JP7324862B2 - Egfr阻害剤の結晶体およびその調製方法 - Google Patents

Egfr阻害剤の結晶体およびその調製方法 Download PDF

Info

Publication number
JP7324862B2
JP7324862B2 JP2021560107A JP2021560107A JP7324862B2 JP 7324862 B2 JP7324862 B2 JP 7324862B2 JP 2021560107 A JP2021560107 A JP 2021560107A JP 2021560107 A JP2021560107 A JP 2021560107A JP 7324862 B2 JP7324862 B2 JP 7324862B2
Authority
JP
Japan
Prior art keywords
formula
crystalline form
compound
compound represented
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021560107A
Other languages
English (en)
Other versions
JP2022527619A (ja
Inventor
希楽 劉
路 張
照中 丁
曙輝 陳
利紅 胡
Original Assignee
メッドシャイン ディスカバリー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メッドシャイン ディスカバリー インコーポレイテッド filed Critical メッドシャイン ディスカバリー インコーポレイテッド
Publication of JP2022527619A publication Critical patent/JP2022527619A/ja
Application granted granted Critical
Publication of JP7324862B2 publication Critical patent/JP7324862B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/10Spiro-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • C07C309/30Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Description

<関連出願への相互参照>
本出願は、2019年04月10日に出願された、出願番号がCN201910285738.Xである特許出願の優先権を主張する。
<技術分野>
本発明は、EGFR阻害剤の結晶体およびその調製方法に関し、さらに、非小細胞肺癌、特に非小細胞肺癌の脳転移を治療するための医薬品の調製における前記の結晶体の使用に関する。
EGFR(上皮成長因子受容体、EGFR、ErbB-1、またはHER1と略される)は、上皮成長因子受容体(HER)ファミリーのメンバーである。このファミリーには、HER1(erbB1、EGFR)、HER2(erbB2)、HER3(erbB3)、およびHER4(erbB4)が含まれる。EGFRは、上皮成長因子(EGF)細胞の増殖およびシグナル伝達の受容体である糖タンパク質であり、チロシンキナーゼ受容体に属する。EGFRは細胞膜を通過して、細胞膜の表面に位置する。リガンドが上皮成長因子受容体(EGFR)に結合した後、受容体は二量体化される。EGFRの二量体化は、細胞内のEGFRのキナーゼ経路を活性化することができる。この自己リン酸化は、MAPK、AktおよびJNK経路を含む下流のリン酸化を導き、細胞増殖を誘導することができる。
しかしながら、EGFR-TKIを一定期間使用した後に薬剤耐性が現れ、患者の約3分の1がEGFR-TKI耐性を獲得した後にCNS転移を発症する。脳転移を伴うNSCLC患者は、生活の質が悪く、予後が悪く、その生存時間中央値がわずか1~2ヶ月である。現在、脳転移に対して利用可能な治療方法は少なく、単一や孤立した病変では、主に手術または定位放射線療法で治療されるが、複数の病変では、主に全脳照射療法で治療される。全脳照射療法は、患者の生存期間をある程度延長することができるが、治癒効果は依然として理想的ではなく、毒性や副作用は大きい。また、血液脳関門(BBB)の存在により、多くの薬物が血液脳関門を通して脳組織に侵入することは困難であり、脳内では効果的な治療濃度を達成できないため、これらの患者におけるEGFR-TKIの使用は有効ではない。
NSCLCにおける脳転移に特異的な分子標的治療薬は現在、販売が承認されていないが、近年の多数の臨床研究は、分子標的薬がNSCLCにおける脳転移の新しい治療選択肢を提供することを示している。
AZD3759は、脳に効率的に侵入する能力を持つ新規の標的薬であり、アストラゼネカ社によって開発され、現在臨床第I/II相にある。AZD3759は、血液脳関門の透過性が良好であり、脳転移(BM:Brain Metastasis)や軟脳膜転移(または軟髄膜転移と呼ばれ、LM:Leptomenigeal Metastasis)などのEGFR変異陽性の非小細胞肺癌患者の中枢神経系(CNS)転移に使用される。現在の臨床試験から、AZD3759は高い臨床反応率を示し、頭蓋外病変の患者と頭蓋内病変の患者の両方で有意な有効性を示している。
エルロチニブは、FDAによって承認された、その腫瘍には特定の上皮成長因子受容体(EGFR)活性化変異がある転移性非小細胞肺癌(NSCLC)の患者の初期(一次)治療に用いられる。さらに、この薬は、少なくとも1つの化学療法レジメン(二次治療または三次治療)を受けた後に腫瘍が拡散または成長した進行NSCLC患者の治療に使用することも承認された。
Figure 0007324862000001
本発明は、式(II)で表われる化合物の結晶体Aを提供する。そのX線粉末回折パターンは、6.04±0.2°、12.07±0.2°、13.32±0.2°の2θ角に特徴的回折ピークを有する。
Figure 0007324862000002
本発明の一部の実施形態において、前記の結晶体AのX線粉末回折パターンは、6.04±0.2°、12.07±0.2°、13.32±0.2°、16.06±0.2°、19.01±0.2°、20.14±0.2°、25.07±0.2°、30.44±0.2°の2θ角に特徴的回折ピークを有する。
本発明の一部の実施形態において、前記の結晶体AのX線粉末回折パターンは、6.04±0.2°、8.26±0.2°、10.79±0.2°、11.27±0.2°、12.07±0.2°、13.32±0.2°、16.06±0.2°、19.01±0.2°、20.14±0.2°、23.02±0.2°、25.07±0.2°、30.44±0.2°の2θ角に特徴的回折ピークを有する。
