JP2003012355A - Method for producing artificial lightweight aggregate - Google Patents

Method for producing artificial lightweight aggregate

Info

Publication number
JP2003012355A
JP2003012355A JP2001194426A JP2001194426A JP2003012355A JP 2003012355 A JP2003012355 A JP 2003012355A JP 2001194426 A JP2001194426 A JP 2001194426A JP 2001194426 A JP2001194426 A JP 2001194426A JP 2003012355 A JP2003012355 A JP 2003012355A
Authority
JP
Japan
Prior art keywords
aggregate
weight
ash
fly ash
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001194426A
Other languages
Japanese (ja)
Inventor
Koji Kawamoto
孝次 川本
Yuzo Sakamoto
雄三 坂本
Katsuhiro Tomota
勝博 友田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001194426A priority Critical patent/JP2003012355A/en
Publication of JP2003012355A publication Critical patent/JP2003012355A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1062Halogen free or very low halogen-content materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing at low cost an artificial light- weight aggregate with high strength and stable quality from incineration fly ash containing chlorine compounds and main ash. SOLUTION: This method for producing an artificial lightweight aggregate comprises the steps of adding a caking additive, a compositional adjuster and a reducing agent to incineration fly ash or main ash of municipal waste so that the chemical composition and the content of the chlorine compound become proper levels in the fired aggregate, mixing and crushing, molding the crushed mixture and heat treating the obtained molding in a furnace. This method enables to largely lower the treating cost of incineration fly ash or main ash and investment in the treating facility, and further to contribute greatly to the solution of waste recycling and environmental problem.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみの焼却時
に排ガス中に飛散する飛灰または主灰の資源化に係り、
より詳しくは焼却飛灰または主灰中の有害物を無害化す
ると共に建築、土木用等に使用する骨材の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the recycling of fly ash or main ash scattered in exhaust gas when incinerating municipal waste,
More specifically, the present invention relates to a method for producing harmful aggregates in incinerated fly ash or main ash, as well as a method for producing an aggregate used for construction, civil engineering, and the like.

【0002】[0002]

【従来の技術】本発明者らは、飛灰または主灰の焼成法
により、飛灰または主灰中に含まれる鉛、亜鉛、カドミ
ウム等の重金属類を揮発除去するとともに建築、土木用
等に使用する骨材の製造方法を開発してきた。しかる
に、飛灰または主灰を構成する主要な化学成分であるS
iO、Al、CaO、Feについては骨
材化に最適な範囲が存在し、これ以外の主要成分である
アルカリ金属類のアルカリ成分は、主としてNaCl、
KCl等の塩化物として飛灰または主灰中に含まれ、こ
れらはごみ焼却炉の形式や排ガスの処理方法によって飛
灰または主灰中の含有量が大きく異なることを知見し
た。また、原料中の塩化アルカリ量が骨材特性に及ぼす
影響については系統的な把握が行われていなかった。そ
のため原料である飛灰または主灰中の塩素または塩化ア
ルカリ量の変動による骨材物性への影響を把握して所定
の品質を有する骨材を焼成する技術の開発が望まれてい
た。
The present inventors volatilize and remove heavy metals such as lead, zinc, and cadmium contained in fly ash or main ash by a method of burning fly ash or main ash, and for building, civil engineering, etc. We have developed methods for manufacturing the aggregates used. However, S, which is the main chemical constituent of fly ash or main ash
iO 2, Al 2 O 3, CaO, there is an optimum range for aggregate reduction for Fe 2 O 3, the alkali component of the alkali metals is the main component other than this, mainly NaCl,
It has been found that chlorides such as KCl are contained in fly ash or main ash, and the content of these in fly ash or main ash varies greatly depending on the type of refuse incinerator and the method of treating exhaust gas. Also, the effect of the amount of alkali chloride in the raw material on the aggregate properties has not been systematically understood. Therefore, it has been desired to develop a technique for firing an aggregate having a predetermined quality by grasping the influence on the physical properties of the aggregate due to the fluctuation of the amount of chlorine or alkali chloride in the fly ash or the main ash as a raw material.

【0003】[0003]

【発明が解決しようする課題】本発明は、このような現
状にかんがみてなされたものであり、塩素化合物が発生
源ごとに大きく変動する焼却飛灰または主灰でも、少量
でかつ入手しやすい添加剤を使用して高強度で安定した
品質の骨材を製造することができる人工骨材の製造方法
を提案しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation as described above, and it is a small amount and easily available addition of incineration fly ash or main ash in which chlorine compounds vary greatly depending on the source. It is intended to propose a method for producing an artificial aggregate, which can produce a high-strength and stable quality aggregate by using the agent.

【0004】[0004]

【課題を解決するための手段】本発明者らは、都市ごみ
の焼却飛灰または主灰と組成調合材と還元剤を用いて、
焼成した骨材中のSiOが30〜75重量%、Al
が30重量%以下、CaOが35重量%以下、Fe
が2〜15重量%、(NaO+KO)が6〜
15重量%となり、かつ原料中の塩素の含有率が特定の
範囲内となるように配合して、ロータリーキルンで焼成
すると土木・建築用骨材として使用できる強度と比重特
性と化学的品質を持ち、吸水率の少ない高品質な骨材を
焼成できることを見出した。
Means for Solving the Problems The inventors of the present invention have used incineration fly ash or main ash of municipal solid waste, a composition compounding agent and a reducing agent,
SiO 2 in the fired aggregate is 30 to 75% by weight, Al 2
O 3 is 30 wt% or less, CaO is 35 wt% or less, Fe
2 O 3 is 2 to 15 wt%, (Na 2 O + K 2 O) is 6 to
It has a strength, a specific gravity characteristic and a chemical quality that can be used as an aggregate for civil engineering and construction when it is blended so that the content of chlorine in the raw material is within a specific range and it is fired in a rotary kiln. It has been found that high quality aggregate with low water absorption can be fired.

