JP7305090B2 - Valuable metal powder recovery method from resist waste liquid and valuable metal powder recovery apparatus - Google Patents

Valuable metal powder recovery method from resist waste liquid and valuable metal powder recovery apparatus Download PDF

Info

Publication number
JP7305090B2
JP7305090B2 JP2019014615A JP2019014615A JP7305090B2 JP 7305090 B2 JP7305090 B2 JP 7305090B2 JP 2019014615 A JP2019014615 A JP 2019014615A JP 2019014615 A JP2019014615 A JP 2019014615A JP 7305090 B2 JP7305090 B2 JP 7305090B2
Authority
JP
Japan
Prior art keywords
metal powder
valuable metal
waste liquid
resist waste
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019014615A
Other languages
Japanese (ja)
Other versions
JP2020122183A (en
Inventor
剛 山田
友香 山本
清貴 田▲崎▼
君 段
孝明 北井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Pretec Corp
Original Assignee
Asahi Pretec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Pretec Corp filed Critical Asahi Pretec Corp
Priority to JP2019014615A priority Critical patent/JP7305090B2/en
Publication of JP2020122183A publication Critical patent/JP2020122183A/en
Priority to JP2023081556A priority patent/JP2023107783A/en
Priority to JP2023081557A priority patent/JP2023109885A/en
Application granted granted Critical
Publication of JP7305090B2 publication Critical patent/JP7305090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明はレジスト廃液に含まれる有価金属粉の回収方法、及び該回収方法に好適な装置に関するものである。 TECHNICAL FIELD The present invention relates to a method for recovering valuable metal powder contained in resist waste liquid, and an apparatus suitable for the recovery method.

ICやLSIなどの半導体デバイスの製造工程では微細なパターン加工を行うためにリソグラフィー技術が使われている。リソグラフィーでは感光性樹脂などの高分子系レジスト材料を用いてレジストパターンを形成した後、レジスト上に蒸着やめっきなどによって金、銀、パラジウム、白金、ロジウム、ルテニウム、イリジウム、銅、ニッケル、コバルト、及びクロムなど所望の金属薄膜(以下、有価金属薄膜という)を成膜し、その後、剥離液などの溶剤でレジストを除去(リフトオフ)している。したがってレジスト廃液には有価金属薄膜が含まれているため、有価金属を回収することが望まれていた。レジスト廃液からの有価金属の回収はプリント配線基板、半導体、その他製品の製造工程においても望まれている。 2. Description of the Related Art In the manufacturing process of semiconductor devices such as ICs and LSIs, lithography technology is used for fine pattern processing. In lithography, after forming a resist pattern using a polymer resist material such as a photosensitive resin, gold, silver, palladium, platinum, rhodium, ruthenium, iridium, copper, nickel, cobalt, and a desired metal thin film (hereinafter referred to as a valuable metal thin film) such as chromium is formed, and then the resist is removed (lifted off) with a solvent such as stripping solution. Therefore, since the resist waste liquid contains a valuable metal thin film, it has been desired to recover the valuable metal. The recovery of valuable metals from resist waste liquid is also desired in the manufacturing processes of printed wiring boards, semiconductors and other products.

レジスト廃液中の固形分の除去方法としては、例えば複数のフィルターを設けた処理槽で分離除去することが公知である(特許文献1)。しかしながらレジスト廃液中の有価金属薄膜はレジスト廃液発生源から処理槽に供給されるまでの間、例えば配管、ポンプ、あるいは貯蔵タンク内での接触によって一部微細化されている。そのため微細化された有価金属(以下、有価金属微粒子という)を回収するためには目開きの小さいフィルターが必要となる。しかしながら比較的大きな薄膜状で存在する有価金属(以下、有価金属薄膜という)も存在しており、該有価金属薄膜は表面積が大きいためフィルターの目詰まりを起こしやすいという問題があった。またレジスト廃液は粘性が高いためフィルターの目開きを小さくすると目詰まりを起こしやすい。そのため高頻度でフィルターのメンテナンスが必要となり、有価金属回収コストが高くなる。 As a method for removing the solid content in the resist waste liquid, for example, it is known to separate and remove the solid content in a treatment tank provided with a plurality of filters (Patent Document 1). However, the valuable metal thin film in the resist waste liquid is partly micronized by contact in pipes, pumps, or storage tanks during the period from the resist waste liquid generation source to the supply to the processing tank. Therefore, a filter with a small opening is required in order to recover finely divided valuable metals (hereinafter referred to as valuable metal fine particles). However, there is also a valuable metal that exists in the form of a relatively large thin film (hereinafter referred to as a thin film of valuable metal), and the thin film of valuable metal has a large surface area, so there is a problem that it easily causes clogging of the filter. In addition, since the resist waste liquid has high viscosity, clogging is likely to occur if the opening of the filter is made small. Therefore, the filter requires frequent maintenance, which increases the cost of recovering valuable metals.

特表2001-502847号公報Japanese Patent Publication No. 2001-502847

本発明は上記の様な事情に着目してなされたものであって、その目的は、レジスト廃液から有価金属粉を分離、回収できる技術を確立することにある。他の目的はレジスト廃液の処理に使用するろ過膜の長寿命化を図ることにある。 The present invention has been made in view of the above circumstances, and its object is to establish a technique capable of separating and recovering valuable metal powder from resist waste liquid. Another object is to prolong the life of filtration membranes used for treatment of resist waste liquid.

上記課題を解決し得た本発明は以下の構成を有する。
[1] 有価金属粉を含むレジスト廃液から有価金属粉を回収する方法であって、前記レジスト廃液を浮遊性有価金属粉含有上澄み液と、沈降性有価金属粉含有沈殿物とに沈降分離する工程、前記沈降分離する工程から越流した上澄み液に不溶性粒子を添加する工程、及び前記不溶性粒子を含む上澄み液をろ過する工程を有することを特徴とする有価金属粉回収方法。
The present invention, which has solved the above problems, has the following configuration.
[1] A method for recovering valuable metal powder from a resist waste liquid containing valuable metal powder, comprising a step of separating the resist waste liquid into a supernatant liquid containing floating valuable metal powder and a sediment containing sedimentary valuable metal powder. A method for recovering a valuable metal powder, comprising the steps of: adding insoluble particles to a supernatant liquid overflowing from the sedimentation separation step; and filtering the supernatant liquid containing the insoluble particles.

[2] 前記ろ過する工程は、プリコート層を形成した後、前記上澄み液をろ過するものである[1]に記載の有価金属粉回収方法。 [2] The valuable metal powder recovery method according to [1], wherein the step of filtering comprises filtering the supernatant after forming the precoat layer.

[3] 前記レジスト廃液に含まれる有価金属粉は粒径0.1μm以上である[1]または[2]に記載の有価金属粉回収方法。 [3] The method for recovering valuable metal powder according to [1] or [2], wherein the valuable metal powder contained in the resist waste liquid has a particle size of 0.1 μm or more.

[4] 前記有価金属粉は、金、銀、パラジウム、白金、ロジウム、ルテニウム、イリジウム、銅、ニッケル、コバルト、及びクロムよりなる群から選択される少なくとも1種である[1]~[3]のいずれかに記載の有価金属粉回収方法。 [4] The valuable metal powder is at least one selected from the group consisting of gold, silver, palladium, platinum, rhodium, ruthenium, iridium, copper, nickel, cobalt, and chromium [1]-[3] The method for recovering valuable metal powder according to any one of the above.

