JP7325020B2 - 検査装置及び検査方法 - Google Patents

検査装置及び検査方法 Download PDF

Info

Publication number
JP7325020B2
JP7325020B2 JP2020501674A JP2020501674A JP7325020B2 JP 7325020 B2 JP7325020 B2 JP 7325020B2 JP 2020501674 A JP2020501674 A JP 2020501674A JP 2020501674 A JP2020501674 A JP 2020501674A JP 7325020 B2 JP7325020 B2 JP 7325020B2
Authority
JP
Japan
Prior art keywords
crack
inspection
image
images
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020501674A
Other languages
English (en)
Other versions
JPWO2019163556A1 (ja
Inventor
太郎 今川
博也 日下
晃浩 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2019163556A1 publication Critical patent/JPWO2019163556A1/ja
Application granted granted Critical
Publication of JP7325020B2 publication Critical patent/JP7325020B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/081Testing mechanical properties by using a contact-less detection method, i.e. with a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/223Analysis of motion using block-matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30132Masonry; Concrete
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30184Infrastructure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Quality & Reliability (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本開示は、外部から付加される荷重が変化する構造物の検査に関する。
移動体の通過等により荷重が変化する構造物(例えば橋など)は、時間とともに劣化したときに崩落又は崩壊の可能性が増加する。つまり、経年劣化に伴って構造物の安全性が低下する。構造物の劣化による崩落又は崩壊を防ぐためには、構造物を定期的に検査し、必要に応じて補修及び補強を行う必要がある。
このような構造物の定期的な検査の1つとして、外観検査がある。外観検査では、構造物の外部の状態が評価され、補修及び補強の必要性あるいは精密検査の必要性などが判断される。
一般的に、構造物の外観検査は、検査員の目視により行われることが多い。しかしながら、目視検査では、検査員の主観に依存するため客観的な検査結果を得ることが難しく、長時間の検査が必要となる。
特許文献1では、外観検査を自動化し、客観的な検査結果を得るために、カメラを通して得た構造物の原映像から亀裂幅を測定する技術が公開されている。
特開2008-139285号公報
しかしながら、亀裂の幅は微小であり、その時間変化も微小である。したがって、亀裂の幅から構造物を検査することは難しい。
そこで、本開示は、構造物の検査時間の低減及び検査精度の向上を図ることができる検査装置及び検査方法を提供する。
本開示の一態様に係る検査装置は、亀裂を有する構造物を検査する検査装置であって、前記構造物に掛かる荷重が変化しているときに互いに異なる時刻に撮影された前記構造物の複数の画像を取得する取得部と、前記複数の画像の各々において前記構造物の表面上の亀裂を検出する亀裂検出部と、前記複数の画像において、検出された前記亀裂の所定位置を基準として前記構造物の表面の局所的な動き推定を行うことで複数の動きベクトルを導出する動き推定部と、前記亀裂に対して対称な位置間における動きベクトルの差異に基づいて、前記構造物の安全性を判定する検査部と、を備える。
なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
本開示の一態様に係る検査装置は、構造物の検査時間の低減及び検査精度の向上を図ることができる。
図1は、実施の形態1に係る検査システムの構成例を示す外観図である。 図2は、実施の形態1に係る検査装置の機能構成を示すブロック図である。 図3は、実施の形態1に係る検査装置の処理の全体像を示すフローチャートである。 図4は、実施の形態1における複数の画像の一例を示す図である。 図5は、実施の形態1において画像内の亀裂を説明するための図である。 図6は、実施の形態1において亀裂周辺の動きベクトルを説明するための図である。 図7は、実施の形態1に係る検査装置の安全性の判定処理を示すフローチャートである。 図8は、実施の形態1において安全性の判定処理を説明するための拡大図である。 図9は、実施の形態2に係る検査装置の機能構成を示すブロック図である。 図10は、実施の形態2に係る検査装置の処理の全体像を示すフローチャートである。 図11は、実施の形態3に係る検査装置の機能構成を示すブロック図である。 図12は、実施の形態3に係る検査装置の処理の全体像を示すフローチャートである。 図13は、実施の形態3における参照画像及び複数の画像の一例を示す図である。 図14は、実施の形態3に係る検査装置の安全性の判定処理の詳細を示すフローチャートである。
