JP7345329B2 - 診断装置、分散型発電システム、診断方法 - Google Patents

診断装置、分散型発電システム、診断方法 Download PDF

Info

Publication number
JP7345329B2
JP7345329B2 JP2019167462A JP2019167462A JP7345329B2 JP 7345329 B2 JP7345329 B2 JP 7345329B2 JP 2019167462 A JP2019167462 A JP 2019167462A JP 2019167462 A JP2019167462 A JP 2019167462A JP 7345329 B2 JP7345329 B2 JP 7345329B2
Authority
JP
Japan
Prior art keywords
phase
load
power line
current detection
load fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019167462A
Other languages
English (en)
Other versions
JP2021045025A (ja
Inventor
和秀 指原
壮哉 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2019167462A priority Critical patent/JP7345329B2/ja
Publication of JP2021045025A publication Critical patent/JP2021045025A/ja
Application granted granted Critical
Publication of JP7345329B2 publication Critical patent/JP7345329B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、分散型発電装置と系統電源とを接続する電力線に設けられた電流検出部の診断装置、分散型発電システム、診断方法に関する。
特許文献1の分散型発電システムでは、分散型発電装置と系統電源とは、R相線、N相線及びT相線を含む電力線によって接続されている。R相線及びT相線には、電流センサとしてそれぞれR相センサ及びT相センサが取り付けられている。また、電力負荷として、R相負荷がR相線とN相線とに接続され、T相負荷がT相線とN相線とに接続されている。R相センサが正常か否か等を診断する場合には、R相負荷を通電してR相線を流れる電流の大きさ及び向きをR相センサにより検出する。同様に、T相センサが正常か否か等を診断する場合には、T相負荷を通電してT相線を流れる電流の大きさ及び向きをT相センサにより検出する。なお、正常か否かの診断には、電流センサの取り付けの向き、取り付け位置等の接続状態の診断が含まれる。
特許文献1では、R相センサ及びT相センサのそれぞれの診断を複数回行っている。これにより、1回では電流センサを診断できない場合でも、複数回の診断により判断値の取得を担保することができる。
例えば、R相負荷への所定時間の電力供給のタイミングと、R相負荷以外の家庭内負荷への電力供給のタイミングとが一致した場合には、R相センサが検出する電流値は、R相負荷のみへの電力の供給に基づいた電流値とは異なる値になる。そのため、R相センサを診断するための判断値を得ることができず、R相センサが正常か否かを正しく把握できない。特許文献1の構成によれば、複数回に亘ってR相センサの診断を行うため、ある診断時にはR相負荷のみへの電力供給に基づいた電流値をR相センサによって測定できなくても、例えば次回以降の診断時に必要な判断値を得ることが可能となる。同様に、T相センサでの電流値の取得についても判断値の取得を担保できる。
特開2015-122819号公報
しかし、特許文献1のように複数回に亘って電流値を測定した場合でも、例えばR相負荷又はT相負荷以外の例えば家庭内負荷の使用状況によっては、R相負荷又はT相負荷への電力供給のタイミングと、R相負荷又はT相負荷以外の例えば家庭内負荷への電力供給のタイミングとをずらすことができない場合も生じる。この場合には、R相センサ又はT相センサは、正常か否かを判断するための判断値を取得することができない。よって、R相センサ又はT相センサの状態を誤診断してしまう事態が生じるため、電流検出部の診断について改良が望まれている。
また、分散型発電システムを設置した後、又は定期メンテナンス等において、効率よく診断できる点についても電流検出部の診断について改良が望まれている。
そこで、本発明は上述の課題に鑑みてなされたものであり、電流検出部を診断するための診断装置、分散型発電システム、診断方法を提供することを目的とする。
本発明に係る診断装置の特徴構成は、
第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断装置であって、
前記電力線における負荷変動の絶対値が所定の負荷変動判定値未満となる負荷変動判定条件を満たすか否かを判定し、前記負荷変動判定条件を満たす場合に、前記電流検出部により前記電流検出部が正常か否かを診断するための電流値の検出が可能であると決定する診断可否決定部を備え
前記負荷変動判定値には、前記第1相電力線における負荷変動の絶対値を判定する基準である第1負荷変動判定値と、前記第2相電力線における負荷変動の絶対値を判定する基準である第2負荷変動判定値とが含まれ、
前記負荷変動判定条件には、前記第2電流検出部による電流値の検出の可否を判定するための第1負荷変動判定条件と、前記第1電流検出部による電流値の検出の可否を判定するための第2負荷変動判定条件とが含まれ、
前記診断可否決定部は、
前記第2相電力線における負荷変動の絶対値が前記第2負荷変動判定値未満となり前記第2負荷変動判定条件を満たすと判定した場合、前記第1電流検出部により前記第1電流検出部が正常か否かを診断するための電流値の検出が可能であると決定し、
一方、前記第1相電力線における負荷変動の絶対値が前記第1負荷変動判定値未満となり前記第1負荷変動判定条件を満たすと判定した場合、前記第2電流検出部により前記第2電流検出部が正常か否かを診断するための電流値の検出が可能であると決定する点にある。
電流検出部が正常か否かを診断する場合、第1相負荷を第1相電力線に接続するか、あるいは、第2相負荷を第2相電力線に接続する。第1相負荷及び第2相負荷は、例えば分散型発電装置が発電した余剰電力を消費する負荷である。また、第1相電力線及び第2相電力線には、任意に第3負荷が接続されている。第3負荷は、例えばテレビ、冷蔵庫、洗濯機等の各種電気機器である。ここで、以下では、第3負荷が第1相電力線及び第2相電力線それぞれに接続されているとする。この場合、電流検出部を診断する場合において、第1相電力線には第1相負荷及び第3負荷が接続された状態となるか、あるいは、第2相電力線には第2相負荷及び第3負荷が接続された状態となる。よって、第1相電力線には、第1相負荷及び第3負荷が系統電源からの電力を消費することによる負荷変動が生じる。また、第2相電力線には、第2相負荷及び第3負荷が系統電源からの電力を消費することによる負荷変動が生じる。
なお、電流検出部が正常とは、例えば所定の診断条件を満たす場合をいう。
電流検出部が正常か否かを診断する場合、第1相電力線に接続された第1相負荷による負荷変動が第1相電力線に生じているのか否かを把握できる必要がある。もし、第1相負荷を第1相電力線に接続した場合に、第1相電力線に大きな負荷変動が生じ、さらに第2相電力線にも大きな負荷変動が生じた場合には、第1相電力線及び第2相電力線いずれの負荷変動が、第1相負荷を第1相電力線に接続したことに起因するものであるか否かが把握できない。この場合、例えば、第1電流検出部が第1相電力線に接続されているのか第2相電力線に接続されているのかを診断できない事態、第1電流検出部が第2相電力線に接続されていると診断されてしまう事態等、第1電流検出部が正常か否かについて誤診断が生じてしまう。同様に、第2相負荷を第2相電力線に接続した場合に、第1相電力線及び第2相電力線ともに大きな負荷変動が生じた場合には、第1相電力線及び第2相電力線いずれの負荷変動が、第2相負荷を第2相電力線に接続したことに起因するものであるかが把握できない。この場合、上記と同様に、第2電流検出部が正常か否かについて誤診断が生じてしまう。
このような状態となる原因としては、第1相電力線及び第2相電力線に第3負荷が接続されており、第3負荷による負荷変動が第1相電力線及び第2相電力線において大きく生じるからと考えられる。
本特徴構成によれば、電力線における負荷変動の絶対値が負荷変動判定値未満の場合に、つまり、電力線に接続されている第3負荷による負荷変動の絶対値が小さい場合に、電流検出部を診断するための電流値を取得可能と決定する。これにより、電流検出部を診断するために第1相負荷を第1相電力線に接続した場合、第1相電力線に大きな負荷変動が生じるが、第2相電力線に接続されている第3負荷が第2相電力線に大きな負荷変動を与えるのを抑制できる。同様に、電流検出部を診断するために第2相負荷を第2相電力線に接続した場合、第2相電力線に大きな負荷変動が生じるが、第1相電力線に接続されている第3負荷が第1相電力線に大きな負荷変動を与えるのを抑制できる。
よって、第1相負荷が接続された第1相電力線では、第2相負荷が切断されている第2相電力線よりも大きな負荷変動が生じ、第1相電力線の負荷変動の挙動と第2相電力線の負荷変動の挙動とが異なるようになる。よって、第1相電力線と第2相電力線とを区別することができる。そして、第1相電力線における大きな負荷変動を第1電流検出部が検出するか否かによって第1電流検出部が正常か否かを検出できる。同様に、第2相負荷が接続された第2相電力線では、第1相負荷が切断されている第1相電力線よりも大きな負荷変動が生じるが、その大きな負荷変動を第2電流検出部が検出するか否かによって第2電流検出部が正常か否かを検出できる。これにより、電流検出部が正常か否かについての誤診断を抑制できる。
さらに、第1電流検出部を診断する場合には、第1相電力線に第1相負荷が接続され、第2相電力線には第2相負荷は接続されない。一方、第2電流検出部を診断する場合には、第2相電力線に第2相負荷が接続され、第1相電力線には第1相負荷は接続されない。なお、第3負荷は第1相電力線及び第2相電力線に任意に接続されており、ここでは第1相電力線及び第2相電力線それぞれに接続されているものとする。
本特徴構成によれば、第1電流検出部を診断する場合には、第2相電力線における負荷変動の絶対値が第2負荷変動判定値未満の場合に、つまり、第2相電力線に接続されている第3負荷による負荷変動が小さい場合に、第1電流検出部を診断するための電流値を取得可能と決定する。この場合、第1電流検出部を診断するために第1相負荷を第1相電力線に接続すると、第1相電力線に大きな負荷変動が生じるが、第2相電力線に接続されている第3負荷が第2相電力線に大きな負荷変動を与えるのを抑制できる。よって、例えば、第1電流検出部が第1相電力線に接続されているのか第2相電力線に接続されているのかを診断できない事態、第1電流検出部が第2相電力線に接続されていると診断されてしまう事態等の、第1電流検出部が正常か否かについての誤診断を抑制できる。
同様に、第2電流検出部を診断する場合には、第1相電力線における負荷変動の絶対値が第1負荷変動判定値未満の場合に、つまり、第1相電力線に接続されている第3負荷による負荷変動が小さい場合に、第2電流検出部を診断するための電流値を取得可能と決定する。この場合、第2電流検出部を診断するために第2相負荷を第2相電力線に接続すると、第2相電力線に大きな負荷変動が生じるが、第1相電力線に接続されている第3負荷が第1相電力線に大きな負荷変動を与えるのを抑制できる。よって、例えば、第2電流検出部が第1相電力線に接続されているのか第2相電力線に接続されているのかを診断できない事態、第2電流検出部が第1相電力線に接続されていると診断されてしまう事態等の、第2電流検出部が正常か否かについての誤診断を抑制できる。
本発明に係る診断装置の更なる特徴構成は、
前記第1負荷変動判定値は、前記第2相負荷が消費する電力による負荷変動の範囲内で設定されており、前記第2負荷変動判定値は、前記第1相負荷が消費する電力による負荷変動の範囲内で設定されている点にある。
第1電流検出部を診断するために、第1相負荷を第1相電力線に接続した場合には、第1相電力線には主として第1相負荷による負荷変動が生じる。一方、第2相電力線では第3負荷による負荷変動が生じる。ここで、前述の通り、第2相電力線における負荷変動の絶対値が第2負荷変動判定値未満の場合に、第1電流検出部を診断する。本特徴構成によれば、第2相電力線における負荷変動の絶対値が第2負荷変動判定値未満とは、第2相電力線における第3負荷による負荷変動の絶対値が第1相負荷の消費電力による負荷変動未満になることである。この場合には、第1相電力線に生じる第1相負荷による負荷変動の絶対値が、第2相電力線に生じる第3負荷による負荷変動の絶対値よりも大きくなる。そのため、第1相電力線の第1相負荷による負荷変動の挙動と第2相電力線の第3負荷による負荷変動の挙動とが異なり、第1相電力線と第2相電力線とを区別することができる。そして、第1相電力線における大きな負荷変動を第1電流検出部が検出するか否かによって第1電流検出部が正常か否かを容易に診断できる。
同様に、第2電流検出部を診断するために、第2相負荷を第2相電力線に接続した場合には、第2相電力線には主として第2相負荷による負荷変動が生じる。一方、第1相電力線では第3負荷による負荷変動が生じる。ここで、前述の通り、第1相電力線における負荷変動の絶対値が第1負荷変動判定値未満の場合に、第2電流検出部を診断する。本特徴構成によれば、第1相電力線における負荷変動の絶対値が第1負荷変動判定値未満とは、第1相電力線における第3負荷による負荷変動の絶対値が第2相負荷の消費電力による負荷変動未満になることである。この場合には、第2相電力線に生じる第2相負荷による負荷変動の絶対値が、第1相電力線に生じる第3負荷による負荷変動の絶対値よりも大きくなる。そのため、第1相電力線の負荷変動の挙動と第2相電力線の負荷変動の挙動とが異なり、第1相電力線と第2相電力線とを区別することができる。そして、第2相電力線における大きな負荷変動を第2電流検出部が検出するか否かによって第2電流検出部が正常か否かを容易に診断できる。
本発明に係る診断装置の更なる特徴構成は、
前記診断可否決定部は、
前記第2負荷変動判定条件が満たされない場合、前記第1相電力線における負荷変動の絶対値が前記第1負荷変動判定条件を満たすか否かを判定して、前記第2電流検出部による電流値の検出が可能か否かを決定し、
一方、前記第1負荷変動判定条件が満たされない場合、前記第2相電力線における負荷変動の絶対値が前記第2負荷変動判定条件を満たすか否かを判定して、前記第1電流検出部による電流値の検出が可能か否かを決定する点にある。
上記特徴構成によれば、第2負荷変動判定条件が満たされない場合、つまり第1電流検出部を診断するための電流値の検出が不可である場合、第1相電力線における負荷変動の絶対値が第1負荷変動判定条件を満たすか否かを判定する。これにより、第1相電力線及び第2相電力線における負荷変動の状況に応じて、第1電流検出部を診断するための電流値の検出から、第2電流検出部を診断するための電流値の検出へと臨機応変に対応させることができる。逆の場合も同様であり、第1負荷変動判定条件が満たされない場合、つまり第2電流検出部を診断するための電流値の検出が不可である場合、第1電流検出部を診断するための電流値の検出へと臨機応変に対応させることができる。
本発明に係る診断装置の更なる特徴構成は、
前記診断可否決定部は、
前記第1負荷変動判定条件が満たされない場合、前記第1負荷変動判定値を前記第2相負荷の消費電力による負荷変動の範囲内において拡張し、
一方、前記第2負荷変動判定条件が満たされない場合、前記第2負荷変動判定値を前記第1相負荷の消費電力による負荷変動の範囲内において拡張する点にある。
第1負荷変動判定条件が満たされない場合、つまり第1相電力線における負荷変動の絶対値が第1負荷変動判定値以上の場合、第2電流検出部を診断するための電流値の検出が不可となる。例えば、第1相電力線における負荷変動の絶対値が大きく、第1負荷変動判定値未満となる可能性が低い場合には、第2電流検出部を診断するための電流値の検出ができない状態が継続してしまう。上記特徴構成によれば、第1負荷変動判定条件が満たされない場合には、負荷変動の幅が大きくなるように第1負荷変動判定値を拡張する。これにより、第1相電力線における負荷変動の絶対値が第1負荷変動判定値未満となるようにして第2電流検出部の診断に必要な電流値を検出可能とする。よって、第2電流検出部を診断できない状態が継続してしまうのを抑制できる。なお、拡張とは、元の値から大きな値となるように設定変更することを言い、以下においても同様である。
同様に、第2負荷変動判定条件が満たされない場合には、負荷変動の幅が大きくなるように第2負荷変動判定値を拡張する。これにより、第2相電力線における負荷変動の絶対値が第2負荷変動判定値未満となるようにして第1電流検出部の診断に必要な電流値を検出可能とする。よって、第1電流検出部を診断できない状態が継続してしまうのを抑制できる。
本発明に係る診断装置の更なる特徴構成は、
前記診断可否決定部が、前記負荷変動判定条件を満たさず前記電流検出部による電流値の検出が不可と決定すると、前記系統電源から前記第3負荷への電力の供給を抑制するように報知する報知部を備える点にある。
上記特徴構成のように電流値の検出処理が不可である場合には、系統電源から第3負荷への電力の供給を抑制するように報知される。報知を受けた第3負荷の利用者が第3負荷の使用を控えることで、第3負荷による負荷変動が抑制可能となる。これにより、電力線における負荷変動の絶対値が所定の負荷変動判定値未満となり易く、第1電流検出部及び第2電流検出部における電流値の検出が可能となる。
本発明に係る診断装置の更なる特徴構成は、
前記診断可否決定部により前記第1電流検出部による電流値の検出が可能であると決定された場合、前記第1相負荷を前記第1相電力線と接続して前記系統電源からの電力を受給可能な状態とし、かつ、前記第2相負荷は前記第2相電力線と切断した状態である第1相負荷状態に制御し、一方、前記診断可否決定部により前記第2電流検出部による電流値の検出が可能であると決定された場合、前記第2相負荷を前記第2相電力線と接続して前記系統電源からの電力を受給可能な状態とし、かつ、前記第1相負荷は前記第1相電力線と切断した状態である第2相負荷状態に制御する相負荷制御部と、
