JP7331785B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP7331785B2
JP7331785B2 JP2020100230A JP2020100230A JP7331785B2 JP 7331785 B2 JP7331785 B2 JP 7331785B2 JP 2020100230 A JP2020100230 A JP 2020100230A JP 2020100230 A JP2020100230 A JP 2020100230A JP 7331785 B2 JP7331785 B2 JP 7331785B2
Authority
JP
Japan
Prior art keywords
fuel
internal combustion
combustion engine
control
ignition timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020100230A
Other languages
English (en)
Other versions
JP2021195875A (ja
Inventor
信一 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020100230A priority Critical patent/JP7331785B2/ja
Priority to EP21177417.9A priority patent/EP3922836A1/en
Priority to US17/340,104 priority patent/US11352970B2/en
Priority to CN202110630466.XA priority patent/CN113775426B/zh
Publication of JP2021195875A publication Critical patent/JP2021195875A/ja
Application granted granted Critical
Publication of JP7331785B2 publication Critical patent/JP7331785B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

本開示は、内燃機関の制御装置に関する。
従来から、1サイクル当たりに複数回に亘って各気筒の燃焼室内に燃料噴射を行う分割噴射が知られている(例えば、特許文献1)。特に、特許文献1では、霧化特性の悪い重質燃料を使用したときには標準燃料を使用したときに比べて分割噴射における燃料噴射の回数を増加させることが提案されている。
特開2006-291971号公報
ところで、内燃機関を冷間始動させる際にも、噴射された燃料の霧化を促進させるべく、分割噴射を行うことが考えられる。一方、内燃機関を冷間始動させるときには、排気エミッションを低減させるために内燃機関の排気浄化触媒を早期に暖機させることが必要である。このように、内燃機関の排気浄化触媒を早期に暖機させるためには、点火プラグによる点火時期を遅角側の時期に設定することが考えられる。
ところが、分割噴射を行った状態で点火時期を遅角側の時期に設定すると、混合気の燃焼安定性が悪化して、内燃機関における振動が大きくなる可能性がある。
上記課題に鑑みて、本開示の目的は、内燃機関を冷間始動するときに分割噴射及び点火時期の遅角を行っても混合気の燃焼安定性の悪化を抑制することができる内燃機関の制御装置を提供することにある。
本開示の要旨は以下のとおりである。
(1)燃焼室内に燃料を噴射する燃料噴射弁と、前記燃焼室内の混合気に点火する点火プラグとを備える内燃機関を制御する、内燃機関の制御装置であって、前記内燃機関の冷間始動を開始するときには1サイクルにおいて複数回に亘って各気筒へ燃料噴射させ、前記内燃機関の始動が開始された後に前記点火プラグによる点火時期を遅角させ、前記点火プラグによる点火時期を遅角させた後に1サイクルにおける各気筒への燃料噴射の回数を減少させるように構成された、内燃機関の制御装置。
(2)前記点火時期の遅角は段階的に行われる、上記(1)に記載の内燃機関の制御装置。
(3)前記1サイクルにおける各気筒への燃料噴射の回数の減少は前記点火時期の遅角が全て完了してから行われる、上記(1)又は(2)に記載の内燃機関の制御装置。
(4)前記1サイクルにおける各気筒への燃料噴射の回数の減少は前記点火時期の段階的な遅角に応じて段階的に行われる、上記(2)に記載の内燃機関の制御装置。
本開示によれば、内燃機関を冷間始動するときに分割噴射及び点火時期の遅角を行っても混合気の燃焼安定性の悪化を抑制することができる内燃機関の制御装置が提供される。
図1は、一つの実施形態に係る制御装置が用いられる内燃機関を概略的に示す図である。 図2は、一つの気筒における吸気行程から圧縮行程までの燃料噴射弁からの噴射率の推移を表す図である。 図3は、内燃機関を冷間始動するときの、各種パラメータのタイムチャートである。 図4は、始動制御において実行される制御を決定するための制御ルーチンを示すフローチャートである。 図5は、点火プラグによる点火時期を制御する制御ルーチンを示すフローチャートである。 図6は、燃料噴射弁による燃料噴射の回数を制御する制御ルーチンを示すフローチャートである。 図7は、内燃機関を冷間始動するときの、各種パラメータの図3と同様なタイムチャートである。 図8は、内燃機関を冷間始動するときの、各種パラメータの図3及び図7と同様なタイムチャートである。
以下、図面を参照して実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
<第一実施形態>
<内燃機関の構成>