(本開示の概要)
本開示の一態様に係る検査装置は、亀裂を有する構造物を検査する検査装置であって、前記構造物に掛かる荷重が変化しているときに互いに異なる時刻に撮影された前記構造物の複数の画像を取得する取得部と、前記複数の画像の各々において前記構造物の表面上の亀裂を検出する亀裂検出部と、前記複数の画像において、検出された前記亀裂の所定位置を基準として前記構造物の表面の局所的な動き推定を行うことで複数の動きベクトルを導出する動き推定部と、前記亀裂に対して対称な位置間における動きベクトルの差異に基づいて、前記構造物の安全性を判定する検査部と、を備える。
これによれば、亀裂に対して対称な位置間における動きベクトルの差異に基づいて構造物の安全性を判定することができる。亀裂の伸展は、亀裂周辺の応力に依存し、特に亀裂に掛かる応力に依存する。したがって、亀裂に対して対称な位置間における動きベクトルの差異に基づいて構造物の安全性を判定することで、亀裂の伸展による構造物の安全性の低下をより正確に判定することができ、検査の精度を向上させることができる。さらに、画像から構造物の安全性を判定することができるため、目視検査を省略することもでき、検査時間の低減を図ることもできる。
また、本開示の一態様に係る検査装置において、前記検査部は、前記亀裂の方向を算出し、算出された前記亀裂の方向に延びる前記亀裂上の線に対して線対称な位置を、前記亀裂に対して対称な位置として決定してもよい。
これによれば、算出された亀裂の方向に延びる亀裂上の線に対して線対称な位置を、亀裂に対して対称な位置として決定することができる。したがって、亀裂に垂直な方向に亀裂を挟む位置間の動きベクトルの差異を安全性の判定に用いることができ、亀裂の伸展による構造物の安全性の低下をより正確に判定することができる。
また、本開示の一態様に係る検査装置において、前記検査部は、前記動きベクトルの差異に基づいて前記亀裂の幅の変化量を推定し、推定された前記幅の変化量に基づいて、前記構造物の安全性を判定してもよい。
これによれば、推定された亀裂の幅の変化量に基づいて、構造物の安全性を判定することができる。構造物に掛かる荷重が変化しているときの亀裂の幅の変化量は、亀裂の伸展に対する影響が大きいが、微小であるため画像から直接的に導出することは難しい。そこで、亀裂に対して対称な位置間における動きベクトルの差異に基づいて推定された亀裂の幅の変化量を用いることで、亀裂の伸展をより正確に予測することも可能となり、構造物の検査の精度を向上させることができる。
また、本開示の一態様に係る検査装置において、さらに、導出された前記複数の動きベクトルの主成分分析を行うことにより、前記複数の動きベクトルから複数の主成分を抽出する抽出部を備え、前記検査部は、抽出された前記複数の主成分のうち、固有値が大きい順における最下位側の1以上の主成分を除く主成分を用いて、前記構造物の安全性を判定してもよい。
これによれば、固有値が大きい順における最下位側の1以上の主成分を除く主成分を用いて、構造物の安全性を判定することができる。したがって、動きベクトルからノイズ成分を除去することができ、さらに、構造物の検査の精度を向上させることができる。
また、本開示の一態様に係る検査装置において、前記取得部は、さらに、前記複数の画像よりも時間的に前に撮影された参照画像を取得し、前記亀裂検出部は、さらに、前記参照画像において前記構造物の表面上の亀裂を検出し、前記検査部は、さらに、前記参照画像と前記複数の画像のいずれかとの間の亀裂の変化量に基づいて、前記構造物の安全性を判定してもよい。
これによれば、動きベクトルの差異に加えて、複数の画像よりも前に撮影された参照画像と複数の画像のいずれかとの亀裂の変化量に基づいて、構造物の安全性を判定することができる。したがって、亀裂の伸展をより正確に予測することも可能となり、構造物の検査の精度を向上させることができる。
また、本開示の一態様に係る検査装置において、さらに、前記複数の画像を撮影する撮影部を備えてもよい。
これによれば、検査装置に撮影部を備えることができ、構造物の検査を簡易に行うことができる。
また、本開示の一態様に係る検査装置において、前記所定位置は先端であってもよい。
これによれば、亀裂の先端を基準として構造物の表面の局所的な動き推定を行うことができる。したがって、亀裂に近い特徴的な位置を基準とすることができ、亀裂周辺の動きをより精細に推定することができる。
なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
以下、実施の形態について、図面を参照しながら具体的に説明する。
なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する。
(実施の形態1)
[検査システムの構成]
まず、実施の形態1に係る検査システムの構成例について図1を参照しながら具体的に説明する。図1は、実施の形態1に係る検査システムの構成例を示す外観図である。検査システム100は、撮像装置110と検査装置120とを備える。
撮像装置110は、例えばイメージセンサを備えるデジタルビデオカメラ又はデジタルスチルカメラである。撮像装置110は、構造物99の画像を経時的に撮影する。具体的には、撮像装置110は、構造物99に掛かる荷重が変化しているときに、構造物の複数の画像を撮影する。例えば構造物99が鉄道橋であれば、列車が鉄道橋を走行しているときに複数の画像が撮影される。