前記第1相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断し、一方、前記第2相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断する診断部とを備える点にある。
上記特徴構成によれば、第2相電力線における負荷変動が第2負荷変動判定条件を満たす場合に第1電流検出部を診断するため、第3負荷による負荷変動の影響が抑制された状態で第1電流検出部の診断を行える。
同様に、第1相電力線における負荷変動が第1負荷変動判定条件を満たす場合に第2電流検出部を診断するため、第3負荷による負荷変動の影響が抑制された状態で第2電流検出部の診断を行える。
本発明に係る診断装置の更なる特徴構成は、
前記診断可否決定部は、
前記負荷変動判定条件が満たされない場合、前記分散型発電装置による発電を可能とするために必要な起動処理を行わせるとともに、前記分散型発電装置が発電を開始する前に前記負荷変動判定条件の判定及び前記電流値の検出が可能か否かの決定を完了させる点にある。
上記特徴構成のように負荷変動判定条件が満たされず電流値の検出が不可である場合には、さらなる負荷変動判定条件の判定及び電流値の検出が可能か否かの決定を後回しにする。分散型発電装置による発電を可能とするために必要な起動処理を先に行うことで、電流検出部の診断、各種の起動処理を含む処理に要する時間が長期化するのを抑制できる。
本発明に係る診断装置の更なる特徴構成は、
前記診断可否決定部は、
前記分散型発電装置による発電中において、メンテナンス時期が近付いてきて発電を停止する可能性がある場合、又は、前記電力線における負荷変動が他の時間帯よりも少なく発電を停止する可能性がある場合を含むタイミングの場合、アイドリング状態で前記負荷変動判定条件の判定及び前記電流値の検出が可能か否かの決定を行う点にある。
メンテナンス時期が近付いてきて発電を停止する可能性がある場合、又は、電力線における負荷変動が他の時間帯よりも少なく発電を停止する可能性がある場合には、分散型発電装置をアイドリング状態に設定する。アイドリング状態とは、分散型発電装置が発電電力を出力しない状態、及び、前記分散型発電装置が発電を行わない状態のいずれかである。このようなアイドリング状態では、分散型発電装置による発電電力に対する需要が下がっており、施設内の負荷の使用が低下していると推定できる。よって、電力線には施設内の負荷として第3負荷が接続されているが、アイドリング状態の場合には、電力線における第3負荷による負荷変動の絶対値が負荷変動判定値未満となり易い。そのため、上記特徴構成のように、アイドリング状態となった場合に電流検出部による電流値の検出が可能か否かの決定を行うことで、電流値の検出が可能となる可能性が大きく好ましい。
本発明に係る診断装置の更なる特徴構成は、
前記診断可否決定部は、
前記分散型発電装置による発電中において前記分散型発電装置の停止処理が行われた場合、前記停止処理の開始後から所定時間以内に、前記負荷変動判定条件の判定及び前記電流値の検出が可能か否かの決定を行う点にある。
停止処理は、定期メンテナンス及びサイクル停止が予定されている場合に行われる場合が多く、分散型発電装置による発電電力に対する需要が下がっており、施設内の負荷の使用が低下していると推定できる。分散型発電装置の停止処理開始後から所定時間以内においても同様の状態と推定できる。よって、電力線には施設内の負荷として第3負荷が接続されているが、停止処理開始から所定時間以内の場合には、電力線における第3負荷による負荷変動の絶対値が負荷変動判定値未満となり易い。そのため、停止処理開始から所定時間以内の場合に電流検出部による電流値の検出が可能か否かの決定を行うことで、電流値の検出が可能となる可能性が大きく好ましい。
本発明に係る分散型発電システムの特徴構成は、
第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、
上記の診断装置と、
を備える点にある。
本発明に係る診断方法の特徴構成は、
第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断方法であって、
前記電力線における負荷変動の絶対値が所定の負荷変動判定値未満となる負荷変動判定条件を満たすか否かを判定し、前記負荷変動判定条件を満たす場合に、前記電流検出部により前記電流検出部が正常か否かを診断するための電流値の検出が可能であると決定するステップを備え
前記負荷変動判定値には、前記第1相電力線における負荷変動の絶対値を判定する基準である第1負荷変動判定値と、前記第2相電力線における負荷変動の絶対値を判定する基準である第2負荷変動判定値とが含まれ、
前記負荷変動判定条件には、前記第2電流検出部による電流値の検出の可否を判定するための第1負荷変動判定条件と、前記第1電流検出部による電流値の検出の可否を判定するための第2負荷変動判定条件とが含まれ、
前記第2相電力線における負荷変動の絶対値が前記第2負荷変動判定値未満となり前記第2負荷変動判定条件を満たすと判定した場合、前記第1電流検出部により前記第1電流検出部が正常か否かを診断するための電流値の検出が可能であると決定するステップと、
一方、前記第1相電力線における負荷変動の絶対値が前記第1負荷変動判定値未満となり前記第1負荷変動判定条件を満たすと判定した場合、前記第2電流検出部により前記第2電流検出部が正常か否かを診断するための電流値の検出が可能であると決定するステップとを備える点にある。
本発明に係る診断装置の特徴構成は、
第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断装置であって、
前記第1相負荷が前記第1相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第2相負荷は前記第2相電力線と切断された状態である第1相負荷状態と、前記第2相負荷を前記第2相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第1相負荷は前記第1相電力線と切断された状態である第2相負荷状態とを切り替える相負荷制御部と、
前記第1相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断し、一方、前記第2相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断する診断部とを備え、
前記第1相負荷状態において前記第1診断条件が満たされない場合、前記相負荷制御部は前記第2相負荷状態に切り替え、前記診断部は、切り替え後の前記第2相負荷状態において前記第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断し、
一方、前記第2相負荷状態において前記第2診断条件が満たされない場合、前記相負荷制御部は前記第1相負荷状態に切り替え、前記診断部は、切り替え後の前記第1相負荷状態において第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断する点にある。
第1電流検出部が正常か否かを診断する場合には、第1相電力線に第1相負荷が接続され、第2相電力線には第2相負荷は接続されない(第1相負荷状態)。一方、第2電流検出部が正常か否かを診断する場合には、第2相電力線に第2相負荷が接続され、第1相電力線には第1相負荷は接続されない(第2相負荷状態)。第1相負荷及び第2相負荷は、例えば分散型発電装置が発電した余剰電力を消費する負荷である。
このとき、第1相電力線及び第2相電力線には、任意に第3負荷が接続されている。第3負荷は、例えばテレビ、冷蔵庫、洗濯機等の各種電気機器である。ここで、以下では、第3負荷が第1相電力線及び第2相電力線それぞれに接続されているとする。
上記特徴構成によれば、第1相負荷状態において、第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第1診断条件を満たさない場合、第2相負荷状態に切り替えて第2診断条件が満たされるか否かを診断する。逆に、第2相負荷状態において、第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第2診断条件を満たさない場合、第2相負荷状態に切り替えて第1診断条件が満たされるか否かを診断する。これにより、第1相電力線及び第2相電力線における負荷変動の状況に応じて、第1電流検出部の診断から第2流検出部の診断への変更、第2電流検出部の診断から第1流検出部の診断への変更というように臨機応変に対応させることができる。
本発明に係る診断装置の特徴構成は、
第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断装置であって、
前記第1相負荷が前記第1相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第2相負荷は前記第2相電力線と切断された状態である第1相負荷状態と、前記第2相負荷を前記第2相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第1相負荷は前記第1相電力線と切断された状態である第2相負荷状態とを切り替える相負荷制御部と、
前記第1相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断し、一方、前記第2相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断する診断部とを備え、
前記診断部は、
前記第1相負荷状態において前記第1診断条件が満たされない場合、前記第1診断条件を前記第1相負荷の消費電力による負荷変動の範囲内において拡張し、
一方、前記第2相負荷状態において前記第2診断条件が満たされない場合、前記第2診断条件を前記第2相負荷の消費電力による負荷変動の範囲内において拡張する点にある。
上記特徴構成によれば、第1診断条件が満たされない場合には、負荷変動の幅が大きくなるように第1診断条件を拡張する。これにより、第1診断条件が満たされない状況が継続してしまうのを抑制できる。ひいては、分散型発電装置による発電が出来ない状況が継続してしまうのを抑制できる。
同様に、第2診断条件が満たされない場合には、負荷変動の幅が大きくなるように第2診断条件を拡張する。これにより、第2診断条件が満たされない状況及び分散型発電装置による発電が出来ない状況が継続してしまうのを抑制できる。
本発明に係る診断装置の更なる特徴構成は、
前記第1診断条件は、前記第1相負荷が消費する電力による負荷変動を基準に設定され、前記第2診断条件は、前記第2相負荷が消費する電力による負荷変動を基準に設定されている点にある。
第1電流検出部を診断する場合、第1相電力線には第1相負荷及び第3負荷が接続された状態となる(第1相負荷状態)。一方、第2電流検出部を診断する場合、第2相電力線には第2相負荷及び第3負荷が接続された状態となる(第2相負荷状態)。よって、第1相負荷及び第3負荷が第1相電力線に接続されると、第1相電力線には、第1相負荷及び第3負荷が系統電源からの電力を消費することによる負荷変動が生じる。また、第2相負荷及び第3負荷が第2相電力線に接続されると、第2相電力線には、第2相負荷及び第3負荷が系統電源からの電力を消費することによる負荷変動が生じる。
電流検出部が正常か否かを診断する場合には、第1相負荷を第1相電力線に接続した場合の負荷変動が第1相電力線に生じているのか否かを把握できる必要がある。もし、第1相負荷を第1相電力線に接続した場合に、第1相電力線に大きな負荷変動が生じ、さらに第2相電力線にも大きな負荷変動が生じた場合には、第1相電力線及び第2相電力線いずれの負荷変動が、第1相負荷を第1相電力線に接続したことに起因するものであるか否かが把握できない。
ここで、第1電流検出部を診断するために、第1相負荷を第1相電力線に接続した場合には、第1相電力線には第1相負荷による負荷変動が生じる。一方、第2相電力線では第3負荷による負荷変動が生じる。第1相負荷が第3負荷よりも大きい場合には、第1相電力線に生じる第1相負荷による負荷変動の絶対値が、第2相電力線に生じる第3負荷による負荷変動の絶対値よりも大きくなる。本特徴構成によれば、第1電流検出部を診断するための第1診断条件が、第1相負荷による負荷変動を基準に設定される。この場合、第1相負荷による負荷変動を基準として、第1相電力線の第1相負荷による負荷変動の挙動と第2相電力線の第3負荷による負荷変動の挙動とを区別できる。そして、第1相電力線における大きな負荷変動を第1電流検出部が検出するか否かによって第1電流検出部が正常か否かを容易に診断できる。
同様に、第2電流検出部を診断するために、第2相負荷を第2相電力線に接続した場合には、第2相電力線には第2相負荷による負荷変動が生じる。一方、第1相電力線では第3負荷による負荷変動が生じる。第2相負荷が第3負荷よりも大きい場合には、第2相電力線に生じる第2相負荷による負荷変動の絶対値が、第1相電力線に生じる第3負荷による負荷変動の絶対値よりも大きくなる。本特徴構成によれば、第2電流検出部を診断するための第2診断条件が、第2相負荷による負荷変動を基準に設定される。この場合、第2相負荷による負荷変動を基準として、第2相電力線の第2相負荷による負荷変動の挙動と第1相電力線の第3負荷による負荷変動の挙動とを区別できる。そして、第2相電力線における大きな負荷変動を第2電流検出部が検出するか否かによって第2電流検出部が正常か否かを容易に診断できる。
本発明に係る診断装置の更なる特徴構成は、
前記診断部が、前記第1相負荷状態において前記第1診断条件が満たされないと判定した場合、及び、前記第2相負荷状態において前記第2診断条件が満たされないと判定した場合の少なくともいずれかの場合に、前記系統電源から前記第3負荷への電力の供給を抑制するように報知する報知部を備える点にある。
上記特徴構成のように電流検出部が正常でないと診断される場合には、系統電源から第3負荷への電力の供給を抑制するように報知される。報知を受けた第3負荷の利用者が第3負荷の使用を控えることで、第3負荷による負荷変動が抑制可能となる。これにより第3負荷による負荷変動が抑制された状態で、第1電流検出部及び第2電流検出部の診断が可能となる。
本発明に係る診断装置の更なる特徴構成は、
前記診断部は、
前記第1診断条件及び前記第2診断条件の少なくともいずれかが満たされない場合、前記分散型発電装置による発電を可能とするために必要な起動処理を行わせるとともに、前記分散型発電装置が発電を開始する前に前記第1診断条件及び前記第2診断条件の判定を完了させる点にある。
上記特徴構成のように第1診断条件及び第2診断条件の少なくともいずれかが満たされない場合には、電流検出部の診断を後回しにする。分散型発電装置による発電を可能とするために必要な起動処理を先に行うことで、電流検出部の診断、各種の起動処理を含む処理に要する時間が長期化するのを抑制できる。
本発明に係る診断装置の更なる特徴構成は、
前記診断部は、
前記分散型発電装置による発電中において、メンテナンス時期が近付いてきて発電を停止する可能性がある場合、又は、前記電力線における負荷変動が他の時間帯よりも少なく発電を停止する可能性がある場合を含むタイミングの場合、アイドリング状態で前記第1診断条件の判定及び前記第2診断条件の判定を行う点にある。
メンテナンス時期が近付いてきて発電を停止する可能性がある場合、又は、電力線における負荷変動が他の時間帯よりも少なく発電を停止する可能性がある場合には、分散型発電装置をアイドリング状態に設定する。アイドリング状態とは、分散型発電装置が発電電力を出力しない状態、及び、前記分散型発電装置が発電を行わない状態のいずれかである。このようなアイドリング状態では、分散型発電装置による発電電力に対する需要が下がっており、施設内の負荷の使用が低下していると推定できる。よって、電力線には施設内の負荷として第3負荷が接続されているが、アイドリング状態の場合には、電力線における第3負荷による負荷変動の絶対値が小さくなり易い。そのため、アイドリング状態においては、効率よく電流検出部を診断できる。
本発明に係る診断装置の更なる特徴構成は、
前記診断部は、
前記分散型発電装置による発電中において、前記分散型発電装置の停止処理が行われた場合、前記停止処理の開始後から所定時間以内に、前記第1診断条件の判定及び前記第2診断条件の判定を行う点にある。
停止処理は、定期メンテナンス及びサイクル停止が予定されている場合に行われる場合が多く、分散型発電装置による発電電力に対する需要が下がっており、施設内の負荷の使用が低下していると推定できる。分散型発電装置の停止処理開始後から所定時間以内においても同様の状態と推定できる。よって、電力線には施設内の負荷として第3負荷が接続されているが、停止処理開始から所定時間以内の場合には、電力線における第3負荷による負荷変動の絶対値が負荷変動判定値未満となり易い。そのため、停止処理開始から所定時間以内の場合には効率よく電流検出部を診断できる。
本発明に係る分散型発電システムの特徴構成は、
第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、
上記の診断装置と、
を備える点にある。
本発明に係る診断方法の特徴構成は、
第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断方法であって、
前記第1相負荷が前記第1相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第2相負荷は前記第2相電力線と切断された状態である第1相負荷状態と、前記第2相負荷を前記第2相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第1相負荷は前記第1相電力線と切断された状態である第2相負荷状態とを切り替える相負荷制御ステップと、
前記第1相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断し、一方、前記第2相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断する診断ステップとを備え、
前記第1相負荷状態において前記第1診断条件が満たされない場合、前記相負荷制御ステップにおいて前記第2相負荷状態に切り替え、前記診断ステップでは、切り替え後の前記第2相負荷状態において前記第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断し、