まず、図1を参照して、一つの実施形態に係る制御装置が用いられる内燃機関について説明する。本実施形態の内燃機関は車両の駆動に用いられる。図1は、一つの実施形態に係る制御装置が用いられる内燃機関を概略的に示す図である。図1に示したように、内燃機関1は、機関本体10、燃料供給装置30、吸気系40、排気系50及び制御装置60を備える。
機関本体10は、気筒11が形成されたシリンダブロック12と、シリンダブロック上に固定されたシリンダヘッド13とを有する。各気筒11内には、各気筒11内を往復運動するピストン14が配置されている。ピストン14とシリンダヘッド13との間の気筒11内には混合気が燃焼する燃焼室15が形成されている。
シリンダヘッド13には、吸気ポート17及び排気ポート18が形成されている。これら吸気ポート17及び排気ポート18は各気筒11の燃焼室15に連通している。燃焼室15と吸気ポート17との間には吸気弁19が配置されて、この吸気弁19が吸気ポート17を開閉する。同様に、燃焼室15と排気ポート18との間には排気弁20が配置されて、この排気弁20が排気ポート18を開閉する。
また、シリンダヘッド13には、各気筒11を画定する内壁面の中央部に、点火プラグ21が配置される。点火プラグ21は、点火信号に応じて火花を発生させて、燃焼室15内の混合気に点火するように構成される。
また、機関本体10には、停止している内燃機関1を駆動するスタータモータ22が設けられる。スタータモータ22は、コンロッドを介して各ピストン14に連結されたクランクシャフトを回転駆動する。なお、内燃機関1がハイブリッド車両に用いられている場合には、停止している内燃機関1を駆動するのに、スタータモータ22の代わりに、車両の駆動にも用いられるモータジェネレータ等が用いられてもよい。
燃料供給装置30は、燃料噴射弁31、燃料供給管32、燃料ポンプ33、及び燃料タンク34を有する。燃料噴射弁31は、各気筒11の燃焼室15内に燃料を直接噴射するようにシリンダヘッド13に配置されている。
燃料噴射弁31は、燃料供給管32を介して燃料タンク34に連結されている。燃料供給管32には、燃料タンク34内の燃料を圧送する燃料ポンプ33が配置されている。燃料ポンプ33によって圧送された燃料は、燃料供給管32を介して燃料噴射弁31に供給され、燃料噴射弁31が開弁されるのに伴って燃料噴射弁31から燃焼室15内に直接噴射される。
吸気系40は、吸気枝管41、サージタンク42、吸気管43、エアクリーナ44及びスロットル弁45を有する。各気筒11の吸気ポート17はそれぞれ対応する吸気枝管41を介してサージタンク42に連通しており、サージタンク42は吸気管43を介してエアクリーナ44に連通している。スロットル弁45は、吸気管43内に配置され、スロットル弁駆動アクチュエータ47によって回動せしめられることで吸気通路の開口面積を変更することができる。なお、吸気ポート17、吸気枝管41、サージタンク42、及び吸気管43は、燃焼室15に吸気ガスを供給する吸気通路を形成する。
排気系50は、排気マニホルド51、ケーシング52に内蔵された排気浄化触媒53及び排気管54を備える。各気筒11の排気ポート18は、排気マニホルド51に連通しており、排気マニホルド51は排気浄化触媒53を内蔵したケーシング52に連通している。ケーシング52は排気管54に連通している。
排気浄化触媒53は、排気ガス中の未燃HC、CO及びNOxを浄化するための装置であり、例えば、コージェライトによって形成された担体に白金等の触媒貴金属を担持させた三元触媒である。なお、排気浄化触媒53は、触媒貴金属を有して排気ガス中の未燃HC、CO及びNOxを浄化することができれば、粒子状物質の捕集機能を有するパティキュレートフィルタとして形成されてもよい。なお、排気ポート18、排気マニホルド51、ケーシング52、及び排気管54は、燃焼室15から排気ガスを排出する排気通路を形成する。
制御装置60は、電子制御ユニット(ECU)61及び各種センサを有する。ECU61は、メモリ62、CPU(マイクロプロセッサ)63、入力ポート64及び出力ポート65を備え、これらは双方向性バス66を介して相互に接続される。
制御装置60は、エアフロメータ71、スロットル開度センサ72、触媒温度センサ73、水温センサ75、負荷センサ77及びクランク角センサ78を有する。エアフロメータ71は、吸気管43に配置されて、吸気管43内を流れる空気流量を検出する。スロットル開度センサ72は、スロットル弁45に設けられて、スロットル弁45の開度を検出する。加えて、触媒温度センサ73は、排気浄化触媒53に設けられて、排気浄化触媒53の温度を検出する。さらに、水温センサ75は、機関本体10に設けられて、内燃機関1を冷却するための冷却水の温度を検出する。これらエアフロメータ71、スロットル開度センサ72、触媒温度センサ73、及び水温センサ75の出力は、対応するAD変換器67を介して入力ポート64に入力される。
また、負荷センサ77は、アクセルペダル76に接続されて、アクセルペダル76の踏込み量に比例した出力電圧を発生する。負荷センサ77の出力電圧は機関負荷を示す信号として対応するAD変換器67を介して入力ポート64に入力される。クランク角センサ78は例えばクランクシャフトが10度回転する毎に出力パルスを発生し、この出力パルスが入力ポート64に入力される。CPU63ではこのクランク角センサ78の出力パルスから機関回転速度が計算される。
一方、出力ポート65は対応する駆動回路68を介して点火プラグ21、燃料噴射弁31及びスロットル弁駆動アクチュエータ47に接続される。したがって、ECU61は、点火プラグ21による点火時期、燃料噴射弁31からの燃料噴射時期や燃料噴射量、スロットル弁45の開度等を制御する制御装置として機能する。
<分割噴射>
本実施形態に係る内燃機関1の制御装置は、1サイクルにおいて各気筒11に複数回に亘って燃料噴射を行う分割噴射を燃料噴射弁31に実行させることができる。以下では、図2を参照して、分割噴射について簡単に説明する。