【0005】すなわち、本発明に係る人工骨材の製造方
法は、都市ごみの焼却飛灰または主灰に粘結材と組成調
合材と還元剤を添加して焼成した骨材の化学組成が、S
iO が30〜75重量%、Alが30重量%以
下、CaOが10〜35重量%、Feが2〜15
重量%、(NaO+KO)が6〜15重量%とな
り、かつ原料中の塩素化合物の含有率が塩素量換算で8
〜15重量%以下となるように配合して得られた混合物
を平均粒径が15μm以下になるように混合・粉砕し、
該粉砕物に水を加えて成形して得た成形体を、要すれば
乾燥した後、該成形体を焼成炉で加熱処理することを特
徴とするものである。この人工骨材の製造方法における
粘結材としては、ベントナイトまたは糖蜜またはパルプ
廃液の少なくとも1種を用いることができる。また、同
じく組成調合材の鉄源としては、スタイトまたはへマタ
イト等の2価または3価の鉄酸化物を用いることがで
き、同じく還元剤としては、石炭、コークス等の炭素化
合物の少なくとも一種を用いて原料中に炭素量換算で
0.5〜9重量%を添加することが好ましい。さらに、
組成調合材のシリカ源として珪砂、陶石、長石、カオリ
ナイト、木節粘度、焼却主灰、石炭灰、下水道焼却汚泥
の少なくとも一種を用いることができる。なお、本発明
で用いる成形方法としては、所定の径になるように成形
できるものであれば支障はないが、パンペレタイザーや
押し出し成型機を用いると簡便である。また、焼成方法
としては、有害物の揮発促進や連続操業、品質の均一性
を考慮すればロータリーキルンを用いるのが好ましい。
That is, a method of manufacturing an artificial aggregate according to the present invention
The law is that the incineration fly ash of municipal solid waste or the main ash is mixed with a binder and its composition is adjusted.
The chemical composition of the aggregate obtained by adding the mixture and the reducing agent is S
iO Two30-75% by weight, AlTwoOThreeIs less than 30% by weight
Below, CaO is 10 to 35% by weight, FeTwoOThreeIs 2 to 15
% By weight, (NaTwoO + KTwoO) is 6 to 15% by weight
And the content rate of chlorine compounds in the raw material is 8 in terms of chlorine amount.
~ 15% by weight or less of the mixture obtained by blending
Are mixed and pulverized so that the average particle size is 15 μm or less,
If necessary, a molded body obtained by molding water by adding water to the pulverized product is used.
After drying, the molded product is heat treated in a firing furnace.
It is a characteristic. In the manufacturing method of this artificial aggregate
As a binder, bentonite, molasses, or pulp
At least one kind of waste liquid can be used. Also, the same
As the iron source for the composition composition of the urine, steat or hematata
It is possible to use divalent or trivalent iron oxides such as iron
Similarly, as a reducing agent, carbonization of coal, coke, etc.
At least one compound is used to convert the amount of carbon in the raw material
It is preferable to add 0.5 to 9% by weight. further,
Quartz sand, porcelain stone, feldspar, kaori as the silica source of the composition compounding material
Knight, Kibushi viscosity, incinerator ash, coal ash, sewer incinerator sludge
At least one of the above can be used. The present invention
The molding method used in
As long as you can do it, there is no problem, but a pan pelletizer or
It is convenient to use an extrusion molding machine. Also, the firing method
As for the promotion of volatilization of harmful substances, continuous operation, and uniformity of quality
Considering the above, it is preferable to use a rotary kiln.

【0006】[0006]

【発明の実施の形態】本発明において、焼成した骨材中
のSiOを30〜75重量%と限定したのは、30重
量%未満では焼成した骨材中のガラス相生成量が不足し
て高強度な骨材が得られず骨材の耐久性が低下し、他
方、75重量%を超えると化学成分調整用の原料が処理
対象の焼却灰の数重量倍となることと、焼成温度が12
50℃を超え燃料コストが高くなり、焼成設備の高耐熱
化が必要でメンテナンスコストも増加するため実用的で
ないためである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the SiO 2 content in the calcined aggregate is limited to 30 to 75% by weight because the amount of glass phase produced in the calcined aggregate is insufficient when the content is less than 30% by weight. A high-strength aggregate cannot be obtained and the durability of the aggregate is reduced. On the other hand, when it exceeds 75% by weight, the raw material for chemical composition adjustment is several times the weight of the incineration ash to be treated, and the firing temperature is 12
This is because the fuel cost exceeds 50 ° C., the heat resistance of the firing equipment needs to be high, and the maintenance cost also increases, which is not practical.

【0007】骨材中のAlを30重量%以下と限
定したのは、30重量%を超えるとやはり焼成温度が1
250℃以上となり経済的でないからである。
Al 2 O 3 in the aggregate is limited to 30% by weight or less because when the amount exceeds 30% by weight, the firing temperature is 1%.
This is because it is not economical because it becomes 250 ° C or higher.

【0008】骨材中のCaOを10〜35重量%に限定
したのは、CaO成分は少ないほど好ましいが、10重
量%未満ではアルカリ金属量に見合うCaO量が付則し
てアルカリ金属過多となって加熱時のマトリックスの粘
性が著しく低下して骨材の融着を促進するため好ましく
なく、他方、35%を超えるとアルカリ金属に対してC
aOが多くなり過ぎて焼成温度が1250℃以上とな
り、エネルギーコストが過大となり経済性に問題がある
ためである。
The amount of CaO in the aggregate is limited to 10 to 35% by weight, and it is preferable that the amount of CaO is small. However, if it is less than 10% by weight, the amount of CaO commensurate with the amount of alkali metal is additionally accompanied by excess alkali metal. It is not preferable because the viscosity of the matrix during heating is remarkably lowered to promote the fusion of the aggregate, and on the other hand, when it exceeds 35%, it is C against alkali metal.
This is because the amount of aO becomes too large, the firing temperature becomes 1250 ° C. or higher, the energy cost becomes excessive, and there is a problem in economic efficiency.

【0009】骨材中のFeは、骨材内部で還元し
て主としてFeOとして存在させると溶剤としてマトリ
ックスの液相焼結に寄与し、また骨材表面では焼成用燃
焼ガス中の過剰空気による酸素で酸化してFe
形で存在させると骨材内部より液相の生成に高温が必要
となり、ロータリーキルン等の焼成炉内での骨材相互や
炉内壁ヘの融着を防止しながら骨材内部の焼結を促進し
て骨材全体の強度を向上する効果があるが、2重量%未
満ではこの効果が不十分で高強度な骨材を焼成できず、
他方、15重量%を超えると液相生成からスラグ化する
までの温度範囲が極めて狭くなり均質で高強度な骨材の
焼成が困難となるため、骨材中のFeは、2〜1
5重量%と限定した。
Fe 2 O 3 in the aggregate contributes to the liquid phase sintering of the matrix as a solvent when it is reduced inside the aggregate and mainly exists as FeO, and on the surface of the aggregate, it is excessive in the combustion gas for firing. When oxidized with oxygen from air and made to exist in the form of Fe 2 O 3 , a high temperature is required to generate a liquid phase from the inside of the aggregate, and the fusion between the aggregates in the firing furnace such as a rotary kiln and the inner wall of the furnace is caused. While having the effect of promoting the sintering inside the aggregate while improving the strength of the aggregate as a whole, if it is less than 2% by weight, this effect is insufficient and high-strength aggregate cannot be fired.
On the other hand, if it exceeds 15% by weight, the temperature range from liquid phase formation to slag formation becomes extremely narrow, and it becomes difficult to fire a homogeneous and high-strength aggregate, so that Fe 2 O 3 in the aggregate is 2 to 1
It was limited to 5% by weight.

