JP2001163647A - Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method - Google Patents

Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method

Info

Publication number
JP2001163647A
JP2001163647A JP34862999A JP34862999A JP2001163647A JP 2001163647 A JP2001163647 A JP 2001163647A JP 34862999 A JP34862999 A JP 34862999A JP 34862999 A JP34862999 A JP 34862999A JP 2001163647 A JP2001163647 A JP 2001163647A
Authority
JP
Japan
Prior art keywords
weight
artificial aggregate
aggregate
incineration ash
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34862999A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Shingo Sudo
真悟 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP34862999A priority Critical patent/JP2001163647A/en
Publication of JP2001163647A publication Critical patent/JP2001163647A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1352Fuel ashes, e.g. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1355Incineration residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method for obtaining an artificial aggregate which has absolute dry specific weight of <=2.0, uniaxial compression breaking load of >=20 kgf and water absorption of <=10%, and the artificial aggregate obtained by this method. SOLUTION: In this producing method of the artificial aggregate, a caking agent, a reducing agent, coal ash and, if necessary, a foaming agent are mixed or mixingly pulverized into waste incineration ash in such a manner that a calcium content gets to <=40 wt.% expressed in terms of the oxide, are formed after adding water and the formed body is incinerated after drying as necessary. Therein, the foaming agent is added to the said waste incineration ash, further, the said reducing agent is charcoal material and the said foaming agent is at least one kind of iron oxide and silicon carbide. Furthermore, this artificial aggregate is obtained by the said producing method, has absolute dry specific weight of <=2.0, uniaxial compression breaking load of >=20 kgf and water absorption of <=10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ごみ焼却施設など
から発生するごみ焼却灰を主原料とする土木・建築用の
人工骨材を製造する方法およびこの方法により得られた
人工骨材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an artificial aggregate for civil engineering and construction using waste incineration ash generated from a waste incineration facility or the like as a main material, and an artificial aggregate obtained by this method. It is.

【0002】[0002]

【従来の技術】従来、ごみ焼却施設などから発生するご
み焼却灰には、焼却残渣である主灰と排ガス中に飛散す
る灰を捕集した飛灰とがあり、その殆どが廃棄物として
埋め立て処分されている。そして飛灰には鉛、カドミウ
ム、クロムなどの重金属類が含まれているため、現状で
は溶融固化、セメント固化、キレート処理および酸洗浄
の方法により重金属類の溶出防止処理を施して無害化し
た後に埋め立て処分している。
2. Description of the Related Art Conventionally, incineration ash generated from refuse incineration facilities includes main ash, which is incineration residue, and fly ash which collects ash scattered in exhaust gas. Most of the ash is landfilled as waste. Has been disposed of. And since fly ash contains heavy metals such as lead, cadmium and chromium, at present, it is melt-solidified, cement-solidified, chelated, and acid-washed to prevent leaching of heavy metals and detoxify them. Landfill disposal.

【0003】しかし、溶融固化法は処理コストが高く、
またそれ以外の方法は長期信頼性に欠けるという問題が
あり、加えて多くの自治体が最終処分場の確保と残余年
数の延長化に苦慮しているため、飛灰を廃棄物とせず再
資源として有効利用する技術の開発が待望されている。
However, the melting and solidification method has a high processing cost,
Other methods have the problem of lack of long-term reliability.In addition, many municipalities are struggling to secure final disposal sites and extend the remaining years, so fly ash is not recycled as waste but as recycled. There is a long-awaited need for the development of technologies for effective use.

【0004】かかる方法の1つとして本発明者らは先
に、飛灰を主原料として粘結剤や珪砂、陶石および長石
などの組成制御剤、さらにはへマタイト、炭化珪素など
の発泡剤、コークスなどの還元剤を添加してペレット化
し、これをロータリーキルンで焼成することによって重
金属溶出量の少ない土木・建築用人工骨材の製造方法に
ついて、特開平10−287675号公報により開示し
た。
As one of such methods, the present inventors have previously used fly ash as a main raw material to control the composition of a binder such as a binder, silica sand, pottery stone and feldspar, and a foaming agent such as hematite and silicon carbide. Japanese Patent Application Laid-Open No. Hei 10-287675 discloses a method for producing an artificial aggregate for civil engineering and construction having a small amount of heavy metal elution by pelletizing by adding a reducing agent such as coke or the like and firing the pellet in a rotary kiln.