図2は、一つの気筒11における吸気行程から圧縮行程までの燃料噴射弁31からの噴射率の推移を表す図である。図2(A)は、分割噴射が行われずに、1サイクルにおいて各気筒11に1回のみの燃料噴射が行われている場合の推移を示している。図2(B)は、分割噴射により、1サイクルにおいて各気筒11に2回の燃料噴射が行われている場合の推移を示している。また、図2(C)は、分割噴射により、1サイクルにおいて各気筒11に3回の燃料噴射が行われている場合の推移を示している。図2(A)~(C)の例における1サイクル当たりの総燃料噴射量は等しい。
図2(A)に示したように、1回のみの燃料噴射を行った場合、燃料噴射率が最大となっている期間が長い。燃料噴射率が高いときには、燃料噴射弁31から多量に高圧で燃料が噴射されることになるため、気化できなかった燃料が気筒11の壁面に付着し易い。特に、内燃機関1を冷間始動する際には、気筒11の壁面温度が低いため、気筒11の壁面付近で燃料が液化し易く、また、壁面上に付着した燃料もその後気化しにくい。この結果、内燃機関1を冷間始動する際に1回のみの燃料噴射を行うと、一部の燃料が気筒11の壁面に付着することによって、噴射した燃料量に対して気化した燃料量が少なくなる。
一方、図2(B)や図2(C)に示したように、複数回の燃料噴射を行った場合、燃料噴射率が大きい期間が短くなり、よって気筒11の壁面に付着する燃料量が少なくなる。したがって、壁面上に燃料が付着することに伴う、気化する燃料の減少は抑制される。このような傾向は、基本的に噴射回数が増えるほど大きくなる。したがって、図2(C)に示したように3回の噴射を行った場合には、気筒11の壁面に付着する燃料量をより少なく抑えることができ、よって気化する燃料の減少がより抑制される。このため、内燃機関を冷間始動する際には、噴射回数のできるだけ多い分割噴射を行うことが好ましい。
<点火遅角>
内燃機関1を冷間始動する際には、機関本体10のみならず、排気浄化触媒53の温度も低い。排気浄化触媒53は、その温度が、排気浄化触媒53が有する触媒貴金属の活性温度以上になると、高い浄化率で排気ガスを浄化することができる。したがって、排気ガスを浄化する観点からは、内燃機関1を冷間始動する際には、排気浄化触媒53をできるだけ早く活性温度以上に昇温することが必要である。
点火プラグ21による点火時期は、基本的に、MBT(Minimum advance for the Best Torque)に設定される。MBTにおいて混合気に点火を行うことにより、燃焼効率が最大になり、よって出力トルクや燃費性能を高めることができる。一方、このMBTよりも点火時期を遅角させると、混合気の燃焼タイミングが遅くなり、燃焼によって得られた熱エネルギのうち運動エネルギに変換されずに残る熱エネルギの割合が大きくなる。この結果、点火時期を遅角させると、機関本体10から排出される排気ガスの温度が高くなる。このように排気ガスの温度が高くなると、排気ガスの熱によって排気浄化触媒53を早期に昇温させることができる。したがって、内燃機関1を冷間始動する際には、点火プラグによる点火時期をMBTよりも遅角側の時期に設定することが好ましい。
<始動制御>
図3を参照して、本実施形態に係る制御装置によって行われる始動制御について説明する。図3は、内燃機関1を冷間始動するときの、各種パラメータのタイムチャートである。特に、図3は、内燃機関1の回転速度(機関回転速度)Re、1サイクル当たりの各気筒11への燃料噴射量Qf、点火プラグ21による点火時期Ti、1サイクル当たりの各気筒11への燃料噴射の回数Ni、内燃機関1の出力トルクTQのタイムチャートである。なお、内燃機関1の出力トルクTQは、スタータモータ22によって内燃機関1が駆動されているときには負の値となっている。
図3に示した例では、時刻t1まで内燃機関1は停止しており、よって機関回転速度Re、燃料噴射量Qf及び出力トルクTQはいずれもゼロである。時刻t1において、停止している内燃機関1を起動する起動制御が開始される。起動制御は、内燃機関1を、クランクシャフトが停止している状態から混合気の燃焼によって回転を維持することができる状態にするための制御である。
時刻t1において起動制御が開始されると、まず、スタータモータ22によって内燃機関1が駆動される。この結果、機関回転速度Reが上昇すると共に、内燃機関1にはスタータモータ22からトルクが供給されることから出力トルクTQが負の値となる。なお、本実施形態では、起動制御の開始直後には燃料噴射弁31から燃料は噴射されず、また、点火プラグ21による点火も行われない。
本実施形態では、その後、時刻t2において機関回転速度Reが所定の基準回転速度Rerefに到達すると、燃料噴射弁31からの燃料噴射が開始されると共に、燃料噴射によって形成された混合気への点火プラグ21による点火が開始される。なお、本実施形態では、機関回転速度Reが基準回転速度Rerefに到達したときに燃料噴射及び点火を開始しているが、これとは異なるタイミングで燃料噴射及び点火を開始してもよい。例えば、スタータモータ22による駆動の開始と同時に燃料噴射及び点火を開始してもよいし、スタータモータ22によってクランクシャフトが所定量だけ回転せしめられた後に燃料噴射及び点火を開始してもよい。
本実施形態では、起動制御中においては、1サイクル当たりの燃料噴射弁31から各気筒11への燃料噴射の回数Niが最大噴射回数に設定される。したがって、本実施形態では、内燃機関の冷間始動を開始するときには、1サイクルにおいて複数回に亘って各気筒11への燃料噴射を行う分割制御が行われる。特に、本実施形態では、各燃料噴射では、1サイクル当たりの総噴射量を最大噴射回数で均等に割った噴射量の燃料が噴射される。ここで、最大噴射回数は、それ以上噴射回数を増やすと、一回の燃料噴射量が少なくなり過ぎて一回の燃料噴射量を正確に制御することができなくなるような回数である。したがって、起動制御中においては、燃料噴射弁31から噴射された燃料が各気筒11の壁面に付着するのが抑制されて、燃料の霧化が促進される。