複数の画像は、構造物99の同じ部分の画像であり、互いに異なる時刻に撮影された画像である。具体的には、複数の画像は、例えば映像に含まれる複数のフレームである。また、構造物99の部分としては、例えば予め表面に亀裂が生じている部分が利用される。
検査装置120は、例えばコンピュータであり、プロセッサ(図示せず)と、ソフトウェアプログラム又はインストラクションが格納されたメモリ(図示せず)と、を備える。プロセッサがソフトウェアプログラムを実行することによって、検査装置120は、後述する複数の機能を実現する。また、検査装置120は、専用の電子回路(図示せず)で構成されてもよい。この場合、後述する複数の機能は、別々の電子回路で実現されてもよいし、集積された1つの電子回路で実現されてもよい。
検査装置120は、撮像装置110と通信可能に接続され、撮像装置110によって撮影された複数の画像に基づいて構造物99の検査を行う。本実施の形態において、構造物99の検査とは、構造物99の表面上の亀裂を評価し、構造物99の安全性又は危険性を判定することを意味する。安全性又は危険性の判定の具体例としては、例えば亀裂周辺の詳細点検の必要性の判定、今後のモニタリングの時期及び間隔の見直し、及び、補修の必要性の判定などがある。
[検査装置の機能構成]
次に、実施の形態1に係る検査装置120の機能構成について図2を参照しながら説明する。図2は、実施の形態1に係る検査装置120の機能構成を示すブロック図である。図2に示すように、検査装置120は、取得部121と、亀裂検出部122と、動き推定部123と、検査部124と、を備える。
取得部121は、構造物99に掛かる荷重が変化しているときに互いに異なる時刻に撮影された構造物99の複数の画像を取得する。例えば、取得部121は、撮像装置110から無線通信によって複数の画像を取得する。また例えば、取得部121は、着脱可能なメモリ(例えばUSB(Universal Serial Bus)メモリ)を介して撮像装置110から複数の画像を取得してもよい。
亀裂検出部122は、複数の画像の各々において構造物99の表面上の亀裂を検出する。亀裂の検出方法は、特に限定されないが、例えばエッジ検出を用いることができる。
動き推定部123は、複数の画像において、検出された亀裂の先端を基準として構造物99の表面の局所的な動き推定を行うことで動きベクトルを導出する。動き推定方法は、特に限定されないが、例えばブロックマッチングを用いることができる。
この場合、例えば、動き推定部123は、画像毎に、予め定められたサイズのブロック(例えば8x8画素又は16x16画素など)に分割する。そして、動き推定部123は、ブロック毎に、当該ブロックに類似するブロックを、当該ブロックを含む画像と時間的に隣接する画像内で探索する。以下において、当該ブロックをカレントブロックと呼び、カレントブロックに類似するブロックを類似ブロックと呼ぶ。さらに、カレントブロックを含む画像をカレント画像と呼び、カレント画像に時間的に隣接する画像を隣接画像と呼ぶ。
動き推定部123は、カレント画像における亀裂の先端に対するカレントブロックの相対位置と、隣接画像における亀裂の先端に対する類似ブロックの相対位置と、の間の位置関係に基づいて、カレントブロックの動きベクトルを導出する。なお、動きベクトルを算出するための参照画像は、隣接画像に限定される必要はなく、カレント画像に隣接しない画像が参照画像として用いられてもよい。
検査部124は、亀裂に対して対称な位置間における動きベクトルの差異に基づいて、構造物の安全性を判定する。亀裂に対して対称な位置とは、亀裂を基準として空間的に対称な位置を意味する。具体例については図面を用いて後述する。
[検査装置の処理]
次に、以上のように構成された検査装置120における各種処理について説明する。
[検査処理の全体像]
まず、検査装置の処理の全体像を図3~図6を参照しながら具体的に説明する。図3は、実施の形態1に係る検査装置120の処理の全体像を示すフローチャートである。図4は、実施の形態1における複数の画像の一例を示す図である。図5は、実施の形態1において画像内の亀裂を説明するための図である。図6は、実施の形態1において亀裂周辺の動きベクトルを説明するための図である。
まず、取得部121は、撮像装置110によって撮影された構造物99の複数の画像を取得する(S101)。例えば、図4に示すように、取得部121は、構造物の同じ部分を含み、互いに異なる時刻に撮影された画像11~14を取得する。
亀裂検出部122は、複数の画像の各々において亀裂を検出する(S102)。例えば、図5に示すように、亀裂検出部122は、画像11において亀裂21を検出する。
動き推定部123は、複数の画像において、検出された亀裂の先端を基準として構造物99の表面の局所的な動き推定を行うことで動きベクトルを導出する(S103)。例えば、動き推定部123は、画像11と画像12との間でブロックマッチングを行うことにより、図6に示すように、画像11内の亀裂21の先端22を基準とした動きベクトル23を導出する。具体的には、動き推定部123は、亀裂の先端を原点として画像11及び画像12の各々の画素の座標を決定し、決定された座標を用いて表現された動きベクトル23を導出する。
検査部124は、亀裂に対して対称な位置間における動きベクトルの差異に基づいて、構造物の安全性を判定する(S104)。この処理の詳細については、図7を用いて後述する。
最後に、検査部124は、判定結果を出力する(S105)。例えば、検査部124は、ディスプレイ(図示せず)に判定結果を表示する。また例えば、検査部124は、他の装置(例えばスマートフォン又はタブレットコンピュータなど)に判定結果を送信してもよい。
[安全性の判定処理の詳細]