一方、前記第2相負荷状態において前記第2診断条件が満たされない場合、前記相負荷制御ステップにおいて前記第1相負荷状態に切り替え、前記診断ステップでは、切り替え後の前記第1相負荷状態において第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断する点にある。
本発明に係る診断方法の特徴構成は、
第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断方法であって、
前記第1相負荷が前記第1相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第2相負荷は前記第2相電力線と切断された状態である第1相負荷状態と、前記第2相負荷を前記第2相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第1相負荷は前記第1相電力線と切断された状態である第2相負荷状態とを切り替える相負荷制御ステップと、
前記第1相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断し、一方、前記第2相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断する診断ステップとを備え、
前記診断ステップにおいて、
前記第1相負荷状態において前記第1診断条件が満たされない場合、前記第1診断条件を前記第1相負荷の消費電力による負荷変動の範囲内において拡張し、
一方、前記第2相負荷状態において前記第2診断条件が満たされない場合、前記第2診断条件を前記第2相負荷の消費電力による負荷変動の範囲内において拡張する点にある。
分散型発電システムの全体構成図である。 負荷変動判定条件の一例である。 CT診断条件の一例である。 第1CT診断処理のフローチャートである。 事前判定処理のフローチャートである。 負荷判定条件の変更を伴う事前判定処理のフローチャートである。 拡張後の負荷変動判定条件の一例である。 第2CT診断処理のフローチャートである。 CT診断条件の変更を伴う第2CT診断処理のフローチャートである。 拡張後のCT診断条件の一例である。 第2CT診断処理のフローチャートである。 CT診断条件の変更を伴う第2CT診断処理のフローチャートである。 CT診断処理を実行するタイミングを示すフローチャートである。 CT診断処理を実行するタイミングを示すフローチャートである。 CT診断処理を実行するタイミングを示すフローチャートである。 CT診断処理を実行するタイミングを示すフローチャートである。 負荷変動の経時変化の模式図である。
電流検出部の診断を改良するための方法として、第1実施形態では、電力線における負荷変動が小さい場合を事前に判定し(以下、事前判定処理という場合もある)、負荷変動が小さい場合に電流検出部を診断する処理(以下、CT(Current Trans)診断処理という場合もある)を行う。なお、負荷変動とは、電力線に接続された負荷が電力線に供給されている電力を消費することにより生じる電力の変動である。
また、電流検出部の診断を改良するための方法として、第2実施形態では、CT診断処理の流れを随時変更する処理、CT診断処理のためのCT診断条件の変更等を行う。
第1及び第2実施形態について以下に説明する。
〔第1実施形態〕
以下、第1実施形態に係る診断装置、当該診断装置を含む分散型発電システムについて図1を参照して説明する。
(1)全体構成
図1に示すように、分散型発電システム100は、系統電源10に接続されており、主幹ブレーカ11と、電力変換装置13と、分散型発電装置15とを備えている。系統電源10と、主幹ブレーカ11と、電力変換装置13と、分散型発電装置15とは、単相3線式の電力線21を介して接続されている。そして、電力線21には、後述の施設内電力負荷(第3負荷の一例)35及び電気ヒータ48が接続されている。また、分散型発電システム100は、後述の電流検出部17のCT診断処理、分散型発電装置15の運転制御等を行う制御部50(診断装置が含まれる)を備えている。
(1-1)系統電源
系統電源10は例えば単相3線式100V/200Vであり、系統電源10からの配線は3つの電力線21から構成されている。電力線21は、U相電力線(第1相電力線の一例)21U、W相電力線(第2相電力線の一例)21W、中性線21Nを含む。U相電力線21Uと中性線21Nとの間に100Vの電位差があり、W相電力線21Wと中性線21Nとの間に100Vの電位差があり、U相電力線21UとW相電力線21Wとの間に200Vの電位差がある。
(1-2)分散型発電装置、電力変換装置
分散型発電装置15は、例えば燃料電池及び太陽光発電装置等の発電装置である。分散型発電装置15が燃料電池の場合、燃料ガス(例えば都市ガス13A)と酸化剤ガスとを反応させて発電する。分散型発電装置15が燃料電池の場合、熱を回収する熱交換器、及び、その熱交換により加熱された水を貯湯する貯湯タンク等が分散型発電装置15に備えられている。
分散型発電装置15と系統電源10とが電力変換装置13を介して接続されている。電力変換装置13は、分散型発電装置15が発電した発電電力を系統電源10と同じ電圧及び周波数に変換しており、分散型発電装置15が発電した発電電力を系統電源10に系統連系する。
また、電力線21には、分散型発電装置15と系統電源10との接続及び切断を行うためのスイッチ12が設けられている。U相電力線21U、中性線21N及びW相電力線21Wそれぞれに対して、それぞれスイッチ12U、12N、12Wが設けられている。スイッチ12U、12N、12Wは、例えば停電等により系統電源10から系統電力が供給されない場合等に開となり、分散型発電装置15と系統電源10との電気的切断を行う。スイッチ12U、12N、12Wは、例えば、後述の施設内電力負荷(第3負荷の一例)35及び電力線21の接点と、後述の電気ヒータ48及び電力線21の接点との間に設けられる。
(1-3)主幹ブレーカ
電力の遮断器として機能する主幹ブレーカ11には、例えばU相電力線21U、W相電力線21W及び中性線21Nそれぞれに対応する素子(図示せず)が配置されている。電力線21それぞれに定格電流を超える電流(例えば50A)が流れると、素子が切断されて系統電源10との電気的接続が遮断される。
(1-4)電流検出部
U相電力線(第1相電力線の一例)21U及びW相電力線(第2相電力線の一例)21Wには、それぞれの電力線における電流値を検出するための電流検出部17が設けられている。U相電力線21Uには、分散型発電装置15と系統電源10との間において、U相電流検出部(第1電流検出部の一例)17Uが取り付けられている。U相電流検出部17Uは、U相電力線21Uを流れる電流値(U)を検出する。一方、W相電力線21Wには、分散型発電装置15と系統電源10との間において、W相電流検出部(第2電流検出部の一例)17Wが取り付けられている。W相電流検出部17Wは、W相電力線21Wを流れる電流値(W)を検出する。
このような電流検出部17は、正常であること、つまり、電流検出部17が所望の電力線21における電流値を正確に検出できる必要があるため、CT診断処理が行われる。本実施形態でのCT診断処理は、主に、電流検出部17が検出した電流値に応じた負荷変動が、所定のCT診断条件を満たしているか否かによって行われる。本実施形態のCT診断処理については後述する。
電流検出部17が正常とは、所定のCT診断条件を満たしている場合である。その他、電流検出部17が正常の意味として、電流検出部17が所定の電力線に接続不良なく取り付けられていること、電流検出部17が検出されるべき電流値を検出できること等、接続状態の異常や電流の検出精度の異常が概ねない状態が含まれていてもよい。
(1-5)施設内電力負荷
U相電力線21U及びW相電力線21Wには、第1及び第2分岐ケーブル31、32及び分岐ブレーカ33を介して施設内電力負荷(第3負荷の一例)35が接続されている。本実施形態では、U相電力線21Uに第1U相分岐ケーブル31Uが接続され、中性線21Nに第1中性分岐ケーブル31Nが接続されている。これら第1U相分岐ケーブル31U及び第1中性分岐ケーブル31Nを介して、U相電力線21Uと中性線21Nとの間に第1分岐ブレーカ33aが接続され、第1分岐ブレーカ33aの二次側に第1施設内電力負荷35aが接続されている。一方、W相電力線21Wに第2W相分岐ケーブル32Wが接続され、中性線21Nに第2中性分岐ケーブル32Nが接続されている。これら第2W相分岐ケーブル32W及び第2中性分岐ケーブル32Nを介して、W相電力線21Wと中性線21Nとの間に第2分岐ブレーカ33bが接続され、第2分岐ブレーカ33bの二次側に第2施設内電力負荷35bが接続されている。
第1施設内電力負荷35a及び第2施設内電力負荷35bを含む施設内電力負荷35は、施設に設置された例えばテレビ、冷蔵庫、洗濯機等の各種電気機器である。施設内電力負荷35は、系統電源10からの系統電力及び分散型発電装置15からの発電電力の少なくともいずれかから電力の供給を受けることができる。
(1-6)電気ヒータ
U相電力線21U及びW相電力線21Wには、第1及び第2分岐ケーブル41、42を介して電気ヒータ(相負荷(第1相負荷、第2相負荷)の一例)48が接続されている。本実施形態では、U相電力線21Uに第1U相分岐ケーブル41Uが接続され、中性線21Nに第1中性分岐ケーブル41Nが接続されている。第1U相分岐ケーブル41Uは、第1U相スイッチ43Uを介して、第1電気ヒータ(第1相負荷の一例)48Uの一端に接続される。また、第1中性分岐ケーブル41Nは、第1中性スイッチ43Nを介して、第1電気ヒータ48Uの他端に接続される。一方、W相電力線21Wに第2W相分岐ケーブル42Wが接続され、中性線21Nに第2中性分岐ケーブル42Nが接続されている。第2W相分岐ケーブル42Wは、第2W相スイッチ44Wを介して、第2電気ヒータ(第2相負荷の一例)48Wの一端に接続される。また、第2中性分岐ケーブル42Nは、第2中性スイッチ44Nを介して、第2電気ヒータ48Wの他端に接続される。
第1U相スイッチ43U及び第1中性スイッチ43Nが閉となることで、U相電力線21Uと中性線21Nとの間に第1電気ヒータ48Uが電気的に接続される。一方、第2W相スイッチ44W及び第2中性スイッチ44Nが閉となることで、U相電力線21Uと中性線21Nとの間に第2電気ヒータ48Wが電気的に接続される。
電気ヒータ48は、系統電源10の系統電力及び分散型発電装置15の発電電力の少なくともいずれかを消費できる。分散型発電装置15の発電電力において余剰電力が発生する場合、つまり施設内電力負荷35が消費する電力より発電電力が大きい場合、その余剰電力を電気ヒータ48により消費できる。これにより、発電電力が系統電源10に供給される逆潮流を防止できる。また、電気ヒータ48で発生した熱は、貯湯タンクの水を加熱するために利用できる。
本実施形態では、第1電気ヒータ48U及び第2電気ヒータ48Wの消費電力はそれぞれ約500Wに設定されている。
(1-7)制御部
制御部50は、第1電気ヒータ48U及び第2電気ヒータ48Wと電力線21との接続を制御するヒータ制御部(相負荷制御部の一例)51と、電流検出部17により電流値を検出可能か否かを決定する診断可否決定部53と、診断可否決定部53の制御に基づいて所定の報知を行う報知部55と、電流検出部17が正常か否かを診断する診断部57と、電力線21での負荷変動の大小を判定する負荷変動判定条件、及び、CT診断処理に用いるCT診断条件等の各種データを記憶している記憶部58と、分散型発電装置15の各種運転制御等を行う発電制御部59とを備えている。診断可否決定部53は、電流検出部17が正常か否かを診断するための診断装置に含まれる。診断装置には、その他、ヒータ制御部51、報知部55、診断部57及び記憶部58の少なくともいずれかが含まれてもよい。
(a)記憶部
(a1)負荷変動判定条件
記憶部58は、電力線21での負荷変動の大小を判定するための負荷変動判定条件を記憶している。図2に示すように、本実施形態では、負荷変動判定条件として、U相側負荷変動判定値Xu(第1負荷変動判定値の一例)及びW相側負荷変動判定値Xw(第2負荷変動判定値の一例)が用意されている。U相側負荷変動判定値Xuは、U相電力線21Uにおける負荷変動の大小を判定するための判定値である。W相側負荷変動判定値Xwは、W相電力線21Wにおける負荷変動の大小を判定するための判定値である。
なお、負荷変動の値は、本実施形態では、ある時点における電力線21で計測される電力の瞬時値である。
また、ここで、分散型発電装置15による発電電力が一定(発電が停止している場合も含む)であり、電気ヒータ48の消費電力が一定である場合、電流検出部17により電流値が検出される。そして、U相電力線21Uにおける負荷変動は、U相電流検出部17Uが検出した電流値(U)に対応する負荷変動(U相側負荷変動)である。W相電力線21Wにおける負荷変動は、W相電流検出部17Wが検出した電流値(W)に対応する負荷変動(W相側負荷変動)である。
また、U相側負荷変動判定値Xu及びW相側負荷変動判定値Xwを総称して言う場合は、単に負荷変動判定値という。
図2では、具体的に、U相側負荷変動判定値Xuは±250Wに設定されている。この場合、U相電力線21Uにおける負荷変動が-250Wより大きく且つ250W未満の範囲の場合は、U相電力線21Uにおける負荷変動が小さいことを意味する。つまり、U相電力線21Uにおける負荷変動の絶対値が250W未満の場合は、U相電力線21Uにおける負荷変動が小さいことを意味する。一方、U相電力線21Uにおける負荷変動が-250W以下の範囲及び250W以上の範囲の場合は、U相電力線21Uにおける負荷変動が大きいことを意味する。つまり、U相電力線21Uにおける負荷変動の絶対値が250W以上の場合は、U相電力線21Uにおける負荷変動が大きいことを意味する。
W相側負荷変動判定値Xwについても同様である。W相電力線21Wにおける負荷変動の絶対値が250W未満の場合は、W相電力線21Wにおける負荷変動が小さく、逆に、W相電力線21Wにおける負荷変動の絶対値が250W以上の場合は、W相電力線21Wにおける負荷変動が大きいことを意味する。
なお、図2においては、U相側負荷変動判定値XuとW相側負荷変動判定値Xwとは同一の±250Wに設定されている。しかし、U相側負荷変動判定値Xu及びW相側負荷変動判定値Xwが、それぞれ異なる値に設定されていてもよい。
また、W相電流検出部17Wの診断可否を決定するために用いるU相側負荷変動判定値Xu(±250W)は、第2電気ヒータ48Wが消費する電力による負荷変動(±500W)の範囲内で設定されているのが好ましい。この場合、W相電力線21Wに生じる第2電気ヒータ48Wによる負荷変動の絶対値が、U相電力線21Uに生じる第1施設内電力負荷35aによる負荷変動の絶対値よりも大きくなる。そのため、W相電力線21Wの第2電気ヒータ48Wによる負荷変動の挙動とU相電力線21Uの第1施設内電力負荷35aによる負荷変動の挙動とが異なり、U相電力線21UとW相電力線21Wとを区別することができる。そして、W相電力線21Wにおける大きな負荷変動をW相電流検出部17Wが検出するか否かによってW相電流検出部17Wが正常か否かを容易に診断できる。
同様に、U相電流検出部17Uの診断可否を決定するために用いるW相側負荷変動判定値Xw(±250W)は、第1電気ヒータ48Uが消費する電力による負荷変動(±500W)の範囲内で設定されているのが好ましい。この場合、U相電力線21Uに生じる第1電気ヒータ48Uによる負荷変動の絶対値が、W相電力線21Wに生じる第2施設内電力負荷35bによる負荷変動の絶対値よりも大きくなる。そのため、U相電力線21Uの第1電気ヒータ48Uによる負荷変動の挙動とW相電力線21Wの第2施設内電力負荷35bによる負荷変動の挙動とが異なり、U相電力線21UとW相電力線21Wとを区別することができる。そして、U相電力線21Uにおける大きな負荷変動をU相電流検出部17Uが検出するか否かによってU相電流検出部17Uが正常か否かを容易に診断できる。
(a2)CT診断条件
また、記憶部58は、電流検出部17が正常か否かを診断するためのCT診断処理に用いるCT診断条件を記憶している。図3に示すように、本実施形態では、CT診断条件として、U相側CT診断条件Yu(第1診断条件の一例)及びW相側CT診断条件Yw(第2診断条件の一例)が用意されている。U相側CT診断条件Yuは、U相電流検出部17Uが正常か否かを診断するための判定値である。W相側CT診断条件Ywは、W相電流検出部17Wが正常か否かを診断するための判定値である。
図3では、具体的に、U相側CT診断条件Yuとして、U相電力線21Uにおける負荷変動(図3中のU相側負荷変動)が±250W以上に設定され、かつW相電力線21Wにおける負荷変動(図3中のW相側負荷変動)が±250W未満に設定されている。
前述と同様に、分散型発電装置15による発電電力が一定(発電が停止している場合も含む)であり、電気ヒータ48の消費電力が一定である場合、CT診断処理のための電流値が電流検出部17により検出される。そして、U相電力線21Uにおける負荷変動は、U相電流検出部17Uが検出した電流値(U)に対応する負荷変動(U相側負荷変動)である。W相電力線21Wにおける負荷変動は、W相電流検出部17Wが検出した電流値(W)に対応する負荷変動(W相側負荷変動)である。そして、U相側負荷変動が±250W以上とは、U相側負荷変動が-250W以下の範囲及び250W以上の範囲にあることを意味する。また、W相側負荷変動が±250W未満とは、W相側負荷変動が-250Wより大きく且つ250W未満の範囲にあることを意味する。
つまり、U相電力線21Uにおける負荷変動(U相側負荷変動)の絶対値が250W以上であり、かつ、W相電力線21Wにおける負荷変動(W相側負荷変動)の絶対値が250W未満である場合に、U相電流検出部17Uが正常であると判定される。
各電力線21における負荷変動は、電流検出部17が検出した電流値に対応する負荷変動である。
また、図3では、W相側CT診断条件Ywとして、U相電力線21Uにおける負荷変動(図3中のU相側負荷変動)が±250W未満に設定され、かつ、W相電力線21Wにおける負荷変動(図3中のW相側負荷変動)が±250W以上に設定されている。つまり、U相電力線21Uにおける負荷変動(U相側負荷変動)の絶対値が250W未満であり、かつ、W相電力線21Wにおける負荷変動(W相側負荷変動)の絶対値が250W以上である場合に、W相電流検出部17Wが正常であると判定される。
