JP2023142727A - Composition for calcination body and production method of calcination body using the same - Google Patents

Composition for calcination body and production method of calcination body using the same Download PDF

Info

Publication number
JP2023142727A
JP2023142727A JP2022049771A JP2022049771A JP2023142727A JP 2023142727 A JP2023142727 A JP 2023142727A JP 2022049771 A JP2022049771 A JP 2022049771A JP 2022049771 A JP2022049771 A JP 2022049771A JP 2023142727 A JP2023142727 A JP 2023142727A
Authority
JP
Japan
Prior art keywords
firing
weight
parts
water absorption
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022049771A
Other languages
Japanese (ja)
Inventor
裕光 幅口
Hiromitsu Habaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022049771A priority Critical patent/JP2023142727A/en
Publication of JP2023142727A publication Critical patent/JP2023142727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

To provide a production method of a calcination body which does not require a complicated step, can make industrial solid waste into resources by a simple production method, and can produce a calcination body which is excellent in physical properties, for example, it is possible to achieve, a calcination body whose relative density is 2.5 or greater in a calcination condition of a relatively low temperature under atmosphere, the calcination body being grain bodies whose water absorption is 3% or lower, preferably 1% or lower, and whose diameter is 12 mm, and artificial aggregate whose collapse intensity is 2500 N or greater and preferably 3000 N or greater.SOLUTION: There is provided a calcination composition including, to (a) 100 pts.wt. of blast furnace slug fine powder, as a main material, as a medium fusion object for promoting a densified state by calcination, (b) 5 to 20 pts.wt. of sewage sludge incineration ash.SELECTED DRAWING: None

Description

本発明は、焼成体用組成物及びこれを用いた焼成体の製造方法に関する。特に、産業廃棄物である高炉スラグ、下水汚泥焼却灰、電気炉酸化スラグを使用した焼成体用組成物及びこれを用いた焼結体の製造方法に関する。 The present invention relates to a composition for a fired body and a method for producing a fired body using the same. In particular, the present invention relates to a composition for a sintered body using industrial wastes such as blast furnace slag, sewage sludge incineration ash, and electric furnace oxidized slag, and a method for producing a sintered body using the same.

高炉スラグは、潜在水硬性を有し水と反応して固まり、時間とともに強度が向上するため、支持力が期待でき、アルカリ骨材反応を生じる恐れがなく、さらには粘土・有機不純物を含まないため天然骨材と同様にコンクリート用粗骨材としても利用され、コンリート細骨材としての利用が進んでいる。更に路盤材等にも用いられている。 Blast furnace slag has latent hydraulic properties and solidifies when it reacts with water, increasing its strength over time, so it can be expected to have supporting capacity, has no risk of alkaline aggregate reaction, and does not contain clay or organic impurities. Therefore, like natural aggregate, it is also used as a coarse aggregate for concrete, and its use as a fine concrete aggregate is progressing. It is also used for roadbed materials, etc.

一方、下水処理場で発生する下水汚泥は、汚泥処理施設における処理工程で脱水汚泥となり、最終的にその脱水汚泥を減容化する目的で焼却炉により焼却して灰(以下、「下水汚泥焼却灰」という。)として排出されている。この下水汚泥焼却灰については、その多くが埋立て条件を満たすために事前に一定の処理を行って、埋立て処分をしている。 On the other hand, sewage sludge generated at a sewage treatment plant becomes dehydrated sludge during the treatment process at a sludge treatment facility, and finally, the dehydrated sludge is incinerated in an incinerator to reduce its volume to ash (hereinafter referred to as "sewage sludge incineration"). It is discharged as "ash"). Most of this sewage sludge incineration ash is disposed of in a landfill after undergoing certain treatments in order to meet the landfill conditions.

また、電気炉酸化スラグ及び銅、亜鉛の非金属精錬過程で発生する非鉄金属スラグは、酸化鉄の化学成分を多く含有するものであるが、道路舗装の路盤材及びアスファルトコンクリート舗装用骨材、土工用材、地盤改良用材等として資源化利用されている。 In addition, electric furnace oxidized slag and non-ferrous metal slag generated in the non-metal refining process of copper and zinc contain a large amount of iron oxide chemical components, and are used as road base material for road pavements, asphalt concrete pavement aggregates, It is used as a resource for earthworks, ground improvement, etc.

なお、高炉スラグをはじめ、製鋼スラグ並びに非鉄金属スラグの資源化需要は、景気状況や公共投資予算の施行事業内容の影響を受ける要素が高いことから、産業廃棄物の更なる有効利用の研究及び技術開発が喫緊の課題である。これらの有効利活用の生産環境の実現は、社会課題の一つである産業廃棄物の資源化による循環型社会の形成に寄与し得る。更に、埋立て処分場の延命化に繋がることが期待される。 Furthermore, demand for resource recovery of blast furnace slag, steelmaking slag, and non-ferrous metal slag is highly influenced by economic conditions and the content of public investment budget implementation projects, so research into further effective use of industrial waste and Technology development is an urgent issue. Achieving a production environment that makes effective use of these materials can contribute to the formation of a recycling-oriented society by turning industrial waste into resources, which is one of the social issues. Furthermore, it is expected that this will lead to extending the lifespan of landfill sites.

非特許文献1によれば、現在生産されている高炉スラグ粗骨材の物理的性質は、比重2.4以上、吸水率4.0%以下である。また、焼結体でないため、現状の高炉スラグ粗骨材を使用したコンクリートの圧縮強度は40N/mm2(91日圧縮強度)程度である(鐵鋼スラグ協会)。本発明の焼結した人工骨材の使用用途は、主に高強度コンクリート粗骨材に使用することを目的としているため、現在生産されている高炉スラグ粗骨材と使用用途において競合しない。すると、循環資源の活用の妨げとならない。 According to Non-Patent Document 1, the physical properties of currently produced blast furnace slag coarse aggregate are a specific gravity of 2.4 or more and a water absorption rate of 4.0% or less. Furthermore, since it is not a sintered body, the compressive strength of concrete using current blast furnace slag coarse aggregate is about 40 N/mm2 (91-day compressive strength) (Steel Slag Association). Since the sintered artificial aggregate of the present invention is mainly intended for use as a high-strength concrete coarse aggregate, it does not compete with currently produced blast furnace slag coarse aggregate. Then, there will be no hindrance to the utilization of recyclable resources.

以前より、高炉スラグを利用した焼結体や人工骨材の製造方法が考案されている。例えば、特許文献1には、高炉スラグ焼結体を、補強繊維を用いて軽量化した建設資材の発明が記載される。また、特許文献2には、高炉スラグ及びフライアッシュを主原料とし、これにベントナイト等の粘土類及び所望により炭化珪素を添加した混合原料を造粒・成形し、焼成してなる人工軽量骨材が記載される。しかし、強度や低吸水率特性は不十分であった。 Methods for producing sintered bodies and artificial aggregates using blast furnace slag have been devised for some time. For example, Patent Document 1 describes an invention of a construction material in which a blast furnace slag sintered body is made lighter by using reinforcing fibers. In addition, Patent Document 2 describes an artificial lightweight aggregate made by granulating and molding a mixed raw material made of blast furnace slag and fly ash as main raw materials, to which clay such as bentonite and optionally silicon carbide is added, and then fired. is described. However, the strength and low water absorption characteristics were insufficient.

産業廃棄物を主原料とした焼成用組成物を焼成して人工骨材とするとき、例えば、焼成温度1200℃程度の低温焼成によって、平均粒径約12mm程度の焼成体を得て、吸水率3.0%以下で、圧壊強度が3000Nを超えるものが望まれる。しかし、この条件の高炉スラグを主材とする利用はなかった。さらに、循環型社会形成を目的に環境負荷低減に寄与する改善材料としても土木・建築資材に広く利用したい。 When firing a firing composition made mainly of industrial waste to produce artificial aggregate, for example, a fired body with an average particle size of about 12 mm is obtained by firing at a low temperature of about 1200°C, and the water absorption rate is It is desired that the content is 3.0% or less and the crushing strength exceeds 3000N. However, there has been no use of blast furnace slag under these conditions as the main material. Furthermore, we would like to use it widely in civil engineering and construction materials as an improvement material that contributes to reducing environmental impact with the aim of creating a recycling-oriented society.

