineering materials, at present, most of the landfills are landfilled. The disposed smelting slag can be used as an aggregate raw material. In addition, since expensive hematite is not required, significant cost reduction can be achieved.
This makes it possible to effectively reuse municipal garbage incineration ash and smelting slag, which were conventionally discarded, and can greatly contribute to recycling and solving environmental problems.

Claims (3)

都市ゴミを焼却して得られる灰を主原料とする無機質固化体の製造方法において、
前記主原料に組成調整材として製錬スラグを添加し、粉砕後5〜20mm程度に造粒し、乾燥させてロータリーキルンで焼成することを特徴とする無機質固化体の製造方法。
In a method of manufacturing an inorganic solidified body using ash obtained by incineration of municipal waste as a main raw material,
A method for producing an inorganic solidified material, comprising adding a smelting slag as a composition adjusting material to the main raw material, granulating the slag to a size of about 5 to 20 mm after pulverization, drying and firing in a rotary kiln.
前記製錬スラグとして、Fe換算で40〜55wt%の鉄を含有する銅製錬スラグ、鉛・亜鉛製錬スラグ、シュレッダーダスト製錬スラグの少なくともいずれかを使用することを特徴とする請求項1に記載の無機質固化体の製造方法。As the smelting slag claims characterized by the use of copper smelting slag containing 40~55Wt% iron calculated as Fe 2 O 3, lead-zinc smelting slag, at least one of ASR smelting slag Item 4. The method for producing an inorganic solidified product according to Item 1. 前記主原料に添加する製錬スラグの添加量を1〜35wt%とすることを特徴とする請求項1又は2に記載の無機質固化体の製造方法。The method for producing an inorganic solidified body according to claim 1, wherein the amount of the smelting slag added to the main raw material is 1 to 35 wt%.
JP2003058055A 2003-03-05 2003-03-05 Production method for inorganic solidified body Pending JP2004269271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058055A JP2004269271A (en) 2003-03-05 2003-03-05 Production method for inorganic solidified body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058055A JP2004269271A (en) 2003-03-05 2003-03-05 Production method for inorganic solidified body

Publications (1)

Publication Number Publication Date
JP2004269271A true JP2004269271A (en) 2004-09-30

Family

ID=33121259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058055A Pending JP2004269271A (en) 2003-03-05 2003-03-05 Production method for inorganic solidified body

Country Status (1)

Country Link
JP (1) JP2004269271A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824287A (en) * 2019-04-15 2019-05-31 重庆大学 A kind of method of alkali-activated carbonatite lead and zinc smelting dreg from cementation solidifying heavy metal
JP2022024276A (en) * 2020-07-14 2022-02-09 裕光 幅口 Composition for calcined body, and method of producing calcined body using the same
CN117658531A (en) * 2024-01-29 2024-03-08 常熟理工学院 Method for cooperatively treating waste incineration fly ash and waste asphalt and preparing hydrophobic solid bricks

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824287A (en) * 2019-04-15 2019-05-31 重庆大学 A kind of method of alkali-activated carbonatite lead and zinc smelting dreg from cementation solidifying heavy metal
JP2022024276A (en) * 2020-07-14 2022-02-09 裕光 幅口 Composition for calcined body, and method of producing calcined body using the same
JP7372215B2 (en) 2020-07-14 2023-10-31 裕光 幅口 Composition for fired body and method for producing fired body using the same
CN117658531A (en) * 2024-01-29 2024-03-08 常熟理工学院 Method for cooperatively treating waste incineration fly ash and waste asphalt and preparing hydrophobic solid bricks
CN117658531B (en) * 2024-01-29 2024-04-16 常熟理工学院 Method for cooperatively treating waste incineration fly ash and waste asphalt and preparing hydrophobic solid bricks

Similar Documents

Publication Publication Date Title
CN101476032B (en) Metallurgy sintering processing method for urban domestic garbage incineration flyash
CN101081397B (en) Permanent innocent treatment method of city life rubbish, industrial refuse and incineration fly ash
EP2794506A2 (en) Aggregates
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
CN104291784A (en) Harmless treatment method of waste burning fly ash
KR100562169B1 (en) Manufacturing method of lightweight aggregate using ash from municipal and industrial solid waste incinerators
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JP2006263635A (en) Inorganic solidified body with hig specific surface area ratio and method for producing the same
JP2004269271A (en) Production method for inorganic solidified body
JP5109060B2 (en) Method for producing inorganic solidified body with detoxification of lead glass
JP2003012355A (en) Method for producing artificial lightweight aggregate
JP2008273749A (en) Artificial aggregate and its manufacturing method
JPH1095648A (en) Production of artificial aggregate
JP2000274646A (en) Melting method for coal ash and fly ash of refuse incineration
JP3490221B2 (en) Method for producing molten solid from fly ash generated during sludge incineration
JPH08301641A (en) Production of artificial lightweight aggregate
JP3224021B2 (en) Combustion treatment method and combustion treatment device for refuse solid fuel suitable for solidification of combustion ash
JP2001342045A (en) Method of manufacturing cement clinker
JP2004337677A (en) Method of producing heavy metal elution suppression material
JP2000034179A (en) Production of water-holding granular sintered compact
JP2001321743A (en) Method for using incineration residue as recycling resources
JP7372215B2 (en) Composition for fired body and method for producing fired body using the same
JP2001287976A (en) Artificial aggregate and method of producing the same
JP2003095713A (en) Method of producing inorganic compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209