また、本実施形態では、起動制御中においては、点火プラグ21による点火時期が比較的進角側の所定の時期(例えば、MBT近傍の時期。以下、「進角側時期Tiad」という)に設定される。したがって、燃焼室15内の混合気を比較的安定した状態で燃焼させることができる。
時刻t2以降、燃料噴射弁31からの燃料噴射が行われ且つ点火プラグ21による点火が行われることにより、燃焼室15内で混合気が燃焼し、これによって内燃機関1によりトルクが生成される。このため、時刻t2以降、出力トルクTQが上昇すると共にこれに伴って機関回転速度Reが上昇する。その後、出力トルクTQがゼロ以上の所定のトルク以上になると、スタータモータ22が停止せしめられると共に、機関回転速度Reがアイドリング回転速度以上の所定の回転速度に到達すると、燃料噴射量Qfが減少させられる。このように、機関回転速度Reがアイドリング回転速度以上の所定の回転速度に到達すると、内燃機関1は混合気の燃焼によって回転を維持することができる状態となっている。
本実施形態では、燃料噴射及び点火を開始してから任意の数のサイクル(例えば、2~3サイクル)が完了した時刻t3において、起動制御が終了されると共に暖機制御が開始される。図3に示したように、時刻t3は、機関回転速度Reがアイドリング回転速度以上の所定の回転速度に到達した後であり、機関回転速度Reが減少し始めている。なお、本実施形態では、起動制御の終了タイミングが燃料噴射及び点火を開始してからのサイクル数に基づいて設定されている。起動制御の終了タイミングは、機関回転速度Reがアイドリング回転速度以上の所定の回転速度に到達した後になれば、どのように設定されてもよい。したがって、例えば、クランク角センサ78を用いて検出された機関回転速度Reが上記所定の回転速度に到達したときに起動制御が終了されてもよい。
暖機制御は、機関本体10及び排気浄化触媒53の温度を早期に上昇させるための制御である。したがって、暖機制御が開始される時刻t3において、点火プラグ21による点火時期Tiが進角側時期Tiadから、比較的遅角側の所定の時期(以下、「遅角側時期Tirt」という)に変更される。したがって、本実施形態では、内燃機関の始動が開始された後に点火プラグ21による点火時期が遅角される。ここで、遅角側時期Tirtは、燃焼を維持することができる範囲でできるだけ遅角側の時期に設定され、例えば、15°ATDCに設定される。これによって、時刻t3以降、排気ガスの温度が上昇し、よって排気浄化触媒53の温度が上昇せしめられる。
また、本実施形態では、暖機制御が開始されてから、すなわち、点火プラグ21による点火時期Tiが遅角されてから任意の数のサイクル(例えば、2~3サイクル)が完了した時刻t4において、燃料噴射弁31からの燃料噴射の回数Niが最大噴射回数から最小噴射回数(例えば、1回)に減少せしめられる。すなわち、本実施形態では、点火時期Tiが遅角された後に燃料噴射の回数Niが減少せしめられる。特に、燃料噴射の回数Niの減少は、暖機制御のための点火時期Tiの遅角が全て完了してから行われる。
その後、暖機制御は、例えば、排気浄化触媒53の温度が活性温度まで上昇すると、終了せしめられる。暖機制御が終了すると、内燃機関1の始動制御が終了し、通常制御が開始される。通常制御において、点火時期及び燃料噴射弁31からの燃料噴射の回数は機関回転速度及び機関負荷に基づいて設定される。特に、点火時期は、基本的にMBT近傍の比較的進角側の時期に設定される。
<始動制御の流れ>
次に、図4~図6を参照して、本実施形態に係る制御装置60によって行われる始動制御の流れについて説明する。図4は、始動制御において実行される制御を決定するための制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔毎にECU61によって実行される。
図4を参照すると、まず、ステップS11において、起動フラグFsがOFFに設定されているか否かが判定される。起動フラグFsは、起動制御が実行されているときにONに設定され、それ以外のときのOFFに設定されるフラグである。ステップS11において、起動フラグFsがOFFに設定されていると判定された場合には、制御ルーチンはステップS12へと進む。
ステップS12では、暖機フラグFwがOFFに設定されているか否かが判定される。暖機フラグFwは、暖機制御が実行されているときにONに設定され、それ以外のときにOFFに設定されるフラグである。ステップS12において、暖機フラグFwがOFFに設定されていると判定された場合には、制御ルーチンはステップS13へと進む。
ステップS13では、起動条件が成立しているか否かが判定される。起動条件は、例えば、内燃機関1を搭載した車両のイグニッションスイッチがONにされたときや、バッテリの充電等が必要であるためECU61が自動的に内燃機関1を始動させることを決定したときに成立する。ステップS13において起動条件が成立していないと判定された場合には、制御ルーチンが終了せしめられる。一方、ステップS13において起動条件が成立していると判定された場合には、制御ルーチンはステップS14へと進み、起動フラグFsがONに設定され、起動制御が開始される。
起動フラグFsがONに設定されて起動制御が開始されると、次の制御ルーチンは、ステップS11からS15へと進む。ステップS15では、起動完了条件が成立しているか否かが判定される。起動完了条件は、例えば、起動制御において点火プラグ21による点火を開始してから所定の数のサイクル(例えば、2~3サイクル)が完了したとき、又はクランク角センサ78によって検出された機関回転速度Reが所定の回転速度に到達したときに成立する。ステップS15において起動完了条件が成立していないと判定された場合には、制御ルーチンが終了せしめられる。一方、起動完了条件が成立していると判定された場合には、ステップS16へと進む。ステップS16では、起動フラグFsがOFFに設定され、起動制御が終了せしめられる。