本発明の一部の実施形態において、前記の結晶体AのXRPDパターンを図1に示す。
本発明の一部の実施形態において、前記の結晶体AのXRPDパターンの解析データを表1に示す。
表1.(II)で表われる化合物の結晶体AのXRPDパターンの解析データ
Figure 0007324862000003
本発明の一部の実施形態において、前記の結晶体Aの示差走査熱量測定曲線は、200.99±5℃に吸熱ピークの開始点を有し、212.33±5℃に発熱ピークの開始点を有する。
本発明の一部の実施形態において、前記の結晶体AのDSCパターンを図2に示す。
本発明の一部の実施形態において、前記の結晶体Aの熱重量分析曲線は、120.00±3℃で0.2289%の重量損失を有する。
本発明の一部の実施形態において、前記の結晶体AのTGAパターンを図3に示す。
また、本発明は、式(II)で表われる化合物の結晶体Bを提供する。そのX線粉末回折パターンは、5.88±0.2°、11.79±0.2°、21.96±0.2°の2θ角に特徴的回折ピークを有する。
本発明の一部の実施形態において、前記の結晶体BのX線粉末回折パターンは、5.88±0.2°、7.92±0.2°、11.79±0.2°、12.92±0.2°、17.68±0.2°、18.50±0.2°、21.96±0.2°、23.87±0.2°の2θ角に特徴的回折ピークを有する。
本発明の一部の実施形態において、前記の結晶体BのX線粉末回折パターンは、5.88±0.2°、7.92±0.2°、11.79±0.2°、12.92±0.2°、17.68±0.2°、18.50±0.2°、21.29±0.2°、21.96±0.2°、23.87±0.2°、27.52±0.2°、29.05±0.2°、29.69±0.2°の2θ角に特徴的回折ピークを有する。
本発明の一部の実施形態において、前記の結晶体BのXRPDパターンを図4に示す。
本発明の一部の実施形態において、前記の結晶体BのXRPDパターンの解析データを表2に示す。
表2.式(II)で表われる化合物の結晶体BのXRPDパターンの解析データ
Figure 0007324862000004
本発明の一部の実施形態において、前記の結晶体Bの示差走査熱量測定曲線は、41.96±5℃、87.83±5℃、165.00±5℃に吸熱ピークの開始点を有し、176.55±5℃に発熱ピークの開始点を有する。
本発明の一部の実施形態において、前記の結晶体BのDSCパターンを図5に示す。
本発明の一部の実施形態において、前記の結晶体Bの熱重量分析曲線は、80.47±3℃で5.053%の重量損失を有する。
本発明の一部の実施形態において、前記の結晶体BのTGAパターンを図6に示す。
さらに、本発明は、式(II)で表われる化合物の結晶体Cを提供する。そのX線粉末回折パターンは、6.35±0.2°、6.99±0.2°、13.02±0.2°の2θ角に特徴的回折ピークを有する。
本発明の一部の実施形態において、前記の結晶体CのX線粉末回折パターンは、6.35±0.2°、6.99±0.2°、13.02±0.2°、13.98±0.2°、15.44±0.2°、15.95±0.2°、19.08±0.2°、23.48±0.2°の2θ角に特徴的回折ピークを有する。
本発明の一部の実施形態において、前記の結晶体CのX線粉末回折パターンは、6.35±0.2°、6.99±0.2°、13.02±0.2°、13.98±0.2°、15.44±0.2°、15.95±0.2°、19.08±0.2°、19.92±0.2°、23.48±0.2°、24.34±0.2°、25.53±0.2°、28.13±0.2°の2θ角に特徴的回折ピークを有する。
本発明の一部の実施形態において、前記の結晶体CのXRPDパターンを図7に示す。
本発明の一部の実施形態において、前記の結晶体CのXRPDパターンの解析データを表3に示す。
表3.化合物(II)の結晶体CのXRPDパターンの解析データ
Figure 0007324862000005
本発明の一部の実施形態において、前記の結晶体Cの示差走査熱量測定曲線は、74.81±5℃および163.59±5℃に吸熱ピークの開始点を有し、172.00±5℃に発熱ピークの開始点を有する。
本発明の一部の実施形態において、前記の結晶体CのDSCパターンを図8に示す。
本発明の一部の実施形態において、前記の結晶体Cの熱重量分析曲線は、115.95±3℃で5.462%の重量損失を有する。
本発明の一部の実施形態において、前記の結晶体CのTGAパターンを図9に示す。
本発明の化合物の結晶体は、安定性が優れ、溶解性が良く、吸湿性が低く、光や熱の影響を受けにくく、且つ良好なドラッガビリティを有する。
定義と説明
特に断らない限り、本明細書で使用される以下の用語および語句は、以下の意味を有する。特定の用語や語句は、特定の定義がなければ、不明瞭または不明確であると見なされるべきではなく、通常の意味で理解されるべきである。本明細書に商品名が記載されている場合、対応する商品またはその有効成分を指すものである。
本発明の中間化合物は、以下に列挙される特定の実施形態、それらを他の化学合成方法と組み合わせることにより形成される実施形態、および当業者に周知の同等の代替方法を含む、当業者に周知の様々な合成方法によって調製することができる。好ましい実施形態は、本発明の実施例を含むが、これらに限定されない。
本明細書に開示される特定の実施形態における化学反応は、本発明の化学変化および必要とされる試薬や材料に適する適切な溶媒中で行う。本発明の化合物を得るために、当業者が、既存の実施形態に基づいて合成工程または反応スキームを変更または選択する必要がある場合がある。
以下、実施例により本発明を詳細に説明するが、これらの実施例は、本発明を限定するものではない。
本発明で使用されるすべての溶媒は市販されるものであり、さらに精製することなく使用される。
本発明は以下の略語を使用する。r.t.は室温を表し;RH(即ちRelative Humidity)は、相対湿度を表し;ΔWは吸湿による重量増加を表し;MeOHはメタノールを表し;HPLCは高速液体クロマトグラフィーを表す。
化合物は、当技術分野における一般的な命名法又はChemDraw(登録商標)ソフトウェアによって命名され、市販の化合物は、メーカのカタログ名を使用する。
1.機器及び分析方法
1.1. 粉末X線回折(X-ray powder diffractometer,XRPD)
機器モデル:Bruker D8 advance X線回折計
測定条件:詳細なXRPDパラメータは以下の通りである。
X線発生装置:Cu、kα、(λ=1.54056Å)
チューブ電圧:40kV、チューブ電流:40mA