[5] [1]~[4]のいずれかに記載の有価金属粉回収方法の沈降分離工程、及び不溶性粒子の添加工程に用いる沈殿混合装置であって、前記沈殿混合装置は、有価金属粉を含むレジスト廃液を、沈降分離により、浮遊性有価金属粉含有上澄み液と、沈降性有価金属粉含有沈殿物とに分離する沈降分離槽と、前記沈降分離槽から越流した上澄み液に不溶性粒子を添加する添加混合槽とを有する沈殿混合装置。 [5] A precipitation mixer used in the sedimentation separation step and the insoluble particle addition step of the method for recovering valuable metal powder according to any one of [1] to [4], wherein the precipitation mixer comprises a valuable metal powder a sedimentation separation tank for separating the resist waste liquid containing the and an addition mixing vessel for adding the precipitation mixing apparatus.

[6] [1]~[4]のいずれかに記載の有価金属粉回収方法のろ過工程に用いるろ過装置であって、前記ろ過装置は、プリコート層、及びろ過膜を有するものであるろ過装置。 [6] A filtration device used in the filtration step of the valuable metal powder recovery method according to any one of [1] to [4], wherein the filtration device has a precoat layer and a filtration membrane. .

[7] [5]に記載の沈殿混合装置と、[6]に記載のろ過装置とを備えた有価金属粉回収設備。 [7] Valuable metal powder recovery equipment comprising the precipitation mixer described in [5] and the filtering device described in [6].

本発明によればレジスト廃液から有価金属粉を分離、回収できる。また本発明によればレジスト廃液の処理に使用するろ過膜の長寿命化を図ることができる。 According to the present invention, valuable metal powder can be separated and recovered from resist waste liquid. Further, according to the present invention, it is possible to extend the life of the filtration membrane used for treating the resist waste liquid.

図1は本発明の有価金属粉回収方法のフローの概略説明図である。FIG. 1 is a schematic illustration of the flow of the valuable metal powder recovery method of the present invention. 図2は本発明の沈殿混合装置の展開図であり、(A)は側面図、(B)は沈降槽側からみた図、(C)は混合槽側からみた図である。FIG. 2 is an exploded view of the precipitation mixer of the present invention, where (A) is a side view, (B) is a view from the sedimentation tank side, and (C) is a view from the mixing tank side. 図3は図2の沈殿混合装置の展開図であり、(D)は天井面側からみた図、(E)は底面側からみた図である。FIG. 3 is an exploded view of the precipitation mixer of FIG. 2, (D) is a view from the ceiling side, and (E) is a view from the bottom side. 図4はろ過装置の概略説明図であり、(A)は側面図、(B)は正面図、(C)は天井面側からみた混合液供給手段の概略説明図である。4A and 4B are schematic explanatory diagrams of the filtering device, in which (A) is a side view, (B) is a front view, and (C) is a schematic explanatory diagram of the liquid mixture supply means as seen from the ceiling side. 図5は実施例におけるろ過速度の推移を示すグラフである。FIG. 5 is a graph showing changes in filtration rate in Examples. 図6は実施例におけるろ過速度の推移を示すグラフである。FIG. 6 is a graph showing changes in filtration rate in Examples.

本発明者らはレジスト廃液に含まれる有価金属粉の回収方法について検討した。レジスト廃液には様々なサイズの有価金属微粒子と有価金属薄膜が含まれており、これらを同時に処理しなければならない(以下、有価金属微粒子と有価金属薄膜をあわせて有価金属粉と記載する)。またレジスト廃液はレジストに起因して粘性が高いためフィルターが目詰まりしやすいという問題があった。本発明者らは目開きの異なる複数のフィルターを設けて段階的に有価金属粉の回収を試みたが、短時間でフィルターの目詰まりが生じて高頻度でフィルターを交換しなければならなかった。他の有価金属粉回収方法として例えばレジスト廃液中の有価金属粉を沈殿させて回収することも検討したが、工場から排出されるレジスト廃液を短時間で処理するためには大型の沈降槽が必要となり、設置スペースの確保が難しかった。このように従来の有価金属粉回収方法は高頻度のメンテナンスが必要であり、また十分な処理量を確保するには装置が大型化するため設置スペースが必要になるなど実用上問題があった。 The present inventors have studied a method for recovering valuable metal powder contained in resist waste liquid. Resist waste liquid contains valuable metal fine particles and valuable metal thin films of various sizes, and these must be treated simultaneously (hereinafter, valuable metal fine particles and valuable metal thin films are collectively referred to as valuable metal powder). Moreover, since the resist waste liquid is highly viscous due to the resist, there is a problem that the filter is easily clogged. The present inventors attempted to collect valuable metal powder step by step by providing multiple filters with different openings, but clogging occurred in the filters in a short period of time and the filters had to be replaced frequently. . As another method for recovering valuable metal powder, for example, we considered collecting the valuable metal powder from the resist waste liquid by sedimenting it, but in order to process the resist waste liquid discharged from the factory in a short time, a large sedimentation tank is required. As a result, it was difficult to secure the installation space. As described above, the conventional method for recovering valuable metal powder requires frequent maintenance, and in order to secure a sufficient throughput, the apparatus must be large, which requires a large installation space.

本発明者らは有価金属粉回収方法について鋭意検討を重ねた結果、レジスト廃液中の有価金属粉の一部を沈殿させた後、上澄み液に残った有価金属粉をろ過分離することとし、その際、ろ過に先立って上澄み液に不溶性粒子を添加しておけば、省スペース、かつ高収率で有価金属粉を回収できることがわかった。特に本発明によればろ過膜の長寿命化も図れるためメンテナンス頻度を大幅に低減できることがわかった。 The inventors of the present invention have extensively studied a method for recovering valuable metal powder. In this case, it was found that if insoluble particles were added to the supernatant prior to filtration, the valuable metal powder could be recovered in a high yield while saving space. In particular, according to the present invention, it was found that the frequency of maintenance can be greatly reduced because the service life of the filtration membrane can be extended.

以下、本発明の有価金属粉回収方法、及び該有価金属粉回収方法に好適な装置について説明する。 Hereinafter, the valuable metal powder recovery method of the present invention and an apparatus suitable for the valuable metal powder recovery method will be described.

本発明のレジスト廃液から有価金属粉を回収する方法は以下の工程を有する。
(1)有価金属粉含有レジスト廃液を浮遊性有価金属粉含有上澄み液と、沈降性有価金属粉含有沈殿物とに分離する工程(以下、沈降分離工程という)
(2)上記沈降分離工程から越流した上澄み液に不溶性粒子を添加する工程(以下、添加工程という)
(3)上記不溶性粒子含有上澄み液をろ過する工程(以下、ろ過工程という)
上記回収方法によって有価金属粉は沈殿物、ろ過残渣としてレジスト廃液から高収率で回収できる。しかもろ過膜のメンテナンス期間を大幅に伸長できる。
The method of recovering valuable metal powder from the resist waste liquid of the present invention has the following steps.
(1) A step of separating a valuable metal powder-containing resist waste liquid into a floating valuable metal powder-containing supernatant liquid and a sedimentary valuable metal powder-containing sediment (hereinafter referred to as sedimentation separation step).
(2) A step of adding insoluble particles to the supernatant liquid overflowed from the sedimentation separation step (hereinafter referred to as an addition step)
(3) A step of filtering the insoluble particle-containing supernatant (hereinafter referred to as a filtering step)
Valuable metal powder can be recovered in a high yield from the resist waste liquid as a precipitate or filtration residue by the recovery method described above. Moreover, the maintenance period of the filtration membrane can be greatly extended.