また、U相電流検出部17Uを診断するためのU相側CT診断条件Yu(U相電力線21Uにおける負荷変動の絶対値が250W以上であり、かつ、W相電力線21Wにおける負荷変動の絶対値が250W未満)が、第1電気ヒータ48Uによる負荷変動(±500W)を基準に設定される。この場合、第1電気ヒータ48Uが第2施設内電力負荷35bよりも大きい場合には、第1電気ヒータ48Uによる負荷変動を基準として、U相電力線21Uの第1電気ヒータ48Uによる負荷変動の挙動とW相電力線21Wの第2施設内電力負荷35bによる負荷変動の挙動とを区別できる。そして、U相電力線21Uにおける大きな負荷変動をU相電流検出部17Uが検出するか否かによってU相電流検出部17Uが正常か否かを容易に診断できる。
同様に、W相電流検出部17Wを診断するためのW相側CT診断条件Yw(W相電力線21Wにおける負荷変動の絶対値が250W以上であり、かつ、U相電力線21Uにおける負荷変動の絶対値が250W未満)が、第2電気ヒータ48Wによる負荷変動(±500W)を基準に設定される。この場合、第2電気ヒータ48Wが第1施設内電力負荷35aよりも大きい場合には、第2電気ヒータ48Wによる負荷変動を基準として、W相電力線21Wの第2電気ヒータ48Wによる負荷変動の挙動とU相電力線21Uの第1施設内電力負荷35aによる負荷変動の挙動とを区別できる。そして、W相電力線21Wにおける大きな負荷変動をW相電流検出部17Wが検出するか否かによってW相電流検出部17Wが正常か否かを容易に診断できる。
なお、図3においては、U相側CT診断条件Yu及びW相側CT診断条件Ywの各U相側負荷変動及びW相側負荷変動の全てにおいて、診断基準として同一の250Wが用いられている。しかし、図3の各欄において異なる診断基準が用いられていてもよい。
また、図2のU相側負荷変動判定値Xu及びW相側負荷変動判定値Xwの判定基準値が250Wであり、図3のU相側CT診断条件Yu及びW相側CT診断条件Ywの診断基準値も250Wで同一である。図2のU相側負荷変動判定値Xu及びW相側負荷変動判定値Xwも、図3のU相側CT診断条件Yu及びW相側CT診断条件Ywも、U相側の第1電気ヒータ48UをU相電力線21Uに投入した場合の負荷変動の大小又はW相側の第2電気ヒータ48WをW相電力線21Wに投入した場合の負荷変動の大小を判定するものであるので、概ね同一の値に設定されているのが好ましい。
(b)診断可否決定部
診断可否決定部53は、電流検出部17が正常か否かを診断する前に、電流検出部17によって電流値を検出可能か否かについての事前判定処理を行う。事前判定処理において、診断可否決定部53は、U相電流検出部17Uが正常か否かを診断するための電流値(U)を検出可能か否か、また、W相電流検出部17Wが正常か否かを診断するための電流値(W)を検出可能か否かについて決定する。
まず、診断可否決定部53は、分散型発電装置15による発電電力が一定(発電が停止している場合も含む)であり、電気ヒータ48の消費電力が一定である場合、CT診断処理のためにU相電力線21U及びW相電力線21Wにおける負荷変動を取得する。ここでは、診断可否決定部53は、U相電流検出部17Uで取得した電流値(U)に基づいてU相電力線21Uにおける負荷変動を取得する。同様に、診断可否決定部53は、W相電流検出部17Wで取得した電流値(W)に基づいてW相電力線21Wにおける負荷変動を取得する。
その他、診断可否決定部53は、U相電力線21U及びW相電力線21Wそれぞれに設けられた図示しない電力計に基づいて各電力線21U、21Wの負荷変動を取得してもよい。
(b1)U相電流検出部17Uを診断するための電流値(U)の検出可否の決定
診断可否決定部53は、図2の負荷変動判定条件を参照し、取得したW相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満か否かを判定する。つまり、診断可否決定部53は、W相電力線21Wにおける負荷変動の絶対値が250W未満(W相電力線21Wにおける負荷変動が-250Wより大きく且つ250W未満の範囲)か否かを判定する。診断可否決定部53は、W相電力線21Wにおける負荷変動の絶対値が250W未満の場合は、U相電流検出部17Uにより、U相電流検出部17Uを診断するための電流値(U)を検出可能と決定する。
一方、診断可否決定部53は、W相電力線21Wにおける負荷変動の絶対値が250W以上の場合は、U相電流検出部17Uにより、U相電流検出部17Uを診断するための電流値(U)を検出不可と決定する。
(b2)W相電流検出部17Wを診断するための電流値(W)の検出可否の決定
診断可否決定部53は、図2の負荷変動判定条件を参照し、取得したU相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満か否かを判定する。つまり、診断可否決定部53は、U相電力線21Uにおける負荷変動の絶対値が250W未満(U相電力線21Uにおける負荷変動が-250Wより大きく且つ250W未満の範囲)か否かを判定する。診断可否決定部53は、U相電力線21Uにおける負荷変動の絶対値が250W未満の場合は、W相電流検出部17Wにより、W相電流検出部17Wを診断するための電流値(W)を検出可能と決定する。
一方、診断可否決定部53は、U相電力線21Uにおける負荷変動の絶対値が250W以上の場合は、W相電流検出部17Wにより、W相電流検出部17Wを診断するための電流値(W)を検出不可と決定する。
電力線21における負荷変動の絶対値が負荷変動判定値未満の場合に、つまり、電力線21に接続されている施設内電力負荷35による負荷変動の絶対値が小さい場合に、電流検出部17を診断するための電流値を取得可能と決定する。これにより、電流検出部17を診断するために第1電気ヒータ(U相負荷)48UをU相電力線21Uに接続した場合、U相電力線21Uに大きな負荷変動が生じるが、W相電力線21Wに接続されている第2施設内電力負荷35bがW相電力線21Wに大きな負荷変動を与えるのを抑制できる。
同様に、電流検出部17を診断するために第2電気ヒータ(W相負荷)48WをW相電力線21Wに接続した場合、W相電力線21Wに大きな負荷変動が生じるが、U相電力線21Uに接続されている第1施設内電力負荷35aがU相電力線21Uに大きな負荷変動を与えるのを抑制できる。これにより、電力線21での施設内電力負荷35の負荷変動の影響を抑制し、電流検出部17が正常か否かについての誤診断を抑制できる。
特に、分散型発電装置15の運転が開始した後に定期メンテナンスが行われるが、定期メンテナンスの際には、施設に設置された施設内電力負荷35が稼働している状況が想定される。上記実施形態では、このような施設内電力負荷35の稼働が開始した後であっても、電力線21の負荷変動が小さい時間帯を抽出して、当該時間帯において電流検出部17の診断を行う。よって、施設内電力負荷35による負荷変動の影響を抑制した状態で電流検出部17の診断を行うことができる。
(c)ヒータ制御部
ヒータ制御部51は、診断可否決定部53によりU相電流検出部17Uによる電流値(U)の検出が可能であると決定された場合、U相電流検出部17Uを診断するために、電力線21への負荷の接続状態をU相負荷状態(第1相負荷状態の一例)に設定する。U相負荷状態では、第1電気ヒータ(U相負荷)48UがU相電力線21Uと接続されて系統電源10からの電力を受給可能な状態であり、かつ、第2電気ヒータ(W相負荷)48WはW相電力線21Wと切断された状態である。
具体的には、U相負荷状態では、第1U相スイッチ43U及び第1中性スイッチ43Nが閉とされ、第1電気ヒータ48UはU相電力線21U及び中性線21Nと接続されて系統電源10からの系統電力を受給可能な状態に制御されている。また、第2W相スイッチ44W及び第2中性スイッチ44Nが開とされ、第2電気ヒータ48WはW相電力線21W及び中性線21Nと切断された状態に制御されている。また、施設内電力負荷35がU相電力線21U及びW相電力線21Wのいずれかに任意に接続されるとともに、中性線21Nに接続されることで系統電源10からの系統電力を受給可能な状態となっている。
なお、U相負荷状態及び後述のW相負荷状態では、施設内電力負荷35は任意に電力線21に接続される。本実施形態では、第1施設内電力負荷35aはU相電力線21U及び中性線21Nに接続されており、第2施設内電力負荷35bはW相電力線21W及び中性線21Nに接続されている。
よって、U相負荷状態では、U相電力線21Uには、第1電気ヒータ48U及び第1施設内電力負荷35aが接続されており、第1電気ヒータ48U及び第1施設内電力負荷35aによる負荷変動が生じる。さらに、U相負荷状態では、W相電力線21Wには、第2施設内電力負荷35bが接続されており、第2施設内電力負荷35bによる負荷変動が生じる。
また、ヒータ制御部51は、診断可否決定部53によりW相電流検出部17Wによる電流値(W)の検出が可能であると決定された場合、W相電流検出部17Wを診断するために、電力線21への負荷の接続状態をW相負荷状態(第2相負荷状態の一例)に設定する。W相負荷状態では、第2電気ヒータ(W相負荷)48WがW相電力線21Wと接続されて系統電源10からの電力を受給可能な状態であり、かつ、第1電気ヒータ(U相負荷)48UはU相電力線21Uと切断された状態である。
具体的には、W相負荷状態では、第2W相スイッチ44W及び第2中性スイッチ44Nが閉とされ、第2電気ヒータ48WはW相電力線21W及び中性線21Nと接続されて系統電源10からの系統電力を受給可能な状態に制御されている。また、第1U相スイッチ43U及び第1中性スイッチ43Nが開とされ、第1電気ヒータ48UはU相電力線21U及び中性線21Nと切断された状態に制御されている。また、第1施設内電力負荷35aはU相電力線21U及び中性線21Nに接続されており、第2施設内電力負荷35bはW相電力線21W及び中性線21Nに接続されている。
よって、W相負荷状態では、W相電力線21Wには、第2電気ヒータ48W及び第2施設内電力負荷35bが接続されており、第2電気ヒータ48W及び第2施設内電力負荷35bによる負荷変動が生じる。さらに、W相負荷状態では、U相電力線21Uには、第1施設内電力負荷35aが接続されており、第1施設内電力負荷35aによる負荷変動が生じる。
なお、ヒータ制御部51は、分散型発電装置15が発電した余剰電力を消費する場合においても、第1電気ヒータ48U及び第2電気ヒータ48WをU相電力線21U及びW相電力線21Wに接続するように制御できる。
(d)報知部
診断可否決定部53が、U相電流検出部17U及びW相電流検出部17Wの少なくともいずれかにおいて電流値の検出が不可と判断したとする。報知部55は、診断可否決定部53から、施設内電力負荷35の使用を控える旨を報知する指令を受け、実行する。報知部55は、特に限定されないが、音及び画像等による報知が可能な装置である。
報知を受けた施設内電力負荷35の利用者が施設内電力負荷35の使用を控えることで、施設内電力負荷35による負荷変動が抑制可能となる。これにより、施設内電力負荷35による負荷変動が抑制された状態で、U相電流検出部17U及びW相電流検出部17Wの診断が可能となる。
(e)診断部
診断部57は、図3のCT診断条件を参照し、U相電流検出部17Uが正常か否か、及びW相電流検出部17Wが正常か否かを診断する。上述の通り、診断可否決定部53によりU相電流検出部17Uによる電流値(U)の検出が可能であると決定された場合、U相電流検出部17Uを診断するためにU相負荷状態が設定される。また、診断可否決定部53によりW相電流検出部17Wによる電流値(W)の検出が可能であると決定された場合、W相電流検出部17Wを診断するためにW相負荷状態が設定される。
まず、U相電流検出部17Uが正常か否かを診断する場合について説明する。
診断部57は、U相電力線21Uに第1電気ヒータ48Uを接続したU相負荷状態にある場合において、U相電力線21Uにおける負荷変動及びW相電力線21Wにおける負荷変動が、図3に示すU相側CT診断条件Yuを満たすか否かを判定する。
ここで、U相電力線21Uにおける負荷変動は、U相電流検出部17Uが検出した電流値(U)に対応して求まる負荷変動である。また、W相電力線21Wにおける負荷変動は、W相電流検出部17Wが検出した電流値(W)に対応して求まる負荷変動である。
具体的には、診断部57は、第1電気ヒータ48U(負荷変動±500W)が接続されたU相電力線21Uにおける負荷変動が、-250W以下の範囲及び250W以上の範囲にあるかを判定する。さらに、診断部57は、第2電気ヒータ48Wが切断され、第2施設内電力負荷35bが接続されているW相電力線21Wにおける負荷変動が、-250Wより大きく且つ250W未満の範囲にあるかを判定する。つまり、診断部57は、U相電力線21Uにおける負荷変動の絶対値が250W以上か否か、かつ、W相電力線21Wにおける負荷変動の絶対値が250W未満か否かを判定する。
そして、U相電力線21Uにおける負荷変動の絶対値が250W以上であり、かつ、W相電力線21Wにおける負荷変動の絶対値が250W未満の場合に、診断部57は、U相側CT診断条件Yuを満たしていると判定し、U相電流検出部17Uが正常と診断する。
次に、W相電流検出部17Wが正常か否かを診断する場合について説明する。
診断部57は、W相電力線21Wに第2電気ヒータ48Wを接続したW相負荷状態にある場合において、U相電力線21Uにおける負荷変動及びW相電力線21Wにおける負荷変動が、図3に示すW相側CT診断条件Ywを満たすか否かを判定する。具体的には、診断部57は、第1電気ヒータ48Uが切断され、第1施設内電力負荷35aが接続されたU相電力線21Uにおける負荷変動が、-250Wより大きく且つ250W未満の範囲にあるかを判定する。さらに、診断部57は、第2電気ヒータ48W(負荷変動±500W)が接続されたW相電力線21Wにおける負荷変動が、-250W以下の範囲及び250W以上の範囲にあるかを判定する。つまり、診断部57は、U相電力線21Uにおける負荷変動の絶対値が250W未満か否か、かつ、W相電力線21Wにおける負荷変動の絶対値が250W以上か否かを判定する。
そして、U相電力線21Uにおける負荷変動の絶対値が250W未満であり、かつ、W相電力線21Wにおける負荷変動の絶対値が250W以上の場合に、診断部57は、W相側CT診断条件Ywを満たしていると判定し、W相電流検出部17Wが正常と診断する。
(f)発電制御部
発電制御部59は、分散型発電装置15における運転開始、運転の維持、運転停止等各種運転の制御を行っている。また、発電制御部59は、スイッチ12を制御し、分散型発電装置15と系統電源10との間の切断及び接続を制御している。
(2)第1CT診断処理の流れ
第1実施形態で実施されるCT診断処理(以下、第1CT診断処理という場合がある)の流れの一例について図4、図5を用いて説明する。
(2-1)第1CT診断処理の全体の流れ
図4を用いて、第1CT診断処理の全体の流れについて説明する。
ステップS10、S30:診断可否決定部53は、U相電力線21Uにおける負荷変動及びW相電力線21Wにおける負荷変動が小さいか否かについて事前判定処理を行う。事前判定処理については後述する。
ステップS50:ヒータ制御部51は、診断可否決定部53によりU相電流検出部17Uによる電流値(U)の検出が可能、つまりU相電流検出部17Uが診断可能であると決定された場合、U相電流検出部17Uを診断するために、電力線21への負荷の接続状態をU相負荷状態に設定する。診断部57は、U相負荷状態にある場合において、U相電力線21Uにおける負荷変動及びW相電力線21Wにおける負荷変動が、図3に示すU相側CT診断条件Yuを満たすか否かを判定する。そして、U相側CT診断条件Yuが満たされる場合は、診断部57は、U相電流検出部17Uが正常と診断する。
また、ヒータ制御部51は、診断可否決定部53によりW相電流検出部17Wによる電流値(W)の検出が可能、つまりW相電流検出部17Wが診断可能であると決定された場合、W相電流検出部17Wを診断するために、電力線21への負荷の接続状態をW相負荷状態に設定する。診断部57は、W相負荷状態にある場合において、U相電力線21Uにおける負荷変動及びW相電力線21Wにおける負荷変動が、図3に示すW相側CT診断条件Ywを満たすか否かを判定する。そして、W相側CT診断条件Ywが満たされる場合は、診断部57は、W相電流検出部17Wが正常と診断する。
(2-2)事前判定処理の全体の流れ
図5を用いて、図4のステップS10(あるいは、ステップS30)の事前判定処理の流れについて説明する。
ステップS11:診断可否決定部53は、U相電流検出部17Uが診断済みか否かを判定し、診断済みでない場合はステップS12に処理を進める。診断済みの場合はステップS17に処理が進められる。
ステップS12:診断可否決定部53は、図2の負荷変動判定条件を参照し、取得したW相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満か否かを判定する。
ステップS13:診断可否決定部53は、W相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満の場合(ステップS12においてYes)は、U相電流検出部17Uにより、U相電流検出部17Uを診断するための電流値(U)を検出可能と決定する。つまり、診断可否決定部53は、U相電流検出部17Uが正常か否かを診断可と決定する。
ステップS14:一方、診断可否決定部53は、W相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満ではない場合(ステップS12においてNo)は、U相電流検出部17Uにより、U相電流検出部17Uを診断するための電流値(U)を検出不可と決定する。つまり、診断可否決定部53は、U相電流検出部17Uが正常か否かを診断不可と決定する。
ステップS15:報知部55は、診断可否決定部53から、施設内電力負荷35の使用を控える旨を報知する指令を受け、実行する。報知部55の報知を受けた利用者が施設内電力負荷35の使用を控えることで、施設内電力負荷35による負荷変動が抑制可能となる。これによりU相側負荷変動判定値Xu及びW相側負荷変動判定値Xwが満たされ易くなり、U相電流検出部17U及びW相電流検出部17Wの診断が可能となる。
ステップS16、S17:診断可否決定部53は、所定時間が経過した場合(ステップS16においてYes)は、W相電流検出部17Wが診断済みか否かを判定し、診断済みでない場合(ステップS17においてNo)はステップS18に処理を進める。診断済みの場合(ステップS17においてYes)はステップS23に処理が進められる。診断可否決定部53は、所定時間が経過していない場合(ステップS16においてNo)は、再びステップS12に処理を進める。
ステップS18:診断可否決定部53は、図2の負荷変動判定条件を参照し、取得したU相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満か否かを判定する。