発散スリット:0.60mm
検出器スリット:10.50mm
散乱防止スリット:7.10mm
走査範囲:3~40度
ステップサイズ:0.02度
ステップ長さ:0.12秒
サンプルディスクの回転数:15rpm
1.2. 示差走査熱量測定(Differential Scanning Calorimeter,DSC)
機器モデル:TA Q2000示差走査熱量計
試験方法:サンプル(0.5~1mg)を採取し、DSCアルミニウムポットに入れて試験を行った。条件:室温~250℃、昇温速度10℃/min。
1.3. 熱重量分析(Thermal Gravimetric Analyzer,TGA)
機器モデル:TA Q5000IR熱重量分析器
試験方法:サンプル(2~5mg)を採取し、TGAプラチナポットに入れて試験を行った。条件:室温~300℃、昇温速度10℃/min。
1.4. 動的蒸気吸着分析(Dynamic Vapor Sorption, DVS)
機器モデル:SMS DVS Advantage動的蒸気吸着測定装置
測定条件:サンプル(10~15mg)をDVSサンプルパンに採取して測定した。
詳細なDVSパラメータは以下の通りである。
温度:25℃
平衡:dm/dt=0.01%/min(最短時間:10min,最長時間:180min)
乾燥:0%RHで120min乾燥させた。
RH(%)測定勾配:10%
RH(%)測定勾配の範囲:0%~90%~0%
吸湿性評価の分類は以下の通りである。
Figure 0007324862000006
*25±1℃および80±2%RHでの吸湿による重量増加
図1は、式(II)で表われる化合物の結晶体AのXRPDパターンである。 図2は、式(II)で表われる化合物の結晶体AのDSC曲線である。 図3は、式(II)で表われる化合物の結晶体AのTGA曲線である。 図4は、式(II)で表われる化合物の結晶体BのXRPDパターンである。 図5は、式(II)で表われる化合物の結晶体BのDSC曲線である。 図6は、式(II)で表われる化合物の結晶体BのTGA曲線である。 図7は、式(II)で表われる化合物の結晶体CのXRPDパターンである。 図8は、式(II)で表われる化合物の結晶体CのDSC曲線である。 図9は、式(II)で表われる化合物の結晶体CのTGA曲線である。 図10は、式(I)で表われる化合物の硫酸塩のXRPDパターンである。 図11は、式(I)で表われる化合物のリン酸塩のXRPDパターンである。 図12は、式(I)で表われる化合物のマレイン酸塩の結晶体DのXRPDパターンである。 図13は、式(I)で表われる化合物のマレイン酸塩の結晶体DのDSC曲線である。 図14は、式(I)で表われる化合物のマレイン酸塩の結晶体DのTGA曲線である。 図15は、式(I)で表われる化合物のL-酒石酸塩のXRPDパターンである。 図16は、式(I)で表われる化合物のギ酸塩のXRPDパターンである。 図17は、式(II)で表われる化合物の結晶体AのDVS曲線である。 図17は、式(II)で表われる化合物の結晶体CのDVS曲線である。
以下、本発明の内容をよりよく理解するために、特定の実施例によって本発明をさらに説明するが、これらの特定の実施形態は、本発明の内容を限定するものではない。
実施例1:式(II)で表われる化合物の結晶体Aの調製
Figure 0007324862000007
方法1:
15mlの無水メタノールを100mlの三口フラスコに加え、室温下、式(I)で表われる化合物(3.0g,6.76mmol,1.0当量)を三口フラスコに加え、70℃に昇温し、p-トルエンスルホン酸(1.29g,6.76mmol,1.0当量)を2mlのメタノールに溶解させ、上記の反応液にゆっくりと滴下した後、溶液が透明になった。温度を保ちながら1時間攪拌し、20-30℃に冷却し、N保護下、減圧で吸引濾過し、フィルターケーキを、40-50℃の真空乾燥オーブンで恒量になるまで乾燥させ、式(II)で表われる化合物の結晶体Aを得た。H NMR (400MHz,重メタノール) δ=8.49(s,1H),8.44(s,1H),7.72-7.65(m,2H),7.58-7.52(m,1H),7.45-7.37(m,1H),7.33-7.28(m,1H),7.27-7.14(m,3H),4.70-4.54(m,4H),4.41(s,2H),4.08(s,3H),3.09(s,3H),2.36(s,3H);LCMS (ESI) m/z:444.1 [M+1]。
式(II)で表われる化合物の結晶体AのXRPDパターンを図1に示し、DSC曲線を図2に示し、TGA曲線を図3に示す。
方法2:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量のn-ヘプタンを添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Aを得た。
方法3:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量のメタノール:HO=10:1(V:V)の混合溶媒を添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Aを得た。
実施例2:式(II)で表われる化合物の結晶体Bの調製
方法1:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量のエタノールを添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Bを得た。H NMR (400 MHz,重水素化DMSO) δ=10.34-9.65(m,1H),8.54-8.45(m,2H),7.56-7.43(m,4H),7.30(s,1H),7.24-7.21(m,1H),7.14-7.04(m,2H),4.69-4.35(m,4H),4.32-4.19(m,2H),4.05-3.95(m,3H),2.30-2.27(m,3H)
結晶体BのXRPDパターンを図4に示し、DSC曲線を図5に示し、TGA曲線を図6に示す。
方法2:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量のアセトンを添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Bを得た。
方法3:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量のテトラヒドロフランを添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Bを得た。