【0010】飛灰または主灰中では塩素化合物の大半が
NaClまたはKCl等のアルカリ金属化合物となって
いる。原料中の塩素量が1重量%未満となるとアルカリ
金属量が(NaO+KO)として2重量%未満とな
り、焼成時の液相生成以下意思温度が上昇して経済性の
面で好ましくない。塩素量1〜10重量%では塩素と化
合しているアルカリ金属が溶剤成分として有効に働き、
750℃以上で液相の生成に寄与してい1000〜12
50℃で高強度を有する骨材の焼成に寄与する。この場
合のアルカリ金属量は(NaO+KO)として2〜
15重量%である。なおアルカリ金属は焼成温度100
0〜1250℃で燃焼ガス中に揮発して未燃焼原料の1
0〜60重量%が失われる。塩素量が15重量%より多
くなると骨材原料加熱時に塩化アルカリの溶融物が原料
マトリックスを満たして骨材全体の強度を低下させるこ
とと、焼成後に骨材を水中に浸漬すると多量の塩化アル
カリが水に溶出して乾燥後の骨材強度を著しく低下させ
るため好ましくない。また原料中の塩素量が1〜5重量
%では固化体中のアルカリ金属量は(NaO+K
O)として2〜6重量%となり、塩素と化合している
アルカリ金属のほぼ全量が骨材焼成時の溶剤として働
き、比較的低温度で高強度な骨材が焼成できる点で好ま
しい。したがって、(NaO+KO)は2〜15重
量%としたのである。
Most of the chlorine compounds in fly ash or main ash
Become an alkali metal compound such as NaCl or KCl
There is. Alkali when the chlorine content in the raw material is less than 1% by weight
If the amount of metal is (NaTwoO + KTwoO) as less than 2% by weight
Therefore, the intention temperature rises below the liquid phase formation during firing,
It is not preferable in terms of aspect. Chlorine turns into chlorine when chlorine content is 1 to 10% by weight
The combined alkali metal works effectively as a solvent component,
Contributes to the formation of liquid phase at 750 ° C or higher 1000-12
It contributes to the firing of aggregate having high strength at 50 ° C. This place
The total alkali metal content is (NaTwoO + KTwo2) as O)
It is 15% by weight. The alkali metal has a firing temperature of 100.
Volatile in combustion gas at 0 ~ 1250 ℃, 1 of unburned raw material
0-60% by weight is lost. Chlorine content is higher than 15% by weight
When the aggregate raw material is heated, the molten material of alkali chloride is the raw material
To fill the matrix and reduce the strength of the aggregate.
When soaking the aggregate in water after firing, a large amount of
Potassium elutes in water and significantly reduces the aggregate strength after drying.
Therefore, it is not preferable. The amount of chlorine in the raw material is 1 to 5 weight
%, The amount of alkali metal in the solidified body is (NaTwoO + K
Two2) to 6% by weight as O) and is combined with chlorine
Almost all of the alkali metal acts as a solvent when firing the aggregate.
It is preferable because it can fire high-strength aggregate at a relatively low temperature.
Good Therefore, (NaTwoO + KTwoO) is 2 to 15 layers
The amount was set to%.

【0011】石炭、コークス等の還元剤はこの鉄の酸化
状態を制御するために添加するが、該還元剤は鉄の還元
状態により添加量を調整し、その添加量の範囲は0.5
〜9重量%とするのが好ましい。
A reducing agent such as coal or coke is added in order to control the oxidation state of iron. The reducing agent is added in an amount adjusted according to the reduction state of iron, and the addition amount is in the range of 0.5.
It is preferably about 9% by weight.

【0012】飛灰中のシリカは適正組成以下の含有率で
ある場合が多い。この場合は珪砂、陶石、長石、カオリ
ナイト、木節粘土、焼却主灰、石炭灰、下水道焼却汚泥
等のシリカまたはシリカとアルミナを含む鉱物を加えて
成分調整を行う。また、飛灰中の塩素は骨材化適正範囲
より多い場合が多い。この場合は上記シリカまたはアル
ミナを含む鉱物を加えて適正範囲に調整する。
In many cases, the content of silica in fly ash is less than the proper composition. In this case, silica sand, porcelain stone, feldspar, kaolinite, kibushi clay, incineration main ash, coal ash, sewage incineration sludge, or other silica or a mineral containing silica and alumina is added to adjust the composition. In addition, chlorine in fly ash is often higher than the proper range for forming aggregate. In this case, the above-mentioned mineral containing silica or alumina is added to adjust to an appropriate range.

【0013】焼却飛灰または主灰の平均粒径は数μm程
度であるが、焼却飛灰または主灰と成分調整用原料は平
均粒径が大きいために原料を調整してさらに粘結材とし
てのベントナイトを加えてから、振動ミル等の粉砕機で
粉砕しながら混合して平均粒径を15μm以下とする。
これは平均粒径が15μmを超えると、骨材強度が低下
するため好ましくないからである。
The average particle size of incinerated fly ash or main ash is about several μm. However, since the incinerated fly ash or main ash and the raw material for component adjustment have large average particle diameters, the raw materials are adjusted and further used as a binder. The bentonite is added, and then mixed while being crushed by a crusher such as a vibration mill to have an average particle size of 15 μm or less.
This is because if the average particle size exceeds 15 μm, the aggregate strength decreases, which is not preferable.

【0014】混合・粉砕された原料は、次の成形工程に
おいて水を加えて転動造粒かまたは押し出し造粒により
直径5〜15mmのペレットに成形し、ロータリーキル
ンで焼成する。ロータリーキルンは設備が簡易で加熱用
燃焼ガス気流と原料が接触しやすく、高温での滞留時間
も数十分と長いことから重金属類のガス中への揮発も促
進し易い。更に焼成した骨材の品質にばらつきが少な
く、重金属類の溶出を少なくして無害化する場合の信頼
性が高い点で骨材を焼成する設備として好ましい。
In the next molding step, the mixed and pulverized raw materials are added with water to form pellets having a diameter of 5 to 15 mm by tumbling granulation or extrusion granulation, followed by firing in a rotary kiln. Since the rotary kiln has a simple facility, the combustion gas flow for heating and the raw material are likely to come into contact with each other, and the residence time at a high temperature is long, which is several tens of minutes, so that volatilization of heavy metals into the gas is facilitated. Further, it is preferable as a facility for firing the aggregate because there is little variation in the quality of the fired aggregate and the reliability is high when the heavy metal is less eluted and is rendered harmless.

