JP7311453B2 - 電気駆動車両 - Google Patents

電気駆動車両 Download PDF

Info

Publication number
JP7311453B2
JP7311453B2 JP2020058292A JP2020058292A JP7311453B2 JP 7311453 B2 JP7311453 B2 JP 7311453B2 JP 2020058292 A JP2020058292 A JP 2020058292A JP 2020058292 A JP2020058292 A JP 2020058292A JP 7311453 B2 JP7311453 B2 JP 7311453B2
Authority
JP
Japan
Prior art keywords
coolant
engine
cooling circuit
resistor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020058292A
Other languages
English (en)
Other versions
JP2021154921A (ja
Inventor
徳磨 池上
聡彦 渡邉
淳 菊地
俊彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2020058292A priority Critical patent/JP7311453B2/ja
Publication of JP2021154921A publication Critical patent/JP2021154921A/ja
Application granted granted Critical
Publication of JP7311453B2 publication Critical patent/JP7311453B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、回生電力を熱に変換して消費する電気駆動車両に関する。
鉱山のような作業現場では、採掘した大量の砕石や土砂などを運搬する必要がある。その道具として、ダンプトラックなどの運搬車両が広く用いられている。こうしたなか、近年の自動車技術の発展により、電気駆動のダンプトラックも多くなっている。
特許文献1の電気駆動車両は、エンジンで生成される運動エネルギーによって発電機を駆動し、発電機で発電された電力を用いて走行モータが車輪を回転させるハイブリッド電気駆動車両である。このような電気駆動車両は、加速時に大きな負荷がかかるエンジンを液冷し、減速時に走行モータが発生する回生電力を熱に変換して消費する抵抗器を空冷するのが一般的である。
ここで、抵抗器を空冷する場合、冷却ファンの風切り音による騒音、作業環境の外気に含まれる塵埃や湿気による抵抗器の絶縁劣化が問題となる。そこで、特許文献2に記載されているように、抵抗器を液冷することが考えられる。
特開2019-59370号公報 特開2018-78347号公報
しかしながら、抵抗器の冷却システムを液冷化すると、冷却液の放熱機構を新たに搭載する必要がある。そのため、エンジン冷却システムの放熱機構と、抵抗器冷却システムの放熱機構とを備えることにより、電気駆動車両が大型化するという課題を生じる。
本発明は、上記した実状に鑑みてなされたものであり、その目的は、回生電力を熱に変換して消費する抵抗器を備える電気駆動車両において、車両の大型化を抑制しつつ、エンジン及び抵抗器を液冷化する技術を提供することにある。
上記目的を達成するために、本発明は、エンジンと、前記エンジンの駆動力によって発電する発電機と、前記発電機で発電された電力の供給を受けて車輪を駆動する駆動力を発生させる力行動作、及び前記車輪の減速時に回生電力を発生させる回生動作が可能な走行モータと、前記走行モータが発生させた回生電力を熱に変換して消費する抵抗器とを備える電気駆動車両であって、前記エンジンを冷却する冷却液が循環するエンジン冷却回路と、前記抵抗器を冷却する冷却液が循環し、且つ前記エンジン冷却回路と熱交換可能に構成された抵抗器冷却回路と、前記エンジン冷却回路を通過する冷却液を圧送するポンプとを備え、前記抵抗器冷却回路は、冷却液の流通方向における前記エンジンより下流側で且つ前記ポンプより上流側において、前記抵抗器を冷却した冷却液が通過する排出流路が前記エンジン冷却回路に合流し、冷却液の流通方向における前記ポンプより下流側で且つ前記エンジンより上流側において、前記抵抗器に供給される冷却液が通過する供給流路が前記エンジン冷却回路から分岐し、前記排出流路を通過する冷却液の温度を検知する温度センサと、前記供給流路を開閉する電磁比例弁と、前記温度センサで検知される温度が高いほど、前記電磁比例弁の開口率を高くするコントローラとを備えることを特徴とする。