次に、構造物99の安全性の判定処理(図3のステップS104)の詳細について図7を参照しながら具体的に説明する。図7は、実施の形態1に係る検査装置120の安全性の判定処理を示すフローチャートである。図8は、実施の形態1において安全性の判定処理を説明するための拡大図である。
まず、検査部124は、取得された複数の画像の中から未選択の画像を選択する(S111)。例えば、検査部124は、図4の画像11~14の中から時間順に画像(例えば最初の画像11)を選択する。
検査部124は、亀裂上の複数の画素の中から画素を選択する(S112)。例えば、検査部124は、図8において、予め定められた画素間隔で、亀裂21の先端22から順番に亀裂21上の画素を選択する。
検査部124は、選択された画素における亀裂の方向を算出する(S113)。検査部124は、例えば図8において、選択された画素及びその近傍の亀裂21上の画素に基づいて、亀裂21の方向31を算出する。
検査部124は、算出された方向に延びる亀裂上の線に対して線対称な位置にある2つの領域を決定する(S114)。例えば、検査部124は、図8において、選択された亀裂21の先端22の画素に隣接する所定の大きさの2つの領域32、33であって、亀裂21の方向31に垂直な方向に隣り合う2つの領域32、33を決定する。この2つの領域32、33は、亀裂に対して対称な領域(位置)の一例である。
検査部124は、決定された領域32及び領域33の2つの領域の動きを算出する(S115)。そして、検査部124は、2つの領域間の動きベクトルの差異を算出する(S116)。例えば、検査部124は、2つの領域32、33の各々について、領域に含まれる動きベクトルの算術的な代表動きベクトル(例えば平均動きベクトル、最大動きベクトルなど)を算出する。そして、検査部124は、領域32の代表動きベクトルと、領域33の代表動きベクトルとの間の差分動きベクトルを算出する。
検査部124は、亀裂上の画素の選択が終了したか否かを判定する(S117)。ここで、亀裂上の画素の選択が終了していないと判定された場合(S117のNo)、ステップS112に戻る。一方、亀裂上の画素の選択が終了したと判定された場合(S117のYes)、検査部124は、画像の選択が終了したか否かを判定する(S118)。ここで、画像の選択が終了していないと判定された場合(S118のNo)、ステップ111に戻る。一方、画像の選択が終了したと判定された場合(S118のYes)、検査部124は、ステップS115で算出された動きベクトルの差異に基づいて、構造物99の安全性を判定する(S119)。例えば、画像11~13における差分動きベクトルの大きさの算術的な代表値(例えば平均値又は中央値など)が予め定められた閾値より大きい場合に、検査部124は、構造物99の安全性が低いと判定し、そうでない場合に構造物99の安全性が高いと判定する。
[効果等]
以上のように、本実施の形態に係る検査装置120によれば、亀裂に対して対称な位置間における動きベクトルの差異に基づいて構造物の安全性を判定することができる。亀裂の伸展は、亀裂周辺の応力に依存し、特に亀裂に掛かる応力に依存する。したがって、亀裂に対して対称な位置間における動きベクトルの差異に基づいて構造物の安全性を判定することで、亀裂の伸展による構造物の安全性の低下をより正確に判定することができ、検査の精度を向上させることができる。さらに、画像から構造物の安全性を判定することができるため、目視検査を省略することもでき、検査時間の低減を図ることもできる。
また、本実施の形態に係る検査装置120によれば、算出された亀裂の方向に延びる亀裂上の線に対して線対称な位置を、亀裂に対して対称な位置として決定することができる。したがって、亀裂に垂直な方向に亀裂を挟む位置間の動きベクトルの差異を安全性の判定に用いることができ、亀裂の伸展による構造物の安全性の低下をより正確に判定することができる。
なお、本実施の形態では、動きベクトルの差異として差分動きベクトルが用いられているが、これに限定されない。例えば、動きベクトルから亀裂の方向に垂直な成分を抽出し、抽出された成分の差分値が動きベクトルの差異として用いられてもよい。
さらに、抽出された成分から亀裂の幅の変化量を推定し、推定された幅の変換量に基づいて、構造物の安全性が判定されてもよい。構造物に掛かる荷重が変化しているときの亀裂の幅の変化量は、亀裂の伸展に対する影響が大きいが、微小であるため画像から直接的に導出することは難しい。そこで、亀裂に対して対称な位置間における動きベクトルの差異に基づいて推定された亀裂の幅の変化量を用いることで、亀裂の伸展をより正確に予測することも可能となり、構造物の検査の精度を向上させることができる。
(実施の形態2)
次に、実施の形態2について説明する。本実施の形態では、局所動き推定によって得られた動きベクトルがそのまま検査に用いられるのではなく、主成分分析によって抽出された動きベクトルの主成分が検査に用いられる点が上記実施の形態1と異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について説明する。
[検査装置の機能構成]
実施の形態2に係る検査装置220の機能構成について図9を参照しながら説明する。図9は、実施の形態2に係る検査装置220の機能構成を示すブロック図である。図9に示すように、検査装置220は、取得部121と、亀裂検出部122と、動き推定部123と、抽出部221と、検査部222と、を備える。
抽出部221は、複数の動きベクトルの主成分分析(PCA:Principal Component Analysis)を行うことにより、複数の動きベクトルから複数の主成分を抽出する。
検査部222は、抽出された複数の主成分のうち、固有値又は寄与率が大きい順における最下位側の1以上の主成分を除く主成分を用いて、構造物の安全性を判定する。つまり、検査部222は、固有値又は寄与率の降順における上位の主成分を用いて、構造物の安全性を判定する。
