JP2000302498A - Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby - Google Patents

Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby

Info

Publication number
JP2000302498A
JP2000302498A JP10904799A JP10904799A JP2000302498A JP 2000302498 A JP2000302498 A JP 2000302498A JP 10904799 A JP10904799 A JP 10904799A JP 10904799 A JP10904799 A JP 10904799A JP 2000302498 A JP2000302498 A JP 2000302498A
Authority
JP
Japan
Prior art keywords
aggregate
weight
artificial light
stage
weight aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10904799A
Other languages
Japanese (ja)
Inventor
Shingo Sudo
真悟 須藤
Takeshi Naganami
武 長南
Atsushi Kagakui
敦 加岳井
Koji Kawamoto
孝次 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10904799A priority Critical patent/JP2000302498A/en
Publication of JP2000302498A publication Critical patent/JP2000302498A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing an artificial light-weight aggregate capable of efficiently producing a harmless aggregate from refuse incineration ash and having high strength and low water-absorption while promoting the evaporation of heavy metals and harmful substances in the baking of the aggregate and provide an artificial light-weight aggregate produced by this process. SOLUTION: The objective process for the production of an artificial light- weight aggregate comprises the crushing of a mixture produced by mixing refuse incineration ash with a binder, a foaming agent, a reducing agent and silica and/or alumina as a composition controlling agent, the addition of water to the crushed mixture, the forming and optional drying of the product and two-stage baking of the formed material comprising the 1st stage baking at 850-1050 deg.C and the 2nd stage baking at 1060-1200 deg.C. The calcium content of the baked aggregate in the formed material is <=16 wt.% in terms of oxide, the foaming agent is iron oxide and/or silicon carbide and the reducing agent is a carbon material. The artificial light-weight aggregate produced by this process has an absolute-dry specific gravity of >=1.5 and <2.0, a uniaxial compressive strength of >=50 kgf and a water-absorption of <=5%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ごみ焼却施設など
から発生するごみ焼却灰を再資源化して有効利用するた
め、このごみ焼却灰を主原料とした土木・建築用の人工
軽量骨材を製造する方法およびこの方法により得られた
人工軽量骨材に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an artificial lightweight aggregate for civil engineering and construction using garbage incineration ash generated from a garbage incineration facility or the like for recycling and effectively utilizing the ash. The present invention relates to a manufacturing method and an artificial lightweight aggregate obtained by the method.

【0002】[0002]

【従来の技術】ごみ焼却施設などから発生するごみ焼却
灰は、焼却残渣である主灰と排ガス中に飛散する灰を捕
集した飛灰とがあり、その殆どが廃棄物として埋め立て
処分されている。中でも飛灰には鉛、亜鉛、カドミウム
などの重金属類が含まれているため、現状では溶融固
化、セメン卜固化、キレート処理および酸洗浄の方法に
より重金属類の溶出防止処理を施して無害化した後に埋
め立て処分されている。しかし溶融固化法は処理コスト
が高く、近年はセメント固化法ならびに重金属類の溶出
防止処理が十分ではないという指摘があり、またそれ以
外の方法は長期信頼性に欠けるという問題を有し、さら
には多くの自治体が最終処分場の確保と残余年数の延長
化に苦慮しているため、飛灰を廃棄物とせず再資源とし
て有効利用する技術の開発が待望されている。
2. Description of the Related Art Waste incineration ash generated from waste incineration facilities includes main ash, which is incineration residue, and fly ash, which collects ash scattered in exhaust gas. Most of the ash is landfilled as waste. I have. Above all, fly ash contains heavy metals such as lead, zinc, and cadmium.At present, it has been rendered harmless by melting and solidifying, cement solidifying, chelating, and acid washing to prevent elution of heavy metals. It has been later landfilled. However, the melt solidification method has a high processing cost, and in recent years it has been pointed out that the cement solidification method and the treatment for preventing elution of heavy metals are not sufficient, and other methods have a problem that they lack long-term reliability. Many municipalities are struggling to secure final disposal sites and extend the remaining years, so there is a long-awaited need to develop technology that effectively uses fly ash as waste instead of waste.

【0003】その方法の1つとして本発明者らは先に、
焼却灰を主原料として珪砂、陶石および長石などの組成
制御剤、粘結剤、さらにはへマタイト、炭化珪素などの
発泡剤、コークスなどの還元剤とを添加し、これをロー
タリーキルンで焼成することによって重金属の溶出が少
ない土木・建築用の人工軽量骨材の製造方法を見出し、
この技術を特開平10−287675号公報により開示
した。この公報記載の方法によれば焼却灰を人工軽量骨
材として利用でき、かつ最終処分場の残余年数の延長化
に貢献できるが、主に焼却灰中に含まれる重金属類や硫
化物などの含有量を低減する必要性から焼却灰の利用量
が限られていた。
As one of the methods, the present inventors have previously described:
Using incinerated ash as a main raw material, add a composition control agent such as silica sand, pottery stone and feldspar, a binder, a foaming agent such as hematite and silicon carbide, and a reducing agent such as coke and calcinate it with a rotary kiln. Through this, we found a method of manufacturing artificial lightweight aggregates for civil engineering and construction with less elution of heavy metals,
This technique is disclosed in Japanese Patent Application Laid-Open No. 10-287675. According to the method described in this publication, incinerated ash can be used as artificial lightweight aggregate and can contribute to prolonging the remaining years of the final disposal site, but it mainly contains heavy metals and sulfides contained in the incinerated ash. The use of incinerated ash was limited due to the need to reduce the amount.