【0005】この方法によれば、ごみ焼却灰を人工骨材
としで有効利用でき、かつ最終処分場の残余年数の延長
にも貢献できるが、ごみ焼却灰の性状は焼却施設、設
備、燃焼物および運転状況などにより大きく異なるた
め、用途に応じた所望の人工骨材を製造するには添加剤
による組成制御が必要不可欠である。このような観点か
ら、さらに本発明者らは組成制御剤の添加についての技
術を特願平10−360909号に開示したが、より安
価な組成制御剤による製造方法についての詳細な検討が
さらに必要であった。
According to this method, waste incineration ash can be effectively used as artificial aggregate and can contribute to the extension of the remaining years of the final disposal site. In addition, since it greatly varies depending on the operating conditions and the like, it is indispensable to control the composition with additives in order to produce a desired artificial aggregate according to the application. From this point of view, the present inventors further disclosed a technique for adding a composition control agent in Japanese Patent Application No. 10-360909, but a detailed study on a production method using a less expensive composition control agent is further required. Met.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、絶乾
比重が2.0以下で、一軸圧縮破壊荷重が20kgf以
上で、かつ吸水率が10%以下の人工骨材を得るための
製造方法およびこの方法により得られた人工骨材を提供
することを目的とするものである。
Accordingly, the present invention provides a method for producing an artificial aggregate having an absolute dry specific gravity of 2.0 or less, a uniaxial compressive breaking load of 20 kgf or more, and a water absorption of 10% or less. And an artificial aggregate obtained by this method.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記ごみ焼
却灰の有効利用率を高め、絶乾比重が2.0以下で、一
軸圧縮破壊荷重が高く、さらに吸水率が低い人工骨材を
得るための製造方法について説意検討した結果、骨材の
組成制御剤として所定量の石炭灰を加えることによって
上記課題を解決し得ることを見出し本発明を完成するに
至った。
Means for Solving the Problems The present inventors have increased the effective utilization rate of the above incinerated ash, have an absolute dry specific gravity of 2.0 or less, have a high uniaxial compression breaking load, and have a low water absorption rate. As a result of an in-depth study of a production method for obtaining the above, the present inventors have found that the above problem can be solved by adding a predetermined amount of coal ash as a composition control agent for aggregate, and have completed the present invention.

【0008】上記目的を達成するため本発明の第1の実
施態様に係るごみ焼却灰を用いた人工骨材の製造方法
は、ごみ焼却灰に、カルシウム含有量が酸化物換算で4
0重量%以下となるように粘結剤、還元剤および石炭
灰、さらに必要に応じて発泡剤を加えて混合もしくは混
合粉砕し、水を加えて成型し、該成型体を必要に応じて
乾燥した後焼成することを特徴とするものである。また
前記還元剤が炭材であって、前記発泡剤が酸化鉄および
炭化珪素のうち少なくとも1種であることを特徴とする
ものである。
In order to achieve the above object, the method for producing an artificial aggregate using waste incineration ash according to the first embodiment of the present invention is characterized in that the calcium content of the waste incineration ash is 4 in terms of oxide.
A binder, a reducing agent, coal ash and, if necessary, a foaming agent are added and mixed or mixed and pulverized so as to be 0% by weight or less, and water is added to mold, and the molded body is dried if necessary. And then firing. Further, the reducing agent is a carbon material, and the foaming agent is at least one of iron oxide and silicon carbide.

【0009】また本発明の第2の実施態様に係る人工骨
材は、前記第1の実施態様に係る方法よって得られるも
のであり、絶乾比重が2.0以下で、一軸圧縮破壊荷重
が20kgf以上で、また吸水率が10%以下であるこ
とを特徴とするものである。
The artificial aggregate according to the second embodiment of the present invention is obtained by the method according to the first embodiment, and has an absolute dry specific gravity of 2.0 or less and a uniaxial compressive breaking load. It is characterized in that it is 20 kgf or more and the water absorption is 10% or less.

【0010】[0010]

【発明の実施の形態】以下、本発明の詳細およびその作
用についてさらに具体的に説明する。一般の人工骨材の
原料である粘土や頁岩などの主成分は、シリカ、アルミ
ナ、カルシアなどであり、ごみ焼却灰の成分もほぼ同様
の組成からなる。そして人工骨材に機械的強度を持たせ
るためには焼成時にペレット内部を半溶融状態にさせて
ガラス化すればよく、また軽量化するためには内部を溶
融させ、適度な粘性の低下と同時に揮発成分による気泡
を内部に捕捉すればよい。比重制御はこのような発泡状
態の調整によって行うことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention and its operation will be more specifically described below. The main components such as clay and shale, which are the raw materials of general artificial aggregate, are silica, alumina, calcia, and the like, and the incineration ash has almost the same composition. In order to give mechanical strength to the artificial aggregate, the inside of the pellet may be made semi-molten during firing and vitrified, and in order to reduce the weight, the inside is melted, and at the same time the viscosity decreases moderately What is necessary is just to capture the bubble by a volatile component inside. Specific gravity control can be performed by adjusting such a foaming state.

【0011】しかしながら、ごみ焼却施設などから発生
するごみ焼却灰は、焼却施設、燃焼物および運転状態な
どによって化学的・物理的性質が異なり、一般の人工骨
材の原料である天然鉱物と比較してシリカやアルミナな
どの含有量が低いため、ペレット内部を半溶融状態にし
てガラス化し、機械的強度を持たせることが困難であ
る。
However, incineration ash generated from refuse incineration facilities and the like has different chemical and physical properties depending on the incineration facilities, combustion products, operating conditions, and the like, and is in comparison with natural minerals that are raw materials of general artificial aggregates. Therefore, since the content of silica, alumina and the like is low, it is difficult to vitrify the inside of the pellet in a semi-molten state and to impart mechanical strength.

【0012】本発明は前記ごみ焼却灰に、カルシウム含
有量が酸化物換算で40重量%以下となるように粘結
剤、還元剤および石炭灰、さらに必要に応じて発泡剤と
を添加することによって絶乾比重が2.0以下で、一軸
圧縮破壊荷重が20kgf以上で、また吸水率が10%
以下の人工骨材を製造することができることを特徴とす
るものである。
According to the present invention, a binder, a reducing agent, coal ash and, if necessary, a foaming agent are added to the waste incineration ash so that the calcium content is 40% by weight or less in terms of oxide. The absolute specific gravity is 2.0 or less, the uniaxial compression breaking load is 20 kgf or more, and the water absorption is 10%.
It is characterized in that the following artificial aggregate can be manufactured.