國府勝郎 技術フォーラム 資源の有効利用とコンクリート スラグ骨材を用いたコンクリート コンクリート工学 vol.34 N0.3 1996/3 88-93Katsuro Kokufu Technical Forum Effective use of resources and concrete Concrete using slag aggregate Concrete engineering vol.34 No.3 1996/3 88-93

特開平04-042872号公報Japanese Patent Application Publication No. 04-042872 特開平09-077543号公報Japanese Patent Application Publication No. 09-077543

本発明は、煩雑な工程を経ることなく、簡単な製造方法で産業廃棄物の資源化ができ、物性の優れた焼成体の製造方法を実現することを課題とした。例えば、大気下の比較的低温度の焼成条件で、比重2.5以上の焼成体で、吸水率3%以下、好ましくは1%以下、12mm径の粒体で、圧壊強度は、2500N以上で、好ましくは3000N以上の人工骨材、及び土木・建築資材、並びに大気下の焼成条件で、比重2.1乃至2.5の焼成体で、吸水率10%以下で、実用強度の土木・建築資材の実現が課題である。 An object of the present invention is to realize a method for producing a fired body with excellent physical properties, which enables recycling of industrial waste by a simple production method without going through complicated steps. For example, under relatively low temperature firing conditions in the atmosphere, a fired body with a specific gravity of 2.5 or more, a water absorption rate of 3% or less, preferably 1% or less, a 12mm diameter granule, and a crushing strength of 2500N or more. , preferably an artificial aggregate of 3000N or more, and a civil engineering/construction material, and a fired body with a specific gravity of 2.1 to 2.5 under atmospheric firing conditions, a water absorption rate of 10% or less, and a practical strength for civil engineering/construction. The challenge is to realize the materials.

人工骨材は、丸みを持った形状で、適度の凹凸を有し、高強度、低吸水率で、緻密な骨材であって、高強度コンクリートの細骨材及び粗骨材が望まれる。 The artificial aggregate has a rounded shape, moderate unevenness, high strength, low water absorption rate, and dense aggregate, and fine aggregate and coarse aggregate for high-strength concrete are desired.

また、人工骨材の表面は、微細な凹凸として、骨材界面とセメントペーストとの付着を高め、最大寸法を20mmや、25mmとした粗骨材の製造にも対応でき、水セメント比を低減できるものが望まれる。 In addition, the surface of the artificial aggregate has fine irregularities that enhance the adhesion between the aggregate interface and the cement paste, making it possible to manufacture coarse aggregate with a maximum dimension of 20 mm or 25 mm, reducing the water-cement ratio. What is possible is desired.

発明者は、鋭意検討の結果、次発明を提供するものである。
[1] 高炉スラグ微粉末(a)100重量部を主材に、焼成による緻密化を促進する媒融物として、下水汚泥焼却灰(b)を5重量部~20重量部、含有することを特徴とする焼成用組成物、を提供する。
[2] 高炉スラグ微粉末(a)100重量部を主材に、焼成による緻密化を促進する媒融物として、下水汚泥焼却灰(b)を5重量部~20重量部と、酸化鉄含有成分として、電気炉酸化スラグ、黒浜(磁鉄鉱)、ベンガラの内、選ばれた1種以上(c)と、を含むことを特徴とする焼成用組成物、を提供する。
[3] [1]又は[2]に記載の焼成用組成物に、結合剤を加えて、造粒成形し、又は型枠内で加圧成形した後、大気中で焼成して得られることを特徴とする焼成体の製造法、を提供する。
[4] 前記媒融物中の酸化鉄成分(c)が、焼成用組成物中3重量部~20重量部であることを特徴とする[3]に記載の焼成体の製造法、を提供する。
[5] 前記媒融物中の下水汚泥焼却灰(b)が、焼成用組成物中、5重量部~10重量部であり、酸化鉄成分(c)が、焼成用組成物中5重量部~10重量部であることを特徴とする[2]に記載の焼成体の製造法、を提供する。
[6] 造粒成形した粒形が、6mm~24mmの造粒成形物であり、大気中で焼成して人工骨材として用いることを特徴とする[3]乃至[5]のいずれかに記載の焼成体の製造法、を提供する。
[7] 大気中の焼成温度が1180℃~1220℃であり、焼成後の比重が2.5以上、吸水率が3.0%以下、圧壊強度が3000N以上であることを特徴とする[3] 乃至[6]記載の焼成体の製造方法、を提供する。
As a result of intensive study, the inventor provides the following invention.
[1] The main material is 100 parts by weight of pulverized blast furnace slag powder (a), and 5 to 20 parts by weight of sewage sludge incineration ash (b) is included as a medium to promote densification by firing. A firing composition characterized by:
[2] Contains 100 parts by weight of blast furnace slag powder (a) as the main material, 5 to 20 parts by weight of sewage sludge incineration ash (b) as a medium to promote densification by firing, and iron oxide. Provided is a firing composition characterized by containing, as a component, one or more selected from among electric furnace oxidized slag, Kurohama (magnetite), and red red iron (c).
[3] Obtained by adding a binder to the firing composition described in [1] or [2], granulation molding or pressure molding in a mold, and then firing in the air. Provided is a method for producing a fired body characterized by:
[4] Provides the method for producing a fired body according to [3], wherein the iron oxide component (c) in the medium is 3 to 20 parts by weight in the firing composition. do.
[5] The sewage sludge incineration ash (b) in the medium melt is 5 to 10 parts by weight in the firing composition, and the iron oxide component (c) is 5 parts by weight in the firing composition. Provided is a method for producing a fired body according to [2], characterized in that the amount is 10 parts by weight.
[6] According to any one of [3] to [5], the granulated product has a particle size of 6 mm to 24 mm, and is characterized in that it is used as an artificial aggregate by being fired in the atmosphere. Provided is a method for producing a fired body.
[7] The firing temperature in the atmosphere is 1180°C to 1220°C, the specific gravity after firing is 2.5 or more, the water absorption is 3.0% or less, and the crushing strength is 3000N or more [3 ] to [6] provide a method for producing a fired body.

本発明は、各種産業廃棄物のうち、下水汚泥焼却灰、酸化鉄成分等が、主材の高炉スラグの焼成に際し、緻密化を促進させる媒融物として機能し、特に下水汚泥焼却灰が高炉スラグの平均粒径を上回る平均粒径を有するものであっても、焼成による緻密化が可能であり、好適であり、産業廃棄物利用をさらに促進することを見出したものである。 The present invention provides that among various industrial wastes, sewage sludge incineration ash, iron oxide components, etc. function as a medium that promotes densification during the firing of blast furnace slag, which is the main material, and in particular, sewage sludge incineration ash is It has been discovered that even if the slag has an average particle diameter exceeding that of slag, it can be densified by firing, which is suitable, and further promotes the use of industrial waste.

高炉スラグ
化学組成の一般値を表1にしめす。粒径の範囲が1μm~100μmで、粒径100μm以下の粒径の重量累計が90%以上であることが好ましい。平均粒径は、9~12μmであることが望ましい。
Table 1 shows general values for the chemical composition of blast furnace slag. It is preferable that the particle size range is 1 μm to 100 μm, and the cumulative weight of particles with a particle size of 100 μm or less is 90% or more. The average particle size is preferably 9 to 12 μm.

下水汚泥焼却灰
脱水汚泥を減容化する目的で高温焼却炉により焼却して灰にし、発生した灰を集塵機で捕集したものである。K2O量の影響が大である。その含有範囲は、1.9~3.6重量%が好ましい。下水汚泥焼却灰の粒径は、粒径の範囲が1μm~300μmで、粒径100μm以下の粒径の重量累計が90%以上であることが好ましい。下水汚泥焼却灰の主要成分の代表値を表1に示した。
Sewage sludge incineration ash Dehydrated sludge is incinerated into ash in a high-temperature incinerator to reduce its volume, and the generated ash is collected with a dust collector. The amount of K2O has a large influence. The content range is preferably 1.9 to 3.6% by weight. The particle size of the sewage sludge incineration ash is preferably in the range of 1 μm to 300 μm, and the cumulative weight of particles with a particle size of 100 μm or less is 90% or more. Table 1 shows representative values of the main components of sewage sludge incineration ash.