本発明によれば、車両の大型化を抑制しつつ、エンジン及び抵抗器を液冷化することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
第1実施形態に係るダンプトラックの側面図である。 ダンプトラックの前方斜視図である。 ダンプトラックに搭載される電気回路を示す回路図である。 第1実施形態に係る冷却システムの概略図である。 第2実施形態に係る冷却システムの概略図である。 第2実施形態に係るダンプトラックのハードウェアブロック図である。 冷却液分配処理のフローチャートである。
[第1実施形態]
本発明に係る電気駆動車両の一例であるダンプトラック1の実施形態について、図面を用いて説明する。図1は、第1実施形態に係るダンプトラック1の側面図である。図2は、ダンプトラック1の前方斜視図である。図3は、ダンプトラック1に搭載される電気回路を示す回路図である。なお、本明細書中の前後左右は、特に断らない限り、ダンプトラック1に搭乗して操作するオペレータの視点を基準としている。
図1及び図2に示すように、第1実施形態に係るダンプトラック1は、車体フレーム2と、車体フレーム2の前部の左右両端に回転可能に支持された一対の前輪3L、3R(以下、これらを総称して、「前輪3」と表記する。)と、車体フレーム2の後部の左右両端に回転可能に支持された一対の後輪4L、4R(以下、これらを総称して、「後輪4」と表記する。)と、車体フレーム2上に起伏可能に支持された荷台5と、ダンプトラック1を操作するオペレータが搭乗するキャブ6とを主に備える。
前輪3は、オペレータによるステアリング操作によって舵角が変わる操舵輪である。図3に示すように、後輪4は、走行モータ21の駆動力が伝達されて回転する駆動輪(車輪)である。ダンプトラック1は、一対の後輪4L、4Rそれぞれに独立して駆動力を伝達するために、一対の走行モータ21を備える。
図1に示すように、荷台5は、ホイストシリンダ7の伸縮によって、車体フレーム2の後部のヒンジピン8を中心として、上下方向に起伏する。ホイストシリンダ7は、一端が車体フレーム2に接続され、他端が荷台5に接続され、油圧ポンプ(図示省略)から作動油の供給を受けて伸縮する。そして、ホイストシリンダ7が伸長すると荷台5が起立し、ホイストシリンダ7が縮小すると荷台5が倒伏する。
図2に示すように、キャブ6は、車体フレーム2の前端のデッキ9上の左端に配置されている。キャブ6は、ダンプトラック1を操作するオペレータが搭乗する運転室を形成している。そして、キャブ6の内部には、ダンプトラック1を動作させるための操作装置(エンジンスイッチ、シフトレバー、操舵ハンドル、アクセルペダル、ブレーキペダル、モニタ装置、タッチパネル等)が配置されている。キャブ6に搭乗したオペレータが操作装置を操作することによって、ダンプトラック1が走行(加速、制動、旋回)し、荷台5が起伏する。
また、デッキ9の下方には、パワーユニット10が配置されている。パワーユニット10には、エンジン14、発電機15、16、及び図示しない油圧機器(油圧ポンプ、バルブ)等が収容されている。さらに、デッキ9上には、グリッドボックス11が設置されている。グリッドボックス11は、走行モータ21が発生させた回生電力を熱に変換して消費する抵抗器である。なお、グリッドボックス11は、電気的に並列接続された複数(例えば、5つ)の抵抗器を含んでもよい。
図3に示すように、ダンプトラック1の電気回路は、例えば、グリッドボックス11と、発電機15、16と、整流回路(コンバータ)17、18と、インバータ19、20と、走行モータ21と、ファンモータ22とを備える。
発電機15、16は、エンジン14の駆動力が伝達されて発電する。整流回路17は、発電機15から出力された三相交流電力を直流電力に変換して、インバータ19に出力する。整流回路18は、発電機16から出力された三相交流電力を直流電力に変換して、インバータ20に出力する。
インバータ19は、整流回路17から出力された直流電力を三相交流電力に変換して、一対の走行モータ21それぞれに出力する。走行モータ21は、インバータ19から三相交流電力の供給を受けて回転する。そして、走行モータ21の回転駆動力が減速機(図示省略)を通じて後輪4に伝達されることによって、ダンプトラック1が走行(加速)する。