【0013】本発明の対象となるごみ焼却灰は特に限定
されるものでなく、主灰や飛灰、あるいはその混合物を
用いることができる。また前記ごみ焼却灰の粒度にも特
に影響されない。また本発明では組成制御剤として石炭
灰を用いるが、その理由は石炭灰中のシリカを焼成時の
ガラス化に寄与させ、骨材の機械的強度を増加させるた
めである。したがって石炭灰の添加量は骨材用途に応じ
て必要とされる物性が得られるよう適宜選択することが
できるが、ごみ焼却灰の有効利用率とカルシウム含有量
の観点から40重量%以下が好ましい。その理由は、カ
ルシウム含有量が40重量%を超えると適正な焼成温度
域が1300℃以上を超えるため、熱エネルギーコスト
や骨材のロータリーキルン内壁への溶着あるいは骨材同
士の溶着の問題から実用的でなく、また焼成可能な温度
幅が狭くなるからである。なお石炭灰の添加量は少ない
ほど好ましいが、5重量%未満では骨材の機械的強度が
不十分となるために5重量%が下限となる。
[0013] The waste incineration ash that is the subject of the present invention is not particularly limited, and main ash, fly ash, or a mixture thereof can be used. Also, there is no particular effect on the particle size of the incineration ash. In the present invention, coal ash is used as a composition control agent, because silica in the coal ash contributes to vitrification at the time of firing and increases the mechanical strength of the aggregate. Therefore, the amount of coal ash added can be appropriately selected so as to obtain the required physical properties according to the use of the aggregate, but is preferably 40% by weight or less from the viewpoint of the effective utilization rate of the incineration ash and the calcium content. . The reason is that if the calcium content exceeds 40% by weight, the appropriate firing temperature range exceeds 1300 ° C. or more. Therefore, it is practically used due to the problem of heat energy cost and welding of aggregate to the inner wall of the rotary kiln or welding of aggregates. Not only that, but also the firing temperature range becomes narrow. The smaller the amount of coal ash is, the more preferable it is. However, if it is less than 5% by weight, the mechanical strength of the aggregate becomes insufficient, so the lower limit is 5% by weight.

【0014】また石炭灰は火力発電所や石炭焚きボイラ
ーなどから発生するものであれば特に限定されないが、
例えばフライアッシュとシンダアッシュの混合物である
原粉、JIS A 6201に適合するようなフライア
ッシュ、粗粉、クリンカアッシュを含むすべての石炭灰
を用いることができる。また石炭灰の粒度は特に限定さ
れるものではない。さらにある種の石炭灰では未燃カー
ボンを含むが、このような灰は後述する還元剤としての
機能を発揮するため、未燃カーボン量によっては新たに
還元剤を添加する必要がないという利点がある。
The coal ash is not particularly limited as long as it is generated from a thermal power plant or a coal-fired boiler.
For example, all coal ash including fly ash, a mixture of fly ash and synda ash, fly ash, coarse powder, and clinker ash conforming to JIS A 6201 can be used. The particle size of the coal ash is not particularly limited. Further, some types of coal ash include unburned carbon, but such ash exhibits a function as a reducing agent described below, and thus has the advantage that it is not necessary to add a new reducing agent depending on the amount of unburned carbon. is there.

【0015】さらに本発明で粘結剤を用いた理由は、加
水造粒後のペレットの成型性と機械的強度を付与するた
めに添加するものである。機械的強度が弱いとロータリ
ーキルンでの焼成の際に、ペレットが粉化して製品の収
率が低下し、かつ焼成帯付近でペレット表面に粉化した
ものが付着したり、あるいはロータリーキルンの内壁に
付着して連続操業に支障をきたすからである。また粘結
剤の種類は特に限定されないが、例えばベントナイト、
水ガラスなどの無機類、澱粉、糖蜜、リグニン、ポリビ
ニルアルコール、メチルセルロース、天然ゴムパルプ廃
液などの有機類が挙げられる。さらに粘結剤の添加量も
特に限定されないが、添加効果およびコストなどを考慮
すると0.5〜10重量%の範囲が好ましい。
Further, the reason why the binder is used in the present invention is that it is added in order to give moldability and mechanical strength of pellets after hydration granulation. If the mechanical strength is weak, pellets will be powdered during firing in the rotary kiln and the product yield will be reduced, and powdered material will adhere to the pellet surface near the firing zone or adhere to the inner wall of the rotary kiln This would hinder continuous operation. The type of the binder is not particularly limited, for example, bentonite,
Examples include inorganics such as water glass, and organics such as starch, molasses, lignin, polyvinyl alcohol, methylcellulose, and natural rubber pulp waste liquid. Further, the amount of the binder added is not particularly limited, but is preferably in the range of 0.5 to 10% by weight in consideration of the effect of addition and cost.

