JP7310710B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP7310710B2
JP7310710B2 JP2020089555A JP2020089555A JP7310710B2 JP 7310710 B2 JP7310710 B2 JP 7310710B2 JP 2020089555 A JP2020089555 A JP 2020089555A JP 2020089555 A JP2020089555 A JP 2020089555A JP 7310710 B2 JP7310710 B2 JP 7310710B2
Authority
JP
Japan
Prior art keywords
temperature
fuel cell
stack
cell system
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020089555A
Other languages
English (en)
Other versions
JP2021184352A (ja
Inventor
政史 戸井田
真弘 小関
裕介 西田
良一 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020089555A priority Critical patent/JP7310710B2/ja
Priority to US17/207,832 priority patent/US11431007B2/en
Priority to CN202110435223.0A priority patent/CN113725462B/zh
Publication of JP2021184352A publication Critical patent/JP2021184352A/ja
Application granted granted Critical
Publication of JP7310710B2 publication Critical patent/JP7310710B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)

Description

本開示は、燃料電池システムに関する。
燃料電池システムにおいて、燃料電池スタックの温度が氷点下で始動する場合に、カソードガスの流路に設けられたエアコンプレッサや弁等の補機部品を制御して、燃料電池スタックに供給するカソードガス、例えば、空気の供給量を少なくして低効率で発電を行い、燃料電池スタックを暖める暖機運転を行うものが知られている。特許文献1には、燃料電池スタックの温度、例えば燃料電池スタック出口における冷却媒体の温度が予め定めた温度になるまで暖機運転を行う技術が記載されている。
特開2017-195021号公報
始動時の燃料電池スタックの温度がある程度以上、高い状態においては、燃料電池スタックの温度が低い状態よりも燃料電池スタックの凍結の可能性が低い。このため、凍結の可能性に応じて暖機運転を行うよう、暖機運転の効率を改善する余地があることが新たに見出された。
本開示は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。
本発明の一形態によれば、燃料電池システムが提供される。この燃料電池システムは、燃料電池スタックと、前記燃料電池スタックの温度であるスタック温度を取得する温度測定部と、前記燃料電池システムを制御する制御部と、を備える。前記制御部は、前記燃料電池システムの始動時に前記スタック温度が予め定められた第1閾値温度以下の場合において、前記スタック温度が目標温度に上昇するまで、前記燃料電池スタックの単位時間あたりの発熱量を設定発熱量に制御して暖機運転を行い、前記燃料電池システムの始動時の前記スタック温度があらかじめ定められた第2閾値温度以上の場合に、前記目標温度を、前記燃料電池システムの始動時の前記スタック温度が前記第2閾値温度より低い場合の前記目標温度よりも小さく設定する処理と、前記設定発熱量を、前記燃料電池システムの始動時の前記スタック温度が前記第2閾値温度より低い場合の前記設定発熱量よりも小さく設定する処理と、のうち少なくとも一方の処理を行う。
本開示の一形態によれば、燃料電池システムが提供される。この燃料電池システムは、燃料電池スタックと、前記燃料電池スタックの温度であるスタック温度を取得する温度測定部と、前記燃料電池システムを制御する制御部と、を備える。前記制御部は、前記燃料電池システムの始動時に前記スタック温度が予め定められた第1閾値温度以下の場合において、前記スタック温度が目標温度に上昇するまで、前記燃料電池スタックの単位時間あたりの発熱量を設定発熱量に制御して暖機運転を行い、前記スタック温度があらかじめ定められた第2閾値温度以上の場合に、前記目標温度を、前記スタック温度が前記第2閾値温度より低い場合の前記目標温度よりも小さく設定する処理と、前記設定発熱量を、前記スタック温度が前記第2閾値温度より低い場合の前記設定発熱量よりも小さく設定する処理と、のうち少なくとも一方の処理を行う。そのため、スタック温度の高低に関わらず、一定の目標温度および設定発熱量で暖機運転を行う態様に比べて、効率よく暖機運転を行うことができる。