一方、ダンプトラック1を制動する際、走行モータ21は、電気ブレーキとして作動する。そして、電気ブレーキとして作動する走行モータ21は、回生電力を発電して、インバータ19に出力する。インバータ19は、走行モータ21から出力された三相交流の回生電力を直流電力に変換して、グリッドボックス11に出力する。グリッドボックス11は、インバータ19から出力された回生電力を、熱に変換して消費する。
すなわち、走行モータ21は、発電機15で発電された電力の供給を受けて後輪4を駆動する駆動力を発生させる力行動作と、後輪4の減速時に回生電力を発生させる回生動作とを実行することができる。走行モータ21の動作は、コントローラ50(図6参照)によって4象限運転制御される。
インバータ20は、整流回路18から出力された直流電力を三相交流電力に変換して、ファンモータ22に出力する。ファンモータ22は、インバータ20から三相交流電力の供給を受けて回転し、冷却システム30の冷却ファン23を回転させる。なお、冷却ファン23は、ファンモータ22に代えて、エンジン14の駆動力が伝達されて回転してもよい。冷却ファン23は、後述する熱交換器33、37の両方に冷却風を供給する。すなわち、熱交換器33、37は、冷却ファン23を共有している。
図4は、第1実施形態に係る冷却システム30の概略図である。冷却システム30は、ダンプトラック1に搭載されている。冷却システム30は、エンジン14及びグリッドボックス11を冷却した冷却液を熱交換して、再びエンジン14及びグリッドボックス11に供給する。冷却システム30は、エンジン冷却回路31と、抵抗器冷却回路35とを主に備える。
エンジン冷却回路31は、エンジン14を冷却する冷却液(例えば、LLC)が循環する流路(配管、ホースなど)である。エンジン冷却回路31は、エンジン14に設けられた冷却液通路の入口及び出口に接続される。これにより、冷却液通路を通過する冷却液がエンジン14を冷却する。エンジン冷却回路31には、ポンプ32と、熱交換器(エンジン冷却液熱交換器)33と、温度センサ34とが設けられている。
ポンプ32は、エンジン冷却回路31を通過する冷却液を、エンジン14に向けて圧送する。ポンプ32は、例えば、エンジン14の駆動力が伝達されて駆動する。ポンプ32は、冷却液の流通方向におけるエンジン14より上流側で且つ熱交換器33より下流側に設けられている。
熱交換器33は、エンジン14を冷却して高温になった冷却液を、外気と熱交換させる。熱交換器33には、冷却ファン23で生起された冷却風が供給される。熱交換器33は、冷却液の流通方向におけるポンプ32より上流側で且つ後述する相互熱交換器39より下流側に配置される。
温度センサ34は、エンジン14を通過した冷却液の温度を検知する。温度センサ34は、冷却液の流通方向におけるエンジン14より下流側で且つ相互熱交換器39より上流側に配置される。温度センサ34は、冷却液の温度を検知し、検知結果を示す検知信号をコントローラ50に出力する。
すなわち、エンジン冷却回路31は、ポンプ32によって圧送された冷却液でエンジン14を冷却し、エンジン14を冷却した冷却液を相互熱交換器39及び熱交換器33で冷却し、再びポンプ32から圧送する。また、エンジン冷却回路31中の冷却液の最高温度が温度センサ34によって検知される。
抵抗器冷却回路35は、グリッドボックス11を冷却する冷却液(例えば、油)が循環する流路(配管、ホースなど)である。抵抗器冷却回路35は、グリッドボックス11に設けられた冷却液通路の入口及び出口に接続される。これにより、冷却液通路を通過する冷却液がグリッドボックス11を冷却する。抵抗器冷却回路35には、ポンプ36と、熱交換器(抵抗器冷却液熱交換器)37と、温度センサ38とが設けられている。
ポンプ36は、抵抗器冷却回路35を通過する冷却液を、グリッドボックス11に向けて圧送する。ポンプ36は、例えば、エンジン14の駆動力が伝達されて駆動する。ポンプ36は、冷却液の流通方向におけるグリッドボックス11より上流側で且つ熱交換器37より下流側に設けられている。
熱交換器37は、グリッドボックス11を冷却して高温になった冷却液を、外気と熱交換させる。熱交換器37には、冷却ファン23で生起された冷却風が供給される。熱交換器37は、冷却液の流通方向におけるポンプ36より上流側で且つ相互熱交換器39より下流側に配置される。
温度センサ38は、グリッドボックス11を通過した冷却液の温度を検知する。温度センサ38は、冷却液の流通方向におけるグリッドボックス11より下流側で且つ相互熱交換器39より上流側に配置される。温度センサ38は、冷却液の温度を検知し、検知結果を示す検知信号をコントローラ50に出力する。