【0016】発泡剤と還元剤は、焼成時にペレットの内
部が半溶融状態となった時に、発泡剤と還元剤の作用に
よってガスを発生させ、そのガスを気泡としてペレット
内部に捕捉することにより比重を制御するために用い
る。
The foaming agent and the reducing agent generate a gas by the action of the foaming agent and the reducing agent when the inside of the pellets is in a semi-molten state during firing, and the gas is trapped as bubbles in the pellets, whereby the specific gravity is reduced. Used to control

【0017】発泡剤や還元剤の種類としては、前記のよ
うな効果を発揮するものであれば特に限定されないが、
本発明では発泡剤としては酸化鉄や炭化珪素が、また還
元剤としては炭材が好ましく、さらに発泡剤として用い
る酸化鉄としては酸化度の高いへマタイトが特に好まし
い。発泡剤として用いる酸化鉄の粒度は特に限定されな
いが、焼成中の炭材による脱酸素反応を促進するために
10μm以下とすることが好ましい。また骨材配合原料
の全体に対する発泡剤として好ましいへマタイトの添加
量は、1〜10重量%である。その理由は1重量%未満
では発泡剤としての効果が少なく、一方10重量%を超
えて添加しても発泡による軽量化の効果は増加しないか
らである。
The type of the foaming agent or the reducing agent is not particularly limited as long as it exhibits the above-mentioned effects.
In the present invention, iron oxide or silicon carbide is preferable as the foaming agent, and carbonaceous material is preferable as the reducing agent. Further, hematite having a high degree of oxidation is particularly preferable as the iron oxide used as the foaming agent. The particle size of the iron oxide used as the foaming agent is not particularly limited, but is preferably 10 μm or less in order to promote a deoxidation reaction by the carbon material during firing. The preferred amount of hematite as a foaming agent is 1 to 10% by weight based on the whole aggregate-mixed raw material. The reason is that if it is less than 1% by weight, the effect as a foaming agent is small, and if it exceeds 10% by weight, the effect of weight reduction by foaming does not increase.

【0018】さらに発泡剤として用いる炭化珪素は、造
粒したペレットが加熱により多量の液相を生成する時に
酸化鉄と効率よく反応して発生するCO、COガスを
捕捉してペレットの発泡膨潤を促進する。骨材配合原料
の全体に対する炭化珪素の添加量は、0.1重量%〜
1.0重量%であることが好ましい。添加量が0.1重
量%未満では骨材の軽量化に対する効果が十分でなく、
また1.0重量%を超えても軽量効果は増大しないから
である。
Further, the silicon carbide used as the foaming agent captures CO and CO 2 gas generated by efficiently reacting with the iron oxide when the granulated pellets generate a large amount of liquid phase by heating, and foams and swells the pellets. To promote. The amount of silicon carbide to be added to the entire raw material of the aggregate is 0.1% by weight or more.
It is preferably 1.0% by weight. If the addition amount is less than 0.1% by weight, the effect on the weight reduction of the aggregate is not sufficient,
Further, even if it exceeds 1.0% by weight, the light weight effect does not increase.

【0019】また還元剤としての炭材は、主として焼成
中のぺレット内部の還元度を調整するとともに、酸化鉄
を還元してCO、COガスによる発泡作用といった機
能を発揮する。そして炭材としては、例えば石炭やコー
クスなどが挙げられる。したがって炭化珪素の一部を炭
材に置き換えたりすることが可能である。
The carbonaceous material as a reducing agent mainly functions to regulate the degree of reduction inside the pellets during firing, and to reduce iron oxide to exert a function of foaming by CO and CO 2 gas. Examples of the carbon material include coal and coke. Therefore, it is possible to replace a part of silicon carbide with a carbon material.

【0020】つぎに骨材配合原料の全体に対する炭材の
添加量は、0.2重量%〜10重量%であることが好ま
しい。0.2重量%未満では、発泡による軽量化の効果
が得られず、一方10重量%を超えても発泡膨張による
軽量化効果は増加せず、逆に未燃焼の炭素がペレット内
部に残留して人工骨材の強度を低下させる可能性があ
る。
Next, the amount of the carbonaceous material to be added to the whole raw material of the aggregate is preferably 0.2 to 10% by weight. If the amount is less than 0.2% by weight, the effect of weight reduction by foaming cannot be obtained, while if it exceeds 10% by weight, the effect of weight reduction by foaming expansion does not increase, and unburned carbon remains inside the pellet. Therefore, the strength of the artificial aggregate may be reduced.

【0021】各骨材配合原料を混合して得た混合物を粉
砕する際に、その方法は混合した骨材配合原料が平均粒
径20μm以下、好ましくは15μm以下まで微粉砕で
きるものであればいずれの方法でもよく、例えばポット
ミル、振動ミル、遊星ミルなどのボールミル、衝突式の
ジェット粉砕機、ターボ粉砕機などが挙げられる。
When the mixture obtained by mixing the respective aggregate blending raw materials is pulverized, the method may be any method as long as the mixed aggregate blending raw material can be finely pulverized to an average particle size of 20 μm or less, preferably 15 μm or less. And a ball mill such as a pot mill, a vibration mill, and a planetary mill, a collision-type jet pulverizer, and a turbo pulverizer.

【0022】つぎに得られた粉砕物を必要に応じて湿式
混練するが、採用する混練方法は特に限定されず公知の
混練装置を用いることができる。また成型方法としては
所定の径になるように成型できるものであればよく、例
えばパンペレタイザーや押出成型機を用いると簡便であ
る。
Next, the obtained pulverized material is wet-kneaded as necessary, but the kneading method to be employed is not particularly limited, and a known kneading apparatus can be used. As a molding method, any method can be used as long as it can be molded so as to have a predetermined diameter. For example, it is convenient to use a pan pelletizer or an extruder.