【0015】ロータリーキルンで焼成する場合、キルン
内を原料であるペレットが転動して移動する際にすり減
って粉化する。粉化量が多いと焼成部でペレットに付着
してペレット相互やキルン内壁への付着が多くなり焼成
操作が困難になることと、実収率の低下や煤塵の捕集設
備への負荷を増加させるため好ましくない。かかる対策
として、本発明ではキルン内での粉化を低減するため粘
結材として成分調整用鉱物を加えた原料にべントナイ
ト、パルプ廃液や糖蜜等の粘結材を加える。
In the case of firing in a rotary kiln, when the raw material pellets roll and move in the kiln, they are worn away and pulverized. If the amount of pulverization is large, it will adhere to the pellets in the calcination section, and the adhesion to the pellets and to the inner wall of the kiln will increase, making the calcination operation difficult and reducing the actual yield and increasing the load on the dust collection facility. Therefore, it is not preferable. As a measure against this, in the present invention, a binder such as bentonite, pulp waste liquor or molasses is added to a raw material containing a component adjusting mineral as a binder in order to reduce pulverization in the kiln.

【0016】[0016]

【実施例】実施例1−1〜1−3 実験に使用した飛灰は塩素濃度を変えるため、飛灰その
ものと水洗濾過乾燥した飛灰(以下、水洗飛灰と呼ぶ)
を使用した。また塩素量の調整には塩化ナトリウムを使
用した。実験に使用した焼却飛灰または主灰、水洗飛
灰、珪砂、べントナイト、へマタイト、コークス、塩化
ナトリウムの化学組成を表1に示した。これらの原料を
表2に示す配合で計量採取して振動ミルで粉砕混合し
た。粉砕した原料の粒度分布はレーザー回折式粒度分布
計で測定した。得られた粉砕原料に水を加えながら押し
出し成形機で直径約10mmの円柱状に造粒し乾燥した
後、ロータリーキルン(煉瓦内径920〜700mm×
長さ12000mm)に供給し、表4に示す焼成温度に
て焼成した。焼成後の骨材の化学組成と調合原料中の塩
素濃度を表3に示し、また原料の平均粒径を表4に示
す。焼成した骨材の比重はJIS A 1110に基づ
いて測定し、骨材強度は円柱状骨材の円柱軸に直角方向
から加圧して破壊する時の加重を各試料毎に20点測定
してその平均値を圧潰強度として表4に示した。表4に
示す結果より明らかなごとく、焼成温度1050〜10
70℃で圧潰強度が880〜1270Nの高強度な骨材
が得られた。
[Examples] Examples 1-1 to 1-3 Fly ash used in the experiment changes the chlorine concentration, so the fly ash itself and the fly ash washed with water, filtered and dried (hereinafter referred to as "washed fly ash") are used.
It was used. In addition, sodium chloride was used to adjust the amount of chlorine. Table 1 shows the chemical composition of incineration fly ash or main ash, water-washed fly ash, silica sand, bentonite, hematite, coke, and sodium chloride used in the experiment. These raw materials were weighed out in the formulations shown in Table 2, pulverized and mixed by a vibration mill. The particle size distribution of the pulverized raw material was measured by a laser diffraction type particle size distribution meter. While adding water to the obtained pulverized raw material, it was granulated into a cylindrical shape having a diameter of about 10 mm by an extrusion molding machine and dried, and then a rotary kiln (brick inner diameter 920 to 700 mm ×
The length was 12000 mm and the material was fired at the firing temperature shown in Table 4. The chemical composition of the aggregate after firing and the chlorine concentration in the prepared raw material are shown in Table 3, and the average particle size of the raw material is shown in Table 4. The specific gravity of the calcined aggregate was measured based on JIS A 1110, and the aggregate strength was measured at 20 points for each sample by applying a load when the aggregate was pressed and broken from the direction perpendicular to the cylinder axis. The average value is shown in Table 4 as the crush strength. As is clear from the results shown in Table 4, the firing temperature is 1050 to 10
A high-strength aggregate having a crush strength of 880 to 1270 N at 70 ° C. was obtained.

【0017】比較例2−1 SiOが30〜75重量%、Alが30重量%
未満、CaOが35重量%未満、Feが2〜15
重量%であるが塩化ナトリウムを使用して原料中の塩素
濃度が10重量%を超えるように原料を配合した以外は
実施例と同じ方法で焼成したが、骨材の強度が十分発現
されなかった。
Comparative Example 2-1 30 to 75% by weight of SiO 2 and 30% by weight of Al 2 O 3
Less, CaO less than 35 wt%, Fe 2 O 3 2-15
Calcination was performed in the same manner as in Example except that the raw material was blended so that the chlorine concentration in the raw material was more than 10 wt% using sodium chloride, but the strength of the aggregate was not sufficiently expressed. .

【0018】比較例2−2〜2−7 比較例2−2は骨材中のSiOが30重量%未満、比
較例2−3は骨材中のSiOが75重量%より多く、
比較例2−4は骨材中のAlが30重量%より多
く、比較例2−5は骨材中のCaOが35重量%より多
く、比較例2−6は骨材中のFeが2重量%未満
であり、比較例2−7は骨材中のFeが15重量
%より多くなるように原料を配合した以外は実施例と同
じ方法で焼成した骨材の強度が十分発現されなかった。
Comparative Examples 2-2 to 2-7 Comparative Example 2-2 has less than 30% by weight of SiO 2 in the aggregate, Comparative Example 2-3 has more than 75% by weight of SiO 2 in the aggregate,
Comparative Example 2-4 has more than 30 wt% of Al 2 O 3 in the aggregate, Comparative Example 2-5 has more than 35 wt% of CaO in the aggregate, and Comparative Example 2-6 has Fe in the aggregate. 2 O 3 is less than 2% by weight, and in Comparative Example 2-7, the aggregate was fired by the same method as in Example except that the raw materials were blended so that Fe 2 O 3 in the aggregate was more than 15% by weight. Was not sufficiently expressed.