方法4:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量のアセトニトリルを添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Bを得た。
方法5:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量の酢酸エチルを添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Bを得た。
方法6:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量のメチルイソブチルケトンを添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Bを得た。
実施例3:式(II)で表われる化合物の結晶体Cの調製
方法1:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量のエタノール:HO=10:1(V:V)を添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Cを得た。H NMR (400 MHz,重水素化DMSO) δ=10.03-9.92(m,1H),8.57-8.42(m,2H),7.56-7.44(m,4H),7.40-7.20(m,2H),7.15-7.03(m,2H),4.66-4.35(m,4H),4.33-4.21(m,2H),4.05-3.96(m,3H),2.30-2.24(m,3H)
式(II)で表われる化合物C晶型のXRPDパターンを図7に示し、DSC曲線を図8に示し、TGA曲線を図9に示す。
方法2:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量のイソプロピルアルコール:HO=10:1(V:V)を添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Cを得た。
方法3:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量のアセトン:HO=10:1(V:V)を添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Cを得た。
方法4:
30mgの式(II)で表われる化合物の結晶体Aを、1.5mlのガラスバイアルに秤量し、適量のTHF:HO=10:1(V:V)を添加して、懸濁液とした。攪拌子を入れた後、上記の懸濁液の試料を加熱磁気攪拌機(40℃)の上に置き、試験(暗所で)を行い、40℃で2日間撹拌して遠心分離した。残存固体試料を真空乾燥オーブン(30℃)で一晩(10-16時間)乾燥させ、式(II)で表われる化合物の結晶体Cを得た。
実施例4:式(I)で表われる化合物の塩酸塩の調製
約30mgの式(I)で表われる化合物を1.5mLのバイアルに秤量し、1.0mLのエタノールを添加し、試料を磁気攪拌機(40℃)の上に置いて攪拌させ、塩酸(58.34μL)をさらに添加し、溶液が透明になった。温度を保ちながら48時間攪拌し、溶液は透明であった。透明な溶液を40℃で揮発試験を行った。試料はゼラチン状または油状になった。酢酸エチルをさらに添加し、撹拌して結晶化させたが、固形物は析出しなかった。
実施例5:式(I)で表われる化合物の硫酸塩の調製
約30mgの式(I)で表われる化合物を1.5mLのバイアルに秤量し、1.0mLのエタノールを添加し、試料を磁気攪拌機(40℃)の上に置いて攪拌させ、硫酸(38.60μL)をさらに添加し、温度を保ちながら48時間攪拌し、大量の固形物が溶液から析出した。溶液を遠心分離して、式(I)で表われる化合物の硫酸塩を得た。
式(I)で表われる化合物硫酸塩はアモルファスであり、XRPDパターンを図10に示す。
実施例6:式(I)で表われる化合物リン酸塩の調製
約30mgの式(I)で表われる化合物を1.5mLのバイアルに秤量し、1.0mLのエタノールを添加し、試料を磁気攪拌機(40℃)の上に置いて攪拌させ、リン酸(48.41μL)をさらに添加し、温度を保ちながら48時間攪拌し、大量の固形物が溶液から析出した。溶液を遠心分離し、フィルターケーキを40-50℃の真空乾燥オーブンで恒量になるまで乾燥させ、式(I)で表われる化合物のリン酸塩を得た。
式(I)で表われる化合物のリン酸塩はアモルファスであり、XRPDパターンを図11に示す。
実施例7:式(I)で表われる化合物のメタンスルホン酸塩の調製
約30mgの式(I)で表われる化合物を1.5mLのバイアルに秤量し、1.0mLのエタノールを添加し、試料を磁気攪拌機(40℃)の上に置いて攪拌させ、メタンスルホン酸(46.04μL)をさらに添加し、温度を保ちながら48時間攪拌し、大量の固形物が溶液から析出した。溶液を遠心分離し、式(I)で表われる化合物のメタンスルホン酸塩を得た。
実施例8:式(I)で表われる化合物のマレイン酸塩の結晶体Dの調製
20mlの無水メタノールを100mlの三口フラスコに加え、室温下、式(I)で表われる化合物(3.0g,6.57mmol,1.0当量)を三口フラスコに加え、70℃に昇温し、マレイン酸(1.91g,16.43mmol,2.5当量)を10mlのメタノールに溶解させて、上記の反応液にゆっくりと滴下した後、溶液が透明になった。5分間後、溶液から白色固体が析出した。温度を保ちながら2時間攪拌し、20-30℃に冷却し、N保護下、減圧で吸引濾過し、フィルターケーキを40-50℃の真空乾燥オーブンで恒量になるまで乾燥させ、式(I)で表われる化合物のマレイン酸塩の結晶体Dを得た。H NMR (400MHz,重メタノール) δ=8.60(s,1H),8.48(s,1H),7.63-7.53(m,1H),7.53-7.44(m,1H),7.37(s,1H),7.28 (dt, J=1.2, 8.1 Hz, 1H),6.29(s,4H),4.75-4.60(m,4H),4.40(s,2H),4.11(s,3H),3.10(s,3H). LCMS (ESI) m/z:444.1 [M+1].
式(I)で表われる化合物のマレイン酸塩の結晶体DのXRPDパターンを図12に示し、DSC曲線を図13に示し、TGA曲線を図14に示す。
実施例9:式(I)で表われる化合物のL-酒石酸塩の調製
約30mgの式(I)で表われる化合物を1.5mLのバイアルに秤量し、1.0mLのエタノールを添加し、試料を磁気攪拌機(40℃)の上に置いて攪拌させ、L-酒石酸(11.2mg)をさらに添加し、温度を保ちながら48時間攪拌し、大量の固形物が溶液から析出した。溶液を遠心分離し、フィルターケーキを40-50℃の真空乾燥オーブンで恒量になるまで乾燥させ、式(I)で表われる化合物の酒石酸塩を得た。