下水汚泥焼却灰は、単独でも、酸化鉄成分と用いるときも、高炉スラグ100重量部に対して、5重量%以上、20重量部以下の添加が好ましい。 Sewage sludge incineration ash is preferably added in an amount of 5% by weight or more and 20 parts by weight or less with respect to 100 parts by weight of blast furnace slag, either alone or when used with an iron oxide component.

酸化鉄含有成分
酸化鉄含有成分として、電気炉酸化スラグ、磁鉄鉱粉末が好ましい。鉄酸化物系の結晶質の鉱物、あるいはガラス組成で良いが、化学成分表示で、FeOと表示される部位を有する酸化鉄、FeOを含む複合酸化物、又は水酸化鉄やその脱水和物である酸化鉄含有成分が好ましい。Fe・FeO(磁鉄鉱:Fe)で表されるものを含む。しかし、酸化が進んだヘマタイトは含まない。本願では、還元雰囲気になりにくい条件下での焼成であっても発泡の原因となるガス発生が比較的抑制できて、焼成温度等の焼成条件が制御しやすく、目指す比重で比較的高強度の焼成体が得られる。酸化鉄含有成分は、媒融剤として、下水汚泥焼却灰ともに、高炉スラグ100重量部に対して、5重量部以上、20重量部以下用いることが好ましい。
Iron oxide-containing component As the iron oxide-containing component, electric furnace oxidized slag and magnetite powder are preferred. Iron oxide-based crystalline minerals or glass compositions may be used, but iron oxides with a site indicated as FeO in the chemical composition display, composite oxides containing FeO, iron hydroxide or its dehydrates may be used. Certain iron oxide containing components are preferred. Including those represented by Fe 2 O 3 .FeO (magnetite: Fe 3 O 4 ). However, it does not include highly oxidized hematite. In this application, even when firing under conditions that are difficult to create a reducing atmosphere, gas generation that causes foaming can be relatively suppressed, firing conditions such as firing temperature can be easily controlled, and relatively high strength with a target specific gravity can be achieved. A fired body is obtained. The iron oxide-containing component is preferably used as a fluxing agent in an amount of 5 parts by weight or more and 20 parts by weight or less based on 100 parts by weight of blast furnace slag for both sewage sludge and incineration ash.

電気炉酸化スラグ
鉄スクラップを溶解、精錬する際に発生するスラグのうち、酸化精錬工程から排出される酸化スラグである。徐冷スラグも急冷スラグも含む。還元スラグように遊離石灰を多量に含まず、比較的安定な組成であり、FeO成分を有することが条件である。
Electric Furnace Oxidized Slag Among the slags generated when iron scrap is melted and refined, this is oxidized slag discharged from the oxidation refining process. It includes both slowly cooled slag and rapidly cooled slag. The conditions are that it does not contain a large amount of free lime like reduced slag, has a relatively stable composition, and has an FeO component.

磁鉄鉱粉末
天然磁鉄鉱の化学成分Feを有する。これを含有する黒浜土等の顔料を用いることも可能である。実験例では、黒浜土顔料(以下、黒浜土。)、ベンガラを用いた。
Magnetite powder has the chemical component of natural magnetite Fe3O4 . It is also possible to use pigments containing this, such as Kurohama soil. In the experimental example, Kurohama soil pigment (hereinafter referred to as Kurohama soil) and red iron oxide were used.

電気炉酸化スラグ、磁鉄鉱粉末は、高炉スラグの平均粒径より小さい平均粒径を有することが好ましい。媒融剤としての効果を発揮しやすいからである。粒度分布としては、特に、200メッシュ以下(74μm目開き篩全通)であることが好ましい。 It is preferable that the electric furnace oxidized slag and magnetite powder have an average particle size smaller than that of blast furnace slag. This is because it is easy to exhibit its effect as a medium. The particle size distribution is particularly preferably 200 mesh or less (passed through a 74 μm mesh sieve).

造粒成形し、又は型枠内で加圧成形した後、大気中で焼成して得られることを特徴とする焼成体の製造法であるが、造粒成形は、噴霧ドライ方式、パンペレタイジング方式等であり、加圧成形する型枠の形状は、平板、矩形体、直方体等で、土木建築材料としての形状に対応するものである。 This is a method for producing a fired product characterized by granulation molding or pressure molding in a mold and then firing in the atmosphere. The shape of the formwork for pressure forming is a flat plate, a rectangular body, a rectangular parallelepiped, etc., and corresponds to the shape of a civil engineering and construction material.

結合剤
結合剤は、各種の配合材料を混練成形した後に、乾燥して焼成の炙りに入るまでの一連の製造工程間で、成形品のハンドリング中における破損を防止する目的で配合の材料に添加するものであり、例えば澱粉糊、廃糖蜜、メチルセルローズ、カルボキシルメチルセルローズ、ポリビニルアルコール、酢酸ビニル、デキストリン、パルプ廃液等の有機質材料のほかに、ベントナイト、珪酸ソーダ、珪酸カリ、燐酸アルミニウム等の無機質材料等も使用できる。
Binder Binders are added to the compounded materials during a series of manufacturing processes from kneading and forming various compounded materials to drying and baking to prevent breakage during handling of the molded product. For example, in addition to organic materials such as starch paste, blackstrap molasses, methyl cellulose, carboxyl methyl cellulose, polyvinyl alcohol, vinyl acetate, dextrin, and pulp waste liquid, inorganic materials such as bentonite, sodium silicate, potassium silicate, and aluminum phosphate. Materials etc. can also be used.

造粒成形、型枠内加圧成形には、水や有機溶媒を用いることができる。加圧成形には、自重による放置成形が含まれる。また、本願発明での焼成は大気中で行い、還元性雰囲気を必要としない。また、炉形式で、一部還元雰囲気となることを妨げるものではない。 Water or an organic solvent can be used for granulation molding and pressure molding within a mold. Pressure molding includes left molding using its own weight. Furthermore, the firing in the present invention is performed in the air and does not require a reducing atmosphere. In addition, this does not preclude the use of a furnace to create a partially reducing atmosphere.

電気炉酸化スラグ、磁鉄鉱粉末、ベンガラから選ばれた1種以上(c)が、焼成用組成物中の高炉スラグ100重量部に対して、3重量部~20重量部であって、3重量部~10重量部がより好ましい。 One or more types (c) selected from electric furnace oxidized slag, magnetite powder, red iron oxide is present in an amount of 3 to 20 parts by weight, based on 100 parts by weight of blast furnace slag in the firing composition, and 3 parts by weight. ~10 parts by weight is more preferred.

造粒成形した粒径が、6mm~24mm程度の造粒成形物であり、大気中で焼成して圧壊強度が大であり、比重、吸水率が適切であれば、人工骨材等に適している。人工骨材に特化すれば、造粒する粒径が6mm未満及び24mmを超えるとコンクリート用骨材の粗骨材の粒径範囲である13mmから20mmの範囲を焼成造粒物がその粒径を逸脱するからである。24mmより大きいと焼成に時間がかかり、6mmより小さいと実用性に欠けるからである。なお、この人工骨材は製造に使用する材料が、高炉スラグの水砕微粉末を主材としていることから、コンクリート骨材に使用してもアルカリシリカ反応(ASR)は、起きにくい。 If the granulated product has a particle size of about 6 mm to 24 mm, has high crushing strength when fired in the atmosphere, and has an appropriate specific gravity and water absorption rate, it is suitable for artificial aggregate, etc. There is. If we specialize in artificial aggregates, if the particle size to be granulated is less than 6 mm or greater than 24 mm, then the fired granules will have a particle size in the range of 13 mm to 20 mm, which is the particle size range of coarse aggregate for concrete. This is because it deviates from the This is because if it is larger than 24 mm, it takes time to bake, and if it is smaller than 6 mm, it is impractical. In addition, since the material used for manufacturing this artificial aggregate is mainly granulated powder of blast furnace slag, alkali-silica reaction (ASR) is unlikely to occur even when used as concrete aggregate.