すなわち、抵抗器冷却回路35は、ポンプ36によって圧送された冷却液でグリッドボックス11を冷却し、グリッドボックス11を冷却した冷却液を相互熱交換器39及び熱交換器37で冷却し、再びポンプ36から圧送する。また、抵抗器冷却回路35中の冷却液の最高温度が温度センサ38によって検知される。
相互熱交換器39は、エンジン冷却回路31のうちの温度センサ34及び熱交換器33の間の流路31aと、抵抗器冷却回路35のうちの温度センサ38及び熱交換器37の間の流路35aとを近接させて、それぞれの流路31a、35aを通過する冷却液同士を相互に熱交換させる。流路31a、35aは、相互熱交換器39内において、近接した状態を保ちつつ蛇行することによって、相互に熱交換する表面積を増加させている。
すなわち、相互熱交換器39では、流路31a、35aを通過する冷却液のうち、温度の高い側から低い側に向けて熱量が移動する。その結果、エンジン冷却回路31及び抵抗器冷却回路35それぞれの冷却液は、相互熱交換器39を通過することによって温度が平準化される。相互熱交換器39内で流路31a、35aを近接させることは、エンジン冷却回路31及び抵抗器冷却回路35を熱交換可能に構成することの一例である。
ダンプトラック1の加速時は、エンジン14の負荷が大きくなり、走行モータ21が力行動作する。その結果、エンジン14の発熱量が大きくなる半面、回生電力が発生しないのでグリッドボックス11は発熱しない。このとき、相互熱交換器39では、高温の流路31a内の冷却液から、低温の流路35a内の冷却液に熱量が移動して、流路31a内の冷却液の温度が下降する。
一方、ダンプトラック1の減速時は、エンジン14の負荷が小さくなり、走行モータ21が回生動作する。その結果、エンジン14の発熱量が小さくなる半面、グリッドボックス11が回生電力を熱に変換して発熱する。このとき、相互熱交換器39では、高温の流路35a内の冷却液から、低温の流路31a内の冷却液に熱量が移動して、流路35a内の冷却液の温度が下降する。
第1実施形態によれば、例えば以下の作用効果を奏する。
前述したように、エンジン14及びグリッドボックス11は、互いに異なるタイミングで発熱する。そこで第1実施形態のように、エンジン冷却回路31の冷却液と、抵抗器冷却回路35の冷却液とを、相互熱交換器39で相互に熱交換させることによって、冷却液の温度を平準化することができる。これにより、ダンプトラック1の加速時及び減速時の両方において、熱交換器33、37に流入する冷却液の温度の上がり過ぎを防止することができる。
その結果、熱交換器33、37における放熱量を小さくすることができるので、熱交換器33、37で冷却ファン23を共有しても、冷却液の温度を十分に低下させることができる。これにより、熱交換器33、37それぞれに独立した冷却ファンを設ける場合と比較して、冷却システム30を小型化することができる。
なお、第1実施形態では、エンジン冷却回路31及び抵抗器冷却回路35の流路が独立しているので、エンジン冷却回路31と抵抗器冷却回路35とで、別々の冷却液を使用することができる。例えば、絶縁性の高い油を抵抗器冷却回路35の冷却液とすることにより、冷却液中に抵抗器を直接浸漬することができる。これにより、抵抗器冷却回路35の冷却効率がさらに向上する。
[第2実施形態]
なお、エンジン冷却回路31及び抵抗器冷却回路35を熱交換可能に構成する具体的な方法は、相互熱交換器39に限定されない。図5は、第2実施形態に係る冷却システム30Aの概略図である。図6は、第2実施形態に係るダンプトラック1のハードウェアブロック図である。以下、第1実施形態との共通点の詳細な説明は省略し、相違点を中心に説明する。
第2実施形態に係る冷却システム30Aは、冷却ファン23に加えて、流路の一部及びポンプ32が、エンジン冷却回路31及び抵抗器冷却回路35で共有されている点で、第1実施形態に係る冷却システム30と相違する。また、第2実施形態に係る冷却システム30Aは、エンジン冷却回路31及び抵抗器冷却回路35の冷却液が同一(例えば、水)である点で、第1実施形態に係る冷却システム30と相違する。
第2実施形態に係る抵抗器冷却回路35は、グリッドボックス11を冷却した冷却液が通過する排出流路41と、グリッドボックス11に供給される冷却液が通過する供給流路42とを含む。そして、排出流路41には、熱交換器37、温度センサ38、及び逆止弁43が設けられている。また、供給流路42には、電磁比例弁44が設けられている。一方、第2実施形態では、抵抗器冷却回路35のポンプ36が省略されている。