【0019】比較例2−8 粉砕した原料の平均粒度が15μm以上とした以外は実
施例1−3と同じ方法で焼成した骨材の強度発現が十分
ではなかった。
Comparative Example 2-8 The strength development of the aggregate fired by the same method as in Example 1-3 was not sufficient, except that the average particle size of the crushed raw material was 15 μm or more.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】実施例1−4〜1−7 実験には塩素濃度の高い焼却飛灰を入手して使用した。
実験に使用した焼却飛灰、水洗飛灰、珪砂、べントナイ
ト、へマタイト、コークス、塩化ナトリウムの化学組成
を表5に示した。これらの原料を表6に示す配合で計量
採取して振動ミルで粉砕混合した。粉砕した原料の粒度
分布はレーザー回折式粒度分布計で測定した。得られた
粉砕原料に水を加えながら押し出し成形機で直径約10
mmの円柱状に造粒し乾燥した後、ロータリーキルン
(煉瓦内径920〜700mm×長さ12000mm)
に供給し、表8に示す焼成温度にて焼成した。焼成後の
骨材の化学組成と調合原料中の塩素濃度を表7に示し、
また原料の平均粒径を表8に示す。焼成した骨材の比重
はJIS A 1110に基づいて測定し、骨材強度は
円柱状骨材の円柱軸に直角方向から加圧して破壊する時
の加重を各試料毎に20点測定してその平均値を圧潰強
度として表8に示した。表8に示す結果より明らかなご
とく、焼成温度1110〜1210℃で圧潰強度が87
〜133Nの高強度な骨材が得られた。
Examples 1-4 to 1-7 Incinerator fly ash having a high chlorine concentration was obtained and used in the experiment.
Table 5 shows the chemical composition of incineration fly ash, water-washed fly ash, silica sand, bentonite, hematite, coke, and sodium chloride used in the experiment. These raw materials were weighed out in the formulations shown in Table 6 and pulverized and mixed by a vibration mill. The particle size distribution of the pulverized raw material was measured by a laser diffraction type particle size distribution meter. While adding water to the obtained crushed raw material, a diameter of about 10 is obtained by an extrusion molding machine.
After granulating into a cylindrical column of mm and drying, a rotary kiln (brick inner diameter 920 to 700 mm x length 12000 mm)
And was fired at the firing temperature shown in Table 8. Table 7 shows the chemical composition of the aggregate after firing and the chlorine concentration in the prepared raw material.
Table 8 shows the average particle size of the raw materials. The specific gravity of the calcined aggregate was measured based on JIS A 1110, and the aggregate strength was measured at 20 points for each sample by applying a load when the aggregate was pressed and broken from the direction perpendicular to the cylinder axis. The average value is shown in Table 8 as the crush strength. As is clear from the results shown in Table 8, the crushing strength is 87 at the firing temperature of 1110-1210 ° C.
A high-strength aggregate of ~ 133N was obtained.

【0025】比較例2−9、2−10 SiOが30〜75重量%、Alが30重量%
以下、CaOが10〜35重量%、Feが2〜1
5重量%であるが原料中の塩素濃度が8重量%未満と1
5%より多くなるように原料を配合した以外は実施例と
同じ方法で焼成したが、骨材の強度は十分発現されなか
った。
Comparative Examples 2-9, 2-10 30 to 75 wt% of SiO 2 and 30 wt% of Al 2 O 3
Below, CaO is 10 to 35% by weight, and Fe 2 O 3 is 2-1.
5% by weight, but the chlorine concentration in the raw material is less than 8% by weight and 1
Firing was performed in the same manner as in the example except that the raw materials were blended so as to be more than 5%, but the strength of the aggregate was not sufficiently expressed.

【0026】比較例2−11、2−12 原料中の塩素濃度が8〜15重量%となるように原料を
配合して、焼成した骨材中のSiOが30〜75重量
%、Alが30重量%以下、Feが2〜1
5重量%であり、CaOが10重量%未満か35重量%
以上である以外は実施例と同じ方法で焼成したが、骨材
の強度は十分発現されなかった。
Comparative Examples 2-11 and 2-12 The raw materials were mixed so that the chlorine concentration in the raw materials was 8 to 15% by weight, and SiO 2 in the fired aggregate was 30 to 75% by weight and Al 2 O 3 is 30 wt% or less, Fe 2 O 3 is 2-1
5% by weight, CaO less than 10% by weight or 35% by weight
The firing was performed in the same manner as in the examples except for the above, but the strength of the aggregate was not sufficiently expressed.

【0027】比較例2−13〜2−17 比較例2−13は骨材中のSiOが30重量%未満、
比較例2−14は骨材中のSiOが75重量%より多
く、比較例2−15は骨材中のAlが30重量%
より多く、比較例2−16は骨材中のFeが2重
量%未満であり、比較例2−17は骨材中のFe
が15重量%より多くなるように原料を配合した以外は
実施例と同じ方法で焼成したが、骨材の強度は十分発現
されなかった。
Comparative Examples 2-13 to 2-17 In Comparative Example 2-13, SiO 2 in the aggregate is less than 30% by weight,
In Comparative Example 2-14, SiO 2 in the aggregate is more than 75% by weight, and in Comparative Example 2-15, Al 2 O 3 in the aggregate is 30% by weight.
More, Comparative Examples 2-16 are Fe 2 O 3 in the aggregate is less than 2 wt%, Comparative Example 2-17 Fe 2 O 3 in the aggregate
Was fired in the same manner as in Example except that the raw materials were blended so that the content was more than 15% by weight, but the strength of the aggregate was not sufficiently expressed.

【0028】比較例2−18 粉砕した原料の平均粒度が15μm以上とした以外は実
施例1−5と同じ方法で焼成したが、骨材の強度発現は
十分ではなかった。
Comparative Example 2-18 Firing was carried out in the same manner as in Example 1-5 except that the average particle size of the crushed raw material was set to 15 μm or more, but the strength development of the aggregate was not sufficient.

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【表7】 [Table 7]

【0032】[0032]

【表8】 [Table 8]

【0033】実施例1−8〜1−10 実験に使用した飛灰はアルカリ金属と塩素量を変えるた
め、飛灰そのものと水洗濾過乾燥した飛灰(以下、水洗
飛灰という)を使用した。またアルカリ金属と塩素量の
調整には塩化ナトリウムを使用した。実験に使用した焼
却飛灰、水洗飛灰、珪砂、べントナイト、へマタイト、
コークス、塩化ナトリウムの化学組成を表9に示した。
これらの原料を表10に示す配合で計量採取して振動ミ
ルで粉砕混合した。粉砕した原料の粒度分布はレーザー
回折式粒度分布計で測定した。得られた粉砕原料に水を
加えながら押し出し成形機で直径約10mmの円柱状に
造粒し乾燥した後、ロータリーキルン(煉瓦内径920
〜700mm×長さ12000mm)に供給し、表12
に示す焼成温度にて焼成した。焼成後の骨材の化学組成
と調合原料中の塩素濃度を表11に示し、また原料の平
均粒径を表12に示した。焼成した骨材の比重はJIS
A 1110に基づいて測定し、骨材強度は円柱状骨
材の円柱軸に直角方向から加圧して破壊する時の荷重を
各試料毎に20点測定してその平均値を圧潰強度として
表12に示した。表12の結果より明らかなごとく、焼
成温度1050〜1070℃で圧潰強度が88〜127
Nの高強度な骨材が得られた。
Examples 1-8 to 1-10 In the fly ash used in the experiment, the fly ash itself and the fly ash which was washed with water, filtered and dried (hereinafter referred to as the water washed fly ash) were used in order to change the amounts of alkali metal and chlorine. In addition, sodium chloride was used to adjust the amount of alkali metal and chlorine. The incineration fly ash used in the experiment, the wash fly ash, silica sand, bentonite, hematite,
Table 9 shows the chemical composition of coke and sodium chloride.
These raw materials were weighed out in the formulations shown in Table 10 and pulverized and mixed by a vibration mill. The particle size distribution of the pulverized raw material was measured by a laser diffraction type particle size distribution meter. While adding water to the obtained pulverized raw material, it was granulated into a columnar shape having a diameter of about 10 mm by an extrusion molding machine and dried, and then the rotary kiln (brick inner diameter 920
Up to 700 mm x length 12000 mm), Table 12
It was fired at the firing temperature shown in. The chemical composition of the aggregate after firing and the chlorine concentration in the prepared raw material are shown in Table 11, and the average particle size of the raw material is shown in Table 12. The specific gravity of the fired aggregate is JIS
The aggregate strength was measured based on A 1110, and the load at the time of breaking by pressurizing from a direction perpendicular to the cylindrical axis of the cylindrical aggregate was measured at 20 points for each sample, and the average value was used as the crush strength. It was shown to. As is clear from the results in Table 12, the crushing strength is 88 to 127 at a firing temperature of 1050 to 1070 ° C.
A high-strength N aggregate was obtained.