なお、本開示は、種々の形態で実現することが可能であり、例えば、燃料電池システムを備える発電装置、燃料電池システムを備える車両、燃料電池システムの制御方法等の態様で実現することが可能である。
燃料電池システムの概略構成を示す図である。 始動時運転処理の手順の一例を表すフローチャートである。 始動時運転処理におけるタイミングチャートの一例を示す説明図である。 暖機運転におけるスタック温度の変化を示したグラフである。 暖機運転におけるスタック温度の変化を示した他のグラフである。
A.第1実施形態:
図1は、本開示の一実施形態における燃料電池システム100の概略構成を示す図である。燃料電池システム100は、燃料電池スタック10と、制御部20と、カソードガス供給部30と、アノードガス供給部50と、冷却媒体循環部70と、を備える。また、燃料電池システム100は、DC/DCコンバータ80と、パワーコントロールユニット(以下、「PCU81」という)81と、負荷82と、電圧測定部83と、電流計84とを備える。本実施形態の燃料電池システム100は、例えば、燃料電池車両に搭載される。
燃料電池スタック10は、反応ガスとしてアノードガス(例えば、水素ガス)とカソードガス(例えば、空気)との供給を受けて発電する固体高分子形燃料電池である。燃料電池スタック10は、複数の単セル11が積層されて構成されている。各単セル11は、電解質膜(図示せず)の両面にアノード(図示せず)とカソード(図示せず)とを配置した膜電極接合体(図示せず)と、膜電極接合体を挟持する1組のセパレータ(図示せず)とを有する。
制御部20は、CPUとメモリと、後述する各部品が接続されるインタフェース回路とを備えたコンピュータとして構成されている。制御部20は、ECU(Electronic Control Unit)21の指示に応じて、燃料電池スタック10内の各機器の起動および停止を制御するための信号を出力する。制御部20は、メモリに記憶された制御プログラムを実行することにより、燃料電池システム100による発電の制御を行うと共に、燃料電池スタック10を暖める暖機運転を行う。「暖機運転」とは、制御部20が、カソードガス供給部30やアノードガス供給部50を制御して、スタック温度が予め定められた目標温度に上昇するまで、燃料電池スタック10の発熱量を予め定められた単位時間あたりの設定発熱量とする処理である。制御部20は、例えば、燃料電池システム100の始動時に、スタック温度に応じて、暖機運転を行う。なお、制御部20においては、これらの制御の一部又は全部をハードウェア回路として実現されてもよい。
ECU21は、燃料電池システム100を含む装置全体(例えば、車両)の制御を行う制御部である。例えば、燃料電池車両では、アクセルペダルの踏込量やブレーキペダルなどの踏込量、車速等の複数の入力値に応じてECU21が車両の制御を実行する。なお、ECU21は、制御部20の機能の一部に含まれていてもよい。
カソードガス供給部30は、カソードガス配管31と、エアフローメータ32と、コンプレッサ33と、第1開閉弁34と、カソードオフガス配管41と、第1レギュレータ42と、を備える。カソードガス配管31は、燃料電池スタック10に接続され、外部から取り込んだ空気を燃料電池スタック10に供給する。
エアフローメータ32は、カソードガス配管31に設けられており、取り込んだ空気の供給量を測定する。コンプレッサ33は、制御部20からの制御信号に応じて、外部から取り入れた空気を圧縮し、カソードガスとして燃料電池スタック10に供給する。コンプレッサ33は、電力を消費して駆動する。第1開閉弁34は、コンプレッサ33と燃料電池スタック10との間に設けられている。
カソードオフガス配管41は、燃料電池スタック10から排出されたカソードオフガスを燃料電池システム100の外部へと排出する。第1レギュレータ42は、制御部20からの制御信号に応じて、燃料電池スタック10のカソードガス出口の圧力を調整する。
アノードガス供給部50は、アノードガス配管51と、アノードガスタンク52と、第2開閉弁53と、第2レギュレータ54と、インジェクタ55と、アノードオフガス配管61と、気液分離器62と、排気排水弁63と、循環配管64と、アノードガスポンプ65と、を備える。以下では、アノードガス配管51のインジェクタ55よりも下流側と、燃料電池スタック10内のアノードガスの流路と、アノードオフガス配管61と、気液分離器62と、循環配管64と、アノードガスポンプ65と、で構成される流路のことを、循環流路66ともいう。循環流路66は、燃料電池スタック10のアノードオフガスを燃料電池スタック10に循環させるための流路である。
アノードガスタンク52は、アノードガス配管51を介して燃料電池スタック10のアノードガス入口と接続されており、アノードガスを燃料電池スタック10に供給する。第2開閉弁53、第2レギュレータ54およびインジェクタ55は、アノードガス配管51に、この順序で上流側、つまりアノードガスタンク52に近い側から設けられている。