(レジスト廃液)
本発明の対象とするレジスト廃液は、フェノール樹脂などの各種公知の高分子系レジスト成分、及びレジストの除去に使用した各種公知現像液、エッチング液、洗浄液などのレジスト除去液、及び有価金属粉を含む廃液である。またレジスト廃液には感光剤、溶剤など各種添加剤が含まれていてもよい。レジスト廃液の組成は排出源によって異なるがいずれも本発明で処理可能である。レジスト廃液はレジスト材料に起因して粘性を有するが、本発明で対象とするレジスト廃液の粘性は排出源によって異なるため特に限定されない。レジスト廃液の粘性は例えば室温において1.0cP以上である。
(Resist waste liquid)
The resist waste liquid targeted by the present invention includes various known polymeric resist components such as phenolic resins, various known resist removers such as developer, etchant, and cleaning liquid used for removing the resist, and valuable metal powder. It is a waste liquid containing Moreover, the resist waste liquid may contain various additives such as a photosensitizer and a solvent. Although the composition of the resist waste liquid varies depending on the source of discharge, all of them can be treated by the present invention. The resist waste liquid has viscosity due to the resist material, but the viscosity of the resist waste liquid targeted by the present invention varies depending on the discharge source and is not particularly limited. The viscosity of the resist waste liquid is, for example, 1.0 cP or more at room temperature.

本発明ではレジスト廃液に含まれる有価金属粉は、金、銀、パラジウム、白金、ロジウム、ルテニウム、イリジウム、銅、ニッケル、コバルト、及びクロムが例示される。回収対象とする有価金属粉は、好ましくは金、銀、パラジウム、白金、ロジウム、ルテニウム、イリジウム、銅、ニッケル、コバルト、及びクロムよりなる群から選択される少なくとも1種、より好ましくは金である。したがって沈殿物やろ過残渣に回収対象以外の金属が含まれている場合は各種公知の方法で分離すればよい。なお、本発明で回収対象とする有価金属は微粒子状や薄膜状でレジスト廃液中に析出している金属であり、未析出の金属は含まない。 Valuable metal powder contained in the resist waste liquid in the present invention is exemplified by gold, silver, palladium, platinum, rhodium, ruthenium, iridium, copper, nickel, cobalt, and chromium. Valuable metal powder to be recovered is preferably at least one selected from the group consisting of gold, silver, palladium, platinum, rhodium, ruthenium, iridium, copper, nickel, cobalt, and chromium, more preferably gold. . Therefore, if the sediment or filtration residue contains metals other than those to be recovered, they may be separated by various known methods. Valuable metals to be recovered in the present invention are metals deposited in the resist waste liquid in the form of fine particles or thin films, and do not include undeposited metals.

レジスト廃液中の有価金属粉濃度は半導体製造工程などの各種製造工程における有価金属使用量、レジスト量、レジスト除去液量などによって変動するため特に限定されない。本発明ではレジスト廃液に含まれる有価金属粉濃度が高くても目詰まり等の問題を生じることなく、高収率で有価金属粉を回収できる。したがってレジスト廃液に含まれる有価金属粉濃度は好ましくは0.001g/L以上、より好ましくは0.01g/L以上であってもよい。また上限は特に限定されない。有価金属粉濃度の測定方法はレジスト廃液をろ過し、その残渣をろ紙ごと乾燥させて重量測定し、ろ紙の乾燥重量を差し引いて固形物重量を算出することとする。 The concentration of the valuable metal powder in the resist waste liquid is not particularly limited because it varies depending on the amount of the valuable metal used, the amount of the resist, the amount of the resist remover, etc. in various manufacturing processes such as the semiconductor manufacturing process. In the present invention, valuable metal powder can be recovered at a high yield without causing problems such as clogging even if the resist waste liquid has a high concentration of valuable metal powder. Therefore, the concentration of the valuable metal powder contained in the resist waste liquid may be preferably 0.001 g/L or more, more preferably 0.01 g/L or more. Moreover, an upper limit is not specifically limited. The valuable metal powder concentration is measured by filtering the resist waste liquid, drying the residue together with the filter paper, measuring the weight, and subtracting the dry weight of the filter paper to calculate the solid weight.

またレジスト廃液に含まれる有価金属粉のサイズは最大粒子径が0.1μm以上であることが好ましい。レジスト廃液中の有価金属粉は移送過程で衝突等によって微細化されるが、本発明では有価金属粉の微細化が抑制できるため、最大粒子径が0.1μm以上である有価金属粉を対象とすれば高収率を達成できる。有価金属粉の最大粒子径の上限や薄膜状有価金属粉の膜厚は半導体製造工程などにおける製造条件に依拠しているため限定されない。本発明における有価金属粉の最大粒子径は、レーザー回折・散乱式 粒子径分布測定装置にて測定する。 The maximum particle size of the valuable metal powder contained in the resist waste liquid is preferably 0.1 μm or more. Valuable metal powder in the resist waste liquid is made finer by collision or the like during the transfer process. high yields can be achieved. The upper limit of the maximum particle diameter of the valuable metal powder and the film thickness of the thin-film valuable metal powder are not limited because they depend on the manufacturing conditions in the semiconductor manufacturing process. The maximum particle size of the valuable metal powder in the present invention is measured with a laser diffraction/scattering particle size distribution analyzer.

以下、図1に基づいて本発明の有価金属粉回収方法を説明する。
レジスト廃液は半導体製造工程などのレジスト廃液発生源1から本発明の沈降分離工程3に供給される。レジスト廃液はレジスト廃液発生源1から直接、あるいは一旦、レジスト廃液貯蔵タンク2で貯留してから沈降分離工程3に供給してもよい。レジスト廃液貯蔵タンク2を設けると本発明の有価金属粉回収工程がメンテナンス中でも半導体などの製造ラインを停止する必要がない。またレジスト廃液貯蔵タンク2を設けることで本発明の有価金属粉回収工程に供給するレジスト廃液の成分組成を均一化できる。更に本発明の有価金属粉回収工程の処理量に応じてレジスト廃液の供給量を調整できる。レジスト廃液は連続的に沈降分離工程3に供給してもよいし、一定量づつ供給してバッチ処理してもよい。沈降分離工程3での有価金属粉の沈殿効率などを考慮するとバッチ処理が好ましい。
Hereinafter, the valuable metal powder recovery method of the present invention will be described based on FIG.
A resist waste liquid is supplied to a sedimentation separation process 3 of the present invention from a resist waste liquid generation source 1 such as a semiconductor manufacturing process. The resist waste liquid may be supplied to the sedimentation separation process 3 directly from the resist liquid waste generation source 1 or once stored in the resist liquid waste storage tank 2 . By providing the resist waste liquid storage tank 2, it is not necessary to stop the production line for semiconductors or the like even during maintenance of the valuable metal powder recovery process of the present invention. Further, by providing the resist waste liquid storage tank 2, the component composition of the resist waste liquid supplied to the valuable metal powder recovery process of the present invention can be made uniform. Furthermore, the supply amount of the resist waste liquid can be adjusted according to the processing amount of the valuable metal powder recovery step of the present invention. The resist waste liquid may be supplied continuously to the sedimentation separation step 3, or may be supplied in fixed amounts at a time and subjected to batch treatment. Batch processing is preferable in consideration of the sedimentation efficiency of the valuable metal powder in the sedimentation separation step 3 .