【0034】比較例2−19 SiOが30〜75重量%、Alが30重量%
未満、CaOが35重量%未満、Feが2〜15
重量%であるが塩化ナトリウムを使用して原料中の塩素
濃度が10重量%未満を超えるように原料を配合した以
外は、実施例1−8〜1−10と同じ方法で焼成した
が、骨材の強度は十分発現されなかった。
Comparative Example 2-19 30 to 75% by weight of SiO 2 and 30% by weight of Al 2 O 3
Less, CaO less than 35 wt%, Fe 2 O 3 2-15
It was burned in the same manner as in Examples 1-8 to 1-10, except that the raw material was blended so that the chlorine concentration in the raw material was less than 10 wt% using sodium chloride, although the amount was wt%. The strength of the material was not sufficiently expressed.

【0035】比較例2−20〜2−25 比較例2−20は骨材中のSiOが30重量%未満、
比較例2−21は骨材中のSiOが75重量%より多
く、比較例2−22は骨材中のAlが30重量%
より多く、比較例2−23は骨材中のCaOが35重量
%より多く、比較例2−24は骨材中のFeが2
重量%未満であり、比較例2−25は骨材中のFe
が15重量%より多くなるように原料を配合した以外
は、実施例1−8〜1−10と同じ方法で焼成したが、
骨材の強度は十分発現されなかった。
Comparative Examples 2-20 to 2-25 In Comparative Example 2-20, SiO 2 in the aggregate is less than 30% by weight,
In Comparative Example 2-21, SiO 2 in the aggregate is more than 75% by weight, and in Comparative Example 2-22, Al 2 O 3 in the aggregate is 30% by weight.
More, Comparative Example 2-23 has more than 35 wt% CaO in the aggregate, Comparative Example 2-24 has 2 Fe 2 O 3 in the aggregate.
% By weight, and Comparative Example 2-25 shows Fe 2 O in the aggregate.
Firing was performed in the same manner as in Examples 1-8 to 1-10, except that the raw materials were blended so that 3 was more than 15% by weight.
The strength of the aggregate was not sufficiently expressed.

【0036】比較例2−26 粉砕した原料の平均粒度が15μm以上とした以外は実
施例1−10と同じ方法で焼成したが、骨材の強度発現
は十分ではなかった。
Comparative Example 2-26 Firing was carried out in the same manner as in Example 1-10 except that the ground material had a mean particle size of 15 μm or more, but the aggregate did not exhibit sufficient strength.

【0037】[0037]

【表9】 [Table 9]

【0038】[0038]

【表10】 [Table 10]

【0039】[0039]

【表11】 [Table 11]

【0040】[0040]

【表12】 [Table 12]

【0041】実施例1−11〜1−14 実験には特に塩素濃度の高い焼却飛灰を入手して使用し
た。実験に使用した焼却飛灰、水洗飛灰、珪砂、べント
ナイト、へマタイト、コークス、塩化ナトリウムの化学
組成を表13に示した。これらの原料を表14に示す配
合で計量採取して振動ミルで粉砕混合した。粉砕した原
料の粒度分布はレーザー回折式粒度分布計で測定した。
得られた粉砕原料に水を加えながら押し出し成形機で直
径約10mmの円柱状に造粒し乾燥した後、ロータリー
キルン(煉瓦内径920〜700mm×長さ12000
mm)に供給し、表16に示す焼成温度で焼成した。焼
成後の骨材の化学組成と調合原料中の塩素濃度を表15
に示し、また原料の平均粒径を表16に示した。焼成し
た骨材の比重はJIS A 1110に基づいて測定
し、骨材強度は円柱状骨材の円柱軸に直角方向から加圧
して破壊する時の加重を各試料毎に20点測定してその
平均値を圧潰強度として表16に示した。表16に示す
結果より明らかなごとく、焼成温度1110〜1210
℃で圧潰強度が87N〜133Nの高強度な骨材が得ら
れた。
Examples 1-11 to 1-14 Incinerator fly ash having a particularly high chlorine concentration was obtained and used in the experiment. Table 13 shows the chemical composition of incineration fly ash, water-washed fly ash, silica sand, bentonite, hematite, coke, and sodium chloride used in the experiment. These raw materials were weighed out in the formulations shown in Table 14, pulverized and mixed by a vibration mill. The particle size distribution of the pulverized raw material was measured by a laser diffraction type particle size distribution meter.
While adding water to the obtained pulverized raw material, it was granulated into a columnar shape having a diameter of about 10 mm by an extrusion molding machine and dried, and then a rotary kiln (brick inner diameter 920 to 700 mm x length 12000).
mm) and fired at the firing temperature shown in Table 16. Table 15 shows the chemical composition of the aggregate after firing and the chlorine concentration in the prepared raw material.
The average particle size of the raw materials is shown in Table 16. The specific gravity of the calcined aggregate was measured based on JIS A 1110, and the aggregate strength was measured at 20 points for each sample by applying a load when the aggregate was pressed and broken from the direction perpendicular to the cylinder axis. The average value is shown in Table 16 as the crush strength. As is clear from the results shown in Table 16, the firing temperatures 1110 to 1210
A high-strength aggregate having a crush strength of 87 N to 133 N at 0 ° C was obtained.

【0042】比較例2−27、2−28 SiOが30〜75重量%、Alが30重量%
以下、CaOが10〜35重量%、Feが2〜1
5重量%、(NaO+KO)が6〜15重量%であ
るが原料中の塩素濃度が8重量%未満と15%より多く
なるように原料を配合した以外は実施例1−11〜1−
14と同じ方法で焼成したが、骨材の強度は十分発現さ
れなかった。
Comparative Examples 2-27 and 2-28 30 to 75% by weight of SiO 2 and 30% by weight of Al 2 O 3
Below, CaO is 10 to 35% by weight, and Fe 2 O 3 is 2-1.
5% by weight, (Na 2 O + K 2 O) is 6 to 15% by weight, but the chlorine concentration in the raw material was less than 8% by weight, and the raw materials were blended so as to be more than 15%. 1-
It was fired by the same method as No. 14, but the strength of the aggregate was not sufficiently expressed.