第2開閉弁53は、制御部20からの制御信号に応じて開閉する。燃料電池システム100の停止時には第2開閉弁53は閉じられる。第2レギュレータ54は、制御部20からの制御信号に応じて、インジェクタ55の上流側におけるアノードガス圧力を調整する。インジェクタ55は、制御部20によって設定された駆動周期や開弁時間に応じて、弁体が電磁的に駆動する電磁駆動式の開閉弁である。制御部20は、インジェクタ55の駆動周期や開弁時間を制御することによって、燃料電池スタック10に供給されるアノードガスの供給量を制御する。
アノードオフガス配管61は、燃料電池スタック10のアノードガス出口と気液分離器62とを接続する配管である。アノードオフガス配管61は、発電反応に用いられることのなかった水素ガスや窒素ガスなどを含むアノードオフガスを気液分離器62へと誘導する。
気液分離器62は、循環流路66のアノードオフガス配管61と循環配管64との間に接続されている。気液分離器62は、燃料電池スタック10から排出されるガスから、ガスに含まれる液水のうちの少なくとも一部を分離する。より具体的には、気液分離器62は、循環流路66内のアノードオフガスから不純物としての水を分離して貯水する。
排気排水弁63は、気液分離器62の下部に設けられている。排気排水弁63は、気液分離器62に貯水された水の排水と、気液分離器62内の不要なガス(主に窒素ガス)の排気と、を行う。燃料電池システム100の運転中は、通常、排気排水弁63は閉じられており、制御部20からの制御信号に応じて開閉する。本実施形態では、排気排水弁63は、カソードオフガス配管41に接続されており、排気排水弁63によって排出された水および不要なガスは、カソードオフガス配管41を通じて外部へ排出される。
循環配管64は、アノードガス配管51のうちのインジェクタ55より下流の部分に接続されている。循環配管64には、制御部20からの制御信号に応じて駆動されるアノードガスポンプ65が設けられている。気液分離器62によって水が分離されたアノードオフガスが、アノードガスポンプ65によって、アノードガス配管51へと送り出される。この燃料電池システム100では、水素を含むアノードオフガスを循環させて、再び燃料電池スタック10に供給することにより、アノードガスの利用効率を向上させている。
冷却媒体循環部70は、燃料電池スタック10を介して冷却媒体を循環させることにより、燃料電池スタック10の温度を調整する。冷却媒体循環部70は、冷媒供給管71と、冷媒排出管72と、ラジエータ73と、冷媒ポンプ74と、三方弁75と、バイパス管76と、温度測定部77と、を備える。冷媒としては、例えば、水、エチレングリコール等の不凍水、空気などが用いられる。
冷媒供給管71は、燃料電池スタック10内の冷却媒体入口に接続され、冷媒排出管72は、燃料電池スタック10の冷却媒体出口に接続されている。ラジエータ73は、冷媒排出管72と冷媒供給管71とに接続されており、冷媒排出管72から流入する冷却媒体を、電動ファンの送風等により冷却してから冷媒供給管71へと排出する。冷媒ポンプ74は、冷媒供給管71に設けられており、冷媒を燃料電池スタック10に圧送する。三方弁75は、ラジエータ73とバイパス管76への冷媒の供給量を調節する。温度測定部77は、冷媒排出管72に接続されており、燃料電池スタック10から排出される冷却水の温度を測定する。温度測定部77で測定される温度は、燃料電池スタック10のスタック温度とほぼ等しい。従って、温度測定部77は、燃料電池スタック10のスタック温度を測定する温度測定部に相当する。
DC/DCコンバータ80は、燃料電池スタック10の出力電圧を昇圧してPCU81に供給する。PCU81は、インバータを内蔵し、制御部20の制御に応じてインバータを介して負荷82に電力を供給する。また、PCU81は、制御部20の制御により燃料電池スタック10の電流を制限する。電圧測定部83は、燃料電池スタック10の出力電圧を測定する。電流計84は、燃料電池スタック10の出力電流値を測定する。
燃料電池スタック10の電力は、PCU81を含む電源回路を介して、車輪(図示せず)を駆動するためのトラクションモータ(図示せず)等の負荷82や、補機に供給される。本実施形態において「補機」とは、燃料電池スタック10の発電電力を消費して駆動する機器である。例えば、コンプレッサ33やアノードガスポンプ65、燃料電池システム100が搭載された燃料電池車両の室内の暖房を行う加熱装置(図示せず)、冷却媒体循環部70に設けられ、燃料電池スタック10の冷却媒体を暖めるヒータ(図示せず)等を表す。
図2および図3を用いて燃料電池システム100の始動時運転処理について説明する。図2は、本実施形態における、始動時運転処理の手順の一例を表すフローチャートである。始動時運転処理は、制御部20が、燃料電池システム100の始動時にスタック温度が予め定められた第1閾値温度以下の場合において、暖機運転を行う処理である。制御部20は、燃料電池システム100の始動時にこの処理を実行する。