排出流路41は、冷却液の流通方向における上流側の端部がグリッドボックス11の出口に接続され、下流側の端部が合流位置Pにおいてエンジン冷却回路31に接続されている。すなわち、排出流路41は、合流位置Pにおいてエンジン冷却回路31に合流している。合流位置Pは、エンジン冷却回路31のうち、冷却液の流通方向におけるエンジン14より下流側で且つポンプ32(より詳細には、熱交換器33)より上流側の位置である。
供給流路42は、冷却液の流通方向における上流側の端部が分岐位置Pにおいてエンジン冷却回路31に接続され、下流側の端部がグリッドボックス11の入口に接続されている。すなわち、供給流路42は、分岐位置Pにおいてエンジン冷却回路31から分岐している。分岐位置Pは、エンジン冷却回路31のうち、冷却液の流通方向におけるポンプ32より下流側で且つエンジン14より上流側の位置である。
逆止弁43は、冷却液の流通方向における合流位置Pより上流側で且つ熱交換器37より下流側において、排出流路41に設けられている。逆止弁43は、排出流路41からエンジン冷却回路31に向かう冷却液の流れを許容し、エンジン冷却回路31から排出流路41に向かう冷却液の流れを阻止する。
すなわち、排出流路41内の冷却液は、熱交換器37で外気と熱交換した後で、エンジン冷却回路31内の冷却液と混合される。エンジン冷却回路31及び抵抗器冷却回路35の冷却液を混合することは、エンジン冷却回路31及び抵抗器冷却回路35を熱交換可能に構成することの他の例である。そして、混合された冷却液は、熱交換器33でさらに外気と熱交換される。
電磁比例弁44は、冷却液の流通方向における分岐位置Pより下流側で且つグリッドボックス11より上流側において、供給流路42に設けられている。電磁比例弁44は、供給流路42を開閉する。より詳細には、電磁比例弁44は、コントローラ50の制御に従って開口率が制御されることによって、エンジン冷却回路31から供給流路42に分配される冷却液の流量を増減させる。
なお、電磁比例弁44の「開口率」は、例えば、供給流路42を冷却液が通過できない状態(0%)から、供給流路42を通過する冷却液の流量が最大となる状態(100%)までを、百分率で表したものである。電磁比例弁44は、例えば、コントローラ50によって印加される制御電圧の大きさによって、開口率が変化する。
すなわち、熱交換器33で冷却された冷却液は、ポンプ32によって圧送され、分岐位置Pでエンジン14及びグリッドボックス11に分配される。そして、エンジン14及びグリッドボックス11への冷却液の分配比率は、コントローラ50による電磁比例弁44の制御によって調整される。
コントローラ50は、CPU(Central Processing Unit)51、ROM(Read Only Memory)52、及びRAM(Random Access Memory)53を備える。コントローラ50は、ROM52に格納されたプログラムコードをCPU51が読み出して実行することによって、後述する処理を実現する。RAM53は、CPU51がプログラムを実行する際のワークエリアとして用いられる。
但し、コントローラ50の具体的な構成はこれに限定されず、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェアによって実現されてもよい。
コントローラ50は、ダンプトラック1全体の動作を制御する。なお、本実施形態では、走行モータ21、ファンモータ22、及び電磁比例弁44が単一のコントローラ50によって制御される例を説明するが、走行モータ21及びファンモータ22を制御するコントローラと、電磁比例弁44を制御するコントローラとが独立していてもよい。
まず、コントローラ50は、アクセルセンサ54によって検知されるアクセルペダルの踏込量に応じて、走行モータ21を力行動作させる(すなわち、インバータ19を通じて走行モータ21に供給する電力を増減させる)。より詳細には、コントローラ50は、アクセルペダルの踏込量が多いほど、走行モータ21に供給する電力を増加させる(換言すれば、発電機15の発電量を増加させる)。
また、コントローラ50は、ブレーキセンサ55によって検知されるブレーキペダルの踏込量に応じて、走行モータ21を回生動作させる(すなわち、走行モータ21に回生電力を発電させる)。ブレーキペダルの踏込量が多いほど、走行モータ21による回生電力の発電量が増加する。
さらに、コントローラ50は、温度センサ34、38から出力される検知信号と、アクセルセンサ54で検知されるアクセルペダルの踏込量とに基づいて、図7に示す冷却液分配処理を実行する。図7は、冷却液分配処理のフローチャートである。冷却液分配処理は、例えば、ダンプトラック1のエンジン14が駆動している間、所定の時間間隔毎に繰り返し実行される。