(1)沈降分離工程
本発明の沈降分離工程3は、レジスト廃液を浮遊性有価金属粉含有上澄み液と、沈降性有価金属粉含有沈殿物とに分離する工程である。レジスト廃液中の有価金属粉の一部を沈殿させることによって上澄み液中の有価金属粉濃度を低減できる。したがって上澄み液をろ過工程でろ過する際に有価金属粉に起因するろ過膜の目詰まりを抑制できる。本発明において浮遊性有価金属粉と沈殿性有価金属粉はいずれもレジスト廃液中の有価金属粉であるが、所定時間内で沈殿せずにレジスト廃液中に浮遊している有価金属粉を浮遊性有価金属粉、比重が大きく沈殿した有価金属粉を沈殿性有価金属粉という。また上澄み液とは沈降分離工程3から添加工程4に供給されるレジスト廃液をいう。
(1) Sedimentation Separation Step The sedimentation separation step 3 of the present invention is a step of separating the resist waste liquid into a supernatant liquid containing floating valuable metal powder and a sediment containing sedimentary valuable metal powder. By precipitating part of the valuable metal powder in the resist waste liquid, the concentration of the valuable metal powder in the supernatant can be reduced. Therefore, clogging of the filtration membrane due to the valuable metal powder can be suppressed when the supernatant liquid is filtered in the filtration process. In the present invention, both the floating valuable metal powder and the precipitating valuable metal powder are valuable metal powder in the resist waste liquid. Precipitable valuable metal powder is defined as valuable metal powder and precipitated valuable metal powder with high specific gravity. The supernatant means the resist waste liquid supplied from the sedimentation separation process 3 to the addition process 4 .

ろ過工程7におけるろ過膜の目詰まりを抑制するためにはレジスト廃液中の有価金属粉は沈降分離工程3においてできるだけ沈殿させることが望ましい。沈殿させる有価金属粉量はレジスト廃液中の有価金属粉濃度、およびろ過工程7の処理能力などに応じて適宜決定すればよい。例えば沈降分離工程3に導入されるレジスト廃液中の有価金属粉量に対して沈降分離工程3から添加工程4に供給される上澄み液中の有価金属粉量(=上澄み液中有価金属粉量(g)/レジスト廃液中有価金属粉量(g)×100%)は、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下、より更に好ましくは5質量%以下である。 In order to suppress clogging of the filter membrane in the filtration step 7, it is desirable to precipitate valuable metal powder in the resist waste liquid in the sedimentation separation step 3 as much as possible. The amount of the valuable metal powder to be precipitated may be appropriately determined according to the concentration of the valuable metal powder in the resist waste liquid, the throughput of the filtration step 7, and the like. For example, the amount of valuable metal powder in the supernatant liquid supplied from the sedimentation separation process 3 to the addition process 4 with respect to the amount of valuable metal powder in the resist waste liquid introduced into the sedimentation separation process 3 (= the amount of valuable metal powder in the supernatant liquid ( g)/amount of valuable metal powder in resist waste liquid (g)×100%) is preferably 30% by mass or less, more preferably 20% by mass or less, even more preferably 10% by mass or less, and even more preferably 5% by mass or less. is.

沈降分離工程3における分離処理条件、特にレジスト廃液の滞在時間は、上澄み液中の有価金属粉が所定濃度となるように適宜決定すればよい。また沈殿した有価金属粉は各種公知の方法で回収すればよい。なお、本発明では自然沈降による有価金属粉の沈降分離であり、凝集剤などの各種添加剤は添加しない。 The separation treatment conditions in the sedimentation separation step 3, particularly the residence time of the resist waste liquid, may be appropriately determined so that the valuable metal powder in the supernatant liquid has a predetermined concentration. Also, the precipitated valuable metal powder may be recovered by various known methods. In the present invention, sedimentation separation of the valuable metal powder is carried out by natural sedimentation, and various additives such as flocculants are not added.

本発明では沈降分離工程3においてレジスト廃液中に浮遊している有価金属粉のうちレジスト廃液の水面近傍に浮いている有価金属粉を取り除くことも好ましい。レジスト廃液の水面近傍に浮いている有価金属粉を取り除くと、次工程に供給される上澄み液の有価金属粉濃度を更に低減できる。レジスト廃液の水面近傍の有価金属粉は任意の手段、例えば不織布などをレジスト廃液に接触させることで有価金属粉を該不織布に付着させたり、フィルターなどの固液分離手段をつかって有価金属粉を除去してもよい。あるいは後記するように遮断板16などの板部材を設けてレジスト廃液の越流を阻害してもよい。 In the present invention, it is also preferable to remove the valuable metal powder floating in the vicinity of the water surface of the resist waste liquid among the valuable metal powder floating in the resist waste liquid in the sedimentation separation step 3 . By removing the valuable metal powder floating near the water surface of the resist waste liquid, the concentration of the valuable metal powder in the supernatant supplied to the next step can be further reduced. Valuable metal powder in the vicinity of the water surface of the resist waste liquid is removed by any means, such as contacting a non-woven fabric with the resist liquid waste to attach the valuable metal powder to the non-woven fabric, or by using a solid-liquid separation means such as a filter. may be removed. Alternatively, as will be described later, a plate member such as a blocking plate 16 may be provided to prevent the resist waste liquid from overflowing.

レジスト廃液をバッチ式に沈降分離工程3に供給する場合は、新たなレジスト廃液の供給によってレジスト廃液の水面が上昇する。またレジスト廃液を連続的に沈降分離工程3に供給する場合は、連続的にレジスト廃液の水面が上昇する。沈降分離工程3内のレジスト廃液は一定水位を超えると該超過分は上澄み液として添加工程4に供給される。なお、本発明ではレジスト廃液を沈降分離工程3から添加工程4に越流によって供給している。そのため配管やポンプなどによって工程間を接続してレジスト廃液を移送させる場合と比べて有価金属粉の微細化を抑制でき、ろ過膜の目詰まり抑制に有効である。 When the resist waste liquid is supplied to the sedimentation separation step 3 in a batch manner, the water level of the resist waste liquid rises as new resist liquid waste is supplied. Further, when the resist waste liquid is continuously supplied to the sedimentation separation process 3, the surface of the resist waste liquid rises continuously. When the resist waste liquid in the sedimentation separation process 3 exceeds a certain water level, the excess amount is supplied to the addition process 4 as a supernatant liquid. In the present invention, the resist waste liquid is supplied from the sedimentation separation process 3 to the addition process 4 by overflow. Therefore, compared with the case where the resist waste liquid is transferred by connecting the processes with pipes, pumps, etc., it is possible to suppress the reduction of the valuable metal powder into fine particles, which is effective in suppressing the clogging of the filtration membrane.

(2)添加工程
本発明の添加工程4は、上記沈降分離工程3から越流した上澄み液に不溶性粒子を添加する工程である。不溶性粒子は次工程であるろ過工程7でボディフィードとしても機能するため、ろ過膜への有価金属粉やレジスト成分の付着を抑制できる。
(2) Addition step The addition step 4 of the present invention is a step of adding insoluble particles to the supernatant liquid overflowed from the sedimentation separation step 3 . Since the insoluble particles also function as a body feed in the subsequent filtration step 7, adhesion of valuable metal powder and resist components to the filtration membrane can be suppressed.