図3は、起動要求信号のON/OFFと、暖機運転完了フラグ、単位時間あたりの発熱量、スタック温度、補機の運転状態を示すタイミングチャートの一例を示す説明図である。ここでは、補機は、燃料電池スタック10の冷却媒体を暖めるヒータである。図3において、暖機運転完了フラグについての「ON」は、暖機運転が完了したことを意味し、「OFF」は暖機運転が完了していないことを意味する。図3は、始動時運転処理開始時のスタック温度Tfcが後述する第2閾値温度以上の温度T3の場合のタイミングチャートであり、図2に示されている各ステップS130、S150、S170の実行タイミングが吹き出しによって示されている。
ステップS100において、制御部20は、温度測定部77から取得したスタック温度Tfcが予め定められた第1閾値温度Tth1以下か否かを判定する。第1閾値温度Tth1は、燃料電池スタック10内の水分が凍結する温度であり、例えば、0℃に設定することができる。スタック温度Tfcが第1閾値温度Tth1以下の場合、制御部20は、ステップS110の処理に進む。一方、スタック温度Tfcが第1閾値温度Tth1よりも高い場合、制御部20は、始動時運転処理を終了する。
ステップS110において、制御部20は、温度測定部77から取得したスタック温度Tfcが予め定められた第2閾値温度Tth2以上か否かを判定する。第2閾値温度Tth2は、予めシミュレーションや実験を行うことにより設定できる。第2閾値温度Tth2は、0℃よりも低い値とすることができ、例えば-5℃とすることができる。第2閾値温度Tth2は、暖機運転開始時のスタック温度と暖機運転に要する時間との関係が定義された関数やマップに基づいて設定されてもよい。スタック温度が第2閾値温度Tth2以上の場合、制御部20は、ステップS120の処理に進む。一方、スタック温度Tfcが第2閾値温度Tth2よりも低い場合、制御部20は、ステップS125の処理に進む。
ステップS120において、制御部20は、暖機運転における目標温度Taと単位時間あたりの発熱量である設定発熱量Jaとを設定する。本実施形態において、制御部20は、目標温度Taを温度T1に決定し、設定発熱量Jaを熱量J1に決定する。目標温度Taは、予め実験的に定められた温度であり、任意に定めることができる。また、制御部20は、暖機運転開始時のスタック温度Tfcと目標温度Taとの関係が定義されたマップや関数に基づき、目標温度Taを定めるようにしてもよい。目標温度Taは、スタック温度Tfcが高いほど、低く設定できる。温度T1は、例えば40℃とすることができる。また、設定発熱量Jaは、予め実験的に定められた単位時間当たりの熱量J1であり、任意に定めることができる。また、制御部20は、スタック温度Tfcと設定発熱量Jaとの関係が定義されたマップや関数に基づき、設定発熱量Jaを定めるようにしてもよい。設定発熱量Jaは、スタック温度Tfcが高いほど、小さく設定できる。熱量J1は、例えば20kWとすることができる。
ステップS125において、制御部20は、暖機運転における目標温度Taと設定発熱量Jaとを設定する。本実施形態において、制御部20は、目標温度Taを温度T1よりも高い温度T2に決定し、設定発熱量Jaを熱量J1よりも大きい熱量J2に決定する。温度T2は、例えば65℃とすることができる。熱量J2は、例えば50kWとすることができる。
ステップS130において、制御部20は、暖機運転を開始する。より具体的には、制御部20は、スタック温度Tfcが、ステップS120またはステップS125で設定した目標温度Taに達するように、燃料電池スタック10から発生する単位時間あたりの熱量がステップS120またはステップS125で設定した設定発熱量Jaになるように、カソードガス供給部30を制御する。例えば、制御部20は、燃料電池スタック10に供給するカソードガスの量を通常運転の際のカソードガスの量よりも少なくなるように、カソードガス供給部30を制御して暖機運転を行う。暖機運転により、図3に示すようにスタック温度Tfcが上昇する。
ステップS140において、制御部20は、スタック温度TfcがステップS120またはステップS125で定めた目標温度Ta以上か否かを判定する。すなわち、制御部20は、スタック温度Tfcが目標温度Taまで上昇したか否かを判定する。スタック温度Tfcが目標温度Ta以上の場合、制御部20は、ステップS150の処理に進む。一方、スタック温度Tfcが目標温度Taよりも低い場合、制御部20は、ステップS140の処理に戻る。つまり、燃料電池スタック10の暖気が完了するまでステップS140を繰り返す。
ステップS150において、制御部20は、ステップS130で開始した暖機運転を終了する。つまり、制御部20は、燃料電池システム100を通常の運転状態に戻す。
図4は、暖機運転におけるスタック温度の変化を示したグラフである。図4において、グラフG1は、始動時運転処理開始時のスタック温度Tfcが第2閾値温度Tth2よりも高い温度T3であり、目標温度Taを温度T1とした場合を示したグラフである。グラフG2は、始動時運転処理開始時のスタック温度Tfcが第2閾値温度Tth2よりも低い温度T4であり、目標温度Taを温度T2とした場合を示したグラフである。グラフG1とグラフG2とは、ともに、設定発熱量Jaを熱量J1として行った暖機運転を示すグラフである。
