JP2005320188A - Inorganic foamed, fired body and its production method - Google Patents

Inorganic foamed, fired body and its production method Download PDF

Info

Publication number
JP2005320188A
JP2005320188A JP2004138149A JP2004138149A JP2005320188A JP 2005320188 A JP2005320188 A JP 2005320188A JP 2004138149 A JP2004138149 A JP 2004138149A JP 2004138149 A JP2004138149 A JP 2004138149A JP 2005320188 A JP2005320188 A JP 2005320188A
Authority
JP
Japan
Prior art keywords
raw material
weight
fired body
inorganic foam
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004138149A
Other languages
Japanese (ja)
Inventor
Koji Kawamoto
孝次 川本
Katsuhiro Tomota
勝博 友田
Mototsugu Matsuno
基次 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004138149A priority Critical patent/JP2005320188A/en
Publication of JP2005320188A publication Critical patent/JP2005320188A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic foamed, fired body obtained by using, as a main component, ash produced by incinerating municipal wastes, which is made more porous. <P>SOLUTION: The inorganic foamed, fired body is formed from a raw material mixture blended so as to satisfy following composition condition (a) containing ash obtained by incinerating municipal wastes, and a foaming agent in which an iron oxide, silicon carbide and carbon are added so as to satisfy following composition condition (b) and then is produced by firing the formed body at a temperature between 1,000 to 1,250°C. The composition condition (a) is such that when SiO<SB>2</SB>, Al<SB>2</SB>O<SB>3</SB>, and K<SB>2</SB>O in the raw material are converted into Na<SB>2</SB>O in equivalent mol and when the total amount of SiO<SB>2</SB>, Al<SB>2</SB>O<SB>3</SB>, and Na<SB>2</SB>O expressed in terms of Na<SB>2</SB>O is set to be 100 wt.%, the amount of Na<SB>2</SB>O is 5-12 wt.%, the amount of Al<SB>2</SB>O<SB>3</SB>is 12-20 wt.%, and Na<SB>2</SB>O/(Na<SB>2</SB>O + Al<SB>2</SB>O<SB>3</SB>) is <38 wt.%. The composition condition (b) is constituted such that the blending amounts of iron oxide, the silicon carbide and the carbon are 3-12 wt.% expressed in terms of haematite, 0.02-5 wt.%, and 3-6 wt.%, respectively, based on the total amount of the raw material mixture. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、都市ごみの焼却時に発生する灰を主原料とする、微生物担持体や農園芸土壌改良材や建築用または土木用等に使用される軽量で多孔質な発泡骨材(無機質発泡焼成体)及びその製造方法に関する。   The present invention is a lightweight and porous foam aggregate (inorganic foam fired) used for microbial carriers, agricultural and horticultural soil improvement materials, construction or civil engineering, etc., mainly using ash generated during incineration of municipal waste Body) and its manufacturing method.

焼却炉において都市ごみを焼却した場合、焼却炉内には主灰が残り、排ガス中に飛散した灰(以下、飛灰という)はバグフィルターや電気集塵機で回収される。従来、集められた上記主灰や飛灰は、廃棄物として地中に埋めることにより処分されていた。しかしながら、これらの灰特に飛灰には鉛、亜鉛、カドミウム等の有害な重金属類が多量に含まれているため、埋立て後にこの灰から地中に溶出した重金属類が環境汚染を引き起こす原因となっていた。   When municipal waste is incinerated in an incinerator, the main ash remains in the incinerator, and the ash scattered in the exhaust gas (hereinafter referred to as fly ash) is collected by a bag filter or an electric dust collector. Conventionally, the collected main ash and fly ash have been disposed of by being buried in the ground as waste. However, since these ashes, especially fly ash, contain a large amount of harmful heavy metals such as lead, zinc, and cadmium, the heavy metals eluted into the ground after landfill may cause environmental pollution. It was.

そこで、従来、これら有害な重金属類の溶出を防ぐ手段として、集められた上記灰をセメントで固化する方法、有害な重金属類を薬剤で化学的に固定して不溶化する方法、集められた上記灰を1300℃以上の温度で溶融してガラス質のスラグとする方法等が採用されていた。   Therefore, conventionally, as a means for preventing the elution of these harmful heavy metals, a method of solidifying the collected ash with cement, a method of chemically fixing the harmful heavy metals with a chemical to insolubilize, and the collected ash A method of melting glass at a temperature of 1300 ° C. or more to form a glassy slag has been adopted.

しかし、これらの方法でも有害物質は不溶化するが、内部に重金属類が残留する場合が多く、処理した灰の長期の安定した無害化には不安が残ることと、処理物が資源として有効利用し難いという問題があった。
本願発明者等は、これらの問題を解決するために、高温処理により有害物を揮発分離させるちと共に、焼却灰を骨材にする技術を開発した(特許文献1参照)。これらの骨材は絶乾密度が1.6kg/l〜2.0kg/lであり、軽量骨材ではあるが比較的絶乾密度が高く、コンクリート用骨材や土木用の路盤材として優れた特性を有することが確認されている。
特許第3204104号公報
However, even though these methods do not dissolve harmful substances, heavy metals often remain inside, and there is still concern about the long-term, stable detoxification of the treated ash, and the treated product is effectively used as a resource. There was a problem that it was difficult.
In order to solve these problems, the inventors of the present application have developed a technique for making incinerated ash an aggregate as well as volatile separation of harmful substances by high-temperature treatment (see Patent Document 1). These aggregates have an absolute dry density of 1.6 kg / l to 2.0 kg / l, which is a lightweight aggregate, but has a relatively high dry density, and is excellent as an aggregate for concrete and a roadbed for civil engineering. It has been confirmed that it has characteristics.
Japanese Patent No. 3204104

しかし、これらの方法でも有害物質は不溶化するが、内部に重金属類が残留する場合が多く、処理した灰の長期の安定した無害化には不安が残ることと、処理物が資源として有効利用し難いという問題があった。   However, even though these methods do not dissolve harmful substances, heavy metals often remain inside, and there is still concern about the long-term, stable detoxification of the treated ash, and the treated product is effectively used as a resource. There was a problem that it was difficult.

本発明は、このような実情に鑑みてなされたものであり、その目的とするところは、多孔質化を更に促進させて高機能を有する資源として有効利用することのできる、都市ごみを焼却して得られる灰を主原料とする無機質発泡焼成体とその製造方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to incinerate municipal waste that can be effectively used as a highly functional resource by further promoting the porous formation. It is to provide an inorganic foam fired body using ash obtained as a main raw material and a method for producing the same.