高炉スラグと、下水汚泥焼却灰等の媒融物を有する焼成用組成物を、造粒成形し、又は型枠内で加圧成形して焼成した。大気中の焼成温度は、1180℃~1220℃であり、焼成後の比重が2.1~2.4であることが好ましく、また、2.5以上であることが更に好ましい。この範囲で安定的な焼成が可能であるからである。 A firing composition containing blast furnace slag and a medium such as sewage sludge incineration ash was granulated or press-molded in a mold and fired. The firing temperature in the atmosphere is 1180° C. to 1220° C., and the specific gravity after firing is preferably 2.1 to 2.4, more preferably 2.5 or more. This is because stable firing is possible within this range.

人工骨材としての吸水率
本願発明を人工骨材として用いるとき、1190℃~1210℃の焼成温度で、吸水率が3.0%以下であることが好ましい。粒状の人工骨材では、水/セメント比を低く設定することが可能となり、固化体の調製やその制御が容易となり、セメント固化体の物性にも良い影響があるからである。
Water absorption rate as artificial aggregate When the present invention is used as an artificial aggregate, the water absorption rate is preferably 3.0% or less at a firing temperature of 1190°C to 1210°C. This is because granular artificial aggregate allows the water/cement ratio to be set low, making it easier to prepare and control the solidified material, and having a positive effect on the physical properties of the cement solidified material.

他の用途での吸水率
人工骨材用途以外の土木建築用途での焼成体の利用及び活用は、比重2.1程度で吸水率を12%超と高めに設定して緑化の際の土壌保水材料に使用することができるが、吸水率を3%以下にすることによって、人工骨材以外にも防犯砂利として、敷地内に撒きだして使用した場合には、人が歩き難く、高い音がするので防犯効果が期待できる。また、下水処理過程の施設で第二沈殿池の処理水をさらに綺麗にする、ろ過施設におけるろ過材として、自然石に換えて使用することができる。このとき、材料には、高い強度(3000N以上)が求められる。
Water absorption rate for other uses The use and utilization of fired bodies for civil engineering and construction purposes other than artificial aggregate uses is to set the water absorption rate to a high value of over 12% with a specific gravity of about 2.1 to retain soil water during greening. It can be used as a material, but by keeping the water absorption rate below 3%, it can be used as crime prevention gravel in addition to artificial aggregate, making it difficult for people to walk on and emitting high-pitched noise. Therefore, a crime prevention effect can be expected. In addition, it can be used in place of natural stone as a filter material in filtration facilities to further purify the treated water in the second sedimentation tank in sewage treatment facilities. At this time, the material is required to have high strength (3000N or more).

圧壊強度が、2000N以上であれば、種々の土木建築資材として実用可能であるが、人工骨材としては、3000N以上が好ましく、3400N以上が特に、好ましい。 If the crushing strength is 2000N or more, it can be put to practical use as various civil engineering and construction materials, but as an artificial aggregate, it is preferably 3000N or more, and particularly preferably 3400N or more.

本発明は、煩雑な工程を経ることなく、簡単な製造方法で高炉スラグ(a)、下水汚泥焼却灰(b)と、電気炉酸化スラグ、磁鉄鉱粉末等の廃棄物を原料として焼成用組成物を構成でき、例えば、大気下の焼成条件で、比重2.5以上の焼成体で、吸水率3%以下、好ましくは1%以下、12mm程度径の球体で、圧壊強度は、2500N以上で、好ましくは3000N以上の人工骨材や、大気下の焼成条件で、比重2.5程度の焼成体で、吸水率10%以下の、実用強度の土木建築資材が得られる。 The present invention provides a composition for sintering using waste materials such as blast furnace slag (a), sewage sludge incineration ash (b), electric furnace oxidation slag, and magnetite powder by a simple manufacturing method without going through complicated steps. For example, under atmospheric firing conditions, a fired body with a specific gravity of 2.5 or more, a water absorption rate of 3% or less, preferably 1% or less, a sphere with a diameter of about 12 mm, and a crushing strength of 2500N or more, Preferably, by using artificial aggregate of 3000 N or more and firing conditions in the atmosphere, a fired body with a specific gravity of about 2.5 can provide a civil engineering and construction material with a water absorption rate of 10% or less and a practical strength.

本発明は、高炉スラグ微粉末を主材にして、これに下水汚泥焼却灰及び(又は)酸化鉄並びに配合水、粘結材を調整配合して、これを混合、成形、乾燥後に焼成してコンクリート用の人工骨材、及びその他の建築・土木用資材を実現するものである。 The present invention uses pulverized blast furnace slag powder as the main material, adjusts and blends sewage sludge incineration ash and/or iron oxide, blended water, and a caking agent, and then mixes, shapes, and dries the mixture, followed by firing. This material can be used as an artificial aggregate for concrete and other construction and civil engineering materials.

本人工骨材の特徴は、丸みを持った形状で、適度の凹凸を有し、高強度、低吸水率で、緻密な骨材である。このような特徴を持った人工骨材を高強度コンクリートの細骨材及び粗骨材に使用できる。 This artificial aggregate is characterized by its rounded shape, moderate unevenness, high strength, low water absorption, and dense aggregate. Artificial aggregates with such characteristics can be used as fine aggregates and coarse aggregates for high-strength concrete.

また、本発明である当該人工骨材の表面は、微細な凹凸があるため骨材界面とセメントペーストとの付着を高める効果がある。さらに、河川砂利であれば、形状が丸く、充填性が良いことから、骨材最大寸法で20や25mmの骨材を使用することができるが、近年では、このような自然な砂利の採取は困難である。しかし、本発明の人工骨材は球状に製造するため、砂利骨材と同様に充填性が良好で、最大寸法を20や25mmとした骨材の製造にも対応できる。骨材最大寸法を大きくすると、水セメント比を低減できる効果も得られる。 Furthermore, since the surface of the artificial aggregate according to the present invention has minute irregularities, it has the effect of increasing the adhesion between the aggregate interface and the cement paste. Furthermore, river gravel has a round shape and good filling properties, so it is possible to use aggregate with a maximum aggregate size of 20 or 25 mm, but in recent years, it has become difficult to collect such natural gravel. Have difficulty. However, since the artificial aggregate of the present invention is manufactured in a spherical shape, it has good filling properties similar to gravel aggregate, and can also be used to manufacture aggregates with a maximum dimension of 20 or 25 mm. Increasing the maximum aggregate size also has the effect of reducing the water-cement ratio.

高炉セメントコンクリートは、普通セメントコンクリートと比較して、初期強度が低く、水和速度が遅いため、低温の影響を受けやすく、中性化速度が速いため、構造物の被りを大きくする必要がある。また、建築の構造物は、柱、梁、床版、壁面は、寸法が小さく、薄いことが特徴である。これらのことに対応して、高炉セメントコンクリートを使用する場合は、建築躯体を構成する部分の寸法を大きく、厚くして、コンクリート打設後の養生期間を長くとって、品質を確保することが必然となる。しかし、このような建築の躯体部分では当初から高炉セメントコンクリートを使用しないことを前提として建築工事が行なわれている。そこで、普通セメントコンクリートであっても、本発明の人工骨材を使用することが新たな循環資源の用途となる。 Compared to ordinary cement concrete, blast furnace cement concrete has a lower initial strength and a slower hydration rate, making it more susceptible to the effects of low temperatures, and its carbonation rate is faster, so it is necessary to increase the cover of the structure. . Additionally, architectural structures are characterized by columns, beams, floor slabs, and walls having small dimensions and thinness. In response to these issues, when using blast furnace cement concrete, quality can be ensured by making the parts that make up the building frame larger and thicker, and by taking a longer curing period after pouring the concrete. It becomes inevitable. However, from the beginning, construction work was carried out on the assumption that blast furnace cement concrete would not be used in the framework of such buildings. Therefore, even in ordinary cement concrete, the use of the artificial aggregate of the present invention becomes a new use of recyclable resources.