[検査装置の処理]
次に、以上のように構成された検査装置220における各種処理について説明する。図10は、実施の形態2に係る検査装置220の処理の全体像を示すフローチャートである。
実施の形態1と同様にステップS101~ステップS103が行われた後に、抽出部221は、複数の動きベクトルの主成分分析を行うことにより、複数の動きベクトルから複数の主成分を抽出する(S201)。
抽出部221は、抽出された複数の主成分のうち、固有値が大きい順における最下位側の1以上の主成分を除く主成分を用いて、複数の動きベクトルを再構成する(S202)。具体的には、抽出部221は、複数の主成分のうち、予め定められた閾値寄与率よりも大きい累積寄与率を有する上位主成分を抽出する。つまり、抽出部221は、複数の主成分から下位主成分を除去する。抽出部221は、このようにして得られた主成分を用いて複数の動きベクトルを再構成する。
そして、検査部222は、再構成された複数の動きベクトルを用いて、構造物の安全性を判定する(S203)。つまり、検査部222は、実施の形態1における複数の動きベクトルの代わりに、再構成された複数の動きベクトルを用いて、構造物の安全性を判定する。
[効果等]
以上のように、本実施の形態に係る検査装置220によれば、固有値が大きい順における最下位側の1以上の主成分を除く主成分を用いて、構造物の安全性を判定することができる。したがって、動きベクトルからノイズ成分を除去することができ、さらに、構造物の検査の精度を向上させることができる。
(実施の形態3)
次に、実施の形態3について説明する。本実施の形態では、亀裂に対して対称な位置にある領域間における短期的な動きを表す動きベクトルの差異に加えて、長期的な亀裂の変化に基づいて、構造物が検査される点が上記各実施の形態と異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について説明する。
[検査装置の機能構成]
実施の形態3に係る検査装置320の機能構成について図11を参照しながら説明する。図11は、実施の形態3に係る検査装置320の機能構成を示すブロック図である。図11に示すように、検査装置320は、取得部321と、亀裂検出部322と、動き推定部123と、検査部323と、を備える。
取得部321は、構造物99に掛かる荷重が変化しているときに互いに異なる時刻に撮影された構造物99の複数の画像に加えて、さらに、複数の画像よりも時間的に前に撮影された参照画像を取得する。
亀裂検出部322は、複数の画像に加えて、参照画像において構造物99の表面上の亀裂を検出する。
検査部323は、亀裂に対して対称な位置にある領域間における動きベクトルの差異に加えて、参照画像と複数の画像のいずれかとの間の亀裂の変化量に基づいて、構造物の安全性を判定する。具体的には、検査部323は、参照画像と、複数の画像の中から選択された1つの画像(以下、選択画像という)との間の亀裂の変化量を算出する。
[検査装置の処理]
次に、以上のように構成された検査装置320における各種処理について説明する。図12は、実施の形態3に係る検査装置320の処理の全体像を示すフローチャートである。
まず、取得部321は、構造物99に掛かる荷重が変化しているときに互いに異なる時刻に撮影された構造物99の複数の画像と、複数の画像よりも時間的に前に撮影された参照画像とを取得する(S301)。具体的には、取得部321は、例えば図13に示すように、参照画像41及び複数の画像11~14を取得する。ここで、参照画像41及び複数の画像11~14のうちの最初の画像11間の第1時間間隔は、複数の画像間の第2時間間隔よりも大きい。
第1時間間隔は、亀裂の物理的な変化(例えば伸展)を観察するための時間間隔であり、例えば1週間、1か月又は1年などである。一方、第2時間間隔は、荷重の変化に伴う構造物の表面の微小な変動を観察するための時間間隔であり、例えば1/60秒、1/30秒又は1/15秒などである。
亀裂検出部322は、複数の画像及び参照画像の各々において亀裂を検出する(S302)。
動き推定部123は、実施の形態1と同様に、複数の画像において、検出された亀裂の先端を基準として構造物99の表面の局所的な動き推定を行うことで動きベクトルを導出する(S103)。
検査部323は、亀裂に対して対称な位置にある領域間における動きベクトルの差異に加えて、参照画像と複数の画像のいずれかとの間の亀裂の変化量に基づいて、構造物の安全性を判定する(S303)。
ここで、図14を参照してステップS303を具体的に説明する。図14は、実施の形態3に係る検査装置320の安全性の判定処理の詳細を示すフローチャートである。
実施の形態1と同様にステップS111~ステップS118が行われた後に、画像の選択が終了したと判定された場合(S118のYes)、検査部323は、複数の画像の中から1つの画像を選択する(S311)。例えば、検査部323は、複数の画像の中から時間順で最初の画像を選択する。また例えば、検査部323は、複数の画像の中から時間順で最後の画像を選択してもよい。
検査部323は、選択画像及び参照画像の間で亀裂の変化量を算出する(S312)。具体的には、検査部323は、亀裂以外の特徴点を原点として参照画像及び選択画像の各々の画素の座標を決定し、決定された座標を用いて亀裂の変化量を算出する。例えば、参照画像内の亀裂の先端の画素の座標が(10,10)であり、選択画像内の亀裂の先端の画素の座標が(10,25)である場合、変化量は15画素と算出される。