図4に示すように、グラフG1は時間t1でスタック温度Tfcが目標温度Taである温度T1に到達している。また、グラフG2は時間t1よりも長い時間t2でスタック温度Tfcが目標温度Taである温度T2に到達している。つまり、目標温度Taを低く設定することで、暖機運転に要する時間が短くなる。すなわち、スタック温度Tfcが第2閾値温度Tth2以上の場合の目標温度Taを、スタック温度Tfcが第2閾値温度Tth2より低い場合の目標温度Taよりも小さく設定することで、スタック温度Tfcが第2閾値温度Tth2以上の場合に、スタック温度Tfcが第2閾値温度Tth2より低い場合よりも短い時間で暖機運転が完了する。そのため、発電損失を抑制することができるため、効率よく暖機運転を行うことができる。
図5は、暖機運転におけるスタック温度の変化を示した他のグラフである。図5において、グラフG1は、始動時運転処理開始時のスタック温度Tfcが第2閾値温度Tth2よりも高い温度T3であり、設定発熱量Jaを熱量J1とした場合を示したグラフである。グラフG3は、始動時運転処理開始時のスタック温度Tfcが第2閾値温度Tth2よりも低い温度T4であり、設定発熱量Jaを熱量J2とした場合を示したグラフである。グラフG1とグラフG3とは、ともに、目標温度Taを温度T1として行った暖機運転を示すグラフである。
図5に示すように、グラフG1およびグラフG3は時間t1でスタック温度Tfcが目標温度Taである温度T1に到達している。つまり、熱量J1は、スタック温度Tfcが第2閾値温度Tth2よりも高い温度T3から温度T1に時間t1で上昇する熱量である。また、熱量J2は、スタック温度Tfcが第2閾値温度Tth2よりも低い温度T4から温度T1に時間t1で上昇する熱量である。スタック温度Tfcが第2閾値温度Tth2以上の場合の設定発熱量Jaを、スタック温度Tfcが第2閾値温度Tth2より低い場合の設定発熱量Jaよりも小さく設定することで、発電損失を抑制することができる。そのため、効率よく暖機運転を行うことができる。
本実施形態においては、始動時運転処理開始時のスタック温度Tfcが第2閾値温度Tth2以上の場合、スタック温度Tfcが温度T1に上昇するまで、単位時間あたりに与えられる熱量J1で暖機運転を行う(図2のS120参照)。熱量J2よりも小さい熱量J1で暖機運転が行われるため、熱量J2で暖機運転を行う場合と比べてスタック温度Tfcと燃料電池スタック10以外の部品や流路等の温度とに大きな差が生じることなく、スタック温度Tfcと燃料電池スタック10以外の部品や流路等の温度とは、緩やかに上昇する。
一方、始動時運転処理開始時のスタック温度Tfcが第2閾値温度Tth2より低い場合、スタック温度Tfcが温度T1より高い温度T2に上昇するまで、単位時間あたりに与えられる熱量として、熱量J1より大きい熱量J2で暖機運転を行う(図2のS125参照)。熱量J1より大きい熱量J2で暖機運転が行われるため、急速にスタック温度Tfcが上昇するものの、燃料電池スタック10以外の部品や流路等の温度はスタック温度Tfcほど上昇していない。このため、スタック温度Tfcと、燃料電池スタック10以外の部品や流路等の温度とは、始動時運転処理開始時のスタック温度Tfcが第2閾値温度Tth2以上の場合よりも乖離している。しかし、始動時運転処理開始時のスタック温度Tfcが第2閾値温度Tth2より低い場合においては、目標温度Taを高く設定することで、燃料電池スタック10以外の部品や流路も十分に高い温度になるまで、暖機運転を行うことができる。
ステップS160において、制御部20は、ステップS120またはステップS125で定めた目標温度Taが予め定められた第3閾値温度Tth3より低いか否かを判定する。第3閾値温度Tth3は、予め実験的に定められた温度であり、任意に定めることができる。第3閾値温度Tth3は、例えば温度T2である。目標温度Taが第3閾値温度Tth3より低い場合、制御部20は、ステップS170の処理に進む。一方、目標温度Taが第3閾値温度Tth3以上の場合、制御部20は、始動時運転処理を終了する。
ステップS170において、制御部20は、補機を駆動する。より具体的には、制御部20は、補機であるヒータを駆動することで燃料電池スタック10を発熱させ、燃料電池スタック10や燃料電池スタック10の冷却媒体を暖める。そのため、暖機運転によらずに燃料電池スタック10や、燃料電池スタック10の冷却媒体によって暖まる部品を、暖め、その状態を一定時間、維持することができる。制御部20は、例えば、スタック温度Tfcが第3閾値温度Tth3まで上昇した場合に、ヒータを停止する。なお、ステップS160およびS170の処理は省略してもよい。