本焼成用組成物を焼成して人工骨材とするとき、例えば、焼成温度1200℃程度の焼成によって、平均粒径約13.6mm程度の焼成体を得ると、その物性は吸水率1.0%以下で、圧壊強度が3900Nである。また、本人工骨材は、産業廃棄物のみを原料とした焼成用組成物を使用することができ、産業廃棄物のリサイクル、有効活用に好適である。また、磯焼け抑制資材(鉄イオン発生材料)及び平板状にした場合などの壁面タイル兼電磁波抑制材等の環境改善材料及び土木・建築資材に利用できる。 When the main firing composition is fired to produce artificial aggregate, for example, if a fired body with an average particle size of about 13.6 mm is obtained by firing at a firing temperature of about 1200°C, the physical property is a water absorption rate of 1.0. % or less, the crushing strength is 3900N. In addition, the present artificial aggregate can use a firing composition made only from industrial waste, and is suitable for recycling and effective utilization of industrial waste. In addition, it can be used as environmental improvement materials such as rock eroding suppression materials (iron ion generating materials), wall tiles and electromagnetic wave suppression materials when made into flat plates, and civil engineering and construction materials.

以下、本発明を、さらに詳細な実験例に基づき説明する。まず、高炉水砕スラグと下水汚泥の2成分を必須とする焼成体を実施した。ついで、これに、酸化鉄含有成分を追加した焼成体の実施をおこなった。 The present invention will be explained below based on more detailed experimental examples. First, we produced a fired product that requires two components: granulated blast furnace slag and sewage sludge. Next, a fired body was produced in which an iron oxide-containing component was added.

高炉スラグ
高炉スラグ(a)はエスメント関東株式会社製エスメントを使用した。蛍光エックス線分析による化学組成の算出値を表2に示した。粒子径は、95%頻度累計が37μm、76%頻度累計が19μm、50%頻度累計が、9.2μmである。
Blast Furnace Slag As the blast furnace slag (a), Esment manufactured by Esment Kanto Co., Ltd. was used. Table 2 shows the chemical composition calculated by fluorescent X-ray analysis. The particle diameters are 37 μm at 95% frequency, 19 μm at 76% frequency, and 9.2 μm at 50% frequency.

用いた下水汚泥焼却灰は、焼却炉内フリーボード部での焼却温度が850℃の焼却炉から得た焼却灰である。焼却温度850℃で焼却するのは、温室効果ガスであるNO(一酸化二窒素)の排出を削減できるからである。粒度分布は、最大粒径266μm程度で、粒径89μm以下の粒径の重量累計が90%以上であるものを使用した。下水汚泥を流動層焼却炉で焼却して排ガスに含まれる飛灰を廃熱ボイラー及び微細飛灰をサイクロン、乾式電気集塵機で捕集して各灰を移送等コンベアで灰ホッパに収容したものである。下水汚泥焼却灰の主要物質の化学成分分析値(蛍光エックス線分析)は、表3の通りである。 The sewage sludge incineration ash used was incineration ash obtained from an incinerator with an incineration temperature of 850° C. in the freeboard part of the incinerator. The reason for incinerating at an incineration temperature of 850°C is that emissions of N 2 O (nitrous oxide), which is a greenhouse gas, can be reduced. The particle size distribution used was such that the maximum particle size was about 266 μm and the cumulative weight of particles with a particle size of 89 μm or less was 90% or more. The sewage sludge is incinerated in a fluidized bed incinerator, the fly ash contained in the exhaust gas is collected in a waste heat boiler, the fine fly ash is collected in a cyclone, and a dry electrostatic precipitator, and each ash is transferred and stored in an ash hopper using a conveyor. be. The chemical component analysis values (fluorescent X-ray analysis) of the main substances of the sewage sludge incineration ash are shown in Table 3.

電気炉酸化スラグは、製品名:CKハイパー7号(株式会社星野産商製造)を使用した。 As the electric furnace oxidation slag, product name: CK Hyper No. 7 (manufactured by Hoshino Sansho Co., Ltd.) was used.

なお、電気炉酸化スラグは、当該製品の粒径範囲が300μm以下であるものを粉砕専用機器(ディスク型振動ミル)で10分間、粉砕して焼成体用組成物材料とし200メッシュ以下(74μm目開き篩全通)としたものである。電気炉酸化スラグの成分について、主要な化学成分組成を表4に示した。酸化鉄成分材料は、下水汚泥焼却灰の平均粒径より小さい平均粒径を有するものを用いることが好ましい。 The electric furnace oxidized slag has a particle size range of 300 μm or less and is crushed for 10 minutes using a dedicated crushing device (disk-type vibrating mill) to form a composition material for fired bodies with a particle size of 200 mesh or less (74 μm). The opening sieve was completely passed through. Table 4 shows the main chemical composition of the electric furnace oxidized slag. It is preferable to use an iron oxide component material having an average particle size smaller than the average particle size of the sewage sludge incineration ash.

上記の各材料を用いて、表5に示したそれぞれ結合剤と水を所定量(単位:g)加えて造粒物(造粒径13mm、各実験例で各試料10個)を作製した。 Using each of the above materials, predetermined amounts (unit: g) of the binder and water shown in Table 5 were added to produce granules (granulation diameter 13 mm, 10 samples for each experimental example).

これを、焼成温度上限を1170℃から1220℃間で設定し、前記焼成パターンにより焼成した。表6に、得られた焼成体の比重及び吸水率の物性試験結果を示した This was fired according to the firing pattern described above, with the upper limit of firing temperature set between 1170°C and 1220°C. Table 6 shows the physical property test results of the specific gravity and water absorption of the obtained fired body.

焼成温度パターンは、常温から1000℃までを120分で昇温し、各焼成最高温度である、1170℃から1220℃までは、各温度に応じて、75分から110分間で昇温し、その後、各焼成最高温度の保持時間を15分間とし、自然徐冷により焼成物を得た。以下、焼成最高温度を焼成温度と略して表現することがある。電気炉は、モトヤマ製:SH-2035Dである。 The firing temperature pattern is to raise the temperature from room temperature to 1000°C in 120 minutes, and to increase the maximum temperature of each firing from 1170°C to 1220°C in 75 minutes to 110 minutes depending on each temperature, and then, The holding time of each maximum firing temperature was 15 minutes, and a fired product was obtained by natural slow cooling. Hereinafter, the maximum firing temperature may be abbreviated as firing temperature. The electric furnace is SH-2035D manufactured by Motoyama.

本願発明で、比重及び吸水率は、JIS A 1110(粗骨材の密度及び吸水率試験方法)に準拠して行い、その測定は、島津分析天びんAUX120及び比重測定キットSMK‐401(株式会社島津製作所製)を使用した。比重はSMK-401を使用して測定した値であり、密度(g/cm)で表現される値と同値である。また、圧壊強度の測定は、インストロンジャパン製 5566型(10kN)の試験機を使用して、JSCE-C505(高強度フライアッシュ人工骨材の圧かい荷重試験方法)に準拠して行った。表6に、焼成体の比重及び吸水率を示した。測定値の平均値を表示し、有効数字は考慮していない。 In the present invention, the specific gravity and water absorption rate are measured in accordance with JIS A 1110 (Testing method for density and water absorption rate of coarse aggregate), and the measurement is carried out using Shimadzu analytical balance AUX120 and specific gravity measurement kit SMK-401 (Shimadzu Co., Ltd. (manufactured by Seisakusho) was used. The specific gravity is a value measured using SMK-401, and is the same value as the value expressed in density (g/cm 3 ). Furthermore, the crushing strength was measured using a testing machine model 5566 (10 kN) manufactured by Instron Japan in accordance with JSCE-C505 (compressive load test method for high-strength fly ash artificial aggregate). Table 6 shows the specific gravity and water absorption rate of the fired body. Displays the average value of the measured values and does not take into account significant figures.

表7に圧壊強度(N)の物性試験結果を示す。圧壊強度は各造粒焼成物5個の測定結果の平均値で、最大圧壊強度でリミッター設定の4500Nを超えるものはなかった。 Table 7 shows the physical property test results of crushing strength (N). The crushing strength was the average value of the measurement results of 5 pieces of each granulated and fired product, and the maximum crushing strength of none exceeded the limiter setting of 4500N.