【0043】比較例2−29、2−30 原料中の塩素濃度が8〜15重量%となるように原料を
配合して、焼成した骨材中のSiOが30〜75重量
%、Alが30重量%以下、Feが2〜1
5重量%、(NaO+KO)が6〜15重量%であ
るがCaOが10重量%未満か35重量%以上である以
外は実施例1−11〜1−14と同じ方法で焼成した
が、骨材の強度は十分発現されなかった。
Comparative Examples 2-29, 2-30 The raw materials were mixed so that the chlorine concentration in the raw materials was 8 to 15% by weight, and SiO 2 in the fired aggregate was 30 to 75% by weight, and Al 2 O 3 is 30 wt% or less, Fe 2 O 3 is 2-1
5% by weight, (Na 2 O + K 2 O) 6 to 15% by weight, but calcined in the same manner as in Examples 1-11 to 1-14 except that CaO is less than 10% by weight or 35% by weight or more. However, the strength of the aggregate was not sufficiently expressed.

【0044】比較例2−31〜2−35 比較例2−31は骨材中のSiOが30重量%未満、
比較例2−32は骨材中のSiOが75重量%より多
く、比較例2−33は骨材中のAlが30重量%
より多く、比較例2−34は骨材中のFeが2重
量%未満であり、比較例2−35は骨材中のFe
が15重量%より多くなるように原料を配合した以外は
実施例と同じ方法で焼成したが、骨材の強度は十分発現
されなかった。
Comparative Examples 2-31 to 2-35 In Comparative Example 2-31, SiO 2 in the aggregate is less than 30% by weight,
In Comparative Example 2-32, SiO 2 in the aggregate is more than 75% by weight, and in Comparative Example 2-33, Al 2 O 3 in the aggregate is 30% by weight.
More, Comparative Examples 2-34 are Fe 2 O 3 in the aggregate is less than 2 wt%, Comparative Example 2-35 Fe 2 O 3 in the aggregate
Was fired in the same manner as in Example except that the raw materials were blended so that the content was more than 15% by weight, but the strength of the aggregate was not sufficiently expressed.

【0045】比較例2−36 粉砕した原料の平均粒度が15μm以上とした以外は実
施例1−12と同じ方法で焼成したが、骨材の強度発現
は十分ではなかった。
Comparative Example 2-36 Firing was carried out in the same manner as in Example 1-12 except that the average particle size of the crushed raw material was 15 μm or more, but the strength development of the aggregate was not sufficient.

【0046】[0046]

【表13】 [Table 13]

【0047】[0047]

【表14】 [Table 14]

【0048】[0048]

【表15】 [Table 15]

【0049】[0049]

【表16】 [Table 16]

【0050】[0050]

【発明の効果】本発明によれば、焼却炉の構造、運転方
法や飛灰の捕集方法により大きく変動する、多量の塩素
化合物を含む焼却飛灰と主灰を排ガス処理剤として使用
される石灰原料を所定量の範囲に調整することにより少
量の添加剤で焼却飛灰または主灰を高強度を有する骨材
として焼成することができ、これにより焼却飛灰または
主灰の処理効率を著しく高めることにより処理コストや
処理設備投資を大きく軽減することを可能にでき、また
廃棄物の再資源化や環境問題の解消に大いに寄与するも
のである。
INDUSTRIAL APPLICABILITY According to the present invention, incineration fly ash containing a large amount of chlorine compounds and main ash, which largely vary depending on the structure of the incinerator, the operation method and the fly ash collection method, are used as the exhaust gas treating agent. By adjusting the lime raw material within the specified range, it is possible to burn incineration fly ash or main ash as aggregate with high strength with a small amount of additives, which significantly improves the treatment efficiency of incineration fly ash or main ash. By increasing it, it is possible to greatly reduce the treatment cost and treatment equipment investment, and also contribute greatly to the recycling of waste and the elimination of environmental problems.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 35/00 C04B 35/00 V 35/16 35/16 Z (72)発明者 友田 勝博 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社内 Fターム(参考) 4G030 AA03 AA04 AA08 AA27 AA36 AA37 GA11 GA13 GA14 HA01 HA05 HA15 HA25 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C04B 35/00 C04B 35/00 V 35/16 35/16 Z (72) Inventor Katsuhiro Tomoda Ichikawa City, Chiba Prefecture China 3-18-5 Sumitomo Metal Mining Co., Ltd. F-term (reference) 4G030 AA03 AA04 AA08 AA27 AA36 AA37 GA11 GA13 GA14 HA01 HA05 HA15 HA25

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 都市ごみの焼却飛灰または主灰に粘結材
と組成調合材と還元剤を添加して焼成した骨材の化学組
成が、SiOが30〜75重量%、Alが30
重量%以下、CaOが10〜35重量%、Fe
2〜15重量%、(NaO+KO)が6〜15重量
%となり、かつ原料中の塩素化合物の含有率が塩素量換
算で8〜15重量%以下となるように配合して得られた
混合物を平均粒径が15μm以下になるように混合・粉
砕し、該粉砕物に水を加えて成形して得た成形体を、要
すれば乾燥した後、該成形体を焼成炉で加熱処理するこ
とを特徴とする人工骨材の製造方法。
1. The chemical composition of an aggregate obtained by adding a binder, a composition preparation material, and a reducing agent to incineration fly ash or main ash of municipal waste, and having a chemical composition of SiO 2 of 30 to 75% by weight and Al 2 O. 3 is 30
% Or less, CaO is 10 to 35% by weight, Fe 2 O 3 is 2 to 15% by weight, (Na 2 O + K 2 O) is 6 to 15% by weight, and the content of the chlorine compound in the raw material is the amount of chlorine. A molded product obtained by mixing and pulverizing a mixture obtained by blending so as to be 8 to 15% by weight or less so as to have an average particle size of 15 μm or less, and adding water to the pulverized product to form the mixture. Is dried, if necessary, and then the molded body is heat-treated in a firing furnace.
【請求項2】 粘結材としてベントナイトまたは糖蜜ま
たはパルプ廃液の少なくとも1種を用いることを特徴と
する請求項1記載の人工骨材の製造方法。
2. The method for producing an artificial aggregate according to claim 1, wherein at least one of bentonite, molasses, and pulp waste liquid is used as the binder.
【請求項3】 組成調合材の鉄源としてウスタイトまた
はへマタイト等の2価または3価の鉄酸化物を用いるこ
とを特徴とする請求項1または2記載の人工骨材の製造
方法。
3. The method for producing an artificial aggregate according to claim 1, wherein a divalent or trivalent iron oxide such as wustite or hematite is used as an iron source of the composition preparation material.
【請求項4】 還元剤として石炭、コークス等の炭素化
合物の少なくとも一種を用いて原料中に炭素量換算で
0.5〜9重量%を添加することを特徴とする請求項1
乃至3のうちいずれか1項記載の人工骨材の製造方法。
4. The method according to claim 1, wherein at least one carbon compound such as coal and coke is used as a reducing agent, and 0.5 to 9% by weight in terms of carbon amount is added to the raw material.
4. The method for manufacturing an artificial aggregate according to any one of 3 to 3.
【請求項5】 組成調合材のシリカ源として珪砂、陶
石、長石、カオリナイト、木節粘度、焼却主灰、石炭
灰、下水道焼却汚泥の少なくとも一種を用いることを特
徴とする請求項11乃至4のうちいずれか1項記載の人
工骨材の製造方法。
5. The method according to claim 11, wherein at least one of silica sand, porcelain stone, feldspar, kaolinite, wood knot viscosity, incinerated main ash, coal ash, and sewer incineration sludge is used as a silica source of the composition blending material. 4. The method for manufacturing an artificial aggregate according to any one of 4.
【請求項6】 成形体がペレットであり、焼成炉として
ロータリーキルンを用いることを特徴とする請求項1な
いし5のうちいずれか1項記載の人工骨材の製造方法。
6. The method for producing an artificial aggregate according to claim 1, wherein the molded body is a pellet and a rotary kiln is used as a firing furnace.
JP2001194426A 2001-06-27 2001-06-27 Method for producing artificial lightweight aggregate Pending JP2003012355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194426A JP2003012355A (en) 2001-06-27 2001-06-27 Method for producing artificial lightweight aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194426A JP2003012355A (en) 2001-06-27 2001-06-27 Method for producing artificial lightweight aggregate