検査部323は、ステップS115で算出された動きベクトルの差異と、ステップS312で算出された亀裂の変化量とに基づいて、構造物99の安全性を判定する(S313)。例えば、差分動きベクトルの大きさが予め定められた閾値より大きく、かつ、亀裂の変化量が予め定められた閾値変化量よりも大きい場合に、検査部323は、構造物99の安全性が低いと判定し、そうでない場合に構造物99の安全性が高いと判定する。
[効果等]
以上のように、本実施の形態に係る検査装置320によれば、動きベクトルの差異に加えて、複数の画像よりも前に撮影された参照画像と複数の画像のいずれかとの亀裂の変化量に基づいて、構造物の安全性を判定することができる。したがって、亀裂の伸展をより正確に予測することも可能となり、構造物の検査の精度を向上させることができる。
(他の実施の形態)
以上、本開示の1つまたは複数の態様に係る検査装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の1つまたは複数の態様の範囲内に含まれてもよい。
例えば、上記各実施の形態では、二次元画像を例に説明したが、三次元画像を用いることもできる。この場合、三次元の動きベクトルを用いて構造物の安全性を判定することができる。
なお、上記各実施の形態では、検査装置は、撮像装置を含んでいなかったが、撮像装置を含んでもよい。また、検査装置に含まれる複数の機能構成(取得部、亀裂検出部、動き推定部及び検査部など)は、分散コンピューティング又はクラウドコンピューティングによって実現されてもよい。
なお、上記各実施の形態では、動き推定でブロックマッチングを用いる例を説明したが、これに限定されない。例えば、他の局所画像特徴量(例えばHOG(Histogram of Oriented Gradients)、SIFT(Scaled Invariance Feature Transform))をマッチングすることにより動き推定が行われてもよい。
なお、上記各実施の形態では、亀裂に対して対称な位置間の動きベクトルの差異として、亀裂に対して対称な位置にある領域間の代表動きベクトルの差異を用いる例を説明したが、これに限定されない。例えば、領域を用いずに、個々の位置間の動きベクトルの差異が用いられてもよい。また例えば、亀裂に対して対称な位置間の動きベクトルの時間周波数成分の差異が用いられてもよい。
なお、局所動き推定は、画像全体で行われる必要はなく、限定された領域でのみ行われてもよい。例えば、亀裂の周辺領域でのみ局所動き推定が行われてもよい。周辺領域は、例えば亀裂からの距離に基づいて定義され得る。
なお、上記各実施の形態では、亀裂上の画素毎に亀裂の方向を算出していたが、これに限定されない。亀裂の方向は、亀裂の代表的な画素でのみ算出されてもよい。この場合、1つの亀裂に対して1つの方向が算出され、算出された方向に基づいて亀裂に対して対称な位置にある領域が決定される。
なお、上記各実施の形態では、亀裂の先端を基準として構造物の表面の局所的な動き推定を行っていたが、亀裂の先端に限定される必要はない。亀裂の先端の代わりに、亀裂上の他の特徴的な位置(所定位置)が基準点として用いられてもよい。例えば、亀裂の分岐点又は屈曲点などが動き推定のための基準点として用いられてもよい。
また、上記各実施の形態における検査装置が備える構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。例えば、検査装置120は、取得部121と、亀裂検出部122と、動き推定部123と、検査部124と、を有するシステムLSIから構成されてもよい。
システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)などを含んで構成されるコンピュータシステムである。ROMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。
なお、ここでは、システムLSIとしたが、集積度の違いにより、IC、LSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、あるいはLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
また、本開示の一態様は、このような検査装置だけではなく、検査装置に含まれる特徴的な構成部をステップとする検査方法であってもよい。また、本開示の一態様は、検査方法に含まれる特徴的な各ステップをコンピュータに実行させるコンピュータプログラムであってもよい。また、本開示の一態様は、そのようなコンピュータプログラムが記録された、コンピュータ読み取り可能な非一時的な記録媒体であってもよい。
なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の検査装置などを実現するソフトウェアは、次のようなプログラムである。
すなわち、このプログラムは、コンピュータに、亀裂を有する構造物を検査する検査方法であって、前記構造物に掛かる荷重が変化しているときに互いに異なる時刻に撮影された前記構造物の複数の画像を取得し、前記複数の画像の各々において前記構造物の表面上の亀裂を検出し、前記複数の画像において、検出された前記亀裂の先端を基準として前記構造物の表面の局所的な動き推定を行うことで複数の動きベクトルを導出し、前記亀裂に対して対称な位置間における動きベクトルの差異に基づいて、前記構造物の安全性を判定することを実行させる。
本開示は、亀裂による安全性の低下を防ぐために構造物を検査する検査装置に利用可能である。
11、12、13、14 画像
21 亀裂
22 先端
23 動きベクトル
31 亀裂の方向
32、33 領域
41 参照画像
99 構造物
100 検査システム
110 撮像装置
120、220、320 検査装置
121、321 取得部
122、322 亀裂検出部
123 動き推定部
124、222、323 検査部
221 抽出部