(不溶性粒子)
本発明で使用する不溶性粒子はレジスト廃液に対して不溶性の固体である。好ましくはレジスト廃液に含まれるレジスト除去液に対して不溶性である有機粒子または無機粒子であり、より好ましくは無機粒子である。また不溶性粒子は多孔質であることが好ましい。多孔質の不溶性粒子は上澄み液中の有価金属粉のうち微細な有価金属粉を吸着し、ろ過時に有価金属粉を孔内に保持するため、より一層ろ過膜への有価金属粉の付着を低減できる。また不溶性粒子は、ろ過時に沈殿する程度の比重を有するものが好ましい。
(Insoluble particles)
The insoluble particles used in the present invention are solids that are insoluble in the resist waste liquid. Organic particles or inorganic particles that are insoluble in the resist removing liquid contained in the resist waste liquid are preferred, and inorganic particles are more preferred. Also, the insoluble particles are preferably porous. The porous insoluble particles adsorb fine valuable metal powder among the valuable metal powder in the supernatant liquid, and retain the valuable metal powder in the pores during filtration, further reducing the adhesion of valuable metal powder to the filtration membrane. can. Moreover, the insoluble particles preferably have a specific gravity to the extent that they precipitate during filtration.

不溶性粒子としてはセルロース、炭素などの有機吸着材、珪藻土、パーライト、ガラスビーズなどの無機吸着材が例示される。これらの中でも多孔質の無機吸着材が好ましく、珪藻土がより好ましい。不溶性粒子は1種、あるいは2種以上を併用してもよい。 Examples of insoluble particles include organic adsorbents such as cellulose and carbon, and inorganic adsorbents such as diatomaceous earth, perlite, and glass beads. Among these, porous inorganic adsorbents are preferred, and diatomaceous earth is more preferred. The insoluble particles may be used singly or in combination of two or more.

不溶性粒子の平均粒子径は好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは20μm以上であって、好ましくは100μm以下、より好ましくは80μm以下、更に好ましくは40μm以下ある。不溶性粒子の平均粒子径はボディフィード効果を向上させる観点からは粒子径は大きい方が好ましいが、粒子径が大きすぎると充填密度が低くなってボディフィード効果が低下することがある。また多孔質を有する不溶性粒子の平均粒子径が大きくなりすぎると表面積低減に伴って微細な有価金属粉の吸着量が低くなることがある。 The average particle size of the insoluble particles is preferably 1 µm or more, more preferably 5 µm or more, still more preferably 20 µm or more, and preferably 100 µm or less, more preferably 80 µm or less, and still more preferably 40 µm or less. From the viewpoint of improving the body-feeding effect, the average particle diameter of the insoluble particles is preferably as large as possible. Also, if the average particle diameter of the insoluble particles having porosity is too large, the adsorption amount of the fine valuable metal powder may decrease due to the decrease in the surface area.

不溶性粒子の添加量はレジスト廃液中の有価金属粉濃度や添加する不溶性粒子の比重等により異なるが、上澄み液中に好ましくは0.001g/L以上、より好ましくは0.005g/L以上、更に好ましくは0.01g/L以上であって、好ましくは10g/L以下、より好ましくは5g/L以下、更に好ましくは1g/L以下である。不溶性粒子の添加量が多くなる程、上記効果は向上するが、多すぎると処理量が増大する。 The amount of the insoluble particles added varies depending on the concentration of the valuable metal powder in the resist waste liquid and the specific gravity of the insoluble particles to be added. It is preferably 0.01 g/L or more, preferably 10 g/L or less, more preferably 5 g/L or less, and still more preferably 1 g/L or less. As the amount of the insoluble particles added increases, the above effects are enhanced, but if the amount is too large, the amount of treatment increases.

添加した不溶性粒子は上澄み液と混合して均一に分散させることが好ましい。不溶性粒子は粉状のまま、あるいは水などの溶媒に添加して液状(以下、不溶性粒子含有液という)にしてから上澄み液に添加してもよい。クリーンルームなど粉末の飛散が望ましくない環境下においては不溶性粒子含有液が好ましい。 The added insoluble particles are preferably mixed with the supernatant and dispersed uniformly. The insoluble particles may be added to the supernatant as they are in powder form, or after being added to a solvent such as water to form a liquid (hereinafter referred to as "insoluble particle-containing liquid"). A liquid containing insoluble particles is preferable in an environment such as a clean room where scattering of powder is undesirable.

上澄み液に添加した不溶性粒子は沈降しやすいため、上澄み液を攪拌して均一な分散状態を維持することが望ましい。上澄み液を攪拌する手段は特に限定されない。例えば非機械的攪拌手段で上澄み液を攪拌することが好ましい。非機械的攪拌手段としてはノズルなどの噴射手段が例示される。例えば空気などの気体;不溶性粒子含有液や混合槽内の上澄み液などの液体を噴射手段から上澄み液に供給し、噴流による攪拌(以下、非機械的手段という)が好ましい。本発明では予め調整された不溶性粒子含有液を不溶性粒子貯蔵タンク5に貯蔵しておき、該タンク5からノズルなどの噴射手段を介して上澄み液に供給してもよいし、或いは混合槽内の上澄み液を抜き出して上記噴射手段から供給して上澄み液を循環させてもよい。 Since the insoluble particles added to the supernatant tend to settle, it is desirable to stir the supernatant to maintain a uniformly dispersed state. A means for stirring the supernatant is not particularly limited. For example, it is preferable to agitate the supernatant with non-mechanical agitation means. Examples of non-mechanical stirring means include injection means such as nozzles. For example, a gas such as air; a liquid such as a liquid containing insoluble particles or a supernatant liquid in a mixing vessel is preferably supplied from a jet means to the supernatant liquid, and agitated by jet flow (hereinafter referred to as non-mechanical means). In the present invention, the insoluble particle-containing liquid prepared in advance may be stored in the insoluble particle storage tank 5, and may be supplied from the tank 5 to the supernatant liquid through an injection means such as a nozzle, or The supernatant liquid may be extracted and supplied from the injection means, and the supernatant liquid may be circulated.

(3)ろ過工程
ろ過工程7は不溶性粒子が添加された上澄み液(以下、混合液という)を有価金属粉含有残渣と、有価金属粉非含有廃液とに固液分離する工程である。ろ過後、有価金属粉含有残渣から公知の手段で有価金属粉を回収できる。ろ過は有価金属粉の回収率、メンテナンス性、省スペース化、処理速度などに優れているため、他の固液分離手段、例えば沈降分離、遠心分離、フィルター分離などよりも好ましい。
(3) Filtration Step Filtration step 7 is a step of solid-liquid separation of the supernatant liquid to which insoluble particles have been added (hereinafter referred to as mixed liquid) into valuable metal powder-containing residue and valuable metal powder-free waste liquid. After filtration, the valuable metal powder can be recovered from the residue containing the valuable metal powder by known means. Filtration is superior to other solid-liquid separation means such as sedimentation separation, centrifugation, filter separation, etc., because it is excellent in recoverability of valuable metal powder, maintainability, space saving, processing speed, and the like.