ステップS19:診断可否決定部53は、U相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満の場合(ステップS18においてYes)は、W相電流検出部17Wにより、W相電流検出部17Wを診断するための電流値(W)を検出可能と決定する。つまり、診断可否決定部53は、W相電流検出部17Wが正常か否かを診断可と決定する。
ステップS20:一方、診断可否決定部53は、U相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満ではない場合(ステップS18においてNo)は、W相電流検出部17Wにより、W相電流検出部17Wを診断するための電流値(W)を検出不可と決定する。つまり、診断可否決定部53は、W相電流検出部17Wが正常か否かを診断不可と決定する。
ステップS21:報知部55は、診断可否決定部53から、施設内電力負荷35の使用を控える旨を報知する指令を受け、実行する。
ステップS22、S23:診断可否決定部53は、所定時間が経過した場合(ステップS22においてYes)は、処理を終了するか否かを判定し、終了しない場合(ステップS23においてNo)はステップS11に処理を進める。終了する場合(ステップS23においてYes)は処理を終了する。診断可否決定部53は、所定時間が経過していない場合(ステップS22においてNo)は、再びステップS18に処理を進める。
上記第1実施形態によれば、前述の通り、U相電流検出部17U及びW相電流検出部17Wが正常か否かについての誤診断を抑制できる。
また、上記処理において、ステップS12、S14においてU相電流検出部17Uが正常か否かを診断不可となった場合に所定時間が経過すれば(ステップS16においてYes)、ステップS17以降においてW相電流検出部17Wの診断が可能か否かの処理に移る。同様に、ステップS18、S20においてW相電流検出部17Wが正常か否かを診断不可となった場合に所定時間が経過すれば(ステップS22においてYes)、ステップS11以降に戻ってU相電流検出部17Uの診断が可能か否かの処理に移る。よって、U相電力線21U及びW相電力線21Wにおける負荷変動の状況に応じて、U相電流検出部17U及びW相電流検出部17Wいずれの電流検出部17から診断するかを臨機応変に対応させることができる。
U相電流検出部17Uを診断するために、第1電気ヒータ48UをU相電力線21Uに接続した場合には、U相電力線21Uには主として第1電気ヒータ48Uによる負荷変動が生じる。一方、W相電力線21Wでは第2施設内電力負荷35bによる負荷変動が生じる。ここで、前述の通り、W相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満の場合に、U相電流検出部17Uを診断する。W相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満とは、W相電力線21Wにおける第2施設内電力負荷35bによる負荷変動の絶対値が第1電気ヒータ48Uの消費電力による負荷変動未満である。この場合には、U相電力線21Uに生じる第1電気ヒータ48Uによる負荷変動の絶対値が、W相電力線21Wに生じる第2施設内電力負荷35bによる負荷変動の絶対値よりも大きくなる。そのため、U相電力線21Uの第1電気ヒータ48Uによる負荷変動の挙動とW相電力線21Wの第2施設内電力負荷35bによる負荷変動の挙動とが異なり、U相電力線21UとW相電力線21Wとを区別することができる。そして、U相負荷状態において、U相電力線21Uにおける大きな負荷変動をU相電流検出部17Uが検出するか否かによってU相電流検出部17Uが正常か否かを容易に診断できる。
同様に、W相電流検出部17Wを診断するために、第2電気ヒータ48WをW相電力線21Wに接続した場合には、W相電力線21Wには主として第2電気ヒータ48Wによる負荷変動が生じる。一方、U相電力線21Uでは第1施設内電力負荷35aによる負荷変動が生じる。ここで、前述の通り、U相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満の場合に、W相電流検出部17Wを診断する。U相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満とは、U相電力線21Uにおける第1施設内電力負荷35aによる負荷変動の絶対値が第2電気ヒータ48Wの消費電力による負荷変動未満である。この場合には、W相電力線21Wに生じる第2電気ヒータ48Wによる負荷変動の絶対値が、U相電力線21Uに生じる第1施設内電力負荷35aによる負荷変動の絶対値よりも大きくなる。そのため、U相電力線21Uの負荷変動の挙動とW相電力線21Wの負荷変動の挙動とが異なり、U相電力線21UとW相電力線21Wとを区別することができる。そして、W相負荷状態において、W相電力線21Wにおける大きな負荷変動をW相電流検出部17Wが検出するか否かによってW相電流検出部17Wが正常か否かを容易に診断できる。
(3)第1実施形態の変形例
(3-1)
上記第1実施形態では、図2のU相側負荷変動判定値Xu及びW相側負荷変動判定値Xwは、固定値であるが、変動させてもよい。このような第1実施形態の変形例について図6の事前判定処理(ステップS30)、図7を用いて説明する。なお、ステップS31~S43は、ステップS11~S23と同様であるので説明を省略するか簡略化する。
ステップS31~S35:ステップS11~S15と同様である。
ステップS44:ステップS35の後、診断可否決定部53は、W相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満ではない場合(ステップS32においてNo)は、W相側負荷変動判定値Xwを変更するか否かを判断する。変更するか否かについては、例えば予め設定されている。
ステップS45:診断可否決定部53は、W相側負荷変動判定値Xwを変更すると判定した場合(ステップS44においてYes)は、W相側負荷変動判定値Xwを変更する。
例えば、診断可否決定部53は、W相側負荷変動判定値Xwを拡張するように変更する。なお、拡張とは、元の値(絶対値)から大きな値(絶対値)となるように設定変更することを言い、以下においても同様である。具体的には、図2ではW相側負荷変動判定値Xwが±250Wであるが、診断可否決定部53は、図7に示すようにW相側負荷変動判定値Xwを±300Wに拡張するように変更する。これにより、W相電力線21Wにおける負荷変動の絶対値が、250Wより大きくても300W未満の場合は、W相電力線21Wにおける負荷変動が小さいと判定される。
ここでは、図7に示すようにW相側負荷変動判定値Xwを±250Wから±300Wに拡張する場合を例に示したが、電気ヒータ48の消費電力(例えば±500W)の範囲内で複数段階で拡張することもできる。
診断可否決定部53は、W相側負荷変動判定値Xwを拡張した後、再びステップS32を実行する。
ステップS36:また、診断可否決定部53は、ステップS44において、W相側負荷変動判定値Xwを変更しないと判定した場合(ステップS44においてNo)は、所定時間が経過した場合(ステップS36においてYes)は、ステップS37に進み、そうでない場合は再びステップS32に処理を進める。
ステップS37~S41:ステップS17~S21と同様である。
ステップS46:ステップS41の後、診断可否決定部53は、U相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満ではない場合(ステップS38においてNo)は、U相側負荷変動判定値Xuを変更するか否かを判断する。変更するか否かについては、例えば予め設定されている。
ステップS47:診断可否決定部53は、U相側負荷変動判定値Xuを変更すると判定した場合(ステップS46においてYes)は、U相側負荷変動判定値Xuを変更する。
例えば、診断可否決定部53は、例えば図7に示すように、U相側負荷変動判定値Xuを±300Wに拡張するように変更する。診断可否決定部53は、U相側負荷変動判定値Xuを拡張した後、再びステップS38を実行する。W相側負荷変動判定値Xwと同様に、U相側負荷変動判定値Xuは、電気ヒータ48の消費電力(例えば±500W)の範囲内で複数段階で拡張することができる。
ステップS42:また、診断可否決定部53は、ステップS46において、U相側負荷変動判定値Xuを変更しないと判定した場合(ステップS46においてNo)は、所定時間が経過した場合(ステップS42においてYes)は、ステップS43に進み、そうでない場合は再びステップS38に処理を進める。
ステップS43:ステップS23と同様の処理である。
上述のように負荷変動判定値を拡張することにより、電力線21における負荷変動の絶対値が負荷変動判定値未満となるようにして電流検出部17の診断に必要な電流値を検出可能とする。よって、電流検出部17を診断できない状態が継続してしまうのを抑制できる。
なお、W相電力線21Wにおける負荷変動の絶対値とW相側負荷変動判定値Xwとの差分に応じて負荷変動判定値を変更するか否かの初期設定がされていてもよい。例えば、W相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xwよりも大きい分量が所定値以上の場合は、W相側負荷変動判定値Xwを変更すると設定されている。一方、例えば、W相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xwよりも大きい分量が所定値未満の場合は、W相側負荷変動判定値Xwを変更しないと設定されている。U相側負荷変動判定値Xuも同様である。
逆に、基準値を変更できないとの初期設定がなされていてもよい。
〔第2実施形態〕
以下、第2実施形態に係る分散型発電システムについて図1を参照して説明する。本実施形態では、電流検出部の診断を改良するための方法として、CT診断処理の流れを随時変更する処理を行う。
(1)全体構成
第2実施形態に係る分散型発電システムの全体構成としては、制御部50は、第1実施形態の診断可否決定部53を有していない。また、第2実施形態の制御部50は、第1実施形態の記憶部58において、図2に示す負荷変動判定条件を有していない。また、ヒータ制御部51は、診断可否決定部53での診断可との決定によらず、U相負荷状態(第1相負荷状態の一例)及びW相負荷状態(第2相負荷状態の一例)に設定する。
また、第2実施形態の制御部50の診断部57は、第1実施形態の制御部50の診断部57と同様にCT診断条件を参照し、U相電流検出部17Uが正常か否か、及びW相電流検出部17Wが正常か否かを診断する。その他、診断部57は、U相電流検出部17U及びW相電流検出部17Wの診断の順序を変更可能である。その他の点は、第1実施形態の全体構成と同様であるので説明を省略する。
(2)第2CT診断処理の流れ
第2実施形態で実施されるCT診断処理(以下、第2CT診断処理(ステップS60)という場合がある)の流れの一例について図8を用いて説明する。第2CT診断処理は、第1実施形態の第1CT診断処理とは異なり、事前判定処理は行われない。
ステップS61:診断部57は、U相電流検出部17Uが診断済みか否かを判定し、診断済みでない場合(ステップS61においてNo)は、ステップS62に処理を進める。診断済みの場合(ステップS61においてYes)は、ステップS67に処理が進められる。
ステップS62:ヒータ制御部51は、U相電流検出部17Uを診断するために、電力線21への負荷の接続状態をU相負荷状態(第1相負荷状態の一例)に設定する(U相負荷投入:第1電気ヒータ(第1相負荷の一例)の投入)。
ステップS63:診断部57は、図3のCT診断条件を参照し、U相側CT診断条件Yuを満たすか否か診断し、U相電流検出部17Uが正常か否を診断する。図3の場合、診断部57は、U相電力線21Uにおける負荷変動(U相側負荷変動)の絶対値が250W以上であり、かつ、W相電力線21Wにおける負荷変動(W相側負荷変動)の絶対値が250W未満である場合に、U相電流検出部17Uが正常であると診断する。一方、U相側CT診断条件Yuを満たさない場合は、U相電流検出部17Uが異常と診断し、ステップS65に進む。
ステップS64:診断部57は、U相側CT診断条件Yuを満たす場合は、U相電流検出部17Uが正常と診断する。
ステップS65:報知部55は、診断部57から、施設内電力負荷35の使用を控える旨を報知する指令を受け、実行する。
ステップS66:診断部57は、所定時間が経過していない場合(ステップS66においてNo)はステップS62に処理を進める。所定時間が経過した場合(ステップS66においてYes)はステップS67に処理が進められる。
ステップS67:診断部57は、W相電流検出部17Wが診断済みか否かを判定し、診断済みでない場合(ステップS67においてNo)は、ステップS68に処理を進める。診断済みの場合(ステップS67においてYes)は、ステップS73に処理が進められる。
ステップS68:ヒータ制御部51は、W相電流検出部17Wを診断するために、電力線21への負荷の接続状態をW相負荷状態(第2相負荷状態の一例)に設定する(W相負荷投入:第2電気ヒータ(第2相負荷の一例)の投入)。
ステップS69:診断部57は、図3のCT診断条件を参照し、W相側CT診断条件Ywを満たすか否か診断し、W相電流検出部17Wが正常か否を診断する。図3の場合、診断部57は、W相電力線21Wにおける負荷変動(W相側負荷変動)の絶対値が250W以上であり、かつ、U相電力線21Uにおける負荷変動(U相側負荷変動)の絶対値が250W未満である場合に、U相電流検出部17Uが正常であると診断する。一方、W相側CT診断条件Ywを満たさない場合は、W相電流検出部17Wが異常と診断し、ステップS71に進む。
ステップS70:診断部57は、W相側CT診断条件Ywを満たす場合は、W相電流検出部17Wが正常と診断する。
ステップS71:報知部55は、診断部57から、施設内電力負荷35の使用を控える旨を報知する指令を受け、実行する。
ステップS72:診断部57は、所定時間が経過していない場合(ステップS72においてNo)はステップS68に処理を進める。診断部57は、所定時間が経過した場合(ステップS72においてYes)はステップS73に処理を進める。
ステップS73:診断部57は、処理を終了しない場合は(ステップS73においてNo)、ステップS61に処理を進め、そうでない場合(ステップS73においてYes)は処理を終了する。例えば、診断部57は、U相電流検出部17U及びW相電流検出部17Wの両方を診断済みの場合は処理を終了し、U相電流検出部17U及びW相電流検出部17Wの少なくともいずれかを未だ診断していない場合はステップS61に処理を進める。その他、診断部57は、U相電流検出部17U及びW相電流検出部17Wの両方の診断結果が正常である場合は処理を終了し、U相電流検出部17U及びW相電流検出部17Wの少なくともいずれかの診断結果が正常でない場合はステップS61に処理を進めることができる。
また、上記処理において、ステップS63においてU相電流検出部17Uが正常でない場合に所定時間が経過すれば(ステップS66においてNo)、ステップS67以降においてW相電流検出部17Wの診断に移る。同様に、ステップS69においてW相電流検出部17Wが正常でない場合に所定時間が経過すれば(ステップS72においてYes)、ステップS61以降に戻ってU相電流検出部17Uの診断が可能か否かの処理に移る。よって、U相電力線21U及びW相電力線21Wにおける負荷変動の状況に応じて、U相電流検出部17U及びW相電流検出部17Wいずれの電流検出部17から診断するかを臨機応変に対応させることができる。
また、報知部55の報知を受けた利用者が施設内電力負荷35の使用を控えることで、施設内電力負荷35による負荷変動が抑制可能となる。これによりU相側CT診断条件Yu及びW相側CT診断条件Ywが満たされ易くなり、U相電流検出部17U及びW相電流検出部17Wの診断が容易となる。
U相電流検出部17Uを診断するためのU相側CT診断条件Yuが、第1電気ヒータ48Uによる負荷変動を基準に設定される。例えば、図3に示すように、第1電気ヒータ48Uによる負荷変動は500Wであり、U相側CT診断条件YuはU相側負荷変動及びW相側負荷変動は500Wよりも小さい250Wを基準に設定されている。この場合、U相電力線21Uの第1電気ヒータ48Uによる負荷変動の挙動とW相電力線21Wの第2施設内電力負荷35bによる負荷変動の挙動とを区別できる。そして、U相電力線21Uにおける大きな負荷変動をU相電流検出部17Uが検出するか否かによってU相電流検出部17Uが正常か否かを容易に診断できる。
W相電流検出部17Wを診断するためのW相側CT診断条件Ywが、第2電気ヒータ48Wによる負荷変動を基準に設定される。例えば、図3に示すように、第2電気ヒータ48Wによる負荷変動は500Wであり、W相側CT診断条件YwはU相側負荷変動及びW相側負荷変動は500Wよりも小さい250Wを基準に設定されている。この場合、W相電力線21Wの第2電気ヒータ48Wによる負荷変動の挙動とU相電力線21Uの第1施設内電力負荷35aによる負荷変動の挙動とを区別できる。そして、W相電力線21Wにおける大きな負荷変動をW相電流検出部17Wが検出するか否かによってW相電流検出部17Wが正常か否かを容易に診断できる。
(3)第2実施形態の変形例
(3-1)
上記第2実施形態では、図3のU相側CT診断条件Yu及びW相側CT診断条件Ywは、固定値であるが、変動させてもよい。このような第2実施形態の変形例に係る第2CT診断処理(ステップS80)について図9、図10を用いて説明する。なお、ステップS81~S93は、ステップS61~S73と同様であるので説明を省略するか簡略化する。
ステップS81~S85:ステップS61~S65と同様である。
ステップS94:ステップS85の後、診断部57は、U相側CT診断条件Yuを満たさない場合(ステップS83においてNo)は、U相側CT診断条件Yuを変更するか否かを判断する。変更するか否かについては、例えば予め設定されている。
ステップS95:診断部57は、U相側CT診断条件Yuを変更すると判定した場合(ステップS94においてYes)は、U相側CT診断条件Yuを変更する。
例えば、診断部57は、U相側CT診断条件Yuを拡張するように変更する。例えば、図3ではU相側CT診断条件Yuが±250Wであるが、診断部57は、図10に示すようにU相側CT診断条件Yuを±300Wに拡張するように変更する。具体的には、U相側CT診断条件Yuとして、U相電力線21Uにおける負荷変動(図3中のU相側負荷変動)が±300W以上に変更され、かつW相電力線21Wにおける負荷変動(図3中のW相側負荷変動)が±300W未満に変更される。これにより、U相電流検出部17Uの診断条件が拡張される。