Claims (8)

  1. 亀裂を有する構造物を検査する検査装置であって、
    前記構造物に掛かる荷重が変化しているときに互いに異なる時刻に前記構造物が撮影された第1画像及び第2画像を含む複数の画像を取得する取得部と、
    前記複数の画像の各々において前記構造物の表面上の亀裂を検出する亀裂検出部と、
    前記複数の画像の各々において、予め定められたサイズの複数のブロックに分割し、検出された前記亀裂の先端を基準として、前記第1画像における前記基準に対する前記複数のブロックの相対位置と、前記第2画像における前記基準に対する前記複数のブロックの相対位置との位置関係に基づいて前記複数のブロックの動きベクトルを導出する動き推定部と、
    前記亀裂に対して対称な位置間における動きベクトルの差異に基づいて、前記構造物の安全性を判定する検査部と、を備える、
    検査装置。
  2. 前記検査部は、
    前記基準を含む前記亀裂上の複数の点を選択し、
    前記複数の点の各々において、
    前記亀裂の方向を算出し、
    算出された前記亀裂の方向に延びる前記亀裂上の線に対して線対称な位置を、前記亀裂に対して対称な位置として決定する、
    請求項1に記載の検査装置。
  3. 前記検査部は、前記動きベクトルの差異に基づいて前記亀裂の幅の変化量を推定し、推定された前記幅の変化量に基づいて、前記構造物の安全性を判定する、
    請求項1又は2に記載の検査装置。
  4. さらに、導出された前記複数のブロックの動きベクトルの主成分分析を行うことにより、前記複数の動きベクトルから複数の主成分を抽出する抽出部を備え、
    前記検査部は、抽出された前記複数の主成分のうち、固有値が大きい順における最下位側の1以上の主成分を除く主成分を用いて、前記構造物の安全性を判定する、
    請求項1~3のいずれか1項に記載の検査装置。
  5. 前記取得部は、さらに、前記複数の画像よりも時間的に前に撮影された参照画像を取得し、
    前記亀裂検出部は、さらに、前記参照画像において前記構造物の表面上の亀裂を検出し、
    前記検査部は、さらに、前記参照画像と前記複数の画像のいずれかとの間の亀裂の変化量に基づいて、前記構造物の安全性を判定する、
    請求項1~4のいずれか1項に記載の検査装置。
  6. さらに、前記複数の画像を撮影する撮影部を備える、
    請求項1~5のいずれか1項に記載の検査装置。
  7. 前記検査部は、前記複数の画像の各々において前記亀裂以外の特徴点を原点とした座標を決定し、前記第1画像の前記基準の座標と、前記第2画像の前記基準の座標とに基づいて、亀裂の変化量を算出し、前記亀裂の変化量に基づいて、前記構造物の安全性を判定する、
    請求項1~6のいずれか1項に記載の検査装置。
  8. 亀裂を有する構造物を検査する検査方法であって、
    前記構造物に掛かる荷重が変化しているときに互いに異なる時刻に前記構造物が撮影された第1画像及び第2画像を含む複数の画像を取得し、
    前記複数の画像の各々において前記構造物の表面上の亀裂を検出し、
    前記複数の画像の各々において、予め定められたサイズの複数のブロックに分割し、検出された前記亀裂の先端を基準として、前記第1画像における前記基準に対する前記複数のブロックの相対位置と、前記第2画像における前記基準に対する前記複数のブロックの相対位置との位置関係に基づいて前記複数のブロックの動きベクトルを導出し、
    前記亀裂に対して対称な位置間における動きベクトルの差異に基づいて、前記構造物の安全性を判定する、
    検査方法。
JP2020501674A 2018-02-22 2019-02-08 検査装置及び検査方法 Active JP7325020B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018030189 2018-02-22
JP2018030189 2018-02-22
PCT/JP2019/004559 WO2019163556A1 (ja) 2018-02-22 2019-02-08 検査装置及び検査方法