以上で説明した本実施形態の燃料電池システム100によれば、制御部20は、スタック温度Tfcが第2閾値温度Tth2以上の場合に、目標温度Taをスタック温度Tfcが第2閾値温度Tth2より低い場合の目標温度Taよりも小さく設定する処理と、設定発熱量Jaをスタック温度Tfcが第2閾値温度Tth2より低い場合の設定発熱量Jaよりも小さく設定する処理と、を行う。そのため、スタック温度Tfcの高低に関わらず、一定の目標温度Taおよび設定発熱量Jaで暖機運転を行う態様に比べて、発電損失を抑制することができるため、効率よく暖機運転を行うことができる。また、目標温度Taと設定発熱量Jaとのうち一方のみを小さく設定する態様に比べて、より効率よく暖機運転を行うことができる。
また、制御部20は、目標温度Taが第3閾値温度Tth3より低い場合、暖機運転後に補機を駆動させる。そのため、暖機運転によらずに、燃料電池スタックを補機の駆動による排熱によって暖めることができる。そのため、暖機運転後に補機を駆動しない態様に比べて、より効率よく燃料電池スタックを暖めることができる。
B.他の実施形態:
(B1)上述した実施形態において、制御部20は、スタック温度Tfcが第2閾値温度Tth2以上の場合に、スタック温度Tfcが第2閾値温度Tth2より低い場合よりも、目標温度Taおよび設定発熱量Jaを小さく設定する。この代わりに、制御部20は、スタック温度Tfcが第2閾値温度Tth2以上の場合に、スタック温度Tfcが第2閾値温度Tth2より低い場合よりも、目標温度Taと設定発熱量Jaとのうちいずれか一方を小さく設定すればよい。例えば、制御部20は、スタック温度Tfcが第2閾値温度Tth2以上の場合に、目標温度Taを温度T1に設定し、設定発熱量Jaを熱量J2に設定する。また、制御部20は、スタック温度Tfcが第2閾値温度Tth2より低い場合に、目標温度Taを温度T2に設定し、設定発熱量Jaを熱量J2に設定する。
(B2)上述した実施形態において、制御部20は、スタック温度Tfcが第2閾値温度Tth2以上の場合に、スタック温度Tfcが第2閾値温度Tth2より低い場合よりも、目標温度Taおよび設定発熱量Jaを小さく設定する。すなわち、一つの閾値を用いて、目標温度Taおよび設定発熱量Jaを設定している。この代わりに、制御部20は、異なる2つの閾値を用いて、目標温度Taおよび設定発熱量Jaを設定してもよい。制御部20は、スタック温度Tfcが第2閾値温度Tth2A以上の場合に、スタック温度Tfcが第2閾値温度Tth2Aより低い場合よりも、目標温度Taを小さく設定する。また、制御部20は、スタック温度Tfcが第2閾値温度Tth2Aと異なる第2閾値温度Tth2B以上の場合に、スタック温度Tfcが第2閾値温度Tth2Bより低い場合よりも、設定発熱量Jaを小さく設定する。
(B3)上述した実施形態において、燃料電池システム100が燃料電池車両に搭載されている場合、制御部20は、スタック温度Tfcが第2閾値温度Tth2より低い場合に、燃料電池車両のシフトポジションに応じて、目標温度Taと設定発熱量Jaとのうち少なくとも一方を定めてもよい。制御部20は、例えば、シフトポジションが非走行レンジ(パーキング)である場合、シフトポジションが走行レンジ(ドライブ)である場合よりも、目標温度Taと設定発熱量Jaとのうち少なくとも一方を小さく設定する。設定発熱量Jaを小さくすることにより、燃料電池スタック10において、効率よく発電を行うことができる。一方、目標温度Taを低くすることにより、低効率な発電が行われる暖機運転の期間が短くなる。すなわち、効率よく発電を行うことができ、燃料電池システム100が搭載された燃料電池車両の燃費が向上する。
(B4)上述した実施形態において、制御部20は、暖機運転終了後に、目標温度Taが第3閾値温度Tth3より低い場合に、補機を駆動する。この代わりに、制御部20は、ステップS130において、暖機運転の開始と共に補機を駆動するようにしてもよい。また、制御部20は、ステップS150において、暖機運転の終了と共に補機を駆動するようにしてもよい。この場合、制御部20は、ステップS160において、目標温度Taが第3閾値温度Tth3より低いか否かを判定し、目標温度Taが第3閾値温度Tth3より高い場合に、補機を停止する。
(B5)上述した実施形態において、制御部20は、温度測定部77が測定した温度T1を燃料電池スタック10のスタック温度Tfcとして取得している。この代わりに、燃料電池システム100は、燃料電池スタック10のスタック温度Tfcを直接測定する温度計を備えていてもよい。
(B6)上述した実施形態において、制御部20は、スタック温度Tfcに応じて、設定発熱量Jaを設定している。この代わりに、制御部20は、スタック温度Tfcに応じて、暖機運転の効率の目標値を設定してもよい。暖機運転の効率とは、暖機運転における燃料電池スタック10の発電効率である。
本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述した課題を解決するために、あるいは上述の効果の一部又は全部を達成するために、適宜、差し替えや組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜削除することが可能である。