下水汚泥単独添加効果 焼成体の比重・吸水率の変化
焼成体の全体の緻密化尺度として、比重を、表面の防水緻密化尺度として、吸水率を用いた。実験例1は、各焼成最高温度の1170℃から1220℃の6回の焼成による比重は1.942から2.118の範囲内での変化であった。同様に吸水率の変化は、10.244%から15.576%の範囲内の変化であった。また、圧壊強度は、776Nから1051Nの強度範囲であった。実験例2は、6回の焼成による比重は焼成最高温度の昇温過程で、2.066から2.660と大きくなり、同様に吸水率は、12.522%から0.855%と低くなった。また、圧壊強度は、焼成最高温度1210℃における、3065Nが最も高い強度であった。実験例3は、6回の焼成による比重は焼成最高温度が1190℃において、もっとも大きい2.369となり、その後の焼成最高温度の昇温過程で比重は、徐々に小さくなった。同様に吸水率は2.757%ともっとも低くなり、その後は高くなる傾向となった。また、圧壊強度は、焼成最高温度1180℃における2864Nが最も高い強度であった。
Effect of adding sewage sludge alone Changes in specific gravity and water absorption rate of the fired body Specific gravity was used as a measure of the overall densification of the fired body, and water absorption rate was used as a measure of the waterproof densification of the surface. In Experimental Example 1, the specific gravity varied within the range of 1.942 to 2.118 after six firings at the maximum firing temperature of 1170°C to 1220°C. Similarly, the change in water absorption was within the range of 10.244% to 15.576%. Moreover, the crushing strength was in the strength range of 776N to 1051N. In Experimental Example 2, the specific gravity after six firings increased from 2.066 to 2.660 during the heating process to the highest firing temperature, and the water absorption rate similarly decreased from 12.522% to 0.855%. Ta. Furthermore, the highest crushing strength was 3065N at the maximum firing temperature of 1210°C. In Experimental Example 3, the specific gravity after six firings was the highest at 2.369 when the maximum firing temperature was 1190°C, and the specific gravity gradually decreased in the process of increasing the maximum firing temperature thereafter. Similarly, the water absorption rate was the lowest at 2.757%, and then tended to increase. Furthermore, the highest crushing strength was 2864N at the maximum firing temperature of 1180°C.

実験例2及び3の高炉スラグに下水汚泥焼却灰を配合した造粒物の焼成結果は、実験例1のそれより、緻密化は顕著に発現した結果となった。なお、実験例3では実験例2より下水汚泥焼却灰を増量したが、その緻密化は焼成最高温度1190℃まで実験例3が優位(低い焼成溶融温度の効果)であったが、最高焼成温度1220℃までの各焼成では実験例2が優位な結果となった。 The results of firing the granules in which blast furnace slag and sewage sludge incineration ash were blended in Experimental Examples 2 and 3 showed that densification was more pronounced than in Experimental Example 1. In addition, in Experimental Example 3, the amount of sewage sludge incineration ash was increased compared to Experimental Example 2, but Experimental Example 3 was superior in densification until the maximum firing temperature of 1190°C (effect of low firing melting temperature). In each firing up to 1220°C, Experimental Example 2 had superior results.

即ち、高炉スラグと下水汚泥焼却灰を配合した造粒物について、高炉スラグのみ焼成体に比べて、造粒物の焼成溶融温度が低くなり、実験例2では、緻密化の顕著な向上が認められた。しかし、下水汚泥焼却灰を増量しても、比重の増加は比較的小さく、吸水率を小さくする効果は、実験例2付近がピークであった。なお、エスメント以外の粒径の大きな高炉スラグを使用した結果でも、実験例3を超えた下水汚泥焼却灰の増量とともに、特に1180℃以上の高温度焼成では、この傾向が顕著であった。 In other words, for a granulated product containing blast furnace slag and sewage sludge incineration ash, the firing melting temperature of the granulated product was lower than that for a granulated product fired from only blast furnace slag, and in Experimental Example 2, a remarkable improvement in densification was observed. It was done. However, even if the amount of sewage sludge incineration ash was increased, the increase in specific gravity was relatively small, and the effect of reducing water absorption peaked around Experimental Example 2. Note that even when blast furnace slag with a large particle size other than Esment was used, this tendency was remarkable, especially when the amount of sewage sludge incinerated ash was increased beyond Experimental Example 3, and especially when fired at a high temperature of 1180 ° C. or higher.

電気炉酸化スラグ単独添加効果 焼成体の比重・吸水率の変化
実験例4は、6回の焼成による、比重は2.047から2.641と大きくなり、吸水率は13.385%から2.455%と低くなった。また、圧壊強度は焼成最高温度1200℃における2872Nがもっとも高い強度であった。
実験例5は、6回の焼成による、比重は2.094から2.657と大きくなり、吸水率は12.349%から2.058%と低くなった。また、圧壊強度は焼成最高温度1210℃における3045Nが最も高い強度であった。
実験例6は、6回の焼成による、比重は2.188から焼成最高温度が1210℃で2.793と最も大きくなり、同様に吸水率は10.444%から焼成最高温度1210℃で0.339%と最も低くなった。また、圧壊強度は、焼成最高温度1200℃から1220℃間において、2800N前後の強度であった。
実験例4、5、6の高炉スラグに電気炉酸化スラグを配合した造粒物の焼成結果は、実験例1のそれより、緻密化は顕著に発現(低い焼成溶融温度の効果)した結果となった。
Effect of adding electric furnace oxidized slag alone Changes in the specific gravity and water absorption rate of the fired body In Experimental Example 4, the specific gravity increased from 2.047 to 2.641 and the water absorption rate increased from 13.385% to 2.64% after 6 firings. It dropped to 455%. Furthermore, the highest crushing strength was 2872N at the maximum firing temperature of 1200°C.
In Experimental Example 5, the specific gravity increased from 2.094 to 2.657 and the water absorption rate decreased from 12.349% to 2.058% after 6 firings. Furthermore, the highest crushing strength was 3045N at the maximum firing temperature of 1210°C.
In Experimental Example 6, after 6 firings, the specific gravity increased from 2.188 to 2.793 at the maximum firing temperature of 1210°C, and similarly, the water absorption rate increased from 10.444% to 0.9% at the maximum firing temperature of 1210°C. It was the lowest at 339%. Moreover, the crushing strength was around 2800N at a maximum firing temperature of 1200°C to 1220°C.
The firing results of the granules in which electric furnace oxidation slag was mixed with blast furnace slag in Experimental Examples 4, 5, and 6 showed that densification was more pronounced (effect of lower firing melting temperature) than in Experimental Example 1. became.

即ち、高炉スラグと電気炉酸化スラグを配合した造粒物は、高炉スラグのみした添加の焼成体実験例1に比べて、造粒物の焼成溶融温度が低くなるが、実験例4,5,6で、電気炉酸化スラグを増量しても、比重の増加は小さく、吸水率も、実験例4,5で、実験例2より劣っている。実験例6では圧壊強度が3000Nに達するものがなかった。特に、エスメント以外の粒径の大きな高炉スラグを使用した結果では、この傾向が顕著であり、単独での下水汚泥焼却灰の効果が、総合的に単独での電気炉酸化スラグ添加効果を上回ることとなった。 That is, the granules containing blast furnace slag and electric furnace oxidation slag have a lower firing melting temperature than Experimental Example 1 of the fired body in which only blast furnace slag is added, but Experimental Examples 4, 5, In Example 6, even if the amount of electric furnace oxidized slag was increased, the increase in specific gravity was small, and the water absorption rate in Experimental Examples 4 and 5 was inferior to that in Experimental Example 2. In Experimental Example 6, none had a crushing strength of 3000N. In particular, this tendency is remarkable in the results of using blast furnace slag with a large particle size other than Esment, and the effect of sewage sludge incineration ash alone exceeds the effect of adding electric furnace oxidized slag alone. It became.