上記目的を達成するため、本発明による無機質発泡焼成体は、都市ごみを焼却して得られる灰を含む下記の組成条件(a)を満足するように配合された原料混合物と、鉄酸化物,炭化珪素及び炭素が下記の組成条件(b)を満足するように添加された発泡剤とから成形されていて、1000乃至1250℃の間の温度で焼成されてなる;
(a)原料中のSiO2, Al2O とK2Oを等モルでNa2Oに換算し、Na2O換算したSiO2, Al2O3及びNa2Oの合計量を100重量%としたとき、Na2Oが5〜12重量%, Al2O3が12〜20重量%, Na2O/(Na2O+Al2O3)が38重量%未満となるようにし、
(b)全原料混合物中の酸化鉄量,炭化珪素及び炭素の配合量を、酸化鉄量はヘマタイト換算量として内割りで3〜12重量%,炭化珪素量は0.02〜5重量%,炭素は3〜6重量%となるようにする。
In order to achieve the above object, an inorganic foam fired body according to the present invention includes a raw material mixture containing ash obtained by incineration of municipal waste so as to satisfy the following composition condition (a), an iron oxide, Silicon carbide and carbon are molded from a foaming agent added so as to satisfy the following composition condition (b), and fired at a temperature between 1000 and 1250 ° C .;
(A) of SiO 2, Al 2 O and K 2 O in the raw material converted at equimolar to Na 2 O, Na 2 O-converted SiO 2, Al 2 O 3 and the total amount of Na 2 O 100 wt% When Na 2 O is 5 to 12% by weight, Al 2 O 3 is 12 to 20% by weight, and Na 2 O / (Na 2 O + Al 2 O 3 ) is less than 38% by weight,
(B) The amount of iron oxide, silicon carbide and carbon in the total raw material mixture, the amount of iron oxide is 3-12% by weight as a hematite conversion amount, the amount of silicon carbide is 0.02-5% by weight, Carbon should be 3 to 6% by weight.

また、本発明による無機質発泡焼成体の製造方法は、都市ごみを焼却して得られる灰を主原料とする無機質発泡焼成体の製造方法において、前記灰を含む原料混合物が下記組成条件(a)を満足するように配合し、これに発泡剤としての鉄酸化物,炭化珪素及び炭素を下記組成条件(b)を満足するように添加して粉砕混合し、これに水を加えて成形し、得られた成形体を1000〜1250℃の温度で焼成することを特徴としている;
(a)原料中のSiO2, Al2O とK2Oを等モルでNa2Oに換算し、Na2O換算したSiO2, Al2O3及びNa2Oの合計量を100重量%としたとき、Na2Oが5〜12重量%, Al2O3が12〜20重量%, Na2O/(Na2O+Al2O3)が38重量%未満となるようにし、
(b)全原料混合物中の酸化鉄量,炭化珪素及び炭素の配合量を、酸化鉄量はヘマタイト換算量として内割りで3〜12重量%,炭化珪素量は0.02〜5重量%,炭素は3〜6重量%となるようにする。
In addition, the method for producing an inorganic foam fired body according to the present invention is the method for producing an inorganic foam fired body using ash obtained by incineration of municipal waste as a main raw material. Is blended to satisfy the following composition condition (b), pulverized and mixed, and water is added to this to form, The obtained molded body is fired at a temperature of 1000 to 1250 ° C .;
(A) of SiO 2, Al 2 O and K 2 O in the raw material converted at equimolar to Na 2 O, Na 2 O-converted SiO 2, Al 2 O 3 and the total amount of Na 2 O 100 wt% When Na 2 O is 5 to 12% by weight, Al 2 O 3 is 12 to 20% by weight, and Na 2 O / (Na 2 O + Al 2 O 3 ) is less than 38% by weight,
(B) The amount of iron oxide, silicon carbide and carbon in the total raw material mixture, the amount of iron oxide is 3-12% by weight as a hematite conversion amount, the amount of silicon carbide is 0.02-5% by weight, Carbon should be 3 to 6% by weight.

本発明によれば、原料中のCaOの含有率は15重量%以下である。   According to the present invention, the CaO content in the raw material is 15% by weight or less.

また、本発明によれば、前記SiO2源は、前記灰,珪砂,陶石,長石,オカリナイト,木節粘土,石炭灰及び下水道焼却汚泥の少なくとも一つからなっている。 According to the present invention, the SiO 2 source is composed of at least one of the ash, silica sand, porcelain stone, feldspar, ocarinite, kibushi clay, coal ash, and sewer incineration sludge.

また、本発明によれば、前記鉄酸化物としてヘマタイトが用いられている。   According to the present invention, hematite is used as the iron oxide.

また、本発明によれば、前記炭化珪素は比面積が6000ブレイン以上の粉末を用いられている。   According to the present invention, the silicon carbide is a powder having a specific area of 6000 brain or more.

また、本発明によれば、前記炭素源として石炭又はコークスが用いられている。   According to the present invention, coal or coke is used as the carbon source.

また、本発明によれば、前記原料混合物の平均粒径を40μm以下とされている。   According to the present invention, the average particle size of the raw material mixture is set to 40 μm or less.

また、本発明によれば、無機質発泡焼成体は、ペレット状に成形されている。   Moreover, according to this invention, the inorganic foam baking body is shape | molded by the pellet form.

また、本発明によれば、前記原料混合物にベントナイト,糖蜜及びパルプ廃液の少なくとも一つが添加されている。   According to the invention, at least one of bentonite, molasses and pulp waste liquid is added to the raw material mixture.

本発明によれば、都市ごみの焼却灰を主原料として、極めて軽量で多孔質であり、吸水率が大きく、且つ化学的に安定な発泡体を得ることができる。これにより、従来天然骨材の代替品として使用されていた都市ごみの焼却灰から得られた骨材に、微生物の担持体や農園芸用の土壌改良などの焼成処理品でないと得られない特性を付与することができる。
また、本発明によれば、焼成により都市ごみの焼却灰中の有害物を無害化すると共に、焼成法でないと得られない高機能を有する材料を製造することが可能となることから、有害物のない環境の維持や、不足する最終処分問題の解消など環境問題の解消に大きく寄与できると共に、有用な材料を供給することにより資源のリサイクル使用にも大きく貢献することができる。
ADVANTAGE OF THE INVENTION According to this invention, the incinerated ash of municipal waste can be used as a main raw material, and a very lightweight and porous foam with a large water absorption and a chemically stable can be obtained. As a result, the aggregate obtained from the incineration ash of municipal waste, which has been used as a substitute for natural aggregates, can only be obtained if it is not a baked product such as a microbial support or soil improvement for horticulture. Can be granted.
In addition, according to the present invention, it is possible to detoxify harmful substances in the incineration ash of municipal waste by firing, and to produce a material having high functions that can only be obtained by a firing method. It can greatly contribute to the resolution of environmental problems such as the maintenance of an environment free of environmental problems and the elimination of insufficient final disposal problems, and it can also contribute greatly to the recycling of resources by supplying useful materials.

実施例の説明に先立ち、本発明を完成するに至った検討経過について説明する。
本願発明者等は、本発明の目的を達成するため、都市ごみを焼却して得られた灰に組成調合材を添加することにより、その灰の組成を調整し、これを焼成して高強度かつ多孔質で軽量な固化体とする方法について検討した。その結果、都市ごみを焼却して得られる灰の主な化学成分であるSiO2、Al2O3、K2O、Na2Oについて、焼成により高強度かつ多孔質で軽量な焼結体が得られる化学組成範囲を見出した。
Prior to the description of the examples, the progress of the study that led to the completion of the present invention will be described.
In order to achieve the object of the present invention, the inventors of the present application adjust the composition of the ash by adding a composition preparation material to the ash obtained by incineration of municipal waste, and baked it to obtain high strength. In addition, a method for obtaining a porous and lightweight solidified body was studied. As a result, with regard to SiO 2 , Al 2 O 3 , K 2 O, and Na 2 O, which are the main chemical components of ash obtained by incineration of municipal waste, high-strength, porous, and lightweight sintered bodies are obtained by firing. The chemical composition range obtained was found.