【0004】[0004]

【発明が解決しようとする課題】本発明は、骨材焼成時
に重金属類や有害物の揮発がより促進されるとともに、
ごみ焼却灰を主原料として無害で高強度、かつ吸水率の
低い人工骨材を効率的に生産することができる人工軽量
骨材の製造方法およびこの方法により得られた人工軽量
骨材を提供することを目的とするものである。
SUMMARY OF THE INVENTION According to the present invention, the volatilization of heavy metals and harmful substances during the firing of aggregate is further promoted,
Provided is a method for producing an artificial lightweight aggregate capable of efficiently producing a harmless, high-strength, and low water absorption artificial aggregate using waste incineration ash as a main raw material, and an artificial lightweight aggregate obtained by the method. The purpose is to do so.

【0005】[0005]

【課題を解決するための手段】本発明者らはごみ焼却灰
の骨材化とその無害化の方法について鋭意検討した結
果、特定の温度域にて2段階方式により焼成を実施する
ことにより上記課題を解決し得ることを見出し本発明を
完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies on a method of converting waste incineration ash into aggregate and detoxifying the same, and as a result, the above-mentioned calcination is carried out in a two-stage method at a specific temperature range. The inventors have found that the object can be solved, and have completed the present invention.

【0006】すなわち本発明の第1の実施態様は、ごみ
焼却灰に、粘結剤、発泡剤、還元剤と、さらに組成制御
剤としてシリカまたはアルミナのうちの少なくとも1種
とを混合して得られた混合物を粉砕した後、水を加えて
成型し、ついで所望に応じ該成型体を乾燥したのちこの
成型体に対して850℃〜1050℃の温度範囲による
第1段階と、1060℃〜1200℃の温度範囲による
第2段階との2段階焼成を実施することを特徴とするも
のであって、前記成型体の焼成骨材中のカルシウム含有
量は、酸化物換算で16重量%以下であり、さらに前記
発泡剤を、酸化鉄または炭化珪素のうちの少なくとも1
種とし、また前記還元剤を炭材とした人工軽量骨材の製
造方法を特徴とするものである。
[0006] That is, the first embodiment of the present invention is obtained by mixing waste incineration ash with a binder, a foaming agent, a reducing agent, and at least one of silica and alumina as a composition control agent. After the obtained mixture is pulverized, water is added to mold the mixture, and then, if necessary, the molded body is dried. Then, the molded body is subjected to a first step in a temperature range of 850 ° C. to 1050 ° C., and 1060 ° C. to 1200 ° C. Wherein the two-stage calcination with the second stage in the temperature range of ° C. is performed, wherein the calcium content in the baked aggregate of the molded body is 16% by weight or less in terms of oxide. And the foaming agent is at least one of iron oxide and silicon carbide.
And a method for producing an artificial lightweight aggregate using a carbon material as the reducing agent.

【0007】また本発明の第2の実施態様は、第1の実
施態様に係る製造方法により得られ、かつ絶乾比重が
1.5以上で2.0未満、一軸圧縮破壊荷重が50kg
f以上、吸水率が5%以下である人工軽量骨材を特徴と
するものである。
A second embodiment of the present invention is obtained by the manufacturing method according to the first embodiment, and has an absolute dry specific gravity of 1.5 or more and less than 2.0, and a uniaxial compressive breaking load of 50 kg.
It is characterized by an artificial lightweight aggregate having a water absorption of not less than f and not more than 5%.

【0008】[0008]

【発明の実施の形態】以下本発明の詳細およびその作用
についてさらに具体的に説明する。一般の人工軽量骨材
の原料である粘土や頁岩などの主成分は、シリカ、アル
ミナ、カルシアなどであり、ごみ焼却灰の成分もほぼ同
様のものからなる。そして人工軽量骨材に機械的強度を
持たせるためには焼成時にペレット内部を半溶融状態に
させてガラス化すればよく、また軽量化するためには内
部を溶融させ、適度な粘性低下と同時に揮発成分による
気泡を捕捉すればよい。しかしながらごみ焼却施設など
から発生するごみ焼却灰は、上記人工軽量骨材の原料と
比較して低融点で急溶する性質があるので骨材化が困難
であり、また焼却施設、燃焼物および運転状態などによ
って化学的・物理的性質が異なるため、所望の物性を持
つ骨材を得るには原料の化学組成を一般の人工軽量骨材
の原料である天然鉱物の化学組成に近付けるよう組成を
制御する必要がある。さらにごみ焼却灰は重金属類や有
害物を含むため焼成後の骨材を無害化する必要がある。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention and its operation will be described more specifically below. The main components of clay and shale, which are the raw materials of general artificial lightweight aggregate, are silica, alumina, calcia, and the like, and the components of incineration ash are almost the same. And to make the artificial lightweight aggregate have mechanical strength, the inside of the pellet should be made into a semi-molten state during sintering and vitrified, and in order to reduce the weight, the inside is melted and at the same time a moderate viscosity decrease What is necessary is just to catch the bubble by a volatile component. However, refuse incineration ash generated from refuse incineration facilities and the like has a low melting point and rapidly melts compared with the above-mentioned artificial lightweight aggregate raw material, making it difficult to convert it into aggregate. Since the chemical and physical properties differ depending on the state, etc., to obtain aggregate having desired physical properties, the composition is controlled so that the chemical composition of the raw material approaches the chemical composition of the natural mineral that is the raw material of general artificial lightweight aggregate There is a need to. Furthermore, since the incineration ash contains heavy metals and harmful substances, it is necessary to detoxify the aggregate after firing.