【0023】得られた成型体は必要に応じて乾燥した後
に焼成するが、焼成法は特に限定されず、例えば連続操
業や品質の均一性を勘案すればロータリーキルンを用い
ることが好ましく、また所望とする骨材物性に合わせて
雰囲気は任意に選択できる。例えば、燃焼ガス中の酸素
濃度を3%〜12%、焼成帯温度を1000℃〜130
0℃、該焼成帯温度での成型体の滞留時間を1分間〜1
20分間となるようにロータリーキルンの勾配、回転
数、ダムの設置や内径といったキルン構造などを勘案し
てロータリーキルン操作することが好ましい。なお焼成
前に必要に応じて施す乾燥法も特に限定されるものでな
い。
The obtained molded product is dried and fired if necessary, but the firing method is not particularly limited. For example, a rotary kiln is preferably used in consideration of continuous operation and uniformity of quality. The atmosphere can be arbitrarily selected according to the physical properties of the aggregate. For example, the oxygen concentration in the combustion gas is 3% to 12%, and the firing zone temperature is 1000 ° C to 130 ° C.
0 ° C., the residence time of the molded body at the firing zone temperature is 1 minute to 1 minute.
It is preferable to operate the rotary kiln so as to be 20 minutes in consideration of the gradient of the rotary kiln, the number of revolutions, the kiln structure such as the dam installation and the inner diameter, and the like. The drying method applied as necessary before firing is not particularly limited.

【0024】[0024]

【実施例】以下の実施例および比較例により、本発明を
さらに詳細に説明する。ただし、本発明は下記実施例に
限定されるものではない。なお、用いたごみ焼却飛灰の
主成分は、SiO:27.36重量%、Al
13.00重量%、Fe:1.51重量%、Ca
O:15.70重量%、MgO:3.31重量%、Na
O:8.70重量%、KO:7.39重量%のもの
である。また組成制御剤として用いた石炭灰の主成分
は、SiO:66.5重量%、Al:25.5
重量%、Fe:4.06重量%、CaO:0.8
4重量%、MgO:0.50重量%、NaO:0.3
0重量%、KO:0.82重量%である。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples. However, the present invention is not limited to the following examples. The main components of the waste incineration fly ash used were: SiO 2 : 27.36% by weight, Al 2 O 3 :
13.00% by weight, Fe 2 O 3 : 1.51% by weight, Ca
O: 15.70% by weight, MgO: 3.31% by weight, Na
2 O: 8.70% by weight, K 2 O: 7.39% by weight. The main components of the coal ash used as the composition control agent were SiO 2 : 66.5% by weight and Al 2 O 3 : 25.5.
Wt%, Fe 2 O 3: 4.06 wt%, CaO: 0.8
4% by weight, MgO: 0.50% by weight, Na 2 O: 0.3
0 wt%, K 2 O: 0.82 wt%.

【0025】[実施例1]焼却飛灰67.5重量%、べ
ントナイト5重量%、へマタイト5重量%、コークス2
重量%、炭化珪素0.5重量%および石炭灰20重量%
からなる骨材配合原料を、ボールミルを用いて平均粒径
15μmに混合粉砕した。該粉砕物に水を添加しなが
ら、パンペレタイザーで直径約5〜15mmの球状に造
粒した後、105℃で通風乾燥した。ついで前記乾燥骨
材を煉瓦内径400mm、長さ8000mmのロータリ
ーキルンに供給して、燃焼ガス中の酸素濃度5%、温度
約1080℃で滞留時間が30分間となる条件下で焼成
して骨材aを得た。得られた骨材aの品質評価として、
絶乾比重と吸水率はJIS A 1110に基づいて測
定し、一軸圧縮破壊荷重(以後「圧潰強度」という)は
圧潰試験機によって測定し、得られた結果を下記する表
1に示す。なお前記測定は直径約10mmの各骨材につ
いて行い、その平均値を求めた。
Example 1 67.5% by weight of incinerated fly ash, 5% by weight of bentonite, 5% by weight of hematite, coke 2
Wt%, silicon carbide 0.5 wt% and coal ash 20 wt%
Was mixed and pulverized to an average particle size of 15 μm using a ball mill. While adding water to the pulverized product, the mixture was granulated into a spherical shape having a diameter of about 5 to 15 mm using a pan pelletizer, and then dried at 105 ° C. with ventilation. Next, the dried aggregate is supplied to a rotary kiln having a brick inner diameter of 400 mm and a length of 8000 mm, and is calcined under the conditions that the oxygen concentration in the combustion gas is 5%, the temperature is about 1080 ° C., and the residence time is 30 minutes. I got As the quality evaluation of the obtained aggregate a,
The absolute dry specific gravity and the water absorption were measured based on JIS A 1110, and the uniaxial compressive breaking load (hereinafter referred to as “crush strength”) was measured using a crush tester. The obtained results are shown in Table 1 below. The measurement was performed for each aggregate having a diameter of about 10 mm, and the average value was obtained.

【0026】表1から分かる通り、実施例1の骨材aは
絶乾比重が1.30、圧潰強度が32kgf、吸水率が
3%であった。なお骨材a中の酸化物換算でのカルシウ
ムは化学分析の結果、10.8重量%であった。
As can be seen from Table 1, aggregate a of Example 1 had an absolute dry specific gravity of 1.30, a crush strength of 32 kgf, and a water absorption of 3%. As a result of chemical analysis, calcium in the aggregate a in terms of oxide was 10.8% by weight.