都市ごみを焼却して得られる灰を主原料とする無機質焼結体の製造方法において、該灰を含む原料混合物が前記組成条件(a)を満足するように配合されて、且つ発泡材として鉄酸化物、炭化珪素及び炭素が前記条件(b)を満足するように添加されて粉砕混合され、この原料混合物に水を加えて成形体とし、この成形体を1000〜1250℃の温度で焼成した。   In a method for producing an inorganic sintered body using ash obtained by incinerating municipal waste as a main raw material, the raw material mixture containing the ash is blended so as to satisfy the composition condition (a), and iron is used as a foaming material. Oxide, silicon carbide, and carbon are added so as to satisfy the above condition (b) and pulverized and mixed. Water is added to the raw material mixture to form a molded body, and the molded body is fired at a temperature of 1000 to 1250 ° C. .

本発明においては、都市ごみを焼却して得られた灰に、SiO2源、Al2O3源、Na2Oとなる組成調合剤を添加して、原料混合物の組成を調整した。SiO2源である組成調合剤としては、珪砂、陶石、長石、カリオナイト、木節粘土、石炭灰及び下水道焼却汚泥から選ばれた少なくと1種が用いられた。 In the present invention, a composition preparation of SiO 2 source, Al 2 O 3 source, and Na 2 O was added to the ash obtained by incineration of municipal waste to adjust the composition of the raw material mixture. As the composition preparation as the SiO 2 source, at least one selected from quartz sand, porcelain stone, feldspar, karionite, kibushi clay, coal ash, and sewer incineration sludge was used.

更に、発泡剤として、3価の鉄酸化物と炭化珪素を添加した。また、鉄酸化物の発泡効果を促進するために、炭素を添加した。鉄酸化物としては、ウスタイトまたはヘマタイトを用いることができ、炭化珪素としては比表面積が6000ブレイン(Blaine)以上の微粉末を使用し、炭素源としては石炭またはコークスを用いることが好ましい。   Further, trivalent iron oxide and silicon carbide were added as foaming agents. Carbon was added to promote the foaming effect of iron oxide. As iron oxide, wustite or hematite can be used. As silicon carbide, fine powder having a specific surface area of 6000 Blaine or more is preferably used, and as a carbon source, coal or coke is preferably used.

組成調整して発泡剤を添加した原料を、平均粒径が40μm以下となるように粉砕、混合した後に、加水して5〜20mmの粒径となるようにし、これをロータリーキルンを用いて焼成した。また、前記原料混合物に、更に粘結剤としてベントナイト、糖蜜及びパルプ廃液の少なくとも1種を添加した。   The raw material to which the foaming agent was added after adjusting the composition was pulverized and mixed so that the average particle size was 40 μm or less, and then added to a particle size of 5 to 20 mm, which was fired using a rotary kiln. . Moreover, at least 1 sort (s) of bentonite, molasses, and pulp waste liquid was further added to the said raw material mixture as a binder.

このようにして得られた無機質発泡焼成体は、川砂利、砕石等の天然骨材の代替品としてのコンクリート骨材や路盤材等の骨材としての用途のほかに、焼成骨材の多孔質な特性を更に発展させた軽量で吸水率、保水率が極めて高い骨材を構成することができた。   The inorganic foam fired body thus obtained is not only used as a substitute for natural aggregates such as river gravel and crushed stone, but also as an aggregate such as concrete aggregate and roadbed material, and the porous material of the fired aggregate. As a result, it was possible to construct an aggregate with a light weight, a high water absorption rate and a very high water retention rate.

そして、この焼成体は、微生物の担持体や植物の栽培用の土壌改良やヒートアイランド現象を防止するための路盤材やポーラスコンクリートよう骨材としても大いにその特性を発揮することができ、廃棄されていた都市ごみの焼却灰を有効に利用し、再資源化や環境汚染の解消に大いに寄与することができることが確認された。また、特別な製造設備を必要とせず、セメント等の製造に使用されているロータリーキルンを用いて製造できるため、焼却灰の処理効率を著しく高め、処理コストや設備投資を大きく軽減することができる。   And this fired body can exert its characteristics greatly as a roadbed material and a porous concrete aggregate to prevent soil improvement and heat island phenomenon for cultivation of microorganisms and plants, and is discarded. It was confirmed that the incineration ash from municipal waste can be used effectively and can greatly contribute to recycling and elimination of environmental pollution. Moreover, since it can manufacture using the rotary kiln currently used for manufacture of cement etc. without requiring special manufacturing facilities, the processing efficiency of incineration ash can be raised remarkably and processing cost and equipment investment can be reduced greatly.

次に、本発明の実施形態について説明する。
原料を加熱して発泡膨張させるには、1)マトリックスがガスを捕捉できるように緻密化する、2)発生するガスを捕捉して発泡膨張できる適度な粘性を持った液相を生成する、3)ガスを捕捉できる状態になった時点で発泡膨張に必要なガスを十分発生させる、ことが必要である。
Next, an embodiment of the present invention will be described.
In order to heat and expand the raw material, 1) the matrix is densified so that the gas can be trapped, and 2) a liquid phase having an appropriate viscosity capable of trapping the generated gas and expanding and foaming is generated. It is necessary to generate sufficient gas necessary for foam expansion when gas can be captured.

都市ごみを焼却して得られた灰即ち焼却炉内に残った主灰及び排ガス中に飛散していた飛灰は、再加熱すると一般的には20〜30重量%程度のNaCl、KClの揮発やCの酸化、炭酸塩からの脱CO2、吸着水の離脱等により、多量に揮発減量する。したがって、マトリックスがガスを捕捉できるように緻密化するまでに、上記揮発によって発生したマトリックス中の空隙を十分埋めて、ガスを捕捉できる状態にする必要がある。 The ash obtained from incineration of municipal waste, ie the main ash remaining in the incinerator and the fly ash scattered in the exhaust gas, is generally about 20-30% by weight of NaCl and KCl volatilization when reheated. oxidation, C, or de-CO 2 from carbonate, the withdrawal or the like adsorbed water, a large amount to volatility. Therefore, before the matrix is densified so that the gas can be trapped, it is necessary to sufficiently fill the voids in the matrix generated by the volatilization so that the gas can be trapped.

一般的には、マトリックス中に液相が生成するのに伴って多量のガスが発生するが、空隙の閉塞による緻密化に時間を要すると、ガスを捕捉できる状態になった時点ではがスの発生能力が低下して、十分発泡膨張ができなくなる。
また、生成した液相の粘性が昇温に伴って急激に低下すると、原料ペレット相互が融着して塊状となったり、キルン炉壁に付着して、安定した焼成が不可能となる。また、発生するガスを保持できず、ガスが吹きぬける状態となって、発泡膨張ができなくなる。
In general, a large amount of gas is generated as the liquid phase is generated in the matrix.However, if time is required for densification due to the clogging of the voids, the gas is trapped when the gas can be trapped. The generation capacity is reduced, and sufficient foam expansion cannot be performed.
Further, when the viscosity of the generated liquid phase rapidly decreases as the temperature rises, the raw material pellets are fused together to form a lump or adhere to the kiln furnace wall, making stable firing impossible. Further, the generated gas cannot be retained, and the gas is blown out, so that the foam expansion cannot be performed.