式(I)で表われる化合物の酒石酸塩はアモルファスであり、XRPDパターンを図15に示す。
実施例10:式(I)で表われる化合物のギ酸塩の調製
約300mgの式(I)で表われる化合物を100mLの丸底フラスコに秤量し、10mLのアセトニトリルと10mlの精製水を添加し、上記の反応フラスコに31mgのギ酸を添加し、凍結乾燥させ、式(I)で表われる化合物のギ酸塩を得た。HNMR (400MHz,重メタノール) δ=8.45(s,1H),8.36(s,1H),8.28(s,1H),7.60-7.54(m,1H),7.40(ddd,J=1.6,6.7,8.2Hz,1H),7.31(s,1H),7.22(dt,J=1.5,8.1Hz,1H),4.30(s,2H),4.15-4.08(m,4H),4.05(s,3H),2.74(s,3H)。
式(I)で表われる化合物のギ酸塩はアモルファスであり、XRPDパターンを図16に示す。
実施例11:式(II)で表われる化合物の結晶体Aおよび結晶体Cの吸湿性に関する研究
実験材料:
動的蒸気吸着測定装置(SMS DVS Advantage)
実験法:
10~15mgの式(II)で表われる化合物の結晶体Aおよび結晶体CをそれぞれDVSサンプルパンに取り、測定を行った。
実験結果:
式(II)で表われる化合物の結晶体AのDVS曲線を図17に示す。25℃および80%RHでΔW=1.329%である。
式(II)で表われる化合物の結晶体CのDVS曲線を図18に示す。25℃および80%RHでΔW=3.697%である。
実験の結論:
式(II)で表われる化合物の結晶体Aはわずかな吸湿性を有し、式(II)で表われる化合物の結晶体Cは吸湿性を有する。
実施例12:式(II)で表われる化合物の結晶体Aの水分活性試験
実験の目的:
異なる水分活性における結晶体の安定性を測定する。
実験方法:
約30mgの式(II)で表われる化合物の結晶体Aを秤量し、1.5mLの液体クロマトグラフィー用バイアルに入れた。攪拌子を入れ、さらに、液体クロマトグラフィー用バイアルにメタノールと水の系における水分活性試薬を適量で添加し、均一に混合した後、懸濁液である試料を磁気攪拌機(25℃,700rpm)で2日攪拌し、湿った試料のXRPD測定を行った。
実験の結論:
式(II)で表われる化合物の結晶体Aは、水分活性が25℃で0.1および0.3であった場合、結晶形が変化しなかったが、水分活性が0.3超であった場合、結晶体Aが結晶体Cに変換した。
実施例13:異なるpHの媒体における式(II)で表われる化合物の結晶体Aの溶解度試験
4mgの式(II)で表われる化合物の結晶体Aの試料を9つ秤量して、それぞれ1.5mLのサンプル瓶に入れた後、1mLの異なる溶媒(0.1mol/LのHCl、0.01mol/LのHCl、pH3.8緩衝液、pH4.5緩衝液、pH5.5緩衝液、pH6.0緩衝液、pH6.8緩衝液、pH7.4緩衝液、水)をそれぞれ添加し、溶解の状況によって、飽和溶液になるまで原料化合物を連続的に添加した。上記の懸濁液に攪拌子を入れて磁気攪拌機(温度37℃、暗所)で攪拌した。24時間攪拌した後、サンプルを採取して遠心分離した。サンプルの上層を濾膜で濾過し、濾液のpH値を測定し、その化合物の飽和溶解度をHPLCで測定した。測定の結果を表4に示す。
表4.異なるpHの緩衝液における式(II)で表われる化合物の結晶体Aの溶解度測定の結果
Figure 0007324862000008
結論:式(II)で表われる化合物の結晶体Aは、pH6.8以下の緩衝液および精製水において高い溶解度を示す。
実施例14:異なるpHの媒体における式(II)で表われる化合物の結晶体Cの溶解度試験
4mgの式(II)で表われる化合物の結晶体Cの試料を9つ秤量して、それぞれ1.5mLのサンプル瓶に入れた後、1mLの異なる溶媒(0.1mol/LのHCl、0.01mol/LのHCl、pH3.8緩衝液、pH4.5緩衝液、pH5.5緩衝液、pH6.0緩衝液、pH6.8緩衝液、pH7.4緩衝液、水)をそれぞれ添加し、溶解の状況によって、飽和溶液になるまで原料化合物を連続的に添加した。上記の懸濁液に攪拌子を入れて磁気攪拌機(温度37℃、暗所)で攪拌した。24時間攪拌した後、サンプルを採取して遠心分離した。サンプルの上層を濾膜で濾過し、濾液のpH値を測定し、その化合物の飽和溶解度をHPLCで測定した。測定の結果を表5に示す。
表5.異なるpHの緩衝液における式(II)で表われる化合物の結晶体Cの溶解度測定の結果
Figure 0007324862000009
結論:式(II)で表われる化合物の結晶体Cは、pH6.8以下の緩衝液および精製水において高い溶解度を示す。
実施例15:式(II)で表われる化合物の結晶体Aおよび結晶体Cの安定性試験
実験の目的:
影響要因である照明、高湿度(92.5%RH)、高温(60℃)および加速(40℃/75%RH)の条件下で、式(II)で表われる化合物の結晶体Aおよび結晶体Cの安定性を調査した。
実験装置:
照明試験箱、品番:SHH-100GD-2、条件:5000±500lux(可視光)、90mw/cm(紫外線)。
電熱送風乾燥オーブン、品番:GZX-9140MBE、条件:60℃。
恒温恒湿器、品番:LDS-800Y、条件:40℃/75%RH。
恒温恒湿器、品番:SHH-250SD、条件:25℃、92.5%RH。
実験方法:
適量の式(II)で表われる化合物の結晶体Aを秤量し、薄層に広げるように、乾燥した秤量瓶に入れ、影響要因の試験条件(60℃、92.5%RH、照明)および加速条件(40℃/75%RH)で放置し、サンプルを完全に曝した。17日後、サンプルを取り出し、関連物質および結晶体を測定した。
適量の式(II)で表われる化合物の結晶体Cを秤量し、薄層に広げるように、乾燥した秤量瓶に入れ、影響要因の試験条件(60℃、92.5%RH、照明)および加速条件(40℃/75%RH)で放置し、サンプルを完全に曝した。10日後、サンプルを取り出し、関連物質および結晶体を測定した。
実験の結果
照明、高温および加速の条件下での式(II)で表われる化合物の結晶体Aの関連物質の変化を表6に示す。
表6
Figure 0007324862000010
照明、高温および加速の条件下での式(II)で表われる化合物の結晶体Cの関連物質の変化を表7に示す。
表7
Figure 0007324862000011
実験の結論:
式(II)で表われる化合物の結晶体Aは、照明、高温、加速の条件下で、結晶形が変化しなかったが、高湿(92.5%RH)の条件下で結晶形が変化した。
式(II)で表われる化合物の結晶体Aは、高温の条件下でのみ分解不純物を生成し、その安定性は、式(I)で表われる化合物のマレイン酸塩の結晶体Dよりも優れた。
式(II)で表われる化合物の結晶体Cは、照明、高温、加速の条件下で、結晶形が変化せず、比較的安定した。