まず、コントローラ50は、走行モータ21が力行動作中か否かを判定する(S11)。すなわち、コントローラ50は、アクセルペダルが踏み込まれている(すなわち、走行モータ21に電力を供給している)とき、走行モータ21が力行動作中だと判定する(S11:Yes)。一方、コントローラ50は、アクセルペダルが踏み込まれていない(すなわち、走行モータ21に電力を供給していない)とき、走行モータ21が力行動作中でないと判定する(S11:No)。
そして、コントローラ50は、走行モータ21が力行動作中だと判定した場合に(S11:Yes)、電磁比例弁44の開口率を0%にすることによって、供給流路42を閉塞させる(S12)。これにより、ポンプ32によって圧送される冷却液は、全てエンジン14の冷却に用いられる。その結果、負荷が高い状態のエンジン14が効率的に冷却される。
一方、コントローラ50は、走行モータ21が力行動作中でないと判定した場合に(S11:No)、温度センサ38で検知された冷却液の温度(以下、「冷却液温度T」と表記する。)に応じて、電磁比例弁44の開口率を制御する(S13~S15)。
コントローラ50は、冷却液温度Tが予め定められた閾値温度Tth未満の場合に(S13:Yes)、電磁比例弁44の開口率を50%にする(S14)。また、コントローラ50は、冷却液温度Tが閾値温度Tth以上の場合に(S13:No)、電磁比例弁44の開口率を100%にする(S15)。すなわち、コントローラ50は、冷却液温度Tが高いほど、電磁比例弁44の開口率を高くする。
第2実施形態によれば、例えば以下の作用効果を奏する。
第2実施形態によれば、エンジン冷却回路31及び抵抗器冷却回路35で流路の一部を共有することによって、2つの冷却回路31、35の冷却液の温度をさらに平準化することができる。また、第2実施形態によれば、冷却ファン23に加えてポンプ32を共有できるので、冷却システム30Aをさらに小型化することができる。さらに、図5で熱交換器37を省略して、熱交換器33をさらに共有すれば、冷却システム30Aを更なる小型化が実現できる。
また、第2実施形態によれば、冷却液温度Tに応じて電磁比例弁44の開口率を調整することによって、エンジン14及びグリッドボックス11に冷却液を適切に分配することができる。その結果、冷却システム30Aを小型化しても、エンジン14及びグリッドボックス11を効率的に冷却することができる。
なお、冷却液温度Tに応じた電磁比例弁の開口率の調整は、二段階に限定されず、三段階以上であってもよい。また、コントローラ50は、冷却液温度Tと閾値温度Tthとを比較する方法に代えて、ROM52に記憶された関数に冷却液温度Tを入力して、当該冷却液温度Tに対応する開口率を取得してもよい。
また、第2実施形態では、走行モータ21が力行動作中か否かを判定する例を説明したが、ステップS11の処理は省略してもよい。そして、冷却液温度Tに応じて電磁比例弁44の開口率を調整することによって、冷却液温度Tが低い時に、結果として電磁比例弁44の開口率が0%になってもよい。
さらに、第2実施形態に係るコントローラ50は、温度センサ34、38で検知された冷却液の温度に応じて、冷却ファン23の回転速度(すなわち、インバータ20を通じて供給される電力の大きさ)を制御してもよい。すなわち、コントローラ50は、温度センサ34、38で検知された冷却液の温度(例えば、平均値)が高いほど、冷却ファン23の回転速度を速くしてもよい。
上述した実施形態は、本発明の説明のための例示であり、本発明の範囲をそれらの実施形態にのみ限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。
1 ダンプトラック
2 車体フレーム
3 前輪
4 後輪
5 荷台
6 キャブ
7 ホイストシリンダ
8 ヒンジピン
9 デッキ
10 パワーユニット
11 グリッドボックス
12 グリッドファン
14 エンジン
15,16 発電機
17,18 整流回路
19,20 インバータ
21 走行モータ
22 ファンモータ
23 冷却ファン
30,30A 冷却システム
31 エンジン冷却回路
31a,35a 流路
32,36 ポンプ
33 熱交換器(エンジン冷却液熱交換器)
34,38 温度センサ
35 抵抗器冷却回路
37 熱交換器(抵抗器冷却液熱交換器)
39 相互熱交換器
41 排出流路
42 供給流路
43 逆止弁
44 電磁比例弁
50 コントローラ
51 CPU
52 ROM
53 RAM
54 アクセルセンサ
55 ブレーキセンサ