以上の観点から、揮発物を多量に含んだ原料を用いて発泡膨張させるのに適した原料組成を検討した結果、SiO2、Al2O3、Na2Oの3元系平衡図のムライト初晶域の最も低温の共融点近傍で且つムライトまたはトリジマイトの初晶域内が、最適であることを見出した。化学組成範囲で示すと、原料中のSiO2、Al2O3とK2Oを等モルでNa2O換算したSiO2、Al2O3、Na2Oの合計量を100重量%としたとき、Na2Oが5〜12重量%、Al2O3が12〜20重量%で、且つNa2O/ Al2O3が38重量%以下となるようにする。この化学組成範囲では、液相が急激に生成して短時間に空隙を埋めて、発生するガスを捕捉することにより、発生するガスを効率的に捕らえることが出来るため、発泡膨張が促進できると考えられる。 From the above viewpoint, as a result of studying a raw material composition suitable for foaming and expanding using a raw material containing a large amount of volatiles, Mullite's first ternary equilibrium diagram of SiO 2 , Al 2 O 3 , and Na 2 O was used. It has been found that the vicinity of the lowest eutectic point of the crystal region and the inside of the primary crystal region of mullite or tridymite are optimal. In terms of chemical composition range, the total amount of SiO 2 , Al 2 O 3 , and Na 2 O in which SiO 2 , Al 2 O 3 and K 2 O in the raw material are converted to Na 2 O in equimolar amounts is defined as 100% by weight. In this case, Na 2 O is 5 to 12% by weight, Al 2 O 3 is 12 to 20% by weight, and Na 2 O / Al 2 O 3 is 38% by weight or less. In this chemical composition range, it is possible to efficiently capture the generated gas by filling the voids in a short time by capturing the generated gas rapidly and capturing the generated gas. Conceivable.

このような組成調整材としては、主にSiO2源となるものとしてSiO2またはSiO2と、Al2O3を含む鉱物、例えば、珪砂、陶石、長石、カリオナイト、木節粘土、石炭灰及び下水道焼却汚泥等がある。また、Al2O3源となる組成調整材としては、アルミナ、ボーキサイト、ムライト、カオリナイト等がある。Na2OやK2Oのアルカリ金属は、都市ごみ焼却飛灰中に15〜20重量%程度含まれていて、通常はシリカやアルミナ含有原料を混合して含有量の適性範囲である6〜12重量%まで減量する。 Such compositions adjusting material, and SiO 2 or SiO 2 as main a SiO 2 source, minerals containing Al 2 O 3, for example, silica sand, pottery stone, feldspar, Karionaito, kibushi clay, coal ash And sewer incineration sludge. Examples of the composition adjusting material that becomes the Al 2 O 3 source include alumina, bauxite, mullite, and kaolinite. Alkaline metals such as Na 2 O and K 2 O are contained in municipal waste incineration fly ash in an amount of about 15 to 20% by weight. Reduce to 12% by weight.

次に、都市ごみ焼却飛灰に多く含まれるCaOは、一般的には、ロータリーキルンへ供給する時点では水酸化物となっている場合が多く、原料中で嵩高くなっていて、加熱に伴い脱水して空隙を増加するため、発泡膨張を促進する上では好ましくない。また、焼成に伴って液相を生成し始めると液相の粘性が急激に低下するため、ペレットが融着しやすくなって焼成温度が上昇し難いため、発泡膨張を促進し難くなる。従って、ペレット発泡膨張については、CaOは好ましい成分ではないが、原料中の含有量が15重量%以下であれば発泡膨張は可能であり、好ましくは10重量%以下が良い。
CaOについても、都市ごみ焼却飛灰には10〜40重量%程度が含まれていて、通常はシリカやアルミナ含有原料を混合して含有量が15重量%以下、好ましくは10重量%以下になるように調整される。
Next, CaO, which is abundant in municipal waste incineration fly ash, is generally a hydroxide at the time of supply to the rotary kiln, and is bulky in the raw material, and dehydrated with heating. In order to increase the voids, it is not preferable in promoting foam expansion. In addition, when the liquid phase starts to be generated along with the firing, the viscosity of the liquid phase is drastically lowered. Therefore, the pellets are easily fused, and the firing temperature is difficult to increase. Therefore, for pellet expansion, CaO is not a preferred component, but expansion is possible if the content in the raw material is 15% by weight or less, preferably 10% by weight or less.
As for CaO, municipal waste incineration fly ash contains about 10 to 40% by weight. Usually, silica and alumina-containing raw materials are mixed to make the content 15% or less, preferably 10% or less. To be adjusted.

発泡剤としては、酸化鉄であるへマタイトと炭化珪素や炭素とを共存させる。3価のへマタイトはガラス相中では2価の状態の方が安定なため、マトリックス中に液相が生成し始めると、急激に酸素を放出してウスタイトとなり、ガラス相中に拡散していくものと考えられる。この時点で、共存する炭素又は炭化珪素は酸化されてCO又はCO2ガスとなり、酸素を消費するため更に反応が促進されると考えられる。ここで発生するCO又はCO2ガスは、発泡ガスとして有効利用できる。また、へマタイトはウスタイトとなって液相中に拡散していくと、液相の粘性を適度に保つ効果もあると考えられる。 As a foaming agent, hematite, which is iron oxide, and silicon carbide or carbon coexist. Since trivalent hematite is more stable in the glass phase in the divalent state, when a liquid phase begins to form in the matrix, oxygen is rapidly released to become wustite and diffuse into the glass phase. It is considered a thing. At this point, the coexisting carbon or silicon carbide is oxidized to CO or CO 2 gas, which consumes oxygen, so the reaction is further promoted. The CO or CO 2 gas generated here can be effectively used as a foaming gas. In addition, it is considered that hematite has the effect of maintaining the viscosity of the liquid phase moderately when it becomes wustite and diffuses into the liquid phase.

炭化珪素は、酸素分圧が少ない状態では2700℃以上まで安定であるが、酸素分圧が高くなると、1000℃付近でも酸化が急速に進行する。従って、液相が生成し始めて、へマタイトがウスタイトとなる時点で、急激に酸化してCO又はCO2ガスを発生するため、発泡剤として極めて効率よく作用すると考えられる。 Silicon carbide is stable up to 2700 ° C. or higher when the oxygen partial pressure is low, but when the oxygen partial pressure is high, oxidation proceeds rapidly even near 1000 ° C. Accordingly, when the liquid phase starts to be generated and the hematite becomes wustite, it rapidly oxidizes to generate CO or CO 2 gas, which is considered to work extremely efficiently as a foaming agent.

へマタイトの原料中の含有量が3重量%未満では、酸素供給源としての効果が少なく、発泡膨張効果は不十分であるが、12重量%以上では、へマタイトがウスタイトとなってガラス相中に拡散すると、フラツクス効果が過剰となって粘性を著しく低下させるため、好ましくない。炭化珪素の添加量が0.02重量%未満では、CO又はCO2ガスを発生する効果が少なく、5%より増加してもその効果は増加しなくなる。炭素は、原料ペレットの空隙率や焼成時の燃焼ガス中の酸素濃度にもよるが、原料中の含有量が3重量%未満では、ペット内部まで酸化が進むため、マトリックス中の液相生成温度を上昇させ、且つガスの発生に寄与できない。また、その含有量が6%以上では、ペレット表面まで還元状態が進み、ウスタイトが増加するため、ペレット表面にへマタイト層が形成されて耐火度を向上させ、ペレットの焼成温度上昇に寄与することができなくなる。
また炭素自体の拝発によりペレット中の空隙が増加するため、発泡膨張を阻害することになり好ましくない。
If the content of hematite in the raw material is less than 3% by weight, the effect as an oxygen supply source is small and the foaming expansion effect is insufficient. When it is diffused, the flux effect becomes excessive and the viscosity is remarkably lowered. If the amount of silicon carbide added is less than 0.02% by weight, the effect of generating CO or CO 2 gas is small, and even if it is increased from 5%, the effect does not increase. Carbon depends on the porosity of the raw material pellets and the oxygen concentration in the combustion gas during firing, but if the content in the raw material is less than 3% by weight, oxidation proceeds to the inside of the pet, so the liquid phase formation temperature in the matrix And cannot contribute to gas generation. In addition, if the content is 6% or more, the reduced state proceeds to the pellet surface and wustite increases, so a hematite layer is formed on the pellet surface, improving the fire resistance and contributing to an increase in the firing temperature of the pellet. Can not be.
Further, since the voids in the pellets increase due to the advent of carbon itself, foam expansion is inhibited, which is not preferable.