式(II)で表われる化合物の結晶体Cは、高温の条件下でのみ分解不純物を生成し、その安定性は、式(I)で表われる化合物のマレイン酸塩の結晶体Dよりも優れた。
実施例16:式(I)で表われる化合物のマレイン酸塩の結晶体Dの安定性試験
実験の目的:
影響要因である照明(5000±500lux(可視光)と90w/cm(紫外線))、高湿度(92.5%RH)、高温(60℃)および加速(40℃/75%RH)の条件下で、式(I)で表われる化合物のマレイン酸塩の結晶体Dの安定性を調査した。
実験装置:
照明試験箱、品番:SHH-100GD-2、条件:5000±500lux(可視光)と90mw/cm(紫外線)。
電熱送風乾燥オーブン、品番:GZX-9140MBE、条件:60℃。
恒温恒湿器、品番:LDS-800Y、条件:40℃/75%RH。
恒温恒湿器、品番:SHH-250SD、条件:25℃、92.5%RH。
実験方法:
適量の式(I)で表われる化合物のマレイン酸塩の結晶体Dを秤量し、薄層に広げるように、乾燥した秤量瓶に入れ、影響要因の試験条件(60℃、92.5%RH、照明)および加速条件(40℃/75%RH)で放置し、サンプルを完全に曝した。10日後、サンプルを取り出し、関連物質および結晶体を測定した。
実験の結論:
式(I)で表われる化合物のマレイン酸塩の結晶体Dは、照明、高温の条件下で、結晶形が変化しなかったが、高湿(92.5%RH)および加速(40℃/75%RH)の条件下で結晶形が変化した。
照明、高温、加速の条件下での式(I)で表われる化合物のマレイン酸塩の結晶体Dの関連物質の変化を表8に示す。
表8
Figure 0007324862000012
式(I)で表れる化合物は、高温および加速の条件下で比較的多くの分解不純物を生成し、その安定性は式(II)で表れる化合物よりも低いことを示す。
[書類名]特許請求の範囲
[請求項1]
X線粉末回折パターンが、6.04±0.2°、12.07±0.2°、13.32±0.2°の2θ角に特徴的回折ピークを有する、
[化1]
Figure 0007324862000013
式(II)で表される化合物の結晶体A。
[請求項2]
X線粉末回折パターンが、6.04±0.2°、12.07±0.2°、13.32±0.2°、16.06±0.2°、19.01±0.2°、20.14±0.2°、25.07±0.2°、30.44±0.2°の2θ角に特徴的回折ピークを有する、
請求項1に記載の結晶体A。
[請求項3]
X線粉末回折パターンが、6.04±0.2°、8.26±0.2°、10.79±0.2°、11.27±0.2°、12.07±0.2°、13.32±0.2°、16.06±0.2°、19.01±0.2°、20.14±0.2°、23.02±0.2°、25.07±0.2°、30.44±0.2°の2θ角に特徴的回折ピークを有する、
請求項2に記載の結晶体A。
[請求項4]
図1に示すXRPDパターンを有する、
請求項3に記載の結晶体A。
[請求項5]
示差走査熱量測定曲線が、200.99±5℃に吸熱ピークの開始点を有し、212.33±5℃に発熱ピークの開始点を有する、
請求項1~4のいずれか一項に記載の結晶体A。
[請求項6]
図2に示すDSCパターンを有する、
請求項5に記載の結晶体A。
[請求項7]
熱重量分析曲線が、120.00±3℃で0.2289%の重量損失を有する、
請求項1~4のいずれか一項に記載の結晶体A。
[請求項8]
図3に示すTGAパターンを有する、
請求項7に記載の結晶体A。
[請求項9]
X線粉末回折パターンが、5.88±0.2°、11.79±0.2°、21.96±0.2°の2θ角に特徴的回折ピークを有する、
式(II)で表される化合物の結晶体B。
[請求項10]
X線粉末回折パターンが、5.88±0.2°、7.92±0.2°、11.79±0.2°、12.92±0.2°、17.68±0.2°、18.50±0.2°、21.96±0.2°、23.87±0.2°の2θ角に特徴的回折ピークを有する、
請求項9に記載の結晶体B。
[請求項11]
X線粉末回折パターンが、5.88±0.2°、7.92±0.2°、11.79±0.2°、12.92±0.2°、17.68±0.2°、18.50±0.2°、21.29±0.2°、21.96±0.2°、23.87±0.2°、27.52±0.2°、29.05±0.2°、29.69±0.2°の2θ角に特徴的回折ピークを有する、
請求項10に記載の結晶体B。
[請求項12]
図4に示すXRPDパターンを有する、
請求項11に記載の結晶体B。
[請求項13]
示差走査熱量測定曲線が、41.96±5℃、87.83±5℃、165.00±5℃に吸熱ピークの開始点を有し、176.55±5℃に発熱ピークの開始点を有する、
請求項9~12のいずれか一項に記載の結晶体B。
[請求項14]
図5に示すDSCパターンを有する、
請求項13に記載の結晶体B。
[請求項15]
熱重量分析曲線が、80.47±3℃で5.053%の重量損失を有する、
請求項9~12のいずれか一項に記載の結晶体B。
[請求項16]
図6に示すTGAパターンを有する、
請求項15に記載の結晶体B。
[請求項17]
X線粉末回折パターンが、6.35±0.2°、6.99±0.2°、13.02±0.2°の2θ角に特徴的回折ピークを有する、
式(II)で表される化合物の結晶体C。
[請求項18]
X線粉末回折パターンが、6.35±0.2°、6.99±0.2°、13.02±0.2°、13.98±0.2°、15.44±0.2°、15.95±0.2°、19.08±0.2°、23.48±0.2°の2θ角に特徴的回折ピークを有する、
請求項17に記載の結晶体C。
[請求項19]
X線粉末回折パターンが、6.35±0.2°、6.99±0.2°、13.02±0.2°、13.98±0.2°、15.44±0.2°、15.95±0.2°、19.08±0.2°、19.92±0.2°、23.48±0.2°、24.34±0.2°、25.53±0.2°、28.13±0.2°の2θ角に特徴的回折ピークを有する、
請求項18に記載の結晶体C。
[請求項20]
図7に示すXRPDパターンを有する、
請求項19に記載の結晶体C。
[請求項21]
示差走査熱量測定曲線が、74.81±5℃および163.59±5℃に吸熱ピークの開始点を有し、172.00±5℃に発熱ピークの開始点を有する、
請求項17~20のいずれか一項に記載の結晶体C。
[請求項22]
図8に示すDSCパターンを有する、
請求項21に記載の結晶体C。
[請求項23]
熱重量分析曲線が、115.95±3℃で5.462%の重量損失を有する、
請求項17~20のいずれか一項に記載の結晶体C。
[請求項24]
図9に示すTGAパターンを有する、
請求項23に記載の結晶体C。