ろ過に用いるろ過膜は有価金属粉の収率、処理効率などを考慮して適宜決定すればよい。ろ過膜の孔径を小さくするほど有価金属粉の収率は向上する。一方、ろ過膜の孔径を小さくしすぎるとレジスト成分による目詰まりが生じやすくなる。本発明では沈降分離工程3から添加工程4への上澄み液の移送や上澄み液と不溶性粒子との混合において有価金属粉の微細化を抑制しているため、ろ過で最大径0.1μm以上の有価金属粉を捕集できれば、十分高い収率、例えば混合液に含まれる有価金属粉の好ましくは99%以上、より好ましくは99.9%以上を回収できる。したがって本発明によれば長期間目詰まりを抑制しつつ、高い収率を確保できる。 The filtration membrane used for filtration may be appropriately determined in consideration of the yield of the valuable metal powder, processing efficiency, and the like. The smaller the pore size of the filtration membrane, the higher the yield of the valuable metal powder. On the other hand, if the pore size of the filtration membrane is too small, clogging due to resist components is likely to occur. In the present invention, the transfer of the supernatant liquid from the sedimentation separation step 3 to the addition step 4 and the mixing of the supernatant liquid and the insoluble particles suppress the refinement of the valuable metal powder. If the metal powder can be collected, a sufficiently high yield, for example, preferably 99% or more, more preferably 99.9% or more, of the valuable metal powder contained in the mixed liquid can be recovered. Therefore, according to the present invention, it is possible to secure a high yield while suppressing clogging for a long period of time.

具体的には精密ろ過(MF)が好ましい。限外ろ過(UF)やナノろ過(NF)でも有価金属粉を捕集できるが、レジスト成分や有価金属粉による目詰まりが生じやすくなることがあり、メンテナンス性を考慮すると精密ろ過(MF)が好ましい。本発明では回収対象が最大粒径0.1μm以上の有価金属粉であることを考慮するとろ過膜の孔径は好ましくは0.01μm以上、より好ましく0.05μm以上であって、好ましくは10μm以下、より好ましくは5μm以下が好適である。またろ過は自然ろ過、減圧ろ過、加圧ろ過のいずれでも良いが、ろ過速度の向上を図る観点からは減圧ろ過、または加圧ろ過が好ましい。 Specifically, microfiltration (MF) is preferred. Valuable metal powder can be collected by ultrafiltration (UF) and nanofiltration (NF), but clogging may occur easily due to resist components and valuable metal powder. preferable. Considering that the object to be recovered in the present invention is valuable metal powder having a maximum particle size of 0.1 μm or more, the pore size of the filtration membrane is preferably 0.01 μm or more, more preferably 0.05 μm or more, and preferably 10 μm or less. 5 μm or less is more preferable. Filtration may be natural filtration, vacuum filtration, or pressure filtration, but from the viewpoint of improving the filtration rate, vacuum filtration or pressure filtration is preferable.

ろ過膜の材質はポリエチレン、4フッ化エチレン、ポリプロピレン、酢酸セルロース、ポリアクリロニトリル、ポリイミド、ポリスルホン、ポリエーテルスルホン、パルプ等の有機膜、酸化アルミニウム、酸化ジルコニウム、酸化チタン、ステンレス、ガラス等の無機膜が例示される。ろ過膜の材質はレジスト廃液の液性(例えばpH、液温、有機物の組成、レジスト除去成分など)に応じて耐久性などを考慮して適宜選択することが望ましい。本発明では紙ろ紙、ガラスろ紙が好ましい。 Filtration membrane materials include organic membranes such as polyethylene, tetrafluoroethylene, polypropylene, cellulose acetate, polyacrylonitrile, polyimide, polysulfone, polyethersulfone, and pulp, and inorganic membranes such as aluminum oxide, zirconium oxide, titanium oxide, stainless steel, and glass. are exemplified. It is desirable that the material of the filtration membrane be appropriately selected in consideration of the durability and the like according to the liquid properties of the resist waste liquid (for example, pH, liquid temperature, composition of organic substances, components to be removed from the resist, etc.). In the present invention, paper filter paper and glass filter paper are preferred.

ろ過条件はろ過装置の能力を考慮して適宜決定すればよい。例えばろ過流量20L/分、ろ過圧力-0.07MPaである。 Filtration conditions may be appropriately determined in consideration of the performance of the filtration device. For example, the filtration flow rate is 20 L/min and the filtration pressure is -0.07 MPa.

本発明ではろ過を行う前にプリコート層6を形成することが好ましい。プリコート層6を設けることで有価金属粉やレジスト成分によるろ材の目詰まりをより一層抑制できる。プリコート層6を形成する材料は好ましくは上記不溶性粒子として例示した材料を使用できる。またプリコート層6に使用する材料は1種、あるいは2種以上を併用してもよい。プリコート層6に使用する材料と上記不溶性粒子として使用する材料の異同は問わない。 In the present invention, it is preferable to form the precoat layer 6 before filtering. By providing the precoat layer 6, clogging of the filter medium with valuable metal powder and resist components can be further suppressed. As the material for forming the precoat layer 6, the materials exemplified as the insoluble particles can be preferably used. Also, the materials used for the precoat layer 6 may be used alone or in combination of two or more. The difference between the material used for the precoat layer 6 and the material used for the insoluble particles does not matter.

また添加工程4からろ過工程7に供給される混合液に含まれている不溶性粒子は、ろ過膜上、あるいはプリコート層6上に順次堆積してろ過ケーキを生成する。そのためろ過ケーキの最表面は順次更新されてろ過の進行に伴うケーキ抵抗の増大を抑えることができ、ろ過膜の目詰まりを長時間抑制できる。 Insoluble particles contained in the liquid mixture supplied from the addition step 4 to the filtration step 7 are sequentially deposited on the filtration membrane or the precoat layer 6 to form a filter cake. Therefore, the outermost surface of the filter cake is sequentially renewed, and an increase in cake resistance accompanying the progress of filtration can be suppressed, and clogging of the filtration membrane can be suppressed for a long time.

以上、本発明によればレジスト廃液から有価金属粉を分離、回収できる。また本発明によればレジスト廃液の処理に使用するろ過膜の長寿命化を図ることができる。 As described above, according to the present invention, the valuable metal powder can be separated and recovered from the resist waste liquid. Further, according to the present invention, it is possible to extend the life of the filtration membrane used for treating the resist waste liquid.

以下、本発明の有価金属粉回収方法に好適な有価金属粉回収設備について図2~4に基づいて説明する。 Valuable metal powder recovery equipment suitable for the method for recovering valuable metal powder of the present invention will be described below with reference to FIGS.

有価金属粉回収設備
本発明の上記有価金属粉回収方法に好適な有価金属粉回収設備は、少なくとも沈殿混合装置10(図2、3)、ろ過装置11(図4)を有している。本発明の有価金属粉回収設備は更にレジスト廃液貯蔵タンク(図1の2)、及び/または不溶性粒子含有液貯蔵タンク(図1の5)を有していてもよい。これら装置、及びタンクは配管(図1の8a~8e)で相互に接続されている。また配管には必要に応じて図示しないポンプやバルブを設けて供給量の調整が行われている。
Valuable Metal Powder Recovery Equipment Valuable metal powder recovery equipment suitable for the valuable metal powder recovery method of the present invention has at least a precipitation mixing device 10 (FIGS. 2 and 3) and a filtering device 11 (FIG. 4). The valuable metal powder recovery equipment of the present invention may further have a resist waste liquid storage tank (2 in FIG. 1) and/or an insoluble particle-containing liquid storage tank (5 in FIG. 1). These devices and tanks are interconnected by pipes (8a to 8e in FIG. 1). In addition, the pipes are provided with pumps and valves (not shown) as necessary to adjust the amount of supply.