3価の酸化鉄としては、へマタイトやパイライトシンダーが利用できる。炭化珪素は、反応速度を早くする必要があることから、比面積が6,000blaine以上の微粉を使用する。これより粒度が粗くなると、反応速度が著しく低下するため、ガス放出効果が著しく低下して発泡効果が得られない。炭素としては石炭やコークスが使用できる。   As trivalent iron oxide, hematite or pyrite cinder can be used. Since silicon carbide needs to increase the reaction rate, fine powder having a specific area of 6,000 blaine or more is used. When the particle size becomes coarser than this, the reaction rate is remarkably lowered, so that the gas releasing effect is remarkably lowered and the foaming effect cannot be obtained. Coal and coke can be used as carbon.

上記の如く、主原料の灰即ち飛灰及び/又は主灰に組成調整材などを添加して組成調整した原料混合物は、好ましくは、平均粒径が40μm以下となるように混合粉砕される。飛灰の平均粒径は数μm程度であるが、主灰と組成調整材である鉱物等は平均粒径が大きいため、粉砕機で粉砕しながら混合して平均粒径を40μm以下とすることが好ましい。原料混合物の平均粒径が40μmより大きいと、得られる固化体の強度が低下する傾向がある。   As described above, the raw material mixture prepared by adding a composition adjusting material or the like to the main raw material ash, ie, fly ash and / or main ash, is preferably mixed and ground so that the average particle size is 40 μm or less. The average particle size of fly ash is about several μm, but the main ash and minerals that are composition modifiers have a large average particle size. Is preferred. When the average particle size of the raw material mixture is larger than 40 μm, the strength of the obtained solidified body tends to be lowered.

次に、粉砕して混合した原料混合物に水を加え、所望の骨材形状に成形する。一般的には、転動造粒又は押出造粒により、直径5〜20mmのペレット状に整形する。成形方法としては、所定の骨材形状に成形できるものであれば如何なる方法でも良いが、発泡膨張を促進するため、極力成型ペレットの嵩密度を増加させるためには、押し出し成形の方が好ましい。   Next, water is added to the pulverized and mixed raw material mixture to form a desired aggregate shape. Generally, it is shaped into pellets having a diameter of 5 to 20 mm by rolling granulation or extrusion granulation. As a molding method, any method may be used as long as it can be molded into a predetermined aggregate shape. However, in order to increase the bulk density of molded pellets as much as possible in order to promote foam expansion, extrusion molding is preferable.

得られた成形体を1000〜1250℃で焼成することにより、骨材として必要な強度を備えた固化体が得られる。焼成炉としては、有害な重金属類の挿発促進と連続操業性と品質の均一性等とを勘案すれば、ロータリーキルンを用いることが好ましい。ロータリーキルンは設備が簡易であるうえ、加熱用燃焼ガス気流と原料が接触しやすく、高温で滞留時間も数十分と長いことから、重金属類のガス中への揮発も促進しやすい。従って、得られる骨材の品質にばらつきが少なく、重金属類の溶出を少なくして無害化する場合の信頼性が高い点で、骨材を焼成する設備として好ましい。   By firing the obtained molded body at 1000 to 1250 ° C., a solidified body having the strength required as an aggregate can be obtained. As the firing furnace, it is preferable to use a rotary kiln in consideration of the accelerated insertion of harmful heavy metals, continuous operability, quality uniformity, and the like. The rotary kiln is simple in equipment, and it is easy for the combustion gas stream for heating and the raw material to come into contact with each other, and the residence time is several tens of minutes at a high temperature. Therefore, volatilization of heavy metals into the gas is easy to promote. Therefore, it is preferable as an equipment for firing the aggregate in that the quality of the obtained aggregate is small and the reliability when the detoxification is reduced by reducing the elution of heavy metals.

更に、ロータリーキルンで焼成する場合、キルン内をペレットが転勤して移動する際に擦り減って粉化する。粉化量が多くなると、粉化物が焼成部でペレットに付着し、更にペレットが相互に及びキルン内壁に付着することにより、焼成操作が困難となり、実収率の低下や煤塵の捕集設備への負荷を増加させるため好ましくない。キルン内での粉化を低減させるためには、原料混合物にべントナイト等の粘土鉱物、パルプ廃液、糖蜜等の粘結剤を加えることが好ましい。   Furthermore, when baking with a rotary kiln, when a pellet transfers to a kiln and moves, it rubs down and pulverizes. When the amount of pulverization increases, the pulverized material adheres to the pellets at the firing section, and further, the pellets adhere to each other and to the inner wall of the kiln, making the firing operation difficult, reducing the actual yield and reducing dust collection equipment. This is not preferable because it increases the load. In order to reduce pulverization in the kiln, it is preferable to add a binder such as clay minerals such as bentonite, pulp waste liquid, and molasses to the raw material mixture.

本発明方法により得られる無機質焼成発泡体は、絶乾密度が1.2〜0.6kg/1と軽質であり、24時間の吸水率が30〜100重量%(乾量基準)と極めて高く、保水能力に優れている。これにより、骨材としての軽量特性を発揮できると共に、微生物の担持体としての濾材、海草の育成床や透水性、保水性に優れた土壌改良材として優れた特性を発揮することができる。   The inorganic fired foam obtained by the method of the present invention has a light dry density of 1.2 to 0.6 kg / 1 and a very high water absorption rate of 30 to 100% by weight (dry basis) for 24 hours. Excellent water retention capacity. Thereby, while being able to exhibit the light weight characteristic as an aggregate, the characteristic excellent as a soil improvement material excellent in the filter medium as a microorganisms support body, the growth bed of seaweed, water permeability, and water retention property can be exhibited.

都市ごみを焼却して得られた飛灰を主原料とし、その組成を上記のように組成調整材により調整して焼成することにより、下記のように無機質焼成発泡体を製造した。実験に使用した飛灰、組成調整材としての珪砂、石炭灰、アルミナ、消石灰、発泡剤としてのへマタイト、炭化珪素、コークス、粘結剤であるベントナイトについて、それらの化学組成を表1に示す。これらの原料を表2に示す配合割合となるように秤量した。またそれらの化学組成を表3に示した。   By using fly ash obtained by incineration of municipal waste as a main raw material and adjusting the composition with a composition adjusting material as described above and firing, an inorganic fired foam was produced as follows. Table 1 shows the chemical composition of fly ash used in the experiment, silica sand as a composition modifier, coal ash, alumina, slaked lime, hematite, silicon carbide, coke, and bentonite as a foaming agent. . These raw materials were weighed so as to have a blending ratio shown in Table 2. Their chemical compositions are shown in Table 3.