【0009】本発明は前記ごみ焼却灰に、少量の粘結
剤、発泡剤、還元剤および組成制御剤としてシリカまた
はアルミナのうち少なくとも1種を添加してなる骨材配
合原料を、骨材が軟化する手前の温度とさらに焼結する
温度の2段階で焼成し、焼成後の骨材中のカルシウム含
有量が酸化物換算で16重量%以下となるように組成制
御することによって、有害物が少なく、かつ絶乾比重が
1.5以上で2.0未満、一軸圧縮破壊荷重が50kg
f以上、吸水率が5%以下の人工軽量骨材を製造するこ
とができるということを特徴とするものである。本発明
の対象となるごみ焼却灰は特に限定されるものでなく、
主灰や飛灰あるいはその混合物を用いることができる。
また前記ごみ焼却灰の粒度にも特に影響されない。
The present invention provides an aggregate-mixed raw material obtained by adding a small amount of a binder, a foaming agent, a reducing agent and at least one of silica and alumina as a composition controlling agent to the incinerated ash. By sintering in two stages of the temperature before softening and the sintering temperature, and controlling the composition so that the calcium content in the aggregate after sintering is 16% by weight or less in terms of oxide, harmful substances can be reduced. Low and absolute dry specific gravity of 1.5 or more and less than 2.0, uniaxial compressive breaking load of 50 kg
It is characterized in that an artificial lightweight aggregate having a water absorption of not less than f and not more than 5% can be produced. The refuse incineration ash targeted by the present invention is not particularly limited,
Main ash, fly ash or a mixture thereof can be used.
Also, there is no particular effect on the particle size of the incineration ash.

【0010】ごみ焼却灰に添加する組成制御剤は化学組
成上シリカおよび/またはアルミナを主体とし、かつ焼
成後の骨材品質に有害物として影響が無ければ特に限定
しないが、例えば天然鉱物として珪砂、頁岩、粘土、陶
石、長石、カオリナイト、木節粘土、工業薬品、シリカ
とアルミナを含む鉱物、また産業副産物として石炭灰や
下水汚泥などが挙げられる。組成制御剤中のシリカは骨
材の機械的強度を発現させるガラス化に寄与し、または
アルミナは骨材強度に有効な鉱物やガラス相の生成に寄
与する。このような組成制御剤の添加量は骨材用途に応
じて必要とされる物性が得られるよう適宜選択すればよ
いが、絶乾比重1.5以上で2.0未満の人工軽量骨材
を得るためには焼成後の骨材中のカルシウムの含有量が
酸化物換算で16重量%以下となるように添加すること
が好ましい。その理由は16重量%を超えると最適な焼
成温度域が高くなり、かつ焼成可能な温度幅が狭くなる
からである。なおカルシウムの含有量は、少ないほど好
ましいが、主原料であるごみ焼却灰中に含まれるという
理由で5重量%程度が下限となる。
The composition control agent to be added to the refuse incineration ash is not particularly limited as long as it is mainly composed of silica and / or alumina because of its chemical composition and has no adverse effect on the quality of aggregate after calcination. Shale, clay, pottery stone, feldspar, kaolinite, kibushi clay, industrial chemicals, minerals containing silica and alumina, and industrial by-products such as coal ash and sewage sludge. Silica in the composition control agent contributes to vitrification for developing the mechanical strength of the aggregate, or alumina contributes to generation of a mineral or glass phase effective for the aggregate strength. The addition amount of such a composition control agent may be appropriately selected so as to obtain the required physical properties according to the aggregate application, but an artificial lightweight aggregate having an absolute dry specific gravity of 1.5 or more and less than 2.0 is used. In order to obtain it, it is preferable to add calcium such that the content of calcium in the aggregate after firing is 16% by weight or less in terms of oxide. The reason is that if it exceeds 16% by weight, the optimum firing temperature range becomes high and the temperature range in which firing is possible becomes narrow. The content of calcium is preferably as small as possible, but the lower limit is about 5% by weight because it is contained in the refuse incineration ash which is the main raw material.

【0011】つぎに本発明で骨材焼成過程において2段
階焼成する理由は、無害化と高強度および軽量化を満足
する骨材を得るためである。すなわち第1段階の焼成は
無害化のために行い、ペレットに液相が生成し軟化に至
らない温度で実施することが好ましい。軟化に至る温度
以上で焼成しても揮発成分が液相に遮られ揮発が促進さ
れないためである。このときの焼成温度は850℃〜1
050℃の範囲であり、この温度範囲外で軟化するよう
な化学組成を有する骨材配合原料では、所望の物性を持
つ人工軽量骨材が得られないからである。また第1段階
の焼成における滞留時間は特に限定されるものでなく焼
成後の骨材が無害化されるよう適宜変更することができ
る。
Next, the reason why the two-stage firing is performed in the aggregate firing process in the present invention is to obtain an aggregate satisfying detoxification, high strength and light weight. That is, the first stage firing is preferably performed for detoxification, and is performed at a temperature at which a liquid phase is formed in the pellets and softening does not occur. This is because the volatile component is blocked by the liquid phase and the volatilization is not promoted even when firing at a temperature higher than the softening temperature. The firing temperature at this time is 850 ° C. to 1
This is because an artificial lightweight aggregate having desired physical properties cannot be obtained with an aggregate blending raw material having a chemical composition that is in the range of 050 ° C. and softens outside this temperature range. The residence time in the first stage firing is not particularly limited, and can be appropriately changed so that the aggregate after firing is rendered harmless.

【0012】つぎに第2段階の焼成は強度発現と軽量化
のために行い、1060℃〜1200℃の温度範囲で実
施する。この温度範囲に限定した理由は、1060℃未
満では骨材が未焼結となり強度が発現せず、一方120
0℃を超えるとペレットが溶融してしまい所望の骨材が
得られないからである。この際、第2段階の焼成におけ
る滞留時間は得られる骨材が所望の物性となるよう適宜
変更することができる。なお揮発によって生じた重金属
類などは、回収して金属精錬原料として利用することに
よって一層資源の有効利用率を高めることができる。
Next, firing in the second stage is performed for the purpose of developing strength and reducing the weight, and is performed at a temperature in the range of 1060 ° C. to 1200 ° C. The reason for limiting to this temperature range is that if the temperature is lower than 1060 ° C., the aggregate is unsintered and the strength is not developed.
If the temperature exceeds 0 ° C., the pellets are melted and a desired aggregate cannot be obtained. At this time, the residence time in the second stage firing can be appropriately changed so that the obtained aggregate has desired physical properties. In addition, heavy metals and the like generated by volatilization can be recovered and used as a metal refining raw material, so that the effective utilization rate of resources can be further increased.