ここでは、図10に示すようにU相側CT診断条件Yuを±250Wから±300Wに変更する拡張する場合を例に示したが、第1電気ヒータ48Uの消費電力(例えば±500W)の範囲内で複数段階で拡張することもできる。
診断可否決定部53は、U相側CT診断条件Yuを拡張した後、再びステップS82を実行する。
ステップS86:また、診断部57は、ステップS94において、U相側CT診断条件Yuを変更しないと判定した場合(ステップS94においてNo)は、所定時間が経過した場合(ステップS86においてYes)は、ステップS87に進み、そうでない場合は再びステップS82に処理を進める。
ステップS87~S91:ステップS67~S71と同様である。
ステップS96:ステップS91の後、診断部57は、W相側CT診断条件Ywを満たさない場合(ステップS89においてNo)は、W相側CT診断条件Ywを変更するか否かを判断する。変更するか否かについては、例えば予め設定されている。
ステップS97:診断部57は、W相側CT診断条件Ywを変更すると判定した場合(ステップS96においてYes)は、W相側CT診断条件Ywを変更する。
例えば、診断部57は、W相側CT診断条件Ywを拡張するように変更する。例えば、図3ではW相側CT診断条件Ywが±250Wであるが、診断部57は、図10に示すようにW相側CT診断条件Ywを±300Wに拡張するように変更する。具体的には、W相側CT診断条件Ywとして、U相電力線21Uにおける負荷変動(図3中のU相側負荷変動)が±300W未満に変更され、かつW相電力線21Wにおける負荷変動(図3中のW相側負荷変動)が±300W以上に変更される。これにより、W相電流検出部17Wの診断条件が拡張される。U相側CT診断条件Yuと同様に、W相側CT診断条件Ywは、第2電気ヒータ48Wの消費電力(例えば±500W)の範囲内で複数段階で拡張することもできる。
診断部57は、W相側CT診断条件Ywを拡張した後、再びステップS88を実行する。
ステップS92:また、診断部57は、ステップS96において、W相側CT診断条件Ywを変更しないと判定した場合(ステップS96においてNo)は、所定時間が経過した場合(ステップS92においてYes)は、ステップS93に進み、そうでない場合は再びステップS88に処理を進める。
ステップS93:ステップS73と同様の処理である。
上記処理のように、負荷変動の幅が大きくなるようにU相側CT診断条件Yu及びW相側CT診断条件Ywを拡張する。これにより、U相側CT診断条件Yu及びW相側CT診断条件Ywが満たされない状況が継続してしまうのを抑制できる。ひいては、分散型発電装置15による発電が出来ない状況が継続してしまうのを抑制できる。
(3-2)
上記第2実施形態の処理において、第1実施形態に示す事前判定処理を行っても良い。
(a)
第2実施形態の図8に示す第2CT診断処理において、これに限定されないが、例えば図11に示すタイミングで第1実施形態の事前判定処理を行うことができる。図11において図8と同じ処理については、同一の処理番号を示しており、説明を省略する。
ステップS101:ステップS63においてU相側CT診断条件Yuを満たさない場合(ステップS63においてNo)は、診断可否決定部53は、図2の負荷変動判定条件を参照し、取得したW相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満か否かを判定する。
ステップS102:診断可否決定部53は、W相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満の場合(ステップS101においてYes)は、U相電流検出部17Uにより、U相電流検出部17Uを診断するための電流値(U)を検出可能と決定する。つまり、診断可否決定部53は、U相電流検出部17Uが正常か否かを診断可と決定する。その後、ステップS62の処理が進められる。
ステップS103:一方、診断可否決定部53は、W相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満ではない場合(ステップS101においてNo)は、U相電流検出部17Uにより、U相電流検出部17Uを診断するための電流値(U)を検出不可と決定する。つまり、診断可否決定部53は、U相電流検出部17Uが正常か否かを診断不可と決定する。その後、ステップS65の処理が進められる。
ステップS104:ステップS69においてW相側CT診断条件Ywを満たさない場合(ステップS69においてNo)は、診断可否決定部53は、取得したU相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満か否かを判定する。
ステップS105:診断可否決定部53は、U相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満の場合(ステップS104においてYes)は、W相電流検出部17Wにより、W相電流検出部17Wを診断するための電流値(W)を検出可能と決定する。つまり、診断可否決定部53は、W相電流検出部17Wが正常か否かを診断可と決定する。その後、ステップS68の処理が進められる。
ステップS106:一方、診断可否決定部53は、U相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満ではない場合(ステップS104においてNo)は、W相電流検出部17Wにより、W相電流検出部17Wを診断するための電流値(W)を検出不可と決定する。つまり、診断可否決定部53は、W相電流検出部17Wが正常か否かを診断不可と決定する。その後、ステップS71の処理が進められる。
(b)
上記(3-1)の第2実施形態の変形例において示した図9に示す第2CT診断処理において、これに限定されないが、例えば図12に示すタイミングで第1実施形態の事前判定処理を行うことができる。図12において図9と同じ処理については、同一の処理番号を示しており、説明を省略する。また、図12においてステップS201~S206は図11のステップS101~S106と同様の処理であり、説明を簡略化する。
ステップS201:ステップS95においてU相側CT診断条件Yuを変更した後、診断可否決定部53はW相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満か否かを判定する。
ステップS202:診断可否決定部53は、W相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満の場合(ステップS201においてYes)は、U相電流検出部17Uを診断可と決定する。その後、ステップS82の処理が進められる。
ステップS203:一方、診断可否決定部53は、W相電力線21Wにおける負荷変動の絶対値がW相側負荷変動判定値Xw未満ではない場合(ステップS201においてNo)は、U相電流検出部17Uを診断不可と決定する。その後、ステップS87の処理が進められる。
ステップS204:ステップS96においてU相側CT診断条件Yuを変更した後、診断可否決定部53はU相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満か否かを判定する。
ステップS205:診断可否決定部53は、U相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満の場合(ステップS204においてYes)は、W相電流検出部17Wを診断可と決定する。その後、ステップS88の処理が進められる。
ステップS206:一方、診断可否決定部53は、U相電力線21Uにおける負荷変動の絶対値がU相側負荷変動判定値Xu未満ではない場合(ステップS204においてNo)は、W相電流検出部17Wを診断不可と決定する。その後、ステップS93の処理が進められる。
〔他の実施形態〕
(1)
上記第1及び第2実施形態では、第1実施形態の第1CT診断処理及び第2実施形態の第2CT診断処理(以下、合わせてCT診断処理という)のタイミングについては特に限定していない。CT診断処理は、例えば次のタイミングで行うことができる。
(1-1)発電開始前までのCT診断処理
CT診断処理は、分散型発電装置15での発電を開始する前までに行われることができ、U相電力線21U及びW相電力線21Wには系統電源10から系統電力が供給される。このようなタイミングでCT診断処理を行う処理について図13に基づいて説明する。
ステップS300:診断部57は、CT診断処理を完了したか否かを判定し、CT診断処理が完了していない場合(ステップS300においてNo)はステップS301に処理を進める。
ステップS301:診断部57は、CT診断処理を開始したもののCT診断処理がまだ完了していない場合は、分散型発電装置15による発電を可能とするために、発電制御部59に必要な起動処理を進めさせる。
CT診断処理がまだ完了していない場合とは、診断部57が、U相電流検出部17U及びW相電流検出部17Wのいずれかの診断を不可と決定した場合である。
また、発電を可能とするために必要な起動処理には、例えば、改質器の昇温、セルの段階的昇温等が挙げられる。
必要な起動処理を開始して所定時間が経過して起動処理が進めば(ステップS302においてYes)、診断部57はCT診断処理を進める。
このようにCT診断処理に先立って分散型発電装置15による発電を可能とするために必要な起動処理を先に行うことで、電流検出部17の診断、各種の起動処理を含む処理に要する時間が長期化するのを抑制できる。
ステップS303:CT診断処理が完了している場合(ステップS300においてYes)において、診断部57からU相電流検出部17U及びW相電流検出部17Wが正常である旨の通知を受け取ると、発電制御部59は、分散型発電装置15での発電を開始させる。
(1-2)アイドリング中又は停止処理開始後から所定時間以内におけるCT診断処理
(1-2-1)
CT診断処理は、分散型発電装置15が発電を開始した後、アイドリング状態に設定された場合に行われることができる。このようなタイミングでCT診断処理を行う処理について図14に基づいて説明する。
ステップS310、S311:診断部57は、分散型発電装置15が発電中の場合は、CT診断処理のタイミングになっているか否かを判定する。
CT診断処理のタイミングは、例えば定期メンテナンス及びサイクル停止等のタイミングに合わせて、予め設定されている。
ステップS312:診断部57は、CT診断処理のタイミングになっている場合(ステップS311においてYes)は、アイドリング状態に設定されているか否かを判定する。
ここで、メンテナンス時期が近付いてきて分散型発電装置15での発電を停止する可能性がある場合、又は、電力線21における負荷変動が他の時間帯よりも少なく分散型発電装置15での発電を停止する可能性がある場合には、分散型発電装置15はアイドリング状態に設定される。つまり、アイドリング状態には、分散型発電装置15が発電を開始した後に、分散型発電装置15が発電を行わなくなった状態が含まれる。また、アイドリング状態には、分散型発電装置15が発電電力を出力しない、つまり、発電しているものの電力変換装置13から系統電源10に発電電力が出力されていない状態が含まれていてもよい。
診断部57は、アイドリング状態と判断すると、CT診断処理を進める。
前述のようなアイドリング状態では、分散型発電装置15による発電電力に対する需要が下がっており、施設内電力負荷35の使用が低下していると推定できる。よって、電力線21には施設内の負荷として施設内電力負荷35が接続されているが、アイドリング状態の場合には、電力線21における施設内電力負荷35による負荷変動の絶対値が負荷変動判定値未満となり易い。そのため、上記特徴構成のように、アイドリング状態となった場合にCT診断処理を進め、電流検出部17による電流値の検出が可能か否かの決定を行うことで、電流値の検出が可能となる可能性が大きく好ましい。
(1-2-2)
CT診断処理は、分散型発電装置15が発電を開始した後、停止処理開始から所定時間内となった場合に行われることができる。このようなタイミングでCT診断処理を行う処理について図15に基づいて説明する。
ステップS320:診断部57は、分散型発電装置15が発電中の場合は、CT診断処理のタイミングになっているか否かを判定する。CT診断処理のタイミングは、例えば定期メンテナンス及びサイクル停止等のタイミングに合わせて、予め設定されている。
ステップS321:診断部57は、CT診断処理のタイミングになっている場合(ステップS320においてYes)は、停止処理開始から所定時間以内か否かを判定する。停止処理開始から所定時間以内の場合(ステップS321においてYes)は、診断部57はCT診断処理を進める。
停止処理は、定期メンテナンス及びサイクル停止が予定されている場合に行われる場合が多く、分散型発電装置15による発電電力に対する需要が下がっており、施設内電力負荷35の使用が低下していると推定できる。分散型発電装置15の停止処理開始後から所定時間以内においても同様の状態と推定できる。よって、電力線21には施設内の負荷として施設内電力負荷35が接続されているが、停止処理開始から所定時間以内の場合には、電力線21における施設内電力負荷35による負荷変動の絶対値が負荷変動判定値未満となり易い。そのため、停止処理開始から所定時間以内の場合に電流検出部による電流値の検出が可能か否かの決定を行うことで、電流値の検出が可能となる可能性が大きく好ましい。
(1-3)随時取得した負荷変動から抽出したタイミングでのCT診断処理
CT診断処理は、分散型発電装置15が発電を開始した後、負荷変動が小さくなった場合に行われることができる。このようなタイミングでCT診断処理を行う処理について図16、図17に基づいて説明する。
ステップS330:診断部57は、例えば、U相電力線21U及びW相電力線21Wを用いて電力線21での負荷変動を取得する。
ステップS321:診断部57は、CT診断処理のタイミングか否かを決定する。ここでは、診断部57は、取得した負荷変動に基づいて、例えば負荷変動の絶対値が所定値よりも小さい場合をCT診断処理のタイミングと決定する。診断部57は、例えば、図17に示す0時~24時までの負荷変動の経時変化に基づいて、負荷変動が例えば250W未満の0時~6時前までの間をCT診断処理のタイミングとして決定する。その他、診断部57は、前述のように負荷変動の絶対値が小さい時間帯を、所定の施設の負荷変動の経時変化を学習することで特定してもよい。
なお、図17において斜線部分は系統電源10から系統電力の供給を受けている部分である。
診断部57は、CT診断処理のタイミングであると決定すると、CT診断処理を進める。
負荷変動の絶対値が小さいタイミングを特定した上で電流値の検出が可能か否かを決定するため、任意のタイミングで電流値の検出が可能か否かを決定するよりも、より電流値を検出可能なタイミングで検出可否の決定ができ好ましい。
(2)上記第2実施形態における第2CT診断処理の前に、第1実施形態における事前判定処理を行ってもよい。
(3)上記第1実施形態における図5に示す事前判定処理において次の処理を追加することもできる。図5のステップS13において診断可否決定部53がU相電流検出部17Uに対して診断可と決定すると、次の処理として、診断部57はU相電流検出部17Uが正常か否かの診断を行うことができる。また、図5のステップS19において診断可否決定部53がW相電流検出部17Wに対して診断可と決定すると、次の処理として、診断部57はW相電流検出部17Wが正常か否かの診断を行うことができる。
同様に、第1実施形態における図6に示す事前判定処理において、ステップS33においてU相電流検出部17Uに対して診断可との決定がなされると、診断部57はU相電流検出部17Uが正常か否かの診断を行うことができる。また、ステップS39においてW相電流検出部17Wに対して診断可との決定がなされると、診断部57はW相電流検出部17Wが正常か否かの診断を行うことができる。
(4)
上記第1及び第2実施形態のCT診断処理は、電流検出部17が検出した電流値に対応した負荷変動がCT診断条件を満たしているか否かによって行われる。しかし、CT診断処理としては、電流検出部17の接続状態の診断が含まれていてもよい。接続状態の診断には、例えば、接続不良、接続箇所の過誤、及び、接続方向の過誤等の診断が挙げられる。
接続不良とは、例えば、U相電流検出部17UとU相電力線21Uとの電気的接続が切断されている場合であり、また、W相電流検出部17WとW相電力線21Wとの電気的接続が切断されている場合である。接続箇所の過誤とは、例えば、U相電流検出部17UがU相電力線21Uに接続されておらず、W相電流検出部17W等の他の配線に接続されている場合であり、また、W相電流検出部17WがW相電力線21Wに接続されておらず、U相電流検出部17U等の他の配線に接続されている場合である。接続方向の過誤とは、例えば、U相電流検出部17Uのプラスとマイナスとが入れ替わってU相電力線21Uに接続されている場合であり、また、W相電流検出部17Wのプラスとマイナスとが入れ替わってW相電力線21Wに接続されている場合である。
(5)本実施系形態では、電力線21での負荷変動の値は、ある時点における電力線21で計測される電力の瞬時値である。しかし、負荷変動の値は、瞬時の時点での値ではなく、所定期間において電力線21において計測される電力値の平均値であってもよい。
(6)本実施系形態では、施設内電力負荷35a、35bに対して100Vの電力を供給する形態を例示したが、必要に応じて、施設内電力負荷35a、35bに対して200Vの電力を供給してもよい。
なお上述の実施形態(他の実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
10 :系統電源
15 :分散型発電装置
17 :電流検出部
17U :U相電流検出部(第1電流検出部)
17W :W相電流検出部(第2電流検出部)
21 :電力線
21N :中性線
21U :U相電力線(第1相電力線)
21W :W相電力線(第2相電力線)
35 :施設内電力負荷(第3負荷)
48 :電気ヒータ(相負荷)
48U :第1電気ヒータ(第1相負荷)
48W :第2電気ヒータ(第1相負荷)
51 :ヒータ制御部(相負荷制御部)
53 :診断可否決定部
55 :報知部
57 :診断部
100 :分散型発電システム
Xu :U相側負荷変動判定値(第1負荷変動判定値)
Xw :W相側負荷変動判定値(第2負荷変動判定値)
Yu :U相側CT診断条件(第1診断条件)
Yw :W相側CT診断条件(第2診断条件)