秤量した原料を括漬機で粉砕し混合した。なお、粉砕後の原料混合物の粒度分布をレーザ回折式粒度分布計で測定したところ、実験に供した原料混合物の平均粒径は全て30μm以下であった。得られた各原料混合物に水を加えて混練し、これを内径10mm、長さ10mmのシリンダー状の金型に充填して、シリンダーの長さ方向に800Nで30秒間加圧して円柱状に造粒した。   The weighed raw materials were pulverized and mixed with a pickling machine. When the particle size distribution of the raw material mixture after pulverization was measured with a laser diffraction particle size distribution meter, the average particle size of the raw material mixture used in the experiment was 30 μm or less. Water is added to each raw material mixture obtained and kneaded.The resulting mixture is filled into a cylindrical mold having an inner diameter of 10 mm and a length of 10 mm, and is pressurized in the length direction of the cylinder at 800 N for 30 seconds to form a cylinder. Grained.

このようにして造粒した試料を、105℃で恒量となるまで乾燥後、CO2中酸素濃度1%に雰囲気調整された電気炉に挿入し、10℃/minで昇温して所定の焼成温度で30分保持した後、炉から取り出して放冷して物性評価試料とした。 The granulated sample is dried to a constant weight at 105 ° C, then inserted into an electric furnace adjusted to an atmosphere with an oxygen concentration of 1% in CO 2 , and heated at a rate of 10 ° C / min. After maintaining at the temperature for 30 minutes, the sample was taken out from the furnace and allowed to cool to obtain a sample for evaluating physical properties.

各骨材原料の化学組成を、SiO2、A12O3、Na2O三成分の化学的組成により表4に示した。なお、原料中のK2Oを等モルでNa2Oに換算し、Na2Oに換算したSiO2、A12O3、K2OとNa2Oの合計量を100重量%として化学組成を計算した。
また、得られた各骨材について、密度及び24時間吸水率を測定し、焼成温度と共に表4に示した。なお、骨材の密度と24時間吸水率はJIS AlllOに基づいて測定した。
The chemical composition of each aggregate raw material is shown in Table 4 according to the chemical composition of SiO 2 , A 1 2 O 3 and Na 2 O. In addition, K 2 O in the raw material is converted to Na 2 O in an equimolar amount, and the chemical composition is calculated with the total amount of SiO 2 , A1 2 O 3 , K 2 O and Na 2 O converted to Na 2 O being 100 wt%. Was calculated.
Further, the density and 24-hour water absorption of each obtained aggregate were measured and shown in Table 4 together with the firing temperature. The aggregate density and 24-hour water absorption were measured based on JIS AlllO.

上記の結果から分かるように、本発明の製造方法によって得られた実施例1−4では、 焼成温度1000〜1250℃の間で、絶乾密度が0.6〜1.2kg/1で24時間吸水率が60〜100重量%(乾量基準)の軽量で高吸水率を有する骨材が得られた。   As can be seen from the above results, in Example 1-4 obtained by the production method of the present invention, the absolute dry density is 0.6 to 1.2 kg / 1 for 24 hours at a firing temperature of 1000 to 1250 ° C. A lightweight aggregate having a high water absorption rate with a water absorption rate of 60 to 100% by weight (dry basis) was obtained.

一方、比較例1〜3は、原料中の三成分系でのNa2Oが12重量%より多く、かつ三成分系でのAl2O3が20重量%より多いため、骨材の絶乾密度は1.6〜1.9kg/lと高く、24時間吸水率も10〜20%と低くなった。 On the other hand, Comparative Examples 1 to 3 have more than 12% by weight of Na 2 O in the ternary system and more than 20% by weight of Al 2 O 3 in the ternary system. The density was as high as 1.6 to 1.9 kg / l, and the 24-hour water absorption was also as low as 10 to 20%.

比較例4は、三成分系でのA12O3が12重量%より少なく、三成分系でのNa2O/(Al2O3+Na2O)重量比が0.38より大きく、絶乾密度は1.35kg/1と高く、24時間吸水率も57重量%(乾量基準)で、60重量%(乾量基準)に満たなかった。 In Comparative Example 4, A1 2 O 3 in the ternary system is less than 12% by weight, and the Na 2 O / (Al 2 O 3 + Na 2 O) weight ratio in the ternary system is greater than 0.38, which is absolutely dry. The density was as high as 1.35kg / 1, and the 24-hour water absorption was 57% by weight (dry basis), which was less than 60% by weight (dry basis).

比較例5は、原料中のCaOが17.4%と多く、絶乾密度は1.45kg/1となり、24時間吸水率も31重量%(乾量基準)と低い値を示した。   In Comparative Example 5, the CaO content in the raw material was as high as 17.4%, the absolute dry density was 1.45 kg / 1, and the 24-hour water absorption was 31% by weight (on the basis of dry weight).

比較例6は、実施例1の配合と類似しているが、原料中のFe2O3の含有率が3重量%未満であり、絶乾密度は1.88kg/1となり、24時間吸水率も13重量%(乾量基準)と低い値を示し、Fe2O3の含有率が少ないため発泡膨張が十分でないことを示している。 Comparative Example 6 is similar to the formulation of Example 1, but the content of Fe 2 O 3 in the raw material is less than 3% by weight, the absolute dry density is 1.88 kg / 1, and the 24-hour water absorption is Also shows a low value of 13% by weight (on a dry basis), indicating that the expansion of the foam is not sufficient due to the low content of Fe 2 O 3 .

比較例7は、実施例1の配合と類似しているが、原料中のFe2O3の含有率が12重量%より多く、絶乾密度は1.39kg/1となり、24時間吸水率も39重量%(乾量基準)と低い値を示し、Fe2O3が過多となると発泡膨張しにくくなることを示している。 Comparative Example 7 is similar to the formulation of Example 1, but the content of Fe 2 O 3 in the raw material is more than 12% by weight, the absolute dry density is 1.39 kg / 1, and the 24-hour water absorption is also It shows a low value of 39% by weight (on the basis of dry weight), indicating that foaming expansion is difficult when Fe 2 O 3 is excessive.

比較例8は、実施例1の配合と類似しているが、原料へのSiCの添加率が0.02重量%より少なく、絶乾密度は1.64kg/1となり、24時間吸水率も32重量%(乾量基準)と低い値を示した。   Comparative Example 8 is similar to the formulation of Example 1, but the addition rate of SiC to the raw material is less than 0.02% by weight, the absolute dry density is 1.64 kg / 1, and the 24-hour water absorption is also 32. The value was as low as wt% (based on dry weight).

比較例9は、実施例1の配合と類似しているが、原料へのSiCの添加率が5重量%より多く、絶乾密度は0.66kg/1となり、24時間吸水率も77重量%(乾量基準)と高い値を示したが、実施例1と殆ど差が無く、SiCの添加量を増加した効果が増加していないことを示している。   Comparative Example 9 is similar to the formulation of Example 1, but the addition rate of SiC to the raw material is more than 5% by weight, the absolute dry density is 0.66 kg / 1, and the 24-hour water absorption is 77% by weight. Although it was a high value (on a dry basis), there was almost no difference from Example 1, indicating that the effect of increasing the amount of SiC added did not increase.

比10は、実施例1の配合と類似しているが、原料中のCの含有率が3重量%未満であり、絶乾密度は1.53kg/1となり、24時間吸水率も28重量%(乾量基準)と低い値を示した。   The ratio 10 is similar to the formulation of Example 1, but the content of C in the raw material is less than 3% by weight, the absolute dry density is 1.53 kg / 1, and the 24-hour water absorption is also 28% by weight. (Dry basis) and a low value.