10…燃料電池スタック、11…単セル、20…制御部、21…ECU、30…カソードガス供給部、31…カソードガス配管、32…エアフローメータ、33…コンプレッサ、34…第1開閉弁、41…カソードオフガス配管、42…第1レギュレータ、50…アノードガス供給部、51…アノードガス配管、52…アノードガスタンク、53…第2開閉弁、54…第2レギュレータ、55…インジェクタ、61…アノードオフガス配管、62…気液分離器、63…排気排水弁、64…循環配管、65…アノードガスポンプ、66…循環流路、70…冷却媒体循環部、71…冷媒供給管、72…冷媒排出管、73…ラジエータ、74…冷媒ポンプ、75…三方弁、76…バイパス管、77…温度測定部、80…DC/DCコンバータ、81…PCU、82…負荷、83…電圧測定部、84…電流計、100…燃料電池システム

Claims (3)

  1. 燃料電池システムであって、
    燃料電池スタックと、
    前記燃料電池スタックの温度であるスタック温度を取得する温度測定部と、
    前記燃料電池システムを制御する制御部と、を備え、
    前記制御部は、
    前記燃料電池システムの始動時に前記スタック温度が予め定められた第1閾値温度以下の場合において、前記スタック温度が目標温度に上昇するまで、前記燃料電池スタックの単位時間あたりの発熱量を設定発熱量に制御して暖機運転を行い、
    前記燃料電池システムの始動時の前記スタック温度があらかじめ定められた第2閾値温度以上の場合に、
    前記目標温度を、前記燃料電池システムの始動時の前記スタック温度が前記第2閾値温度より低い場合の前記目標温度よりも小さく設定する処理と、
    前記設定発熱量を、前記燃料電池システムの始動時の前記スタック温度が前記第2閾値温度より低い場合の前記設定発熱量よりも小さく設定する処理と、のうち少なくとも一方の処理を行う、燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    前記制御部は、前記燃料電池システムの始動時の前記スタック温度が前記第2閾値温度以上の場合に、
    前記目標温度を、前記燃料電池システムの始動時の前記スタック温度が前記第2閾値温度より低い場合の前記目標温度よりも小さく設定する処理と、
    前記設定発熱量を、前記燃料電池システムの始動時の前記スタック温度が前記第2閾値温度より低い場合の前記設定発熱量よりも小さく設定する処理と、を行う、燃料電池システム。
  3. 請求項1または請求項2に記載の燃料電池システムであって、更に、
    前記燃料電池スタックの発電電力を消費する補機を備え、
    前記制御部は、前記目標温度が予め定められた第3閾値温度より低い場合、前記暖機運転後において、前記補機を駆動させる、燃料電池システム。
JP2020089555A 2020-05-22 2020-05-22 燃料電池システム Active JP7310710B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020089555A JP7310710B2 (ja) 2020-05-22 2020-05-22 燃料電池システム
US17/207,832 US11431007B2 (en) 2020-05-22 2021-03-22 Fuel cell system
CN202110435223.0A CN113725462B (zh) 2020-05-22 2021-04-22 燃料电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020089555A JP7310710B2 (ja) 2020-05-22 2020-05-22 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2021184352A JP2021184352A (ja) 2021-12-02
JP7310710B2 true JP7310710B2 (ja) 2023-07-19

Family

ID=78608395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020089555A Active JP7310710B2 (ja) 2020-05-22 2020-05-22 燃料電池システム

Country Status (3)

Country Link
US (1) US11431007B2 (ja)
JP (1) JP7310710B2 (ja)
CN (1) CN113725462B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7363674B2 (ja) * 2020-05-29 2023-10-18 トヨタ自動車株式会社 燃料電池システム
CN114388851B (zh) * 2022-01-25 2023-11-10 北京亿华通科技股份有限公司 一种车载燃料电池发动机的加热控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269920A (ja) 2007-04-19 2008-11-06 Toyota Motor Corp 燃料電池システム