次いで、ステップS17では、暖機実行条件が成立しているか否かが判定される。暖機実行条件は、例えば、水温センサ75によって検出された内燃機関1の冷却水の温度が所定の暖機完了温度未満である場合、または、触媒温度センサ73によって検出された排気浄化触媒53の温度が活性温度未満である場合に成立する。すなわち、暖機実行条件は、冷却水や排気浄化触媒53の温度が低い状態で内燃機関1が始動されている場合(冷間始動されている場合)に成立する。ステップS17において、暖機実行条件が成立していないと判定された場合には、制御ルーチンが終了せしめられる。この場合には、暖機制御が実行されずに、通常制御が開始される。一方、ステップS17において、暖機実行条件が成立していると判定された場合には、ステップS18へと進み暖機フラグFwがONに設定され、暖機制御が開始される。
暖機フラグFwがONに設定されて暖機制御が開始されると、次の制御ルーチンは、ステップS12からステップS19へと進む。ステップS19では、暖機終了条件が成立しているか否かが判定される。暖機終了条件は、例えば、水温センサ75によって検出された内燃機関1の冷却水の温度が所定の暖機完了温度以上である場合、または、触媒温度センサ73によって検出された排気浄化触媒53の温度が活性温度以上である場合に成立する。ステップS19において、暖機終了条件が成立していないと判定された場合には、制御ルーチンが終了せしめられる。一方、ステップS19において暖機終了条件が成立していると判定された場合には、ステップS20へと進む。ステップS20では、暖機フラグFwがOFFに設定されて、暖機制御が終了され、通常制御が開始される。
図5は、点火プラグ21による点火時期を制御する制御ルーチンを示すフローチャートである。図示した制御ルーチンは、一定時間間隔毎にECU61によって実行される。
図5に示したように、まず、ステップS31において、起動フラグFsがONに設定されているか否か、すなわち起動制御の実行中であるか否かが判定される。起動フラグFsがONに設定されている場合には、制御ルーチンはステップS32へと進む。ステップS32では、点火時期が進角側時期Tiadに設定される。一方、ステップS31において、起動フラグFsがOFFに設定されていると判定された場合には、制御ルーチンはステップS33へと進む。
ステップS33では、暖機フラグFwがONに設定されているか否か、すなわち暖機制御の実行中であるか否かが判定される。暖機フラグFwがONに設定されていると判定された場合には、制御ルーチンはステップS34へと進む。ステップS34では、点火時期が遅角側時期Tirtに設定される。一方、ステップS33において、暖機フラグFwがOFFに設定されていると判定された場合には、制御ルーチンはステップS35へと進む。ステップS35では、通常制御が実行され、点火時期が、クランク角センサ78の出力に基づいて算出された機関回転速度及び負荷センサ77によって検出された機関負荷に基づいて設定される。
図6は、燃料噴射弁31による燃料噴射の回数を制御する制御ルーチンを示すフローチャートである。図示した制御ルーチンは、一定時間間隔毎にECU61によって実行される。
図6に示したように、まず、ステップS41において、起動フラグFsがONに設定されているか否かが判定される。起動フラグFsがONに設定されている場合には、制御ルーチンはステップS42へと進む。ステップS42では、1サイクル当たりの各気筒11への燃料噴射の回数が最大噴射回数に設定される。一方、ステップS41において、起動フラグFsがOFFに設定されていると判定された場合には、制御ルーチンはステップS43へと進む。
ステップS43では、暖機フラグFwがONに設定されているか否かが判定される。暖機フラグFwがONに設定されていると判定された場合には、制御ルーチンはステップS44へと進む。ステップS44では、図5のステップS34により点火時期が遅角側時期Tirtに設定されてから所定数のサイクル(例えば、2~3サイクル)が完了したか否かが判定される。或いは、ステップS44では、点火時期が遅角側時期Tirtに設定されてから所定時間が経過しかた否かが判定されてもよい。ステップS44において、点火時期が遅角側時期Tirtに設定されてから所定数のサイクルが完了していないと判定された場合には、制御ルーチンはステップS42へと進み、1サイクル当たりの各気筒11への燃料噴射の回数が最大噴射回数に維持される。一方、ステップS44において、点火時期が遅角側時期Tirtに設定されてから所定数のサイクルが完了していると判定された場合には、制御ルーチンはステップS45へと進む。ステップS45では、1サイクル当たりの各気筒11への燃料噴射の回数が最小噴射回数に設定される。
一方、ステップS43において、暖機フラグFwがOFFに設定されていると判定された場合には、制御ルーチンはステップS46へと進む。ステップS46では、通常制御が実行され、1サイクル当たりの各気筒11への燃料噴射の回数が、クランク角センサ78の出力に基づいて算出された機関回転速度及び負荷センサ77によって検出された機関負荷に基づいて設定される。
<効果・変形例>
上記実施形態では、内燃機関1を冷間始動するにあたり、まず起動制御において、点火プラグ21による点火時期が比較的進角側の時期に設定されると共に、1サイクルにおいて複数回に亘って各気筒11への燃料噴射が行われる。その後、暖機制御の開始に伴って、点火時期が遅角されると共に、点火時期が遅角されるのに伴って1サイクル当たりの各気筒11への燃料噴射の回数が減少せしめられる。
ここで、上述したように、内燃機関1の冷間始動を開始するときには、噴射された燃料が気筒11の壁面に付着して気化燃料が減少するのを抑制するために、1サイクル当たりの各気筒11への燃料の噴射回数は多い方が好ましい。ところが、このように噴射回数を増やすと、図2から分かるように、最後の燃料噴射が完了するタイミングが遅くなる。この結果、遅いタイミングで噴射された燃料は、燃焼室15内において点火時期までに十分混合しない。このため、点火プラグ21による点火時期において、混合気の均質性が低い。