下水汚泥焼却灰と電気炉酸化スラグ添加効果 焼成体の比重・吸水率の変化
実験例7は、6回の焼成による、比重は2.071から焼成最高温度が1210℃で2.653と最も大きくなり、同様に吸水率は12.423%から焼成最高温度1210℃で0.808%と最も低くなった。また、圧壊強度は、焼成最高温度1200℃で最も高い3370Nであった。
実験例8は、6回の焼成による、比重は2.178から焼成最高温度が1200℃で2.629と最も大きくなり、同様に吸水率は8.106%から焼成最高温度1210℃で0.719%と最も低くなった。また、圧壊強度は、焼成最高温度1190℃で最も高い3479Nであった。
実験例9は、6回の焼成による、比重は2.284から焼成最高温度が1190℃で2.643と最も大きくなり、同様に吸水率は8.106%から焼成最高温度1210℃で0.540%と最も低くなった。また、圧壊強度は、焼成最高温度1190℃で最も高い3599Nであった。
実験例10は、6回の焼成による、比重は2.334から焼成最高温度が1190℃で2.659と最も大きくなり、同様に吸水率は6.952%から焼成最高温度1210℃で0.226%と最も低くなった。また、圧壊強度は、焼成最高温度1190℃で最も高い3599Nであった。
Effect of addition of sewage sludge incineration ash and electric furnace oxidized slag Changes in specific gravity and water absorption of the fired body In Experimental Example 7, the specific gravity was the largest from 2.071 to 2.653 at the maximum firing temperature of 1210°C after 6 firings. Similarly, the water absorption rate decreased from 12.423% to 0.808% at the maximum firing temperature of 1210°C. Moreover, the crushing strength was the highest at 3370 N at the maximum firing temperature of 1200°C.
In Experimental Example 8, after 6 firings, the specific gravity increased from 2.178 to 2.629 at the maximum firing temperature of 1200°C, and similarly, the water absorption rate increased from 8.106% to 0.9% at the maximum firing temperature of 1210°C. It was the lowest at 719%. Moreover, the crushing strength was the highest at 3479N at the maximum firing temperature of 1190°C.
In Experimental Example 9, after 6 firings, the specific gravity ranged from 2.284 to 2.643 at the maximum firing temperature of 1190°C, and the water absorption rate increased from 8.106% to 0.6% at the maximum firing temperature of 1210°C. It was the lowest at 540%. Moreover, the crushing strength was the highest at 3599N at the maximum firing temperature of 1190°C.
In Experimental Example 10, after 6 firings, the specific gravity ranged from 2.334 to 2.659 at the maximum firing temperature of 1190°C, and the water absorption rate increased from 6.952% to 0.0% at the maximum firing temperature of 1210°C. It was the lowest at 226%. Moreover, the crushing strength was the highest at 3599N at the maximum firing temperature of 1190°C.

即ち、高炉スラグと下水汚泥焼却灰の添加量5重量部の配合に更に、電気炉酸化スラグを配合した造粒物は、高炉スラグのみ添加の焼成体実験例1、下水汚泥焼却灰を添加量5重量部の焼成体実験例2に比べて、実験例7、8、9、10は、いずれも低い焼成最高温度で比重の増加と吸水率の減少効果が認められ、電気炉酸化スラグの添加量の増加とともに吸水率は小さくなった。そして、比重は、電気炉酸化スラグの添加量が増加しても、安定していて、全体としての緻密化の変動は小さい。また、圧壊強度も低い焼成最高温度から3000Nを超える強度が得られた。これらの結果は、人工骨材製造時の焼成温度範囲を広く設定することを可能にするため、人工骨材としても好適であった。 In other words, a granulated material made by adding 5 parts by weight of blast furnace slag and sewage sludge incineration ash and further adding electric furnace oxidized slag is the same as the sintered body experimental example 1 with only blast furnace slag added, and the addition amount of sewage sludge incineration ash. Compared to Experimental Example 2 of the fired body containing 5 parts by weight, Experimental Examples 7, 8, 9, and 10 all showed an increase in specific gravity and a decrease in water absorption at a lower maximum firing temperature, and the addition of electric furnace oxidized slag The water absorption rate decreased as the amount increased. The specific gravity remains stable even if the amount of electric furnace oxidized slag increases, and the overall densification changes are small. In addition, the crushing strength exceeded 3000N even at the lowest firing temperature. These results made it possible to set a wide range of firing temperatures during the production of artificial aggregates, making them suitable for use as artificial aggregates.

下水汚泥焼却灰と磁鉄鉱又はベンガラの添加効果 焼成体の比重・吸水率の変化 使用した磁鉄鉱又はベンガラの組成を表8、表9に示した。この添加材に対して、表10に示したそれぞれ結合剤と水を所定量(単位:g)加えて造粒物(各試料18個)を作製した。 Effect of addition of sewage sludge incineration ash and magnetite or red iron oxide Changes in specific gravity and water absorption of the fired body The compositions of the magnetite or red iron oxide used are shown in Tables 8 and 9. To this additive material, predetermined amounts (unit: g) of the binder and water shown in Table 10 were added to produce granules (18 samples for each).

表10に示した組成に、結合剤である澱粉ノリと水の所定量で成形した造粒物を作成した。これを、焼成温度上限を1170℃から1220℃間で設定し、前記焼成パターンにより焼成した。表11、表12に、焼成体の比重及び吸水率の物性試験結果を示した Granules having the composition shown in Table 10 were molded using starch paste as a binder and a predetermined amount of water. This was fired according to the firing pattern described above, with the upper limit of firing temperature set between 1170°C and 1220°C. Tables 11 and 12 show the physical property test results of specific gravity and water absorption of the fired body.

黒浜(磁鉄鉱)又はベンガラ(酸化鉄)添加効果 焼成体の比重・吸水率の変化
実験例11(黒浜配合)は、6回の焼成による。比重は2.142から焼成最高温度が1210℃で2.654と最も大きくなり、同様に吸水率は11.315%から焼成最高温度1220℃で2.131%と最も低くなった。また、実験例13(ベンガラ配合)は、6回の焼成による。比重は2.167から焼成最高温度が1210℃で2.672と最も大きくなり、同様に吸水率は10.887%から焼成最高温度1220℃で1.615%と最も低くなった。
Effect of adding Kurohama (magnetite) or red iron oxide (iron oxide) Changes in specific gravity and water absorption rate of fired product Experimental example 11 (Kurohama blend) was fired six times. The specific gravity increased from 2.142 to 2.654 at the maximum firing temperature of 1210°C, and similarly, the water absorption decreased from 11.315% to the lowest at 2.131% at the maximum firing temperature of 1220°C. In addition, Experimental Example 13 (compounded with Red Red Garlic) was fired six times. The specific gravity increased from 2.167 to 2.672 at the maximum firing temperature of 1210°C, and similarly, the water absorption decreased from 10.887% to the lowest at 1.615% at the maximum firing temperature of 1220°C.

両者は、焼成最高温度の昇温ごとに比重は大きくなり、吸水率は低くなった。また、その比重が2,5以上、吸水率3%以下が安定して得られる焼成温度範囲が広いが、1%以下を達成できなかった。 For both, the specific gravity increased and the water absorption rate decreased as the maximum firing temperature increased. Further, although there is a wide firing temperature range in which a specific gravity of 2.5 or more and a water absorption of 3% or less can be stably obtained, it was not possible to achieve a water absorption of 1% or less.

下水汚泥焼却灰と黒浜(磁鉄鉱)又はベンガラ(酸化鉄)添加効果 焼成体の比重・吸水率の変化
実験例12(黒浜配合)は、6回の焼成による。比重は2.137から焼成最高温度が1190℃で2.684と最も大きくなり、同様に吸水率は11.009%から焼成最高温度1200℃で0.170%と最も低くなった。また、実験例14(ベンガラ配合)は、6回の焼成による。比重は2.172から焼成最高温度が1190℃で2.638と最も大きくなり、同様に吸水率は11.094%から焼成最高温度1210℃で0.341%と最も低くなった。
Effect of addition of sewage sludge incineration ash and Kurohama (magnetite) or red iron oxide (iron oxide) Changes in specific gravity and water absorption rate of fired body Experimental example 12 (Kurohama combination) was fired six times. The specific gravity increased from 2.137 to 2.684 at the maximum firing temperature of 1190°C, and similarly, the water absorption rate decreased from 11.009% to the lowest of 0.170% at the maximum firing temperature of 1200°C. In addition, Experimental Example 14 (compounded red iron oxide) was fired six times. The specific gravity increased from 2.172 to 2.638 at the maximum firing temperature of 1190°C, and similarly, the water absorption rate decreased from 11.094% to the lowest at 0.341% at the maximum firing temperature of 1210°C.