WO2014109239A1 (ja) 2013-01-09 2014-07-17 日産自動車株式会社 燃料電池システム及びその制御方法
JP2016091910A (ja) 2014-11-10 2016-05-23 トヨタ自動車株式会社 燃料電池の運転制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031127A (ja) * 2002-06-26 2004-01-29 Nissan Motor Co Ltd 燃料電池システム
JP5000073B2 (ja) * 2003-09-08 2012-08-15 本田技研工業株式会社 燃料電池スタックの氷点下起動方法、燃料電池スタックの氷点下起動システム、および燃料電池スタックの設計方法
WO2011135610A1 (ja) * 2010-04-27 2011-11-03 トヨタ自動車株式会社 燃料電池システム
EP3054516B1 (en) * 2013-10-01 2017-11-08 Nissan Motor Co., Ltd Fuel cell system
JP6237585B2 (ja) * 2014-11-14 2017-11-29 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
JP6597973B2 (ja) 2016-04-18 2019-10-30 トヨタ自動車株式会社 燃料電池システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269920A (ja) 2007-04-19 2008-11-06 Toyota Motor Corp 燃料電池システム
WO2014109239A1 (ja) 2013-01-09 2014-07-17 日産自動車株式会社 燃料電池システム及びその制御方法
JP2016091910A (ja) 2014-11-10 2016-05-23 トヨタ自動車株式会社 燃料電池の運転制御方法

Also Published As

Publication number Publication date
US20210367251A1 (en) 2021-11-25
JP2021184352A (ja) 2021-12-02
US11431007B2 (en) 2022-08-30
CN113725462B (zh) 2024-03-08
CN113725462A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
US8384342B2 (en) Fuel cell system and control method thereof
KR101829509B1 (ko) 연료 전지 시스템 및 연료 전지 시스템의 제어 방법
KR101033898B1 (ko) 연료전지 차량의 냉시동 및 기동 방법
JP4940640B2 (ja) 燃料電池システム
JP5790705B2 (ja) 燃料電池システムおよびその制御方法
JP5074669B2 (ja) 燃料電池システム
KR20080104188A (ko) 연료전지용 온도제어시스템
JP2004296338A (ja) 車両用燃料電池システムの制御装置
JP7310710B2 (ja) 燃料電池システム
CN107959034B (zh) 燃料电池系统及其控制方法
JP4432603B2 (ja) 車輌用燃料電池装置
JP6172115B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP5083603B2 (ja) 燃料電池システム
KR101448764B1 (ko) 연료 전지 차량의 냉 시동 방법
JP6972920B2 (ja) 燃料電池システム
JP5315661B2 (ja) 燃料電池搭載車両、燃料電池の制御装置、制御方法
JP2007012565A (ja) 燃料電池システム
JP5261987B2 (ja) 燃料電池システム
JP2008123930A (ja) 燃料電池システム
JP2008300217A (ja) 燃料電池システム
JP7006158B2 (ja) 燃料電池システム
KR20110059030A (ko) 연료전지 시스템의 공기블로워 제어 장치 및 방법
JP7124751B2 (ja) 燃料電池システム
JP7322815B2 (ja) 燃料電池システム
JP2021180076A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R151 Written notification of patent or utility model registration

Ref document number: 7310710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151