Publications (1)

Publication Number Publication Date
JP2003012355A true JP2003012355A (en) 2003-01-15

Family

ID=19032566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194426A Pending JP2003012355A (en) 2001-06-27 2001-06-27 Method for producing artificial lightweight aggregate

Country Status (1)

Country Link
JP (1) JP2003012355A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160580A (en) * 2004-12-10 2006-06-22 Taiheiyo Cement Corp Method for producing artificial aggregate
JP2006219348A (en) * 2005-02-10 2006-08-24 Ube Ind Ltd Hydraulic sintered material, cement composition and method of manufacturing hydraulic sintered material
JP2007169141A (en) * 2005-11-22 2007-07-05 Taiheiyo Cement Corp Method for producing burnt products
CN107311687A (en) * 2017-06-16 2017-11-03 河南兴安新型建筑材料有限公司 Light ceramic prepared by a kind of utilization waste and preparation method thereof
CN113683327A (en) * 2021-09-03 2021-11-23 天津水泥工业设计研究院有限公司 High-surface-activity light aggregate and preparation method thereof
CN114034047A (en) * 2021-12-22 2022-02-11 天津壹鸣环境科技股份有限公司 High-chlorine incineration residue chlorine salt and heavy metal synergistic volatilization reduction treatment method
CN115772007A (en) * 2023-01-04 2023-03-10 生物炭建材有限公司 Biochar-based artificial lightweight aggregate with high chloride ion curing rate and preparation method thereof
CN116283225A (en) * 2023-03-27 2023-06-23 朱丹 Method and system for mixed firing of ceramsite by utilizing fly ash and sludge

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160580A (en) * 2004-12-10 2006-06-22 Taiheiyo Cement Corp Method for producing artificial aggregate
JP2006219348A (en) * 2005-02-10 2006-08-24 Ube Ind Ltd Hydraulic sintered material, cement composition and method of manufacturing hydraulic sintered material
JP4688513B2 (en) * 2005-02-10 2011-05-25 宇部興産株式会社 Hydraulic sintered product, cement composition, and method for producing hydraulic sintered product
JP2007169141A (en) * 2005-11-22 2007-07-05 Taiheiyo Cement Corp Method for producing burnt products
CN107311687A (en) * 2017-06-16 2017-11-03 河南兴安新型建筑材料有限公司 Light ceramic prepared by a kind of utilization waste and preparation method thereof
CN113683327A (en) * 2021-09-03 2021-11-23 天津水泥工业设计研究院有限公司 High-surface-activity light aggregate and preparation method thereof
CN114034047A (en) * 2021-12-22 2022-02-11 天津壹鸣环境科技股份有限公司 High-chlorine incineration residue chlorine salt and heavy metal synergistic volatilization reduction treatment method
CN114034047B (en) * 2021-12-22 2024-02-23 天津壹鸣环境科技股份有限公司 Synergistic volatilization reduction treatment method for chlorine salt and heavy metal of high-chlorine incineration residue
CN115772007A (en) * 2023-01-04 2023-03-10 生物炭建材有限公司 Biochar-based artificial lightweight aggregate with high chloride ion curing rate and preparation method thereof
CN115772007B (en) * 2023-01-04 2023-07-25 生物炭建材有限公司 High-chloride-ion-curing-rate charcoal-based artificial lightweight aggregate and preparation method thereof
CN116283225A (en) * 2023-03-27 2023-06-23 朱丹 Method and system for mixed firing of ceramsite by utilizing fly ash and sludge

Similar Documents

Publication Publication Date Title
US7704317B2 (en) Pyroprocessed aggregates comprising IBA and PFA and methods for producing such aggregates
JP5159971B1 (en) Method for removing radioactive cesium and method for producing fired product
JP5896836B2 (en) Method for producing fired product
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
JP2016191716A (en) Radioactive cesium removal method and burned product manufacturing method
JP2003012355A (en) Method for producing artificial lightweight aggregate
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JP6091183B2 (en) Method for removing radioactive cesium and method for producing fired product
JPH08301641A (en) Production of artificial lightweight aggregate
JPH1095648A (en) Production of artificial aggregate
EP3140055B1 (en) A method of disposal and utilisation of dusts from an incineration installation and sludge from flotation enrichment of non-ferrous metal ores containing hazardous substances in the process of light aggregate production for the construction industry
JP2008273749A (en) Artificial aggregate and its manufacturing method
JPH10226547A (en) Production of artificial aggregate
KR20020044899A (en) Composition for lightweight aggregate and method for manufacturing the same
JPH1029841A (en) Production of artificial aggregate
JP7372215B2 (en) Composition for fired body and method for producing fired body using the same
JP2000034179A (en) Production of water-holding granular sintered compact
JP4509269B2 (en) Artificial aggregate and method for producing the same
JP2003095713A (en) Method of producing inorganic compact
KR20030011756A (en) Composition for lightweight aggregate
JP5955653B2 (en) Method for reducing hexavalent chromium elution amount in fired product and method for producing fired product
JP3204104B2 (en) Manufacturing method of artificial lightweight aggregate
JP2023142727A (en) Composition for calcination body and production method of calcination body using the same
JP2004535926A (en) Method for inactivating filter ash and fly ash