比較例11は、実施例1の配合と類似しているが、原料中のCの含有率が6重量%より多く、絶乾密度は1.40kg/1となり、24時間吸水率も37重量%(乾量基準)と低い値を示した。
Comparative Example 11 is similar to the formulation of Example 1, but the content of C in the raw material is more than 6% by weight, the absolute dry density is 1.40 kg / 1, and the 24-hour water absorption is also 37% by weight. (Dry basis) and a low value.

Claims (18)

都市ごみを焼却して得られる灰を含む下記の組成条件(a)を満足するように配合された原料混合物と、鉄酸化物,炭化珪素及び炭素が下記の組成条件(b)を満足するように添加された発泡剤とから成形されていて、1000乃至1250℃の間の温度で焼成されてなる無機質発泡焼成体;
(a)原料中のSiO2, Al2O とK2Oを等モルでNa2Oに換算し、Na2O換算したSiO2, Al2O3及びNa2Oの合計量を100重量%としたとき、Na2Oが5〜12重量%, Al2O3が12〜20重量%, Na2O/(Na2O+Al2O3)が38重量%未満となるようにし、
(b)全原料混合物中の酸化鉄量,炭化珪素及び炭素の配合量を、酸化鉄量はヘマタイト換算量として内割りで3〜12重量%,炭化珪素量は0.02〜5重量%,炭素は3〜6重量%となるようにする。
Raw material mixture containing ash obtained by incineration of municipal waste so as to satisfy the following composition condition (a), and iron oxide, silicon carbide and carbon so as to satisfy the following composition condition (b) An inorganic foam fired body formed from a foaming agent added to the base material and fired at a temperature of 1000 to 1250 ° C .;
(A) of SiO 2, Al 2 O and K 2 O in the raw material converted at equimolar to Na 2 O, Na 2 O-converted SiO 2, Al 2 O 3 and the total amount of Na 2 O 100 wt% When Na 2 O is 5 to 12% by weight, Al 2 O 3 is 12 to 20% by weight, and Na 2 O / (Na 2 O + Al 2 O 3 ) is less than 38% by weight,
(B) The amount of iron oxide, silicon carbide and carbon in the total raw material mixture, the amount of iron oxide is 3-12% by weight as a hematite conversion amount, the amount of silicon carbide is 0.02-5% by weight, Carbon should be 3 to 6% by weight.
原料中のCaOの含有率は15重量%以下である請求項1に記載の無機質発泡焼成体。   The inorganic foam fired body according to claim 1, wherein the content of CaO in the raw material is 15% by weight or less. 前記SiO2源は、前記灰,珪砂,陶石,長石,オカリナイト,木節粘土,石炭灰及び下水道焼却汚泥の少なくとも一つからなっている請求項1または2に記載の無機質発泡焼成体。 The inorganic foam fired body according to claim 1 or 2, wherein the SiO 2 source is composed of at least one of the ash, silica sand, porcelain stone, feldspar, ocarnite, kibushi clay, coal ash, and sewer incineration sludge. 前記鉄酸化物としてヘマタイトを用いた請求項1乃至3の何れかに記載の無機質発泡焼成体。   The inorganic foam fired body according to any one of claims 1 to 3, wherein hematite is used as the iron oxide. 前記炭化珪素は比面積が6000ブレイン以上の粉末を用いた請求項1乃至4の何れかに記載の無機質発泡焼成体。   The inorganic foam fired body according to any one of claims 1 to 4, wherein the silicon carbide is a powder having a specific area of 6000 brain or more. 前記炭素源として石炭又はコークスを用いた請求項1乃至5の何れかに記載の無機質発泡焼成体。   The inorganic foam fired body according to any one of claims 1 to 5, wherein coal or coke is used as the carbon source. 前記原料混合物の平均粒径を40μm以下とした請求項1乃至6の何れかに記載の無機質発泡焼成体。   The inorganic foam fired body according to any one of claims 1 to 6, wherein an average particle diameter of the raw material mixture is 40 µm or less. ペレット状に成形されている請求項1乃至7の何れかに記載の無機質発泡焼成体。   The inorganic foam fired body according to any one of claims 1 to 7, which is formed into a pellet. 前記原料混合物にベントナイト,糖蜜及びパルプ廃液の少なくとも一つが添加されている請求項1乃至8の何れかに記載の無機質発泡焼成体。   The inorganic foam fired body according to any one of claims 1 to 8, wherein at least one of bentonite, molasses and pulp waste liquid is added to the raw material mixture. 都市ごみを焼却して得られる灰を主原料とする無機質発泡焼成体の製造方法において、前記灰を含む原料混合物が下記組成条件(a)を満足するように配合し、これに発泡剤としての鉄酸化物,炭化珪素及び炭素を下記組成条件(b)を満足するように添加して粉砕混合し、これに水を加えて成形し、得られた成形体を1000〜1250℃の温度で焼成することを特徴とする無機質発泡焼成体の製造方法;
(a)原料中のSiO2, Al2O とK2Oを等モルでNa2Oに換算し、Na2O換算したSiO2, Al2O3及びNa2Oの合計量を100重量%としたとき、Na2Oが5〜12重量%, Al2O3が12〜20重量%, Na2O/(Na2O+Al2O3)が38重量%未満となるようにし、
(b)全原料混合物中の酸化鉄量,炭化珪素及び炭素の配合量を、酸化鉄量はヘマタイト換算量として内割りで3〜12重量%,炭化珪素量は0.02〜5重量%,炭素は3〜6重量%となるようにする。
In the method for producing an inorganic foam fired body using ash obtained by incineration of municipal waste as a main raw material, the raw material mixture containing the ash is blended so as to satisfy the following composition condition (a), and this is used as a foaming agent. Iron oxide, silicon carbide, and carbon are added so as to satisfy the following composition condition (b), pulverized and mixed, and water is added to this, and the resulting molded body is fired at a temperature of 1000 to 1250 ° C. A method for producing an inorganic foam fired body, characterized by:
(A) of SiO 2, Al 2 O and K 2 O in the raw material converted at equimolar to Na 2 O, Na 2 O-converted SiO 2, Al 2 O 3 and the total amount of Na 2 O 100 wt% When Na 2 O is 5 to 12% by weight, Al 2 O 3 is 12 to 20% by weight, and Na 2 O / (Na 2 O + Al 2 O 3 ) is less than 38% by weight,
(B) The amount of iron oxide, silicon carbide and carbon in the total raw material mixture, the amount of iron oxide is 3-12% by weight as a hematite conversion amount, the amount of silicon carbide is 0.02-5% by weight, Carbon should be 3 to 6% by weight.
原料中のCaOの含有率は15重量%以下である請求項10に記載の無機質発泡焼成体の製造方法。   The method for producing an inorganic foam fired body according to claim 10, wherein the content of CaO in the raw material is 15% by weight or less. 前記SiO2源は、前記灰,珪砂,陶石,長石,オカリナイト,木節粘土,石炭灰及び下水道焼却汚泥の少なくとも一つからなっている請求項10または11に記載の無機質発泡焼成体の製造方法。 The said foamed SiO 2 source is made of at least one of the ash, quartz sand, porcelain stone, feldspar, ocarite, kibushi clay, coal ash, and sewer incineration sludge. Method. 前記鉄酸化物としてヘマタイトを用いた請求項10乃至12の何れかに記載の無機質発泡焼成体の製造方法。   The method for producing an inorganic foamed fired body according to any one of claims 10 to 12, wherein hematite is used as the iron oxide. 前記炭化珪素は比面積が6000ブレイン以上の粉末を用いた請求項10乃至13の何れかに記載の無機質発泡焼成体。   The inorganic foam fired body according to any one of claims 10 to 13, wherein the silicon carbide is a powder having a specific area of 6000 brain or more. 前記炭素源として石炭又はコークスを用いた請求項10乃至14の何れかに記載の無機質発泡焼成体の製造方法。   The method for producing an inorganic foam fired body according to any one of claims 10 to 14, wherein coal or coke is used as the carbon source. 前記原料混合物の平均粒径を40μm以下とした請求項10乃至15の何れかに記載の無機質発泡焼成体の製造方法。   The method for producing an inorganic foam fired body according to any one of claims 10 to 15, wherein an average particle size of the raw material mixture is 40 µm or less. ペレット状に成形されている請求項10乃至16の何れかに記載の無機質発泡焼成体の製造方法。   The method for producing an inorganic foam fired body according to any one of claims 10 to 16, which is formed into a pellet. 前記原料混合物にベントナイト,糖蜜及びパルプ廃液の少なくとも一つが添加されている請求項10乃至17の何れかに記載の無機質発泡焼成体の製造方法。