沈殿混合装置
本発明の沈殿混合装置10は沈降分離工程3を行う沈降槽12と添加工程4を行う混合槽13を有する構成である。沈殿混合装置10は好ましくは直方体乃至立方体であり、沈殿混合装置10の内部を隔壁17で仕切ることで沈降槽12と混合槽13とに分けている。隔壁17は天井面22と隔壁17の上端部との間に空隙ができるように設置されている。該空隙を設けることで沈降槽12のレジスト廃液の液面が隔壁17の上端を超えると越流して混合槽13に供給される。なお、図示例とは異なり、隔壁17を天井面22と接するように設置した場合は、隔壁17に開口部を設けて該開口部から上澄み液が混合槽13に供給されるように構成してもよい。
Sedimentation and Mixing Apparatus The precipitation and mixing apparatus 10 of the present invention is configured to have a sedimentation tank 12 for performing the sedimentation separation step 3 and a mixing tank 13 for performing the addition step 4 . The precipitation mixer 10 is preferably rectangular parallelepiped or cubic. The partition 17 is installed so that a gap is formed between the ceiling surface 22 and the upper end of the partition 17 . By providing the gap, when the liquid surface of the resist waste liquid in the sedimentation tank 12 exceeds the upper end of the partition wall 17 , it overflows and is supplied to the mixing tank 13 . Note that, unlike the illustrated example, when the partition 17 is installed so as to be in contact with the ceiling surface 22, an opening is provided in the partition 17 and the supernatant liquid is supplied to the mixing tank 13 from the opening. good too.

沈降槽
沈降槽12はレジスト廃液を所定時間滞在させて有価金属粉の少なくとも一部を沈殿させる手段である。沈降槽12はレジスト廃液供給口19、流路板14を有している。以下では流路板14と沈降槽12の壁面20cの間の空間(すなわち、レジスト廃液供給口19が設けられている側)を第1沈降部30、流路板14と隔壁17の間の空間を第2沈降部31ということがある。
Sedimentation Tank The sedimentation tank 12 is a means for allowing the resist waste liquid to stay for a predetermined period of time to precipitate at least part of the valuable metal powder. The sedimentation tank 12 has a resist waste liquid supply port 19 and a channel plate 14 . Below, the space between the channel plate 14 and the wall surface 20c of the sedimentation tank 12 (that is, the side where the resist waste liquid supply port 19 is provided) is defined as the first sedimentation part 30, and the space between the channel plate 14 and the partition wall 17 is sometimes referred to as a second sedimentation section 31.

レジスト廃液供給口19はレジスト廃液発生源から送給されるレジスト廃液を沈降槽12に供給する手段である。レジスト廃液供給口19は図示しない半導体製造工程などのレジスト廃液発生源やレジスト廃液貯蔵タンクなどと接続されている。レジスト廃液供給口19は第1沈降部30側の天井面22に設けられている。レジスト廃液供給口19の下端部の位置は特に限定されない。図示例ではレジスト廃液受け部15近傍まで延伸している。 The resist waste liquid supply port 19 is means for supplying the resist waste liquid supplied from the resist waste liquid generation source to the sedimentation tank 12 . The resist waste liquid supply port 19 is connected to a resist waste liquid generation source, a resist waste liquid storage tank, and the like in a semiconductor manufacturing process (not shown). The resist waste liquid supply port 19 is provided on the ceiling surface 22 on the first sedimentation section 30 side. The position of the lower end of the resist waste liquid supply port 19 is not particularly limited. In the illustrated example, it extends to the vicinity of the resist waste liquid receiving portion 15 .

流路板14は供給されたレジスト廃液の流れを制御する手段である。流路板14は沈降槽12の壁面20cと隔壁17の間に設けられている。流路板14の側面は図3に示す様に沈降槽12の対向する壁面20a、20bで固定されている。流路板14の上端部は隔壁17の上端部よりも高ければよく、沈降槽12の天井面22との接触の有無は問わない。また流路板14の下端部は沈降槽12の底面21との間に空隙ができるように設置されている。第1沈降部30側から供給されたレジスト廃液は流路板14の下端と沈降槽12の底面21との間の空隙を通って第2沈降部31側に供給される。流路板14の下端部は隔壁17の上端、または隔壁17に開口部を設けた場合は該開口部(以下、同じ)よりも低いことが好ましい。流路板14の下端部と沈降槽12の底面21との間の空隙が狭すぎると該空隙を通過するレジスト廃液の流速が早くなって沈殿物を巻き上げることがある。このような巻き上げを抑制する観点から流路板14の下端部と底面との間の空隙の高さは、沈降槽の高さの20%程度であることが好ましく、より好ましくは10%以上である。流路板14を設けることで供給されたレジスト廃液の流速を減衰でき、その結果、第2沈降部31に滞留しているレジスト廃液中の有価金属粉の沈降阻害を抑制できる。 The channel plate 14 is means for controlling the flow of the supplied resist waste liquid. The channel plate 14 is provided between the wall surface 20 c of the sedimentation tank 12 and the partition wall 17 . The side surfaces of the channel plate 14 are fixed to the opposed wall surfaces 20a and 20b of the sedimentation tank 12 as shown in FIG. The upper end portion of the channel plate 14 may be higher than the upper end portion of the partition wall 17 and may or may not come into contact with the ceiling surface 22 of the sedimentation tank 12 . Further, the lower end of the channel plate 14 is installed so as to form a gap with the bottom surface 21 of the sedimentation tank 12 . The resist waste liquid supplied from the first sedimentation section 30 side passes through the gap between the lower end of the channel plate 14 and the bottom surface 21 of the sedimentation tank 12 and is supplied to the second sedimentation section 31 side. The lower end of the channel plate 14 is preferably lower than the upper end of the partition wall 17 or, if an opening is provided in the partition wall 17, the opening (hereinafter the same). If the gap between the lower end of the channel plate 14 and the bottom surface 21 of the sedimentation tank 12 is too narrow, the flow velocity of the resist waste liquid passing through the gap becomes faster, and sediments may be swirled up. From the viewpoint of suppressing such curling up, the height of the gap between the lower end of the channel plate 14 and the bottom surface is preferably about 20% of the height of the sedimentation tank, more preferably 10% or more. be. By providing the channel plate 14 , the flow velocity of the supplied resist waste liquid can be attenuated, and as a result, sedimentation inhibition of the valuable metal powder in the resist waste liquid staying in the second sedimentation section 31 can be suppressed.

沈降槽12の底面21には傾斜板18を必要に応じて設けてもよい。傾斜板18は沈殿物を第1沈殿部30側から第2沈殿部31側に移動させる手段である。傾斜板18は第1沈降部30側の壁面20c側から隔壁17に向かって低くなるように設置することが好ましい。レジスト廃液供給口19から供給されたレジスト廃液が流路板14の下端部の空隙を経由するため該空隙近傍に沈殿物が堆積しやすい。そのため傾斜板18を設けると該空隙部分での沈殿物の堆積を抑制できる。また第2沈殿部31側に沈殿物が集積するため沈殿物の回収が容易となる。 An inclined plate 18 may be provided on the bottom surface 21 of the sedimentation tank 12 as required. The inclined plate 18 is means for moving the sediment from the first sedimentation section 30 side to the second sedimentation section 31 side. It is preferable to install the inclined plate 18 so that it becomes lower toward the partition wall 17 from the wall surface 20c side of the first sedimentation section 30 side. Since the resist waste liquid supplied from the resist waste liquid supply port 19 passes through the gap at the lower end of the channel plate 14, sediments are likely to accumulate in the vicinity of the gap. Therefore, if the inclined plate 18 is provided, it is possible to suppress the accumulation of sediment in the gap. In addition, since the sediment accumulates on the second sedimentation section 31 side, the sediment can be easily recovered.