Claims (21)

  1. 第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
    前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
    前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断装置であって、
    前記電力線における負荷変動の絶対値が所定の負荷変動判定値未満となる負荷変動判定条件を満たすか否かを判定し、前記負荷変動判定条件を満たす場合に、前記電流検出部により前記電流検出部が正常か否かを診断するための電流値の検出が可能であると決定する診断可否決定部を備え
    前記負荷変動判定値には、前記第1相電力線における負荷変動の絶対値を判定する基準である第1負荷変動判定値と、前記第2相電力線における負荷変動の絶対値を判定する基準である第2負荷変動判定値とが含まれ、
    前記負荷変動判定条件には、前記第2電流検出部による電流値の検出の可否を判定するための第1負荷変動判定条件と、前記第1電流検出部による電流値の検出の可否を判定するための第2負荷変動判定条件とが含まれ、
    前記診断可否決定部は、
    前記第2相電力線における負荷変動の絶対値が前記第2負荷変動判定値未満となり前記第2負荷変動判定条件を満たすと判定した場合、前記第1電流検出部により前記第1電流検出部が正常か否かを診断するための電流値の検出が可能であると決定し、
    一方、前記第1相電力線における負荷変動の絶対値が前記第1負荷変動判定値未満となり前記第1負荷変動判定条件を満たすと判定した場合、前記第2電流検出部により前記第2電流検出部が正常か否かを診断するための電流値の検出が可能であると決定する、診断装置。
  2. 前記第1負荷変動判定値は、前記第2相負荷が消費する電力による負荷変動の範囲内で設定されており、前記第2負荷変動判定値は、前記第1相負荷が消費する電力による負荷変動の範囲内で設定されている、請求項に記載の診断装置。
  3. 前記診断可否決定部は、
    前記第2負荷変動判定条件が満たされない場合、前記第1相電力線における負荷変動の絶対値が前記第1負荷変動判定条件を満たすか否かを判定して、前記第2電流検出部による電流値の検出が可能か否かを決定し、
    一方、前記第1負荷変動判定条件が満たされない場合、前記第2相電力線における負荷変動の絶対値が前記第2負荷変動判定条件を満たすか否かを判定して、前記第1電流検出部による電流値の検出が可能か否かを決定する、請求項1又は2に記載の診断装置。
  4. 前記診断可否決定部は、
    前記第1負荷変動判定条件が満たされない場合、前記第1負荷変動判定値を前記第2相負荷の消費電力による負荷変動の範囲内において拡張し、
    一方、前記第2負荷変動判定条件が満たされない場合、前記第2負荷変動判定値を前記第1相負荷の消費電力による負荷変動の範囲内において拡張する、請求項1~3のいずれか1項に記載の診断装置。
  5. 前記診断可否決定部が、前記負荷変動判定条件を満たさず前記電流検出部による電流値の検出が不可と決定すると、前記系統電源から前記第3負荷への電力の供給を抑制するように報知する報知部を備える、請求項1~4のいずれか1項に記載の診断装置。
  6. 前記診断可否決定部により前記第1電流検出部による電流値の検出が可能であると決定された場合、前記第1相負荷を前記第1相電力線と接続して前記系統電源からの電力を受給可能な状態とし、かつ、前記第2相負荷は前記第2相電力線と切断した状態である第1相負荷状態に制御し、一方、前記診断可否決定部により前記第2電流検出部による電流値の検出が可能であると決定された場合、前記第2相負荷を前記第2相電力線と接続して前記系統電源からの電力を受給可能な状態とし、かつ、前記第1相負荷は前記第1相電力線と切断した状態である第2相負荷状態に制御する相負荷制御部と、
    前記第1相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断し、一方、前記第2相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断する診断部とを備える、請求項1~5のいずれか1項に記載の診断装置。
  7. 前記診断可否決定部は、
    前記負荷変動判定条件が満たされない場合、前記分散型発電装置による発電を可能とするために必要な起動処理を行わせるとともに、前記分散型発電装置が発電を開始する前に前記負荷変動判定条件の判定及び前記電流値の検出が可能か否かの決定を完了させる、請求項1~6のいずれか1項に記載の診断装置。
  8. 前記診断可否決定部は、
    前記分散型発電装置による発電中において、メンテナンス時期が近付いてきて発電を停止する可能性がある場合、又は、前記電力線における負荷変動が他の時間帯よりも少なく発電を停止する可能性がある場合を含むタイミングの場合、アイドリング状態で前記負荷変動判定条件の判定及び前記電流値の検出が可能か否かの決定を行う、請求項1~6のいずれか1項に記載の診断装置。
  9. 前記診断可否決定部は、
    前記分散型発電装置による発電中において前記分散型発電装置の停止処理が行われた場合、前記停止処理の開始後から所定時間以内に、前記負荷変動判定条件の判定及び前記電流値の検出が可能か否かの決定を行う、請求項1~6のいずれか1項に記載の診断装置。
  10. 第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
    前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
    前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、
    請求項1~9のいずれか1項に記載の診断装置と、
    を備える、分散型発電システム。
  11. 第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
    前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
    前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断方法であって、
    前記電力線における負荷変動の絶対値が所定の負荷変動判定値未満となる負荷変動判定条件を満たすか否かを判定し、前記負荷変動判定条件を満たす場合に、前記電流検出部により前記電流検出部が正常か否かを診断するための電流値の検出が可能であると決定するステップを備え、
    前記負荷変動判定値には、前記第1相電力線における負荷変動の絶対値を判定する基準である第1負荷変動判定値と、前記第2相電力線における負荷変動の絶対値を判定する基準である第2負荷変動判定値とが含まれ、
    前記負荷変動判定条件には、前記第2電流検出部による電流値の検出の可否を判定するための第1負荷変動判定条件と、前記第1電流検出部による電流値の検出の可否を判定するための第2負荷変動判定条件とが含まれ、
    前記第2相電力線における負荷変動の絶対値が前記第2負荷変動判定値未満となり前記第2負荷変動判定条件を満たすと判定した場合、前記第1電流検出部により前記第1電流検出部が正常か否かを診断するための電流値の検出が可能であると決定するステップと、
    一方、前記第1相電力線における負荷変動の絶対値が前記第1負荷変動判定値未満となり前記第1負荷変動判定条件を満たすと判定した場合、前記第2電流検出部により前記第2電流検出部が正常か否かを診断するための電流値の検出が可能であると決定するステップとを備える、診断方法。
  12. 第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
    前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
    前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断装置であって、
    前記第1相負荷が前記第1相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第2相負荷は前記第2相電力線と切断された状態である第1相負荷状態と、前記第2相負荷を前記第2相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第1相負荷は前記第1相電力線と切断された状態である第2相負荷状態とを切り替える相負荷制御部と、
    前記第1相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断し、一方、前記第2相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断する診断部とを備え、
    前記第1相負荷状態において前記第1診断条件が満たされない場合、前記相負荷制御部は前記第2相負荷状態に切り替え、前記診断部は、切り替え後の前記第2相負荷状態において前記第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断し、
    一方、前記第2相負荷状態において前記第2診断条件が満たされない場合、前記相負荷制御部は前記第1相負荷状態に切り替え、前記診断部は、切り替え後の前記第1相負荷状態において第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断する、診断装置。
  13. 第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
    前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
    前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断装置であって、
    前記第1相負荷が前記第1相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第2相負荷は前記第2相電力線と切断された状態である第1相負荷状態と、前記第2相負荷を前記第2相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第1相負荷は前記第1相電力線と切断された状態である第2相負荷状態とを切り替える相負荷制御部と、
    前記第1相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断し、一方、前記第2相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断する診断部とを備え、
    前記診断部は、
    前記第1相負荷状態において前記第1診断条件が満たされない場合、前記第1診断条件を前記第1相負荷の消費電力による負荷変動の範囲内において拡張し、
    一方、前記第2相負荷状態において前記第2診断条件が満たされない場合、前記第2診断条件を前記第2相負荷の消費電力による負荷変動の範囲内において拡張する、診断装置。
  14. 前記第1診断条件は、前記第1相負荷が消費する電力による負荷変動を基準に設定され、前記第2診断条件は、前記第2相負荷が消費する電力による負荷変動を基準に設定されている、請求項12又は13に記載の診断装置。
  15. 前記診断部が、前記第1相負荷状態において前記第1診断条件が満たされないと判定した場合、及び、前記第2相負荷状態において前記第2診断条件が満たされないと判定した場合の少なくともいずれかの場合に、前記系統電源から前記第3負荷への電力の供給を抑制するように報知する報知部を備える、請求項12~14のいずれか1項に記載の診断装置。
  16. 前記診断部は、
    前記第1診断条件及び前記第2診断条件の少なくともいずれかが満たされない場合、前記分散型発電装置による発電を可能とするために必要な起動処理を行わせるとともに、前記分散型発電装置が発電を開始する前に前記第1診断条件及び前記第2診断条件の判定を完了させる、請求項12~15のいずれか1項に記載の診断装置。
  17. 前記診断部は、
    前記分散型発電装置による発電中において、メンテナンス時期が近付いてきて発電を停止する可能性がある場合、又は、前記電力線における負荷変動が他の時間帯よりも少なく発電を停止する可能性がある場合を含むタイミングの場合、アイドリング状態で前記第1診断条件の判定及び前記第2診断条件の判定を行う、請求項12~15のいずれか1項に記載の診断装置。
  18. 前記診断部は、
    前記分散型発電装置による発電中において、前記分散型発電装置の停止処理が行われた場合、前記停止処理の開始後から所定時間以内に、前記第1診断条件の判定及び前記第2診断条件の判定を行う、請求項12~15のいずれか1項に記載の診断装置。
  19. 第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
    前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
    前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、
    請求項12~18のいずれか1項に記載の診断装置と、
    を備える分散型発電システム。
  20. 第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
    前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
    前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断方法であって、
    前記第1相負荷が前記第1相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第2相負荷は前記第2相電力線と切断された状態である第1相負荷状態と、前記第2相負荷を前記第2相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第1相負荷は前記第1相電力線と切断された状態である第2相負荷状態とを切り替える相負荷制御ステップと、
    前記第1相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断し、一方、前記第2相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断する診断ステップとを備え、
    前記第1相負荷状態において前記第1診断条件が満たされない場合、前記相負荷制御ステップにおいて前記第2相負荷状態に切り替え、前記診断ステップでは、切り替え後の前記第2相負荷状態において前記第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断し、
    一方、前記第2相負荷状態において前記第2診断条件が満たされない場合、前記相負荷制御ステップにおいて前記第1相負荷状態に切り替え、前記診断ステップでは、切り替え後の前記第1相負荷状態において第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断する、診断方法。
  21. 第1相電力線、中性線及び第2相電力線を含む電力線を介して系統電源と接続されている分散型発電装置と、
    前記第1相電力線に接続されている第1電流検出部と、前記第2相電力線に接続されている第2電流検出部とを含む電流検出部と、
    前記第1相電力線との接続及び切断を選択可能に設けられている第1相負荷と、前記第2相電力線との接続及び切断を選択可能に設けられている第2相負荷と、前記第1相電力線及び前記第2相電力線に任意に接続されており前記第1相負荷及び前記第2相負荷とは異なる負荷である第3負荷とを含む負荷と、を備える分散型発電システムにおける前記電流検出部が正常か否かを診断する診断方法であって、
    前記第1相負荷が前記第1相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第2相負荷は前記第2相電力線と切断された状態である第1相負荷状態と、前記第2相負荷を前記第2相電力線と接続されて前記系統電源からの電力を受給可能な状態とし、かつ、前記第1相負荷は前記第1相電力線と切断された状態である第2相負荷状態とを切り替える相負荷制御ステップと、
    前記第1相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第1診断条件を満たすか否かに基づいて前記第1電流検出部が正常か否かを診断し、一方、前記第2相負荷状態において前記第1電流検出部及び前記第2電流検出部それぞれが検出した第1電流値及び第2電流値又はこれらの電流値に対応する負荷変動が第2診断条件を満たすか否かに基づいて前記第2電流検出部が正常か否かを診断する診断ステップとを備え、
    前記診断ステップにおいて、
    前記第1相負荷状態において前記第1診断条件が満たされない場合、前記第1診断条件を前記第1相負荷の消費電力による負荷変動の範囲内において拡張し、
    一方、前記第2相負荷状態において前記第2診断条件が満たされない場合、前記第2診断条件を前記第2相負荷の消費電力による負荷変動の範囲内において拡張する、診断方法。
JP2019167462A 2019-09-13 2019-09-13 診断装置、分散型発電システム、診断方法 Active JP7345329B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019167462A JP7345329B2 (ja) 2019-09-13 2019-09-13 診断装置、分散型発電システム、診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019167462A JP7345329B2 (ja) 2019-09-13 2019-09-13 診断装置、分散型発電システム、診断方法