Claims (10)

  1. X線粉末回折パターンが、6.04±0.2°、12.07±0.2°、13.32±0.2°、16.06±0.2°、19.01±0.2°、20.14±0.2°、25.07±0.2°、および30.44±0.2°の2θ角に特徴的回折ピークを有する、
    Figure 0007324862000014
    式(II)で表れる化合物の結晶体A。
  2. X線粉末回折パターンが、6.04±0.2°、8.26±0.2°、10.79±0.2°、11.27±0.2°、12.07±0.2°、13.32±0.2°、16.06±0.2°、19.01±0.2°、20.14±0.2°、23.02±0.2°、25.07±0.2°、30.44±0.2°の2θ角に特徴的回折ピークを有する、
    請求項に記載の結晶体A。
  3. X線粉末回折パターンの解析データが、以下の表:
    Figure 0007324862000015

    に示される通りである、請求項1に記載の結晶体A。
  4. 示差走査熱量測定曲線が、200.99±5℃に吸熱ピークの開始点を有し、212.33±5℃に発熱ピークの開始点を有する、
    請求項1~3のいずれか一項に記載の結晶体A。
  5. 熱重量分析曲線が、120.00±3℃で0.2289%の重量損失を有する、
    請求項1~4のいずれか一項に記載の結晶体A。
  6. X線粉末回折パターンが、6.35±0.2°、6.99±0.2°、13.02±0.2°、13.98±0.2°、15.44±0.2°、15.95±0.2°、19.08±0.2°、および23.48±0.2°の2θ角に特徴的回折ピークを有する、
    Figure 0007324862000016
    式(II)で表れる化合物の結晶体C。
  7. X線粉末回折パターンが、6.35±0.2°、6.99±0.2°、13.02±0.2°、13.98±0.2°、15.44±0.2°、15.95±0.2°、19.08±0.2°、19.92±0.2°、23.48±0.2°、24.34±0.2°、25.53±0.2°、28.13±0.2°の2θ角に特徴的回折ピークを有する、
    請求項に記載の結晶体C。
  8. X線粉末回折パターンの解析データが、以下の表:
    Figure 0007324862000017