Publications (2)

Publication Number Publication Date
JPWO2019163556A1 JPWO2019163556A1 (ja) 2021-02-12
JP7325020B2 true JP7325020B2 (ja) 2023-08-14

Family

ID=67687960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020501674A Active JP7325020B2 (ja) 2018-02-22 2019-02-08 検査装置及び検査方法

Country Status (4)

Country Link
US (1) US11796481B2 (ja)
JP (1) JP7325020B2 (ja)
CN (1) CN111758025A (ja)
WO (1) WO2019163556A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7399729B2 (ja) * 2020-01-31 2023-12-18 株式会社東芝 設備診断システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217583A (ja) 2008-03-11 2009-09-24 Toshiba Corp パターン認識装置及びその方法
JP2010537434A (ja) 2007-08-30 2010-12-02 ビーティー イメージング ピーティーワイ リミテッド 光電池の製造

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277111B2 (ja) * 1995-10-18 2002-04-22 シャープ株式会社 動画像符号化装置および動画像復号化装置
JP3168864B2 (ja) * 1995-03-15 2001-05-21 日産自動車株式会社 表面欠陥検査装置
JP2001281099A (ja) * 2000-03-28 2001-10-10 Olympus Optical Co Ltd 光学素子成形装置
CN100359952C (zh) * 2004-07-23 2008-01-02 联发科技股份有限公司 视频编码中的运动预测方法
JP2008010958A (ja) * 2006-06-27 2008-01-17 Canon Inc 撮像装置及び撮像方法
JP4898320B2 (ja) 2006-06-28 2012-03-14 Jfeスチール株式会社 構造物の欠陥検出方法および装置、ならびに欠陥検出機能を備えた荷役機械
US8547428B1 (en) * 2006-11-02 2013-10-01 SeeScan, Inc. Pipe mapping system
KR100826153B1 (ko) * 2006-11-29 2008-04-30 한국표준과학연구원 영상의 농도치 히스토그램을 이용한 크랙의 폭 측정방법
JP5249852B2 (ja) 2009-05-15 2013-07-31 阪神高速技術株式会社 橋梁の床版の損傷検出方法
JP2011027493A (ja) * 2009-07-23 2011-02-10 Toshiba Corp 配管の破壊評価装置、方法、及びプログラム
JP5097765B2 (ja) 2009-12-14 2012-12-12 株式会社ネクスコ東日本エンジニアリング 計測方法および計測プログラムならびに計測装置
JP5388910B2 (ja) * 2010-03-10 2014-01-15 パナソニック株式会社 画像揺れ補正装置および画像揺れ補正方法
JP5326174B2 (ja) 2010-08-26 2013-10-30 独立行政法人日本原子力研究開発機構 亀裂開口幅と亀裂形状の同時測定方法及び装置
JP5672097B2 (ja) * 2011-03-18 2015-02-18 株式会社明電舎 画像処理によるろ過膜板検査装置
JP6150583B2 (ja) * 2013-03-27 2017-06-21 オリンパス株式会社 画像処理装置、内視鏡装置、プログラム及び画像処理装置の作動方法
CN106415248B (zh) * 2013-10-24 2020-08-18 飞利浦灯具控股公司 缺陷检查系统和方法
JP6334991B2 (ja) * 2014-03-31 2018-05-30 株式会社日立製作所 構造物の表面検査システムおよび表面検査方法
US9528945B2 (en) * 2014-08-28 2016-12-27 The Boeing Company Systems and methods for detecting crack growth
JPWO2016142965A1 (ja) * 2015-03-10 2017-12-21 日本電気株式会社 映像処理装置、映像処理方法及び映像処理プログラムを記憶する記録媒体
JP6511892B2 (ja) * 2015-03-20 2019-05-15 日本電気株式会社 構造物の状態判定装置と状態判定システムおよび状態判定方法
JPWO2016152075A1 (ja) * 2015-03-20 2018-01-18 日本電気株式会社 構造物の状態判定装置と状態判定システムおよび状態判定方法
JP6559476B2 (ja) 2015-06-19 2019-08-14 日本信号株式会社 検査装置
CN108431584B (zh) * 2015-12-25 2021-04-27 富士胶片株式会社 损伤信息处理装置及损伤信息处理方法
WO2017119154A1 (ja) * 2016-01-07 2017-07-13 三菱電機株式会社 検出装置および検出方法
EP3270095A1 (en) * 2016-07-13 2018-01-17 Sightline Innovation Inc. System and method for surface inspection
US11138711B2 (en) * 2016-08-02 2021-10-05 Nec Corporation Degradation detection device, degradation detection method, and computer-readable recording medium
JP6954368B2 (ja) * 2017-11-14 2021-10-27 日本電気株式会社 変位成分検出装置、変位成分検出方法、及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537434A (ja) 2007-08-30 2010-12-02 ビーティー イメージング ピーティーワイ リミテッド 光電池の製造
JP2009217583A (ja) 2008-03-11 2009-09-24 Toshiba Corp パターン認識装置及びその方法

Also Published As

Publication number Publication date
WO2019163556A1 (ja) 2019-08-29
JPWO2019163556A1 (ja) 2021-02-12
US20200378900A1 (en) 2020-12-03
US11796481B2 (en) 2023-10-24
CN111758025A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
US20160133008A1 (en) Crack data collection method and crack data collection program
KR101932214B1 (ko) 이미지 처리 기법을 이용하여 균열을 측정하기 위한 장치 및 그 방법
US20160133007A1 (en) Crack data collection apparatus and server apparatus to collect crack data
JP2016099126A (ja) 鋼材成分識別装置及びそのプログラム
Flesia et al. Sub-pixel straight lines detection for measuring through machine vision
JP5705711B2 (ja) ひび割れ検出方法
JP7325020B2 (ja) 検査装置及び検査方法
CN110225335B (zh) 相机稳定性评估方法及装置
US9972095B2 (en) Image measuring apparatus and non-temporary recording medium on which control program of same apparatus is recorded
JP2011007728A (ja) 欠陥検出方法、欠陥検出装置、および欠陥検出プログラム
KR101018518B1 (ko) 영상 디블러링 기법을 이용한 구조물 점검 시스템 및 그 방법
JP6199799B2 (ja) 自発光材料画像処理装置及び自発光材料画像処理方法
JP2015148895A (ja) 物体数分布推定方法
US20150213595A1 (en) Image monitoring apparatus for estimating size of singleton, and method therefor
JP2020052596A (ja) 品質予測装置、品質予測方法、及び品質予測プログラム
JP2010193178A5 (ja)
JP6818263B2 (ja) 破面解析装置および破面解析方法
WO2019176464A1 (ja) 検査装置及び検査方法
JP7156529B2 (ja) 変位測定装置、変位測定方法、およびプログラム
JP2010063670A (ja) 画像処理方法、画像処理装置および画像処理のためのプログラム
JP7405362B2 (ja) コンクリート構造物診断システム、コンクリート構造物診断方法及びプログラム
KR101658221B1 (ko) 전처리한 열화상 이미지를 이용한 실러 도포 품질 검사 장치 및 방법
US11972554B2 (en) Bearing displacement detection device and method
JP7406695B2 (ja) 画像処理装置及び画像処理プログラム
CN112334732B (zh) 预测装置及预测方法

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20200720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230720

R151 Written notification of patent or utility model registration

Ref document number: 7325020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151