【0027】[実施例2〜14および比較例1〜3]ロ
ータリーキルン温度を1040℃、1060℃とした以
外は実施例1と同様にしてそれぞれ骨材b(実施例
2)、骨材c(実施例3)を、焼却飛灰73.0重量
%、ベントナイト5重量%、コークス2重量%および石
炭灰20重量%とした以外は実施例1と同様にして骨材
d(実施例4)を、焼却飛灰70.0重量%、ベントナ
イト5重量%、へマタイト3重量%、コークス2重量%
および石炭灰20重量%とした以外は実施例1と同様に
して骨材e(実施例5)を、焼却飛灰47.5重量%、
べントナイト5重量%、ヘマタイト5重量%、コークス
2重量%、炭化珪素0.5重量%および石炭灰40重量
%とした以外は実施例1と同様にして骨材f(実施例
6)を、ロータリーキルン温度を1100℃、1120
℃とした以外は実施例1と同様にしてそれぞれ骨材g
(実施例7)、骨材h(実施例8)を、焼却飛灰32.
5重量%、べントナイト5重量%、ヘマタイト5重量
%、コークス2重量%、炭化珪素0.5重量%および石
炭灰55重量%とした以外は実施例1と同様にして骨材
i(実施例9)を、ロータリーキルン温度を1060
℃、1100℃、1120℃とした以外は実施例1と同
様にしてそれぞれ骨材j(実施例10)、骨材k(実施
例11)、骨材l(実施例12)を、焼却飛灰57.5
重量%、ベントナイト5重量%、へマタイト5重量%、
コークス2重量%、炭化珪素0.5重量%および石炭灰
30重量%とした以外は実施例1と同様にして骨材m
(実施例13)を、焼却飛灰72.5重量%、べントナ
イト5重量%、へマタイト5重量%、コークス2重量
%、炭化珪素0.5重量%、石炭灰10重量%および生
石灰5重量%とした以外は実施例1と同様にして骨材n
(実施例14)を、焼却飛灰28.5重量%、ベントナ
イト5重量%、へマタイト5重量%、コークス2重量
%、炭化珪素0.5重量%、石炭灰20重量%および生
石灰39重量%とし、ロータリーキルン温度を1120
℃とした以外は実施例1と同様にして骨材o(比較例
1)を、焼却飛灰17.5重量%、べントナイト5重量
%、へマタイト5重量%、コークス2重量%、炭化珪素
0.5重量%および石炭灰70重量%とした以外は実施
例1と同様にして骨材p(比較例2)を、ロータリーキ
ルン温度を1140℃とした以外は比較例2と同様にし
て骨材q(比較例3)を得た。
[Examples 2 to 14 and Comparative Examples 1 to 3] Aggregate b (Example 2) and aggregate c (Example) except that the rotary kiln temperature was 1040 ° C. and 1060 ° C., respectively. Aggregate d (Example 4) was prepared in the same manner as in Example 1 except that Example 3) was changed to 73.0% by weight of incinerated fly ash, 5% by weight of bentonite, 2% by weight of coke, and 20% by weight of coal ash. 70.0% by weight of incinerated fly ash, 5% by weight of bentonite, 3% by weight of hematite, 2% by weight of coke
Aggregate e (Example 5) was prepared in the same manner as in Example 1 except that the amount of coal ash was 20% by weight, and 47.5% by weight of incinerated fly ash.
An aggregate f (Example 6) was prepared in the same manner as in Example 1 except that 5% by weight of bentonite, 5% by weight of hematite, 2% by weight of coke, 0.5% by weight of silicon carbide and 40% by weight of coal ash were used. Rotary kiln temperature 1100 ° C, 1120
Each in the same manner as in Example 1 except that the
(Example 7), aggregate h (Example 8) was incinerated fly ash 32.
Aggregate i (Example 1) except that 5% by weight, 5% by weight of bentonite, 5% by weight of hematite, 2% by weight of coke, 0.5% by weight of silicon carbide and 55% by weight of coal ash were used. 9), the rotary kiln temperature was set to 1060
The aggregate j (Example 10), the aggregate k (Example 11), and the aggregate 1 (Example 12) were incinerated fly ash, respectively, in the same manner as in Example 1 except that the temperature was 1 ° C., 1100 ° C., and 1120 ° C. 57.5
Weight%, bentonite 5 weight%, hematite 5 weight%,
Aggregate m in the same manner as in Example 1 except that coke was 2% by weight, silicon carbide was 0.5% by weight and coal ash was 30% by weight.
Example 13 was obtained by incineration fly ash 72.5% by weight, bentonite 5% by weight, hematite 5% by weight, coke 2% by weight, silicon carbide 0.5% by weight, coal ash 10% by weight and quick lime 5% by weight. % In the same manner as in Example 1 except that
(Example 14) was obtained by incineration fly ash 28.5% by weight, bentonite 5% by weight, hematite 5% by weight, coke 2% by weight, silicon carbide 0.5% by weight, coal ash 20% by weight and quicklime 39% by weight And the rotary kiln temperature is 1120
Except for the temperature, the aggregate o (Comparative Example 1) was prepared by incineration fly ash 17.5% by weight, bentonite 5% by weight, hematite 5% by weight, coke 2% by weight, silicon carbide Aggregate p (Comparative Example 2) was prepared in the same manner as in Example 1 except that the weight was 0.5% by weight and 70% by weight of coal ash, and aggregate was obtained in the same manner as in Comparative Example 2 except that the rotary kiln temperature was 1140 ° C. q (Comparative Example 3) was obtained.