Claims (4)

  1. エンジンと、
    前記エンジンの駆動力によって発電する発電機と、
    前記発電機で発電された電力の供給を受けて車輪を駆動する駆動力を発生させる力行動作、及び前記車輪の減速時に回生電力を発生させる回生動作が可能な走行モータと、
    前記走行モータが発生させた回生電力を熱に変換して消費する抵抗器とを備える電気駆動車両であって、
    前記エンジンを冷却する冷却液が循環するエンジン冷却回路と、
    前記抵抗器を冷却する冷却液が循環し、且つ前記エンジン冷却回路と熱交換可能に構成された抵抗器冷却回路と
    前記エンジン冷却回路を通過する冷却液を圧送するポンプとを備え、
    前記抵抗器冷却回路は、
    冷却液の流通方向における前記エンジンより下流側で且つ前記ポンプより上流側において、前記抵抗器を冷却した冷却液が通過する排出流路が前記エンジン冷却回路に合流し、
    冷却液の流通方向における前記ポンプより下流側で且つ前記エンジンより上流側において、前記抵抗器に供給される冷却液が通過する供給流路が前記エンジン冷却回路から分岐し、
    前記排出流路を通過する冷却液の温度を検知する温度センサと、
    前記供給流路を開閉する電磁比例弁と、
    前記温度センサで検知される温度が高いほど、前記電磁比例弁の開口率を高くするコントローラとを備えることを特徴とする電気駆動車両。
  2. 請求項1に記載の電気駆動車両において、
    前記エンジン冷却回路及び前記抵抗器冷却回路の流路同士を近接させて、それぞれを通過する冷却液を相互に熱交換させる相互熱交換器を備えることを特徴とする電気駆動車両。
  3. 請求項に記載の電気駆動車両において、
    前記コントローラは、
    前記走行モータの前記力行動作中に、前記電磁比例弁に前記供給流路を閉塞させ、
    前記走行モータの前記回生動作中に、前記温度センサで検知した温度に応じて前記電磁比例弁の開口率を変化させることを特徴とする電気駆動車両。
  4. 請求項1に記載の電気駆動車両において、
    前記エンジン冷却回路の冷却液を外気と熱交換させるエンジン冷却液熱交換器と、
    前記抵抗器冷却回路の冷却液を外気と熱交換させる抵抗器冷却液熱交換器と、
    前記エンジン冷却液熱交換器及び前記抵抗器冷却液熱交換器の両方に、冷却風を供給する冷却ファンとを備えることを特徴とする電気駆動車両。
JP2020058292A 2020-03-27 2020-03-27 電気駆動車両 Active JP7311453B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020058292A JP7311453B2 (ja) 2020-03-27 2020-03-27 電気駆動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020058292A JP7311453B2 (ja) 2020-03-27 2020-03-27 電気駆動車両