このように混合気の均質性が低い状態で点火時期が遅角されると、混合気の燃焼の悪化が生じる。これに対して、本実施形態では、内燃機関1の始動直後の混合気の均質性が低いときには、点火時期が進角側の時期に設定される。したがって、混合気の燃焼の悪化を抑制することができる。
また、本実施形態では、内燃機関1の起動が完了して、暖機制御が開始されると、点火時期の遅角に伴って1サイクル当たりの各気筒11への燃料噴射の回数が減少せしめられる。燃料噴射の回数が減少すると、噴射された燃料が気筒11の壁面に付着し易くなるものの、燃料噴射が早期に完了するため、壁面に付着せずに気化した燃料の均質性は高い。このように混合気の均質性が高いことから、点火時期が遅角されても混合気の燃焼が悪化せず、よって良好な燃焼を保つことができる。したがって、本実施形態によれば、内燃機関1を冷間始動するときに分割噴射及び点火時期の遅角を行っても混合気の燃焼安定性の悪化を抑制することができる。この結果、本実施形態によれば、内燃機関における振動や騒音が大きくなることを抑制することができる。
ところで、燃料噴射の回数を減少させることにより、気筒11の壁面に付着する燃料が増え、よって混合気の燃料濃度が全体的に薄くなり、燃焼しにくくなる。一方、点火時期の遅角を行うと、混合気の燃焼状態が大きく変化するため、燃焼が不安定になる。したがって、燃料噴射の回数の減少と点火時期の遅角とを同時に行った場合には、失火の可能性が高くなる。本実施形態では、1サイクル当たりの各気筒11への燃料噴射の回数の減少は、点火プラグ21による点火時期の遅角とは異なるタイミングで行われる。このため、起動制御から暖機制御に移行するにあたって、失火を抑制することができる。特に、本実施形態では、各気筒11への燃料噴射の回数の減少は、点火プラグ21による点火時期の遅角の後に行われる。したがって、点火時期が遅角された後、燃料噴射の回数が減少されるまでは、混合気の燃焼状態が一時的に不安定になってトルク変動が生じ易くなるものの、混合気の燃料濃度が全体的に薄くなって失火してしまうことを抑制することができる。また、起動制御の完了直後は内燃機関1の起動に伴って大きなトルク変動が起きた直後であるため、この時期に燃焼状態が一時的に不安定になったことによるトルク変動が生じても、乗員には感知されにくい。
また、上記実施形態では、起動制御中において1サイクル当たりの各気筒11への燃料噴射の回数は、最大噴射回数に設定されている。しかしながら、起動制御中における燃料噴射の回数は、最大噴射回数よりも少ない回数であってもよい。ただし、この場合であっても、起動制御中における燃料噴射の回数は、暖機制御中における燃料噴射の回数よりも多い回数に設定される。
加えて、上記実施形態では、暖機制御中において点火プラグ21による点火時期が、燃焼を維持することができる範囲でできるだけ遅角側の時期に設定されているが、暖機制御中の点火時期は斯かる時期よりも進角側の時期に設定されてもよい。ただし、この場合であっても、暖機制御中における点火時期は、起動制御中における点火時期よりも遅角側の時期に設定される。
<第二実施形態>
次に、図7を参照して、第二実施形態に係る制御装置について説明する。以下では、第一実施形態における制御装置における制御と異なる部分を中心に説明する。
上記第一実施形態では、暖機制御の開始と同時に、点火時期が進角側時期Tiadから遅角側時期Tirtに一度に変更されていた。しかしながら、本実施形態では、暖機制御が開始されると、点火時期が進角側時期Tiadから遅角側時期Tirtへ段階的に変更される。
図7は、内燃機関1を冷間始動するときの、各種パラメータの図3と同様なタイムチャートである。図7に示したように、本実施形態では、時刻t3において起動制御が完了して、暖機制御が開始されると、点火プラグ21における点火時期Tiが段階的に遅角される。本実施形態では、点火時期Tiは、1サイクル中においても、燃焼が行われる気筒11の順番に従って徐々に遅角される。なお、点火時期Tiは、サイクル毎に徐々に遅角されてもよい。この場合には、同一サイクル中には全ての気筒11において同一の点火時期に点火が行われる。
その後、本実施形態では、点火時期Tiが暖機制御中に設定される遅角側時期Tirtに到達した後に、時刻t4において燃料噴射弁31からの燃料噴射の回数Niが最大噴射回数から最小噴射回数に減少せしめられる。したがって、本実施形態においても、燃料噴射の回数Niの減少は、暖機制御のための点火時期Tiの遅角が全て完了してから行われる。
本実施形態によれば、点火時期の遅角が段階的に行われるため、点火時期を大きく遅角するような場合であっても、燃焼状態が不安定になり過ぎることが抑制され、よって大きすぎるトルク変動が生じることを抑制することができる。
<第三実施形態>
次に、図8を参照して、第三実施形態に係る制御装置について説明する。以下では、第一実施形態及び第二実施形態における制御装置における制御と異なる部分を中心に説明する。
上記第一実施形態及び第二実施形態では、1サイクル当たりの各気筒11への燃料噴射の回数が一度に最大噴射回数から最小噴射回数に変更されていた。しかしながら、本実施形態では、1サイクル当たりの各気筒11への燃料噴射の回数は、最大噴射回数から最小噴射回数へ段階的に変更される。
図8は、内燃機関1を冷間始動するときの、各種パラメータの図3及び図7と同様なタイムチャートである。図8に示したように、本実施形態では、時刻t3において起動制御が完了して、暖機制御が開始されると、点火プラグ21における点火時期が、第二実施形態と同様に、段階的に遅角される。特に、本実施形態では、点火時期が点火毎又はサイクル毎に所定角度ずつ遅角される。
その後、本実施形態では、点火時期が一定角度だけ遅角される毎に、1サイクル当たりの各気筒11への燃料噴射の回数が1回ずつ減少される。換言すると、本実施形態では、点火時期が一定角度だけ遅角された後に、その遅角分に対応する燃料噴射の回数の減少が行われる。特に、本実施形態では、上記一定角度は、一回当たりに点火時期が遅角される角度よりも十分に大きい。したがって、複数回の点火時期の遅角が行われる毎に、各気筒11への燃料噴射の回数が1回ずつ減少されることになる。