両者は、比較的に低い焼成最高温度で溶融化して、その比重が2.6超で吸水率は、1.0%未満という、骨材としても好適な結果が得られた。 Both were melted at a relatively low maximum firing temperature, had a specific gravity of over 2.6, and a water absorption rate of less than 1.0%, which were suitable for use as aggregates.

造粒物の粒径依存性
表13に示す組成物の球状造粒物(各試料10個分、単位:g)を、焼成最高温度1200℃で焼成して、平均粒径8.8mm~16.7mmの人工骨材用焼成体を作製した。表14に、これらの粒径収縮率、比重、吸水率、圧壊強度の測定結果を示す。
Particle size dependence of granules Spherical granules (10 samples each, unit: g) of the composition shown in Table 13 were fired at a maximum firing temperature of 1200°C to obtain an average particle size of 8.8 mm to 16 mm. A sintered body for artificial aggregate of .7 mm was produced. Table 14 shows the measurement results of particle size shrinkage, specific gravity, water absorption, and crushing strength.

高炉スラグ(エスメント)100重量部に対して、下水汚泥焼却灰を5重量部添加し、これに電気炉酸化スラグの5重量部(実験例15,16,17)と7.25重量部(実験例18,19,20)を加えた組成である。収縮率は粒径にかかわらず、0.87前後で安定している。また、粒径を変化させても2.5~2.6の比重を保ち、吸水率は、3.0%未満と低い。そして、全実験例を通して圧壊強度は粒径が大きくなるととともに強度は高くなった。 To 100 parts by weight of blast furnace slag (Esment), 5 parts by weight of sewage sludge incineration ash was added, and to this were added 5 parts by weight of electric furnace oxidized slag (Experimental Examples 15, 16, 17) and 7.25 parts by weight (Experimental Examples 15, 16, 17). This is the composition in which Examples 18, 19, and 20) were added. The shrinkage rate is stable at around 0.87 regardless of the particle size. Further, even if the particle size is changed, the specific gravity remains at 2.5 to 2.6, and the water absorption rate is low at less than 3.0%. In all experimental examples, the crushing strength increased as the particle size increased.

これにより、産業廃棄物である高炉スラグ、下水汚泥焼却灰、電気炉酸化スラグ等を破砕又は粉砕した材料を使用して造粒物や平板状等に成形し、焼成体を製造することで、更に産業廃棄物の資源化利用が高まった。
As a result, by using materials obtained by crushing or pulverizing industrial waste such as blast furnace slag, sewage sludge incineration ash, electric furnace oxidation slag, etc., and forming it into granules or flat plates, etc., and manufacturing fired bodies, Furthermore, the use of industrial waste as resources has increased.

Claims (7)

高炉スラグ微粉末(a)100重量部を主材に、焼成による緻密化を促進する媒融物として、下水汚泥焼却灰(b)を5~20重量部、含有することを特徴とする焼成用組成物。 For firing, which is characterized by containing 100 parts by weight of pulverized blast furnace slag powder (a) as the main material and 5 to 20 parts by weight of sewage sludge incineration ash (b) as a medium to promote densification by firing. Composition. 高炉スラグ微粉末(a)100重量部を主材に、焼成による緻密化を促進する媒融物として、下水汚泥焼却灰(b)を5~20重量部と、酸化鉄含有成分として、電気炉酸化スラグ、黒浜(磁鉄鉱)、ベンガラの内、選ばれた1種以上(c)と、を含むことを特徴とする焼成用組成物。 Using 100 parts by weight of blast furnace slag pulverized powder (a) as the main material, 5 to 20 parts by weight of sewage sludge incineration ash (b) as a medium to promote densification by firing, and an iron oxide-containing component, an electric furnace A firing composition comprising (c) one or more selected from among oxidized slag, Kurohama (magnetite), and red iron. 請求項1又は請求項2に記載の焼成用組成物に、結合剤を加えて、造粒成形し、又は型枠内で加圧成形した後、大気中で焼成して得られることを特徴とする焼成体の製造法。 It is characterized in that it is obtained by adding a binder to the composition for firing according to claim 1 or claim 2, granulating it or molding it under pressure in a mold, and then firing it in the atmosphere. A method for producing a fired body. 前記媒融物中の酸化鉄成分(c)が、焼成用組成物中3重量部~20重量部であることを特徴とする請求項3に記載の焼成体の製造法。 4. The method for producing a fired body according to claim 3, wherein the iron oxide component (c) in the medium is in an amount of 3 to 20 parts by weight in the firing composition. 前記媒融物中の下水汚泥焼却灰(b)が、焼成用組成物中、5重量部~10重量部であり、酸化鉄成分(c)が、焼成用組成物中5重量部~10重量部であることを特徴とする請求矩2に記載の焼成体の製造法。 The sewage sludge incineration ash (b) in the medium is 5 to 10 parts by weight in the firing composition, and the iron oxide component (c) is 5 to 10 parts by weight in the firing composition. 2. The method for producing a fired body according to claim 2, characterized in that: 造粒成形した粒形が、6mm~24mmの造粒成形物であり、大気中で焼成して人工骨材として用いることを特徴とする請求項3乃至請求項5のいずれかに記載の焼成体の製造法。 The fired product according to any one of claims 3 to 5, wherein the granulated product has a particle size of 6 mm to 24 mm, and is used as an artificial aggregate by being fired in the atmosphere. manufacturing method. 大気中の焼成温度が1180℃~1220℃であり、焼成後の比重が2.5以上、吸水率が3.0重量部以下、圧壊強度が3000N以上であることを特徴とする請求項3乃至請求項6のいずれかに記載の焼成体の製造方法。
Claims 3 to 3, characterized in that the firing temperature in the atmosphere is 1180°C to 1220°C, the specific gravity after firing is 2.5 or more, the water absorption is 3.0 parts by weight or less, and the crushing strength is 3000N or more. The method for producing a fired body according to claim 6.
JP2022049771A 2022-03-25 2022-03-25 Composition for calcination body and production method of calcination body using the same Pending JP2023142727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022049771A JP2023142727A (en) 2022-03-25 2022-03-25 Composition for calcination body and production method of calcination body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022049771A JP2023142727A (en) 2022-03-25 2022-03-25 Composition for calcination body and production method of calcination body using the same

Publications (1)

Publication Number Publication Date
JP2023142727A true JP2023142727A (en) 2023-10-05

Family

ID=88206285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022049771A Pending JP2023142727A (en) 2022-03-25 2022-03-25 Composition for calcination body and production method of calcination body using the same

Country Status (1)

Country Link
JP (1) JP2023142727A (en)

Similar Documents

Publication Publication Date Title
CN108218272B (en) Environment-friendly artificial aggregate (aggregate) derived from waste
US8206504B2 (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
Dondi et al. Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating
CN101137592B (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
US7780781B2 (en) Pyroprocessed aggregates comprising IBA and low calcium silicoaluminous materials and methods for producing such aggregates
JP5658270B2 (en) Manufacturing method of lightweight construction materials using sludge waste
EP1841708A2 (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
JP2008538347A5 (en)
JP2008536781A5 (en)
CN114751766A (en) Light ceramsite fired by solid waste and method thereof
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
WO2006074944A1 (en) Pyroprocessed aggregates comprising iba and pfa and methods for producing such aggregates
Ghosh et al. A review on performance of pervious concrete using waste materials
JP2005320188A (en) Inorganic foamed, fired body and its production method
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
KR20000072111A (en) Composition for lightweight aggregate and method for manufacturing the same
CN104676595B (en) Method for lowering quantity and toxicity of flying ash of household garbage incineration plant
JP2023142727A (en) Composition for calcination body and production method of calcination body using the same
JPH11292611A (en) Production of brick effectively using sludge and municipal refuse
JP2003012355A (en) Method for producing artificial lightweight aggregate
JP7372215B2 (en) Composition for fired body and method for producing fired body using the same
KR20020044899A (en) Composition for lightweight aggregate and method for manufacturing the same
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
KR100392933B1 (en) Composition for lightweight aggregate
Perumal et al. Granulation of incinerated municipal solid waste bottom ash with one-part alkali activation technology