    に示される通りである、請求項6に記載の結晶体C。
  9. 示差走査熱量測定曲線が、74.81±5℃および163.59±5℃に吸熱ピークの開始点を有し、172.00±5℃に発熱ピークの開始点を有する、
    請求項のいずれか一項に記載の結晶体C。
  10. 熱重量分析曲線が、115.95±3℃で5.462%の重量損失を有する、
    請求項のいずれか一項に記載の結晶体C。
JP2021560107A 2019-04-10 2020-04-10 Egfr阻害剤の結晶体およびその調製方法 Active JP7324862B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910285738.X 2019-04-10
CN201910285738 2019-04-10
PCT/CN2020/084286 WO2020207483A1 (zh) 2019-04-10 2020-04-10 一种egfr抑制剂的晶型及其制备方法

Publications (2)

Publication Number Publication Date
JP2022527619A JP2022527619A (ja) 2022-06-02
JP7324862B2 true JP7324862B2 (ja) 2023-08-10

Family

ID=72750814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021560107A Active JP7324862B2 (ja) 2019-04-10 2020-04-10 Egfr阻害剤の結晶体およびその調製方法

Country Status (5)

Country Link
US (1) US20220194959A1 (ja)
EP (1) EP3954693A4 (ja)
JP (1) JP7324862B2 (ja)
CN (1) CN113784971B (ja)
WO (1) WO2020207483A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108640928A (zh) 2016-12-30 2018-10-12 南京明德新药研发股份有限公司 作为egfr抑制剂的喹唑啉类化合物
WO2020007219A1 (zh) 2018-07-02 2020-01-09 南京明德新药研发有限公司 一种egfr抑制剂的晶型及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796451B1 (en) * 2011-12-20 2018-08-01 Wei Qian Heterocycle amido alkyloxy substituted quinazoline derivative and use thereof
JOP20190186A1 (ar) * 2017-02-02 2019-08-01 Astellas Pharma Inc مركب كينازولين

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108640928A (zh) 2016-12-30 2018-10-12 南京明德新药研发股份有限公司 作为egfr抑制剂的喹唑啉类化合物
WO2020007219A1 (zh) 2018-07-02 2020-01-09 南京明德新药研发有限公司 一种egfr抑制剂的晶型及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF PHARMACEUTICAL SCIENCES,2010年,vol.99, no.7,2498-2961

Also Published As

Publication number Publication date
EP3954693A4 (en) 2022-08-10
CN113784971B (zh) 2023-07-14
EP3954693A1 (en) 2022-02-16
CN113784971A (zh) 2021-12-10
JP2022527619A (ja) 2022-06-02
WO2020207483A1 (zh) 2020-10-15
US20220194959A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
US11091440B2 (en) Malate salt of N-(4-{[6,7-bis(methyloxy) quinolin-4-yl]oxy}phenyl)- N′-(4-fluorophenyl)cyclopropane-1,1 -dicarboxamide, and crystalline forms thereof for the treatment of cancer
KR20120051702A (ko) N-〔3-플루오로-4-({6-(메틸옥시)-7-〔(3-모르폴린-4-일프로필)옥시〕퀴놀린-4-일}옥시)페닐〕-n''-(4-플루오로페닐)시클로프로판-1,1-디카르복사미드의 결정형
JP6894917B2 (ja) ピリジニルアミノピリミジン誘導体のメシル酸塩の結晶形、その製造方法及びその使用
TW201236684A (en) Pharmaceutically acceptable salts of (E)-N-[4-[[3-chloro-4-(2-pyridylmethoxy)phenyl]amino]-3-cyano-7-ethoxy-6-quinolyl]-3-[(2R)-1-methylpyrrolidin-2-yl]prop-2-enamide, preparation process and pharmaceutical use there of
CN113773305B (zh) 一种氨基嘧啶衍生物及其作为egfr酪氨酸激酶抑制剂的应用
WO2020007219A1 (zh) 一种egfr抑制剂的晶型及其制备方法
JP7324862B2 (ja) Egfr阻害剤の結晶体およびその調製方法
JP2020526593A (ja) N−フェニル−2−アミノピリミジン類化合物の結晶形、塩形態及びその製造方法
JP2023536892A (ja) Jak阻害剤化合物及びその使用
JP2022517396A (ja) Egfr阻害剤の塩、結晶形及びその製造方法
TW201829398A (zh) 酪胺酸蛋白激酶調節劑、晶型及其用途
WO2023083357A1 (zh) 氮杂稠环酰胺类化合物的盐、其结晶形式及其用途
WO2023066296A1 (en) Crystalline forms of quinazoline derivatives, preparation, composition and use thereof
CN115551863A (zh) 酪氨酸激酶抑制剂的盐型、晶型、药物组合物及其用途

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230731

R150 Certificate of patent or registration of utility model

Ref document number: 7324862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150