Publications (2)

Publication Number Publication Date
JP2021045025A JP2021045025A (ja) 2021-03-18
JP7345329B2 true JP7345329B2 (ja) 2023-09-15

Family

ID=74863060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019167462A Active JP7345329B2 (ja) 2019-09-13 2019-09-13 診断装置、分散型発電システム、診断方法

Country Status (1)

Country Link
JP (1) JP7345329B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286785A (ja) 2001-03-27 2002-10-03 Osaka Gas Co Ltd コージェネレーションシステムの診断装置
WO2011093109A1 (ja) 2010-02-01 2011-08-04 パナソニック株式会社 分散型発電システム
WO2012017638A1 (ja) 2010-08-02 2012-02-09 パナソニック株式会社 分散型電源システム及びその制御方法
JP2012222923A (ja) 2011-04-07 2012-11-12 Panasonic Corp 分散型発電装置
JP2013072760A (ja) 2011-09-28 2013-04-22 Aisin Seiki Co Ltd コジェネレーションシステムの電流センサ取付状態判定装置
JP2017050930A (ja) 2015-08-31 2017-03-09 大阪瓦斯株式会社 熱電併給システム
JP2017181466A (ja) 2016-03-31 2017-10-05 本田技研工業株式会社 コージェネレーションシステムおよびコージェネレーションシステムのセンサチェック方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286785A (ja) 2001-03-27 2002-10-03 Osaka Gas Co Ltd コージェネレーションシステムの診断装置
WO2011093109A1 (ja) 2010-02-01 2011-08-04 パナソニック株式会社 分散型発電システム
WO2012017638A1 (ja) 2010-08-02 2012-02-09 パナソニック株式会社 分散型電源システム及びその制御方法
JP2012222923A (ja) 2011-04-07 2012-11-12 Panasonic Corp 分散型発電装置
JP2013072760A (ja) 2011-09-28 2013-04-22 Aisin Seiki Co Ltd コジェネレーションシステムの電流センサ取付状態判定装置
JP2017050930A (ja) 2015-08-31 2017-03-09 大阪瓦斯株式会社 熱電併給システム
JP2017181466A (ja) 2016-03-31 2017-10-05 本田技研工業株式会社 コージェネレーションシステムおよびコージェネレーションシステムのセンサチェック方法

Also Published As

Publication number Publication date
JP2021045025A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6001712B2 (ja) パワーコンディショナ、電力システム及び制御方法
JP5501757B2 (ja) 発電装置及びその運転方法
CA2673503C (en) Transfer switch controller employing active inductive load control and transfer switch including the same
US10298161B2 (en) Genset remote start control
JP6870449B2 (ja) 電流センサの取付状態判定装置
EP2613164B1 (en) Distributed power generation device and method for operating same
JP5648121B2 (ja) 分散型発電システム及びその運転方法
KR20120035205A (ko) 분산형 전원 시스템 및 그 제어 방법
JP2011160562A (ja) 分散型発電装置
US9935463B2 (en) Redundant point of common coupling (PCC) to reduce risk of microgrid's islanding
JP6452331B2 (ja) 発電システムの制御方法、発電システム、及び発電装置
JP5154625B2 (ja) 電力供給システム
JP2012222923A (ja) 分散型発電装置
JP6712217B2 (ja) 電力システム
JP7345329B2 (ja) 診断装置、分散型発電システム、診断方法
TWM506411U (zh) 電源切換選擇器
JP2006280159A (ja) コージェネレーションシステム
JP5359242B2 (ja) パワーコンディショナ
JP5386661B2 (ja) 分散型発電システム及びその運転方法
JP2006187196A (ja) 系統連系インバータ装置
JP7151715B2 (ja) 系統連系蓄電システム及び電流センサの取り付け異常検出方法
JP6368606B2 (ja) 分散電源システム及びパワーコンディショナ
JP5939568B2 (ja) 自然エネルギーによる発電電力適正使用システム
JP6328020B2 (ja) 電力制御システム、制御装置及び電力制御の方法
JP6027067B2 (ja) 電力供給システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230905

R150 Certificate of patent or registration of utility model

Ref document number: 7345329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150