Publications (2)

Publication Number Publication Date
JP2021154921A JP2021154921A (ja) 2021-10-07
JP7311453B2 true JP7311453B2 (ja) 2023-07-19

Family

ID=77916888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020058292A Active JP7311453B2 (ja) 2020-03-27 2020-03-27 電気駆動車両

Country Status (1)

Country Link
JP (1) JP7311453B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223505A (ja) 2000-11-02 2002-08-09 Ford Motor Co ハイブリッド電気自動車の冷却方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117710U (ja) * 1974-07-29 1976-02-09
JPH0319201Y2 (ja) * 1984-09-27 1991-04-23
US5255733A (en) * 1992-08-10 1993-10-26 Ford Motor Company Hybird vehicle cooling system
JPH11313406A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd ハイブリッド車の冷却装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223505A (ja) 2000-11-02 2002-08-09 Ford Motor Co ハイブリッド電気自動車の冷却方法

Also Published As

Publication number Publication date
JP2021154921A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
AU2011292206B2 (en) Method and system for eliminating fuel consumption during dynamic braking of electric drive machines
US7918296B2 (en) Cooling system for an electric drive machine and method
CN101541601B (zh) 车辆的冷却用风扇的控制装置
US20120230843A1 (en) Cooling system for an electric drive machine and method
WO2013153997A1 (ja) インバータ装置の冷却構造
JP2014007780A (ja) ハイブリッド式作業車両
CN112758062A (zh) 车辆的组合式冷却和水制动系统及冷却车辆的推进装置和水制动车辆的一对车轮的方法
JP7311453B2 (ja) 電気駆動車両
CN111406001B (zh) 用于车辆的冷却剂系统
JP5446781B2 (ja) 左右独立駆動車両の駆動ユニット冷却装置
JP2013100785A (ja) エンジンの冷却装置
JP2014054117A (ja) 電気駆動式ダンプトラック
AU2011302496A1 (en) Retarding grid cooling system and control
JP2012236493A (ja) 車両用冷却装置
CN114174108B (zh) 车辆用冷却装置
JP7253666B2 (ja) 車両用熱交換システム及びダンプトラック
JP2018121429A (ja) 電気自動車
WO2024004979A1 (ja) 運搬車両
CN111719632A (zh) 挖土机
JP6606481B2 (ja) ダンプトラック及び冷却ファン制御方法
CN108397429B (zh) 用于液压辅助制动及驱动的控制系统及控制方法
JP7463729B2 (ja) 四輪駆動の電動車両の制御装置
WO2021020370A1 (ja) 車両の制動制御装置
JP5450520B2 (ja) 電動車両制御装置、及びそれを用いた電動車両
CN115534628A (zh) 冷却系统和控制冷却系统的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230706

R150 Certificate of patent or registration of utility model

Ref document number: 7311453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150