【0028】得られた骨材b〜nの実施例2〜14およ
び骨材o〜qの比較例1〜3について実施例1と同様の
測定を行い、その評価結果と各骨材b〜q中の酸化物換
算でのカルシウム化学分析の結果を下記する表1に併せ
て示す。
The same measurements as in Example 1 were performed on Examples 2 to 14 of the obtained aggregates b to n and Comparative Examples 1 to 3 of the aggregates o to q. The evaluation results and the respective aggregates b to q The results of calcium chemical analysis in terms of oxides in the medium are also shown in Table 1 below.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から分かる通り、実施例の骨材b〜n
は絶乾比重が1.17〜1.90、圧潰強度が20kg
f以上で、吸水率が0.7〜10%であるのに対して、
カルシウム含有量が40重量%を超える比較例1の骨材
oは圧漬強度が15kgfと低く、さらに比較例2およ
び3の骨材pとqは圧潰強度が65kgf以上であるも
のの、石炭灰の添加率が70重量%と高くなり過ぎてご
み焼却灰の有効利用率が低下するため好ましくない。
As can be seen from Table 1, the aggregates b to n of the embodiment are shown.
Has an absolute dry gravity of 1.17 to 1.90 and a crushing strength of 20 kg
f or more, while the water absorption is 0.7 to 10%,
The aggregate o of Comparative Example 1 having a calcium content exceeding 40% by weight has a low crushing strength of 15 kgf, and the aggregates p and q of Comparative Examples 2 and 3 have a crushing strength of 65 kgf or more. The addition rate is too high as 70% by weight, and the effective utilization rate of the refuse incineration ash decreases, which is not preferable.

【0031】[0031]

【発明の効果】以上述べた通り本発明にれば、ごみ焼却
灰を主原料として強度が高い骨材を効率的に生産するこ
とが可能である。したがって産業廃棄物を埋め立てて処
理することなく、特に土木・建築材などに再資源化でき
ることから、環境保全と資源有効利用において極めて有
用なものである。
As described above, according to the present invention, it is possible to efficiently produce aggregate having high strength by using incineration ash as a main raw material. Therefore, it is extremely useful for environmental conservation and effective use of resources, since industrial waste can be recycled without being landfilled and treated, particularly for civil engineering and building materials.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ごみ焼却灰に、カルシウム含有量が酸化
物換算で40重量%以下となるように粘結剤、還元剤お
よび石炭灰とを混合もしくは混合粉砕し、水を加えて成
型し、該成型体を焼成することを特徴とするごみ焼却灰
を用いた人工骨材の製造方法。
1. A garbage incineration ash is mixed or ground with a binder, a reducing agent and coal ash so that the calcium content is 40% by weight or less in terms of oxide, and water is added to mold the ash. A method for producing an artificial aggregate using refuse incineration ash, wherein the molded body is fired.
【請求項2】 前記ごみ焼却灰にさらに発泡剤を添加し
てなることを特徴とする請求項1記載のごみ焼却灰を用
いた人工骨材の製造方法。
2. The method for producing an artificial aggregate using waste incineration ash according to claim 1, wherein a foaming agent is further added to said waste incineration ash.
【請求項3】 前記成型体を乾燥した後焼成することを
特徴とする請求項1または2記載のごみ焼却灰を用いた
人工骨材の製造方法。
3. The method for producing an artificial aggregate using waste incineration ash according to claim 1, wherein the molded body is dried and then fired.
【請求項4】 前記還元剤が炭材であることを特徴とす
る請求項1〜3のいずれか1項記載のごみ焼却灰を用い
た人工骨材の製造方法。
4. The method for producing an artificial aggregate using refuse incineration ash according to claim 1, wherein the reducing agent is a carbonaceous material.
【請求項5】 前記発泡剤が酸化鉄および炭化珪素のう
ち少なくとも1種であることを特徴とする請求項2記載
のごみ焼却灰を用いた人工骨材の製造方法。
5. The method for producing an artificial aggregate using waste incineration ash according to claim 2, wherein said foaming agent is at least one of iron oxide and silicon carbide.
【請求項6】 請求項1〜5のいずれか1項記載の方法
により得られ、かつ絶乾比重が2.0以下で、一軸圧縮
破壊荷重が20kgf以上で、また吸水率が10%以下
であることを特徴とする人工骨材。
6. A method obtained by the method according to claim 1, which has an absolute dry specific gravity of 2.0 or less, a uniaxial compression breaking load of 20 kgf or more, and a water absorption of 10% or less. An artificial aggregate, characterized in that there is.
JP34862999A 1999-12-08 1999-12-08 Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method Pending JP2001163647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34862999A JP2001163647A (en) 1999-12-08 1999-12-08 Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34862999A JP2001163647A (en) 1999-12-08 1999-12-08 Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method

Publications (1)

Publication Number Publication Date
JP2001163647A true JP2001163647A (en) 2001-06-19

Family

ID=18398289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34862999A Pending JP2001163647A (en) 1999-12-08 1999-12-08 Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method

Country Status (1)