図8に示した例では、1サイクル当たりの各気筒11への燃料噴射の回数は、起動制御中には5回である。点火時期が一定角度だけ遅角されると、その後に燃料噴射の回数が4回に減少される。点火時期が更に一定角度だけ遅角されると、その後に燃料噴射の回数が3回に減少される。このような操作が繰り返されて、燃料噴射の回数は、点火時期の段階的な遅角に伴って段階的に減少され、最終的には1回に減少される。図8からわかるように、燃料噴射の回数の減少は、点火時期の遅角が開始された後に開始され、点火時期の遅角が終了した後に終了される。したがって、本実施形態では、1サイクル当たりの各気筒11への燃料噴射の回数の減少は点火時期の段階的な遅角に応じて段階的に行われる。
本実施形態によれば、点火時期の遅角が段階的に行われるのに伴って燃料噴射の回数の減少も段階的に行われる。本実施形態でも点火時期の遅角が段階的に行われるため、点火時期を大きく遅角するような場合であっても、大きすぎるトルク変動が生じることを抑制することができる。加えて、本実施形態では、燃料噴射の回数が段階的に減少される。したがって、点火時期の遅角に伴う燃焼状態の一時的な悪化を最小限に抑えることができる。
以上、本発明に係る好適な実施形態を説明したが、本発明はこれら実施形態に限定されるものではなく、特許請求の範囲の記載内で様々な修正及び変更を施すことができる。
1 内燃機関
10 機関本体
21 点火プラグ
31 燃料噴射弁
60 制御装置
61 ECU

Claims (1)

  1. 燃焼室内に燃料を噴射する燃料噴射弁と、前記燃焼室内の混合気に点火する点火プラグとを備える内燃機関を制御する、内燃機関の制御装置であって、
    前記内燃機関の冷間始動を開始するときには1サイクルにおいて複数回に亘って各気筒へ燃料噴射させ、
    前記内燃機関の始動が開始された後に前記点火プラグによる点火時期を遅角させ、
    前記点火プラグによる点火時期を遅角させた後に1サイクルにおける各気筒への燃料噴射の回数を減少させるように構成され、
    前記点火時期の遅角は段階的に行われ、
    前記1サイクルにおける各気筒への燃料噴射の回数の減少は前記点火時期の段階的な遅角に応じて段階的に行われる、内燃機関の制御装置。
JP2020100230A 2020-06-09 2020-06-09 内燃機関の制御装置 Active JP7331785B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020100230A JP7331785B2 (ja) 2020-06-09 2020-06-09 内燃機関の制御装置
EP21177417.9A EP3922836A1 (en) 2020-06-09 2021-06-02 Control device of internal combustion engine
US17/340,104 US11352970B2 (en) 2020-06-09 2021-06-07 Control device of internal combustion engine
CN202110630466.XA CN113775426B (zh) 2020-06-09 2021-06-07 内燃机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020100230A JP7331785B2 (ja) 2020-06-09 2020-06-09 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2021195875A JP2021195875A (ja) 2021-12-27
JP7331785B2 true JP7331785B2 (ja) 2023-08-23

Family

ID=76250218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020100230A Active JP7331785B2 (ja) 2020-06-09 2020-06-09 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US11352970B2 (ja)
EP (1) EP3922836A1 (ja)
JP (1) JP7331785B2 (ja)
CN (1) CN113775426B (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112328A (ja) 2004-10-15 2006-04-27 Nissan Motor Co Ltd 筒内直接噴射式火花点火内燃機関の制御装置
JP2006291971A (ja) 2006-06-28 2006-10-26 Denso Corp 筒内噴射式内燃機関の燃料噴射制御装置
JP2006336509A (ja) 2005-05-31 2006-12-14 Hitachi Ltd 燃料噴射式内燃機関の制御装置
JP2017066867A (ja) 2015-09-28 2017-04-06 スズキ株式会社 燃料噴射制御装置
JP2017166493A (ja) 2017-06-28 2017-09-21 株式会社デンソー 筒内噴射エンジンの制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193536A (ja) * 1995-01-18 1996-07-30 Toyota Motor Corp 筒内噴射式内燃機関の燃料噴射制御装置
JP4253986B2 (ja) * 2000-03-03 2009-04-15 マツダ株式会社 筒内噴射式エンジンの制御装置