The method for producing an inorganic foam fired body according to any one of claims 10 to 17, wherein at least one of bentonite, molasses and pulp waste liquid is added to the raw material mixture.









JP2004138149A 2004-05-07 2004-05-07 Inorganic foamed, fired body and its production method Pending JP2005320188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004138149A JP2005320188A (en) 2004-05-07 2004-05-07 Inorganic foamed, fired body and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004138149A JP2005320188A (en) 2004-05-07 2004-05-07 Inorganic foamed, fired body and its production method

Publications (1)

Publication Number Publication Date
JP2005320188A true JP2005320188A (en) 2005-11-17

Family

ID=35467729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138149A Pending JP2005320188A (en) 2004-05-07 2004-05-07 Inorganic foamed, fired body and its production method

Country Status (1)

Country Link
JP (1) JP2005320188A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161784A (en) * 2006-12-27 2008-07-17 Taiheiyo Cement Corp Treatment method for particulate containing chlorine
JP2008308392A (en) * 2007-06-18 2008-12-25 Taiheiyo Cement Corp Fired material and its production method
JP2009018216A (en) * 2007-07-10 2009-01-29 Taiheiyo Cement Corp Sintered body, and method for preparing the same
CN103274745A (en) * 2013-06-12 2013-09-04 许庆华 Bentonite compound type flame-retardant foaming agent
CN103911162A (en) * 2013-12-27 2014-07-09 新疆德蓝股份有限公司 Magnetic filling material for soil remediation
CN103964898A (en) * 2014-03-25 2014-08-06 佛山市大唐陶业有限公司 Vermilion glaze and preparation method of product made of vermilion glaze
WO2014132877A1 (en) * 2013-02-28 2014-09-04 小松精練株式会社 Porous ceramic sintered body and method for manufacturing same
KR101646155B1 (en) 2015-12-23 2016-08-08 그렉 조 Fly ash composition for preparing a light-weight molded foam article and method for producing a light-weight molded foam article using them and a light-weight molded foam article made thereby
KR20160114376A (en) * 2015-03-24 2016-10-05 공주대학교 산학협력단 Composition for foam concrete with high insulation for reducing of floor impact sound, manufacturing method of foam concrete using the same and foam concrete with high insulation for reducing of floor impact sound manufactured using the same
KR101892391B1 (en) 2017-05-22 2018-08-27 그렉 조 Method for manufacturing bottom ash molded foam article
CN114591099A (en) * 2022-03-23 2022-06-07 中国地质大学(北京) Porous material based on blast furnace ash as foaming agent and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161784A (en) * 2006-12-27 2008-07-17 Taiheiyo Cement Corp Treatment method for particulate containing chlorine
JP2008308392A (en) * 2007-06-18 2008-12-25 Taiheiyo Cement Corp Fired material and its production method
JP2009018216A (en) * 2007-07-10 2009-01-29 Taiheiyo Cement Corp Sintered body, and method for preparing the same
JPWO2014132877A1 (en) * 2013-02-28 2017-02-02 小松精練株式会社 Porous ceramic fired body and method for producing the same
WO2014132877A1 (en) * 2013-02-28 2014-09-04 小松精練株式会社 Porous ceramic sintered body and method for manufacturing same
CN103274745A (en) * 2013-06-12 2013-09-04 许庆华 Bentonite compound type flame-retardant foaming agent
CN103911162A (en) * 2013-12-27 2014-07-09 新疆德蓝股份有限公司 Magnetic filling material for soil remediation
CN103964898A (en) * 2014-03-25 2014-08-06 佛山市大唐陶业有限公司 Vermilion glaze and preparation method of product made of vermilion glaze
KR20160114376A (en) * 2015-03-24 2016-10-05 공주대학교 산학협력단 Composition for foam concrete with high insulation for reducing of floor impact sound, manufacturing method of foam concrete using the same and foam concrete with high insulation for reducing of floor impact sound manufactured using the same
KR101722983B1 (en) * 2015-03-24 2017-04-04 공주대학교 산학협력단 Composition for foam concrete with high insulation for reducing of floor impact sound, manufacturing method of foam concrete using the same and foam concrete with high insulation for reducing of floor impact sound manufactured using the same
KR101646155B1 (en) 2015-12-23 2016-08-08 그렉 조 Fly ash composition for preparing a light-weight molded foam article and method for producing a light-weight molded foam article using them and a light-weight molded foam article made thereby
KR101892391B1 (en) 2017-05-22 2018-08-27 그렉 조 Method for manufacturing bottom ash molded foam article
CN114591099A (en) * 2022-03-23 2022-06-07 中国地质大学(北京) Porous material based on blast furnace ash as foaming agent and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI393691B (en) Pyroprocessed aggregates comprising iba and low calcium silicoaluminous materials and methods for producing such aggregates
Lau et al. Characteristics of lightweight aggregate produced from lime-treated sewage sludge and palm oil fuel ash
US7704317B2 (en) Pyroprocessed aggregates comprising IBA and PFA and methods for producing such aggregates
JP2008538347A (en) Synthetic aggregates containing sewage sludge and other waste and methods for producing such aggregates
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
JP2005320188A (en) Inorganic foamed, fired body and its production method
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
JP2006263635A (en) Inorganic solidified body with hig specific surface area ratio and method for producing the same
JP2007223841A (en) Method for producing artificial aggregate using waste slag as main raw material
JPH08301641A (en) Production of artificial lightweight aggregate
JP2006298730A (en) Method of firing incineration ash and sintered compact obtained by the same method
KR20020078079A (en) Light-weight porous aggregate for acoustic wave damping modules and method for manufacturing the same
JPH1029841A (en) Production of artificial aggregate
JP2000034179A (en) Production of water-holding granular sintered compact
JP2003012355A (en) Method for producing artificial lightweight aggregate
JPH0812413A (en) Production of water-permeable block
JP4509269B2 (en) Artificial aggregate and method for producing the same
JP3216034B2 (en) Porous sintered body and method for producing the same
JP2004269822A (en) Process for preparing calcium sulfide-based heavy metal fixing agent
JP3204104B2 (en) Manufacturing method of artificial lightweight aggregate
JP7372215B2 (en) Composition for fired body and method for producing fired body using the same
CN111320423A (en) Method for preparing brick-making material by using pharmaceutical sludge
JPH10226547A (en) Production of artificial aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623