Country Link
JP (1) JP2001163647A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262728A (en) * 2003-03-04 2004-09-24 Ube Ind Ltd Manufacturing process of lightweight aggregate which uses coal ash and sewage sludge incineration ash as raw materials
EP1549427A1 (en) * 2002-08-23 2005-07-06 James Hardie International Finance B.V. Synthetic hollow microspheres
EP2013152A1 (en) * 2006-04-28 2009-01-14 Ceragreen Co., Ltd. Method for manufacturing an artificial lightweight aggregate containing bottom ash
US7658794B2 (en) 2000-03-14 2010-02-09 James Hardie Technology Limited Fiber cement building materials with low density additives
US7744689B2 (en) 2005-02-24 2010-06-29 James Hardie Technology Limited Alkali resistant glass compositions
US7897534B2 (en) 2003-10-29 2011-03-01 James Hardie Technology Limited Manufacture and use of engineered carbide and nitride composites
AU2004238392B2 (en) * 2003-05-16 2011-04-07 James Hardie Technology Limited Methods for producing low density products
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
US8609244B2 (en) 2005-12-08 2013-12-17 James Hardie Technology Limited Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
JP2015209317A (en) * 2014-04-28 2015-11-24 住友重機械工業株式会社 Conveyance system of coal ash generated in coal burning boiler and conveyance method of coal ash generated in coal burning boiler
CN117510183A (en) * 2023-11-10 2024-02-06 北京科技大学 Concrete aggregate prepared from waste incineration fly ash and preparation method thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658794B2 (en) 2000-03-14 2010-02-09 James Hardie Technology Limited Fiber cement building materials with low density additives
US8603239B2 (en) 2000-03-14 2013-12-10 James Hardie Technology Limited Fiber cement building materials with low density additives
US8182606B2 (en) 2000-03-14 2012-05-22 James Hardie Technology Limited Fiber cement building materials with low density additives
US7727329B2 (en) 2000-03-14 2010-06-01 James Hardie Technology Limited Fiber cement building materials with low density additives
US7878026B2 (en) 2002-08-23 2011-02-01 James Hardie Technology Limited Synthetic microspheres and methods of making same
US7666505B2 (en) 2002-08-23 2010-02-23 James Hardie Technology Limited Synthetic microspheres comprising aluminosilicate and methods of making same
EP1549427A1 (en) * 2002-08-23 2005-07-06 James Hardie International Finance B.V. Synthetic hollow microspheres
EP1549427A4 (en) * 2002-08-23 2008-04-16 James Hardie Int Finance Bv Synthetic hollow microspheres
US7651563B2 (en) 2002-08-23 2010-01-26 James Hardie Technology Limited Synthetic microspheres and methods of making same
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
JP4599802B2 (en) * 2003-03-04 2010-12-15 宇部興産株式会社 Lightweight aggregate foaming control method
JP2004262728A (en) * 2003-03-04 2004-09-24 Ube Ind Ltd Manufacturing process of lightweight aggregate which uses coal ash and sewage sludge incineration ash as raw materials
AU2004238392B2 (en) * 2003-05-16 2011-04-07 James Hardie Technology Limited Methods for producing low density products
US7897534B2 (en) 2003-10-29 2011-03-01 James Hardie Technology Limited Manufacture and use of engineered carbide and nitride composites
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US7744689B2 (en) 2005-02-24 2010-06-29 James Hardie Technology Limited Alkali resistant glass compositions
US8609244B2 (en) 2005-12-08 2013-12-17 James Hardie Technology Limited Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
EP2013152A4 (en) * 2006-04-28 2011-09-21 Ceragreen Co Ltd Method for manufacturing an artificial lightweight aggregate containing bottom ash
EP2013152A1 (en) * 2006-04-28 2009-01-14 Ceragreen Co., Ltd. Method for manufacturing an artificial lightweight aggregate containing bottom ash
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
JP2015209317A (en) * 2014-04-28 2015-11-24 住友重機械工業株式会社 Conveyance system of coal ash generated in coal burning boiler and conveyance method of coal ash generated in coal burning boiler
CN117510183A (en) * 2023-11-10 2024-02-06 北京科技大学 Concrete aggregate prepared from waste incineration fly ash and preparation method thereof

Similar Documents

Publication Publication Date Title
Mueller et al. The manufacture of lightweight aggregates from recycled masonry rubble
KR101941328B1 (en) Production method for cement composition
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
Shakir et al. Production of eco-friendly hybrid blocks
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
JP2006255609A (en) Method for manufacturing sintered product and sintered product
WO2006074944A1 (en) Pyroprocessed aggregates comprising iba and pfa and methods for producing such aggregates
JP2000119050A (en) Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
JP2007261880A (en) Sintered matter production method
JP2006272174A (en) Manufacturing method of sintered object
JP2000143307A (en) Method for producing artificial aggregate and artificial aggregate produced by the same method
JPH0977543A (en) Artificial lightweight aggregate and its production
JP2001253740A (en) Artificial aggregate and its production process
KR20000072111A (en) Composition for lightweight aggregate and method for manufacturing the same
JPH08301641A (en) Production of artificial lightweight aggregate
JPH11335146A (en) Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
JPH1029841A (en) Production of artificial aggregate
CN104676595B (en) Method for lowering quantity and toxicity of flying ash of household garbage incineration plant
JP2006298730A (en) Method of firing incineration ash and sintered compact obtained by the same method
JP2001163648A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate
KR20020044899A (en) Composition for lightweight aggregate and method for manufacturing the same
JP2000247701A (en) Production of artificial lightweight aggregate and artificial aggregate
JP4377256B2 (en) Manufacturing method of artificial lightweight aggregate