JP2002030960A (ja) * 2000-07-14 2002-01-31 Toyota Motor Corp 火花点火式内燃機関の噴射時期制御装置
US7007667B2 (en) * 2003-07-22 2006-03-07 Hitachi, Ltd. Cold start fuel control system
DE602005024349D1 (de) * 2004-09-30 2010-12-09 Nissan Motor Verfahren und Vorrichtung zur Verbrennungssteuerung einer direkteinspritzenden Brennkraftmaschine mit Fremdzündung
JP4643967B2 (ja) * 2004-10-15 2011-03-02 日産自動車株式会社 筒内直接噴射式火花点火内燃機関の制御装置
JP2007321696A (ja) * 2006-06-02 2007-12-13 Nissan Motor Co Ltd 筒内直接噴射式火花点火内燃機関の制御装置
JP5821367B2 (ja) * 2011-07-28 2015-11-24 日産自動車株式会社 燃料噴射制御装置
KR101824857B1 (ko) * 2015-06-03 2018-02-01 닛산 지도우샤 가부시키가이샤 내연 기관 제어 장치 및 내연 기관 제어 방법
US10100767B2 (en) * 2015-06-08 2018-10-16 Ford Global Technologies, Llc Method and system for engine cold-start control
JP6237709B2 (ja) * 2015-06-15 2017-11-29 トヨタ自動車株式会社 内燃機関の制御装置
DE102016221847A1 (de) * 2016-11-08 2018-05-09 Robert Bosch Gmbh Verfahren zum Betreiben eines Verbrennungsmotors nach einem Kaltstart

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112328A (ja) 2004-10-15 2006-04-27 Nissan Motor Co Ltd 筒内直接噴射式火花点火内燃機関の制御装置
JP2006336509A (ja) 2005-05-31 2006-12-14 Hitachi Ltd 燃料噴射式内燃機関の制御装置
JP2006291971A (ja) 2006-06-28 2006-10-26 Denso Corp 筒内噴射式内燃機関の燃料噴射制御装置
JP2017066867A (ja) 2015-09-28 2017-04-06 スズキ株式会社 燃料噴射制御装置
JP2017166493A (ja) 2017-06-28 2017-09-21 株式会社デンソー 筒内噴射エンジンの制御装置

Also Published As

Publication number Publication date
EP3922836A1 (en) 2021-12-15
JP2021195875A (ja) 2021-12-27
CN113775426A (zh) 2021-12-10
US11352970B2 (en) 2022-06-07
US20210381455A1 (en) 2021-12-09
CN113775426B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
JP6314870B2 (ja) 内燃機関の制御装置
JP6183295B2 (ja) 内燃機関の制御装置
JP5136722B2 (ja) 内燃機関の制御装置
EP2087230A2 (en) Ignition control system for internal combustion engines
JP3680259B2 (ja) ディーゼル機関の燃料噴射装置
JP3991809B2 (ja) 内燃機関の始動時燃料噴射装置
JP4089109B2 (ja) 内燃機関の点火制御装置
JP6549551B2 (ja) 内燃機関の制御装置
JP3931820B2 (ja) 内燃機関および内燃機関の制御方法
JP2007064187A (ja) 内燃機関のノック抑制装置
JP7331785B2 (ja) 内燃機関の制御装置
JP7322819B2 (ja) 内燃機関の制御装置
JP2011236802A (ja) 内燃機関の制御装置
JP6841119B2 (ja) エンジンの制御装置
JP2006132399A (ja) 過給機付エンジンの制御装置および制御方法
JP3729147B2 (ja) パワートレインの制御装置
JP3724369B2 (ja) 直噴火花点火式エンジンの制御装置
JP2011099399A (ja) 内燃機関の制御方法及び制御装置
JP2006348776A (ja) エンジン制御装置及びエンジン制御方法
JP4735382B2 (ja) 内燃機関の燃料供給制御装置
JP5942743B2 (ja) エンジンの制御装置
JP2024080312A (ja) 内燃機関の始動制御装置
JP2023078939A (ja) エンジン装置
JP4412000B2 (ja) 内燃機関の制御装置及び内燃機関の制御方法
JP2012026395A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R151 Written notification of patent or utility model registration

Ref document number: 7331785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151