沈降槽12には遮断板16を必要に応じて設けてもよい。遮断板16はレジスト廃液表面に浮遊している有価金属粉が上澄み液と共に混合槽13に供給されることを抑制する手段である。遮断板16の側面は、図3に示す沈降槽12の対向する壁面20a、20bで固定されている。遮断板16の下端部は隔壁17の上端部よりも低くなるように設置する。また遮断板16の下端面は壁面20a、20b方向に水平であることが好ましい。遮断板16の下端部は沈降槽12の底面21との間に空間ができるように設置されていればよい。遮断板16の下端部は隔壁17の上端部よりも好ましくは1cm~5cm、より好ましくは5cm~10cm程度下側になるように設置すればよい。遮断板16の上端部は隔壁17の上端部よりも高くしてレジスト廃液が越流しなければよく、沈降槽12の天井面22との接触の有無は問わない。遮断板16は沈降槽12の壁面20cに対して傾斜して設置してもよく、その場合は図示例のように遮断板16の隔壁17側が上側、流路板14側が下側となるように傾斜させることが好ましい。遮断板16を傾斜配置すると遮断板16上に集積された有価金属粉が隔壁17方向(液面と逆の方向)に向かって押し出されるため、集積された有価金属粉が再びレジスト廃液中に戻ることがなく、有価金属粉を効率的に回収できる。 A blocking plate 16 may be provided in the sedimentation tank 12 if necessary. The blocking plate 16 is a means for suppressing the valuable metal powder floating on the surface of the resist waste liquid from being supplied to the mixing tank 13 together with the supernatant liquid. The side surfaces of the blocking plate 16 are fixed to the opposing wall surfaces 20a and 20b of the sedimentation tank 12 shown in FIG. The lower end of the blocking plate 16 is installed so as to be lower than the upper end of the partition wall 17 . Also, the lower end surface of the blocking plate 16 is preferably horizontal to the wall surfaces 20a and 20b. The lower end of the blocking plate 16 may be installed so as to form a space between it and the bottom surface 21 of the sedimentation tank 12 . The lower end of the shielding plate 16 may be positioned preferably 1 cm to 5 cm, more preferably 5 cm to 10 cm, lower than the upper end of the partition wall 17 . The upper end of the blocking plate 16 may be higher than the upper end of the partition wall 17 so that the resist waste liquid does not overflow, and it does not matter whether or not the plate is in contact with the ceiling surface 22 of the sedimentation tank 12 . The blocking plate 16 may be installed at an angle with respect to the wall surface 20c of the sedimentation tank 12. In this case, the blocking plate 16 is placed so that the partition wall 17 side of the blocking plate 16 is on the upper side and the channel plate 14 side is on the lower side. A tilt is preferred. When the blocking plate 16 is inclined, the valuable metal powder accumulated on the blocking plate 16 is pushed out toward the partition wall 17 (in the direction opposite to the liquid surface), so that the accumulated valuable metal powder returns to the resist waste liquid. Valuable metal powder can be efficiently recovered without

沈降槽12にはレジスト廃液受け部15を必要に応じて設けてもよい。レジスト廃液受け部15はレジスト廃液供給口19から供給されたレジスト廃液の流速を減衰させる手段である。図示例ではレジスト廃液受け部15は底面及び四方に壁面を有し、天井面は開口した形状であり、壁面20c側のレジスト廃液受け部15の側面には開口部15aが複数設けられている。図示するようにレジスト廃液受け部15の側面は沈降槽12の壁面20a、20bで固定されている。また壁面20cとレジスト廃液受け部15の間には空隙32が設けられている。供給されたレジスト廃液はレジスト廃液受け部15の開口部15aから壁面20cをつたって第1沈降部30に供給される。 The sedimentation tank 12 may be provided with a resist waste liquid receiver 15 as required. The resist waste liquid receiver 15 is means for attenuating the flow velocity of the resist waste liquid supplied from the resist waste liquid supply port 19 . In the illustrated example, the resist waste liquid receiving portion 15 has a bottom surface and four wall surfaces, and the ceiling surface has an open shape. As shown in the figure, the side surfaces of the resist waste liquid receiver 15 are fixed to the walls 20a and 20b of the sedimentation tank 12. As shown in FIG. A gap 32 is provided between the wall surface 20c and the resist waste liquid receiver 15. As shown in FIG. The supplied resist waste liquid is supplied to the first sedimentation section 30 from the opening 15a of the resist waste liquid receiving section 15 along the wall surface 20c.

沈降槽12の底面21には排出口38を設けることが好ましい。排出口38は沈降槽12内の沈殿物を排出する手段である。沈降槽12内のレジスト廃液は沈殿物と共に排出口38から排出してもよいし、或いは排出口38とは別に図示するように抜き出し口36を設けてレジスト廃液を抜き出してもよい。沈降槽12の任意の位置、好ましくは底面21近傍に抜き出し口36を設けて、レジスト廃液を排出した後、沈降槽12内から沈殿物を回収してもよい。排出したレジスト廃液はレジスト廃液貯蔵タンクに戻すなどして再度、沈降槽12に供給してもよい。あるいは排出したレジスト廃液をろ過装置11に供給して固液分離してもよい。 A discharge port 38 is preferably provided on the bottom surface 21 of the sedimentation tank 12 . The discharge port 38 is means for discharging the sediment in the sedimentation tank 12 . The resist waste liquid in the sedimentation tank 12 may be discharged together with the sediment from the discharge port 38, or an extraction port 36 may be provided separately from the discharge port 38 to extract the resist waste liquid. An extraction port 36 may be provided at an arbitrary position in the sedimentation tank 12, preferably in the vicinity of the bottom surface 21, and the sediment may be recovered from the sedimentation tank 12 after the resist waste liquid is discharged. The discharged resist waste liquid may be returned to the resist waste liquid storage tank and supplied to the sedimentation tank 12 again. Alternatively, the discharged resist waste liquid may be supplied to the filtering device 11 for solid-liquid separation.

混合槽
混合槽13は沈降槽12から供給された上澄み液に不溶性粒子を添加して撹拌混合する手段である。混合槽13は不溶性粒子供給手段34、攪拌・混合手段35、排出口33とを有する。
Mixing Tank The mixing tank 13 is means for adding insoluble particles to the supernatant liquid supplied from the sedimentation tank 12 and stirring and mixing them. The mixing tank 13 has an insoluble particle supply means 34 , a stirring/mixing means 35 and a discharge port 33 .

不溶性粒子供給手段34は、混合槽13に供給された上澄み液に不溶性粒子を供給する手段である。不溶性粒子供給手段34の先端部分は特に限定されず、ノズルなどの公知の供給手段を採用できる。不溶性粒子供給手段34は図示しない不溶性粒子貯蔵タンクなどの不溶性粒子供給源と接続されており、ポンプなどの送給