【0013】また本発明で粘結剤を添加した理由は、加
水造粒後のペレットの成型性と機械的強度を付与するた
めであり、機械的強度が弱いとロータリーキルンでの焼
成の際にぺレットが粉化して製品の収率が低下し、かつ
焼成帯付近でペレット表面に粉化したものが付着した
り、あるいはロータリーキルンの内壁に付着して連続操
業に支障をきたすからである。また粘結剤の種類は特に
限定されないが、例えばベントナイト、水ガラスなどの
無機類、澱粉、糖蜜、リグニン、ポリビニルアルコー
ル、メチルセルロース、天然ゴム、パルプ廃液などの有
機類が挙げられる。また粘結剤の添加量も特に限定され
ないが、添加効果およびコストなどを考慮すると0.5
重量%〜10重量%の範囲が好ましい。
The reason why the binder is added in the present invention is to impart the moldability and mechanical strength of the pellets after the granulation with water. The reason for this is that the powder of the pellets reduces the yield of the product, and the powdered powder adheres to the pellet surface in the vicinity of the sintering zone, or adheres to the inner wall of the rotary kiln, thereby hindering continuous operation. The type of the binder is not particularly limited, and examples thereof include inorganics such as bentonite and water glass, and organics such as starch, molasses, lignin, polyvinyl alcohol, methylcellulose, natural rubber, and pulp waste liquid. Further, the amount of the binder added is not particularly limited, but in consideration of the effect of the addition and the cost, is 0.5%.
The range of from 10% by weight to 10% by weight is preferred.

【0014】つぎに本発明で発泡剤と還元剤を添加する
理由は、第1段階の焼成以降にペレットの内部に液相が
生成し半溶融状態となったときに、発泡剤と還元剤の作
用によってガスを発生させ、そのガスを気泡としてペレ
ット内部に捕捉することで比重を制御するためである。
用いられる発泡剤や還元剤としては、このような効果を
発揮するものであれば特に限定されないが、本発明では
発泡剤としては酸化鉄や炭化珪素が、また還元剤として
は炭材が好ましく、さらに発泡剤として用いる酸化鉄と
しては酸化度の高いヘマタイトが特に好ましい。発泡剤
として用いる酸化鉄の粒度は特に限定されないが、焼成
中の炭材による脱酸素反応を促進するために10μm以
下とすることが好ましい。また骨材配合原料の全体に対
する好ましいへマタイトのような発泡剤の添加量は、1
重量%〜10重量%である。その理由は1重量%未満で
は発泡剤としての効果が少なく、一方10重量%を超え
て添加しても発泡剤による軽量化の効果は増加しないか
らである。
Next, the reason why the blowing agent and the reducing agent are added in the present invention is that when a liquid phase is formed inside the pellets after the first stage firing and the pellets are in a semi-molten state, the blowing agent and the reducing agent are added. This is because the specific gravity is controlled by generating gas by the action and trapping the gas as bubbles in the pellet.
The foaming agent or reducing agent used is not particularly limited as long as it exhibits such effects, but in the present invention, iron oxide or silicon carbide is preferable as the blowing agent, and carbonaceous material is preferable as the reducing agent. Further, as the iron oxide used as a foaming agent, hematite having a high degree of oxidation is particularly preferable. The particle size of the iron oxide used as the foaming agent is not particularly limited, but is preferably 10 μm or less in order to promote a deoxidation reaction by the carbon material during firing. Further, the preferable amount of the foaming agent such as hematite to the whole of the aggregate compounding raw material is 1
% By weight. The reason is that if it is less than 1% by weight, the effect as a foaming agent is small, and if it exceeds 10% by weight, the effect of reducing the weight by the foaming agent does not increase.

【0015】また発泡剤として用いる炭化珪素は、造粒
したペレットが加熱により多量の液相を生成する時に、
酸化鉄と効率よく反応して発生するCO、COガスを
捕捉してペレットの発泡膨潤を促進する。また骨材配合
原料の全体に対する炭化珪素の添加量は、0.1重量%
〜1.0重量%であることが好ましい。その理由は、
0.1重量%未満では絶乾比重の軽量化に対する効果が
十分でなく、一方1.0重量%を超えても軽量効果は増
大しないからである。
Silicon carbide used as a foaming agent is used when the granulated pellets generate a large amount of liquid phase by heating.
It captures CO and CO 2 gas generated by efficiently reacting with iron oxide to promote foam swelling of pellets. The amount of silicon carbide was 0.1% by weight based on the total weight of the raw material containing the aggregate.
It is preferably from 1.0 to 1.0% by weight. The reason is,
If the amount is less than 0.1% by weight, the effect of reducing the absolute dry weight is not sufficient, while if it exceeds 1.0% by weight, the effect of reducing the weight does not increase.

【0016】還元剤としての炭材は、効果は小さいが酸
化鉄と反応して発泡作用といった機能を発揮するもの
で、コークスなどが挙げられる。したがって炭化珪素の
一部を炭材に置き換えたりすることが可能であり、炭材
は焼成中のペレット内部の還元度を調整する効果が大で
ある。骨材配合原料の全体に対する炭材の添加量は、
0.2重量%〜10重量%であることが好ましい。その
理由は、0.2重量%未満では発泡による軽量化の効果
が得られないからであり、一方10重量%を超えても発
泡膨張による軽量化効果は増加せず、逆に未燃焼の炭素
がペレット内部に残留して人工軽量骨材の強度を低下さ
せる可能性があるからである。
The carbonaceous material as a reducing agent has a small effect, but exhibits a function such as foaming by reacting with iron oxide, such as coke. Therefore, it is possible to replace a part of the silicon carbide with a carbon material, and the carbon material has a great effect of adjusting the degree of reduction inside the pellet during firing. The amount of carbon added to the aggregate raw material is
It is preferably from 0.2% by weight to 10% by weight. The reason is that if it is less than 0.2% by weight, the effect of weight reduction by foaming cannot be obtained, while if it exceeds 10% by weight, the effect of weight reduction by foaming expansion does not increase. This is because it may remain inside the pellet and reduce the strength of the artificial lightweight aggregate.

【0017】本発明に用いる粉砕方法は、混合した骨材
配合原料が平均粒径20μm以下、好ましくは15μm
以下まで微粉砕できるものであればいずれの方法でもよ
く、例えばポットミル、振動ミル、遊星ミルなどのボー
ルミル、衝突式のジェット粉砕機、ターボ粉砕機などが
挙げられる。つぎにごみ焼却灰、粘結剤、還元剤、発泡
剤および組成制御剤との混合粉砕物は、必要に応じて乾
燥して湿式混練するが、採用する混練方法は特に限定さ
れず公知の混練装置を用いることができる。
In the pulverization method used in the present invention, the mixed aggregate-mixed raw material has an average particle size of 20 μm or less, preferably 15 μm or less.
Any method may be used as long as it can be finely pulverized to the following, and examples thereof include a ball mill such as a pot mill, a vibration mill, and a planetary mill, a collision-type jet pulverizer, and a turbo pulverizer. Next, the mixed and pulverized material with the refuse incineration ash, the binder, the reducing agent, the foaming agent and the composition controlling agent is dried and wet-kneaded if necessary. An apparatus can be used.

【0018】また成型方法としては、所定の径になるよ
うに成型できるものであればよく、例えばパンペレタイ
ザーや押出成型機を用いると簡便である。ついで得られ
た成型物は必要に応じて乾燥した後に焼成するが、焼成
法は特に限定されず、例えば連続操業や品質の均一性を
勘案すればロータリーキルンを用いることが好ましく、
所望とする骨材物性に合わせて雰囲気を任意に選択でき
る。例えば燃焼ガス中の酸素濃度を3〜12%とし、第
1段階の焼成における温度を850℃〜1050℃、滞
留時間を10分間〜60分間となるよう、続いて第2段
階の焼成における温度を1060℃〜1200℃、滞留
時間10分間〜120分間となるようにロータリーキル
ンの勾配、回転数、ダムの設置や内径といったキルン構
造などを勘案してロー夕リーキルン操作することが好ま
しい。なお焼成前に必要に応じて施す乾燥法も特に限定
されるものでない。
Any molding method may be used as long as it can be molded to a predetermined diameter. For example, it is convenient to use a pan pelletizer or an extruder. The obtained molded product is then dried and fired if necessary, but the firing method is not particularly limited.For example, it is preferable to use a rotary kiln in consideration of continuous operation and uniformity of quality,
The atmosphere can be arbitrarily selected according to desired aggregate physical properties. For example, the oxygen concentration in the combustion gas is 3 to 12%, the temperature in the first stage firing is 850 ° C. to 1050 ° C., the residence time is 10 minutes to 60 minutes, and then the temperature in the second stage firing is It is preferable to operate the rotary kiln in such a manner that the kiln structure such as 1060 ° C. to 1200 ° C. and the residence time is 10 minutes to 120 minutes in consideration of the gradient of the rotary kiln, the number of rotations, the installation of the dam and the kiln structure such as the inner diameter, etc. The drying method applied as necessary before firing is not particularly limited.

【0019】[0019]

【実施例】以下の実施例および比較例により、本発明を
さらに詳細に説明する。ただし、本発明は下記実施例に
限定されるものではない。なお用いたごみ焼却飛灰の主
成分は、SiO:27.36重量%、Al :1
2.78重量%、Fe:1.61重量%、Ca
O:14.26重量%、MgO:3.35重量%、Na
O:8.46重量%、KO:7.24重量%のもの
である。また組成制御剤として用いた珪砂、石炭灰また
は頁岩の主成分は下記する表1に示す通りである。
The present invention will be described by the following examples and comparative examples.
This will be described in more detail. However, the present invention is not limited to the following examples.
It is not limited. The main incineration fly ash used
The component is SiO2: 27.36% by weight, Al2O 3: 1
2.78% by weight, Fe2O31.61% by weight, Ca
O: 14.26% by weight, MgO: 3.35% by weight, Na
2O: 8.46% by weight, K2O: 7.24% by weight
It is. In addition, silica sand, coal ash and
The main components of shale are as shown in Table 1 below.

【0020】[0020]

【表1】 [Table 1]

【0021】[実施例1]焼却灰70重量%、珪砂1
7.5重量%、べントナイト5重量%、へマタイト5重
量%、コークス2重量%および炭化珪素0.5重量%か
らなる骨材配合原料を、ボールミルを用いて平均粒径1
5μmに混合粉砕した。該粉砕物に水を添加しながら、
パンペレタイザーで直径約5mm〜15mmの球状に造
粒した後、105℃で通風乾燥した。ついで前記乾燥骨
材を煉瓦内径400mm、長さ6000mmで、炉前か
ら2000mm炉尻側に高さ50mmのダムを設けたロ
ータリーキルンに供給して、燃焼ガス中の酸素濃度5%
の雰囲気下で、1000℃で約40分間の第1段階の焼
成を経て、第2段階の焼成を1060℃で約10分間実
施して骨材a(実施例1)を得た。
Example 1 70% by weight of incinerated ash, silica sand 1
An aggregate blending material consisting of 7.5% by weight, 5% by weight of bentonite, 5% by weight of hematite, 2% by weight of coke and 0.5% by weight of silicon carbide was prepared by using a ball mill to obtain an average particle size of 1%.
The mixture was pulverized to 5 μm. While adding water to the ground material,
After granulating into a spherical shape having a diameter of about 5 mm to 15 mm using a pan pelletizer, the resultant was air-dried at 105 ° C. Then, the dried aggregate was supplied to a rotary kiln having a brick inner diameter of 400 mm, a length of 6000 mm, a dam of 2000 mm from the front of the furnace and a height of 50 mm on the side of the furnace, and an oxygen concentration of 5% in the combustion gas.
After the first stage of baking at 1000 ° C. for about 40 minutes under the above atmosphere, the second stage of baking was performed at 1060 ° C. for about 10 minutes to obtain an aggregate a (Example 1).

【0022】得られた骨材aの品質評価するためJIS
A 1110に基づいて乾燥比重と吸水率を、また一
軸圧縮破壊荷重により圧潰強度を測定してその結果を下
記する表2に示す。なお圧潰強度は圧潰試験機によって
直径約10mmの各骨材について測定し、その平均値を
求めた。
JIS to evaluate the quality of the obtained aggregate a
The specific gravity and the water absorption were measured based on A1110, and the crushing strength was measured using a uniaxial compressive breaking load. The results are shown in Table 2 below. The crushing strength was measured for each aggregate having a diameter of about 10 mm by a crushing tester, and the average value was obtained.

【0023】またCaOの含有量や鉛の溶出、SO
しての硫化物の残留量を測定して、下記する表2に示
す。表2から分かる通り、実施例1の骨材aは絶乾比重
が1.75、圧潰強度が70kgf、吸水率が4.5%
であった。なお鉛の溶出量は0.01mg/リットル未
満(基準値0.01mg/リットル以下)で、SO
留量は0.2重量%以下(基準値0.5%以下)であ
り、いずれも基準値をクリアし、またCaO含有量は1
5.05重量%であった。
The content of CaO, the elution of lead, and the residual amount of sulfide as SO 3 were measured and are shown in Table 2 below. As can be seen from Table 2, the aggregate a of Example 1 had an absolute dry specific gravity of 1.75, a crush strength of 70 kgf, and a water absorption of 4.5%.
Met. The lead elution amount was less than 0.01 mg / liter (reference value: 0.01 mg / liter or less), and the residual amount of SO 3 was 0.2% by weight or less (reference value: 0.5% or less). Value and the CaO content is 1
It was 5.05% by weight.

【0024】[実施例2〜5および比較例1〜5]焼却
灰65重量%、珪砂を22.5重量%、第1段階の焼成
を950℃、ついで第2段階の焼成を1100℃とした
以外は実施例1と同様にして骨材b(実施例2)を、珪
砂に替えて石炭灰を22.5重量%とした以外は実施例
2と同様にして骨材c(実施例3)を、焼却灰55重量
%、石炭灰を32.5重量%、第1段階の焼成を103
0℃、ついで第2段階の焼成を1140℃とした以外は
実施例1と同様にして骨材d(実施例4)を、焼却飛灰
67.5重量%、珪砂に替えて頁岩を20重量%、第1
段階の焼成を約1005℃、ついで第2段階の焼成を1
080℃とした以外は実施例1と同様にして骨材e(実
施例5)を、第1段階の焼成を820℃、ついで第2段
階の焼成を1050℃とした以外は実施例1と同様にし
て骨材f(比較例1)を、第1段階の焼成を行わなかっ
た以外は実施例1と同様にして骨材g(比較例2)を、
第1段階の焼成を1055℃、ついで第2段階の焼成を
1140℃とした以外は実施例4と同様にして骨材h
(比較例3)を、第1段階の焼成を1000℃、ついで
第2段階の焼成を1230℃とした以外は実施例5と同
様にして骨材i(比較例4)を、焼却灰75重量%、珪
砂12.5重量%、第1段階の焼成を1000℃、つい
で第2段階の焼成を1050℃とした以外は実施例1と
同様にして骨材j(比較例5)をそれぞれ得た。
Examples 2 to 5 and Comparative Examples 1 to 5 65% by weight of incinerated ash, 22.5% by weight of silica sand, 950 ° C. in the first stage firing, and 1100 ° C. in the second stage firing Aggregate c (Example 3) in the same manner as Example 2 except that the aggregate b (Example 2) was changed to silica sand and coal ash was changed to 22.5% by weight in the same manner as in Example 1. 55% by weight of incinerated ash, 32.5% by weight of coal ash,
Aggregate d (Example 4) was replaced with 67.5% by weight of incinerated fly ash, and shale was replaced with 20% by weight of silica sand in the same manner as in Example 1 except that 0 ° C. and then the firing in the second stage were performed at 1140 ° C. %, First
The stage baking was about 1005 ° C., then the second stage baking was 1
Aggregate e (Example 5) in the same manner as in Example 1 except that the temperature was set to 080 ° C., and the same as Example 1 except that the first-stage firing was set to 820 ° C. and then the second-stage firing was set to 1050 ° C. Aggregate f (Comparative Example 1), and aggregate g (Comparative Example 2) in the same manner as in Example 1 except that the first stage firing was not performed.
Aggregate h in the same manner as in Example 4 except that the first stage firing was 1055 ° C. and then the second stage firing was 1140 ° C.
(Comparative Example 3) Aggregate i (Comparative Example 4) was prepared in the same manner as in Example 5 except that the first-stage firing was performed at 1000 ° C. and then the second-stage firing was performed at 1230 ° C. %, Silica sand 12.5% by weight, an aggregate j (Comparative Example 5) was obtained in the same manner as in Example 1 except that the first stage firing was performed at 1000 ° C., and then the second stage firing was performed at 1050 ° C. .

【0025】得られた実施例2〜5および比較例1〜5
による骨材b〜jについて実施例1と同様の測定を行
い、その評価結果と鉛の溶出量、SOの残留量および
CaOの含有量を下記する表2に併せて示す。
The obtained Examples 2 to 5 and Comparative Examples 1 to 5
The same measurement as in Example 1 was performed for the aggregates b to j according to Example 1. The evaluation results and the amount of lead eluted, the amount of residual SO 3 and the content of CaO are also shown in Table 2 below.

【0026】[0026]

【表2】 [Table 2]

【0027】表2から分かる通り、実施例2〜5による
骨材b〜eは絶乾比重は1.55〜1.75、圧潰強度
は63〜100kgf、吸水率は2.4〜4.0%であ
った。これに対して、比較例1の骨材fは吸水率が6.
5%であり、かつ鉛溶出量が0.08mg/リットル、
SO残留量が1.97重量%と基準値をクリアせず、
また比較例2の骨材gはSO残留量が1.99重量%
と多く、さらに比較例3の骨材hは絶乾比重が2.05
で、かつ鉛溶出量が0.05mg/リットル、SO
留量が1.54重量%と基準値をクリアしなかった。な
お比較例4の骨材iはメルトダウンによって骨材化でき
なかった。また比較例5の骨材jはCaO含有量が16
重量%を超え、かつ圧潰強度、吸水率ともに所望の物性
を持つものではなかった。
As can be seen from Table 2, the aggregates b to e according to Examples 2 to 5 have an absolute dry specific gravity of 1.55 to 1.75, a crush strength of 63 to 100 kgf, and a water absorption of 2.4 to 4.0. %Met. In contrast, the aggregate f of Comparative Example 1 had a water absorption of 6.
5% and a lead elution amount of 0.08 mg / liter,
The residual amount of SO 3 was 1.97% by weight and did not meet the standard value.
In the aggregate g of Comparative Example 2, the residual amount of SO 3 was 1.99% by weight.
And the aggregate h of Comparative Example 3 had an absolute dry specific gravity of 2.05.
And the lead elution amount was 0.05 mg / liter and the residual amount of SO 3 was 1.54% by weight, which did not meet the standard values. Aggregate i of Comparative Example 4 could not be converted to an aggregate by meltdown. The aggregate j of Comparative Example 5 had a CaO content of 16
%, And neither crushing strength nor water absorption had desired physical properties.

【0028】[0028]

【発明の効果】以上述べた通り本発明によれば、ごみ焼
却灰を主原料として無害で高強度、かつ吸水率の低い人
工軽量骨材を効率的に生産することができる。したがっ
て産業廃棄物を埋め立て処理することなく、特に土木・
建築材料などに再資源化できることから、環境保全と資
源有効利用において極めて有用なものである。
As described above, according to the present invention, it is possible to efficiently produce harmless, high-strength, low-water-absorbing artificial lightweight aggregates using waste incineration ash as a main raw material. Therefore, without having to reclaim industrial waste,
Since it can be recycled into building materials, it is extremely useful in environmental conservation and effective use of resources.

フロントページの続き (72)発明者 加岳井 敦 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 (72)発明者 川本 孝次 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内Continuing on the front page (72) Inventor Atsushi Katakei 3-18-5, China, Ichikawa, Chiba Sumitomo Metal Mining Co., Ltd. Central Research Laboratory (72) Inventor Koji Kawamoto 3-18-5, China, Ichikawa, Chiba Sumitomo Metal Mining Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ごみ焼却灰に、粘結剤、発泡剤、還元剤
と、さらに組成制御剤としてシリカまたはアルミナのう
ちの少なくとも1種とを混合して得られた混合物を粉砕
した後、水を加えて成型し、ついで該成型体に対して8
50℃〜1050℃の温度範囲による第1段階と、10
60℃〜1200℃の温度範囲による第2段階との2段
階焼成を実施することを特徴とする人工軽量骨材の製造
方法。
1. A mixture obtained by mixing incineration ash with a binder, a foaming agent, a reducing agent, and at least one of silica and alumina as a composition controlling agent, is pulverized, and then ground. And molded, and then 8
A first stage with a temperature range of 50 ° C to 1050 ° C;
A method for producing an artificial lightweight aggregate, comprising performing a two-stage firing including a second stage in a temperature range of 60C to 1200C.
【請求項2】 前記成型体を乾燥した後に前記2段階焼
成を実施することを特徴とする請求項1記載の人工軽量
骨材の製造方法。
2. The method for producing an artificial lightweight aggregate according to claim 1, wherein the two-stage firing is performed after the molded body is dried.
【請求項3】 前記成型体の焼成骨材中のカルシウム含
有量が、酸化物換算で16重量%以下であることを特徴
とする請求項1または2記載の人工軽量骨材の製造方
法。
3. The method for producing an artificial lightweight aggregate according to claim 1, wherein the calcium content in the fired aggregate of the molded body is 16% by weight or less in terms of oxide.
【請求項4】 前記発泡剤が、酸化鉄または炭化珪素の
うちの少なくとも1種であることを特徴とする請求項1
〜3のいずれか1項記載の人工軽量骨材の製造方法。
4. The method according to claim 1, wherein the foaming agent is at least one of iron oxide and silicon carbide.
The method for producing an artificial lightweight aggregate according to any one of claims 1 to 3.
【請求項5】 前記還元剤が炭材であることを特徴とす
る請求項1〜4のいずれか1項記載の人工軽量骨材の製
造方法。
5. The method for producing an artificial lightweight aggregate according to claim 1, wherein the reducing agent is a carbonaceous material.
【請求項6】 請求項1〜5のいずれか1項記載の製造
方法により得られ、かつ絶乾比重が1.5以上で2.0
未満、一軸圧縮破壊荷重が50kgf以上、吸水率が5
%以下であることを特徴とする人工軽量骨材。
6. The method of claim 1, wherein the absolute specific gravity is 1.5 or more and 2.0 or more.
Less than, uniaxial compression breaking load is 50 kgf or more, water absorption is 5
% Artificial artificial aggregate, characterized in that the amount is not more than 10%.
JP10904799A 1999-04-16 1999-04-16 Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby Pending JP2000302498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10904799A JP2000302498A (en) 1999-04-16 1999-04-16 Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10904799A JP2000302498A (en) 1999-04-16 1999-04-16 Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby

Publications (1)

Publication Number Publication Date
JP2000302498A true JP2000302498A (en) 2000-10-31

Family

ID=14500269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10904799A Pending JP2000302498A (en) 1999-04-16 1999-04-16 Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby

Country Status (1)

Country Link
JP (1) JP2000302498A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1549427A1 (en) * 2002-08-23 2005-07-06 James Hardie International Finance B.V. Synthetic hollow microspheres
JP2008536781A (en) * 2005-01-14 2008-09-11 ベサニー,ソフィア Firing aggregate containing IBA and low-calcium silicon aluminum material and method for producing the aggregate
US7658794B2 (en) 2000-03-14 2010-02-09 James Hardie Technology Limited Fiber cement building materials with low density additives
US7744689B2 (en) 2005-02-24 2010-06-29 James Hardie Technology Limited Alkali resistant glass compositions
US7897534B2 (en) 2003-10-29 2011-03-01 James Hardie Technology Limited Manufacture and use of engineered carbide and nitride composites
AU2004238392B2 (en) * 2003-05-16 2011-04-07 James Hardie Technology Limited Methods for producing low density products
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
US8609244B2 (en) 2005-12-08 2013-12-17 James Hardie Technology Limited Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
CN112209674A (en) * 2019-07-11 2021-01-12 佛山市东鹏陶瓷有限公司 Preparation method and device of concrete plate with adjustable light aggregate position
CN112209737A (en) * 2019-07-11 2021-01-12 佛山市东鹏陶瓷有限公司 Light aggregate concrete plate with smooth and flat surface and preparation method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658794B2 (en) 2000-03-14 2010-02-09 James Hardie Technology Limited Fiber cement building materials with low density additives
US8603239B2 (en) 2000-03-14 2013-12-10 James Hardie Technology Limited Fiber cement building materials with low density additives
US8182606B2 (en) 2000-03-14 2012-05-22 James Hardie Technology Limited Fiber cement building materials with low density additives
US7727329B2 (en) 2000-03-14 2010-06-01 James Hardie Technology Limited Fiber cement building materials with low density additives
US7666505B2 (en) 2002-08-23 2010-02-23 James Hardie Technology Limited Synthetic microspheres comprising aluminosilicate and methods of making same
EP1549427A1 (en) * 2002-08-23 2005-07-06 James Hardie International Finance B.V. Synthetic hollow microspheres
US7651563B2 (en) 2002-08-23 2010-01-26 James Hardie Technology Limited Synthetic microspheres and methods of making same
EP1549427A4 (en) * 2002-08-23 2008-04-16 James Hardie Int Finance Bv Synthetic hollow microspheres
US7878026B2 (en) 2002-08-23 2011-02-01 James Hardie Technology Limited Synthetic microspheres and methods of making same
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
AU2004238392B2 (en) * 2003-05-16 2011-04-07 James Hardie Technology Limited Methods for producing low density products
US7897534B2 (en) 2003-10-29 2011-03-01 James Hardie Technology Limited Manufacture and use of engineered carbide and nitride composites
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
JP2008536781A (en) * 2005-01-14 2008-09-11 ベサニー,ソフィア Firing aggregate containing IBA and low-calcium silicon aluminum material and method for producing the aggregate
US7744689B2 (en) 2005-02-24 2010-06-29 James Hardie Technology Limited Alkali resistant glass compositions
US8609244B2 (en) 2005-12-08 2013-12-17 James Hardie Technology Limited Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
CN112209674A (en) * 2019-07-11 2021-01-12 佛山市东鹏陶瓷有限公司 Preparation method and device of concrete plate with adjustable light aggregate position
CN112209737A (en) * 2019-07-11 2021-01-12 佛山市东鹏陶瓷有限公司 Light aggregate concrete plate with smooth and flat surface and preparation method thereof
CN112209674B (en) * 2019-07-11 2022-02-22 佛山市东鹏陶瓷有限公司 Preparation method and device of concrete plate with adjustable light aggregate position

Similar Documents

Publication Publication Date Title
US10207954B2 (en) Synthetic aggregate from waste materials
US7655088B2 (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
KR100562169B1 (en) Manufacturing method of lightweight aggregate using ash from municipal and industrial solid waste incinerators
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JPH11171628A (en) Cement composition using burnt ash of sewage sludge, use of the same cement composition and formed product and structure using the same composition
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
JP2006255609A (en) Method for manufacturing sintered product and sintered product
JP2007261880A (en) Sintered matter production method
JP2001253740A (en) Artificial aggregate and its production process
JP2003012355A (en) Method for producing artificial lightweight aggregate
JPH08301641A (en) Production of artificial lightweight aggregate
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
CN104676595B (en) Method for lowering quantity and toxicity of flying ash of household garbage incineration plant
JPH1095648A (en) Production of artificial aggregate
JPH1029841A (en) Production of artificial aggregate
JPH11335146A (en) Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
JPH10226547A (en) Production of artificial aggregate
JP2000178084A (en) Production of artificial lightweight aggregate and the artificial lightweight aggregate obtained thereby
JP2000247701A (en) Production of artificial lightweight aggregate and artificial aggregate
JP3653300B2 (en) Artificial aggregate and method for producing the same
JP2001163648A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate
JP2005281075A (en) Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate
JP2003095713A (en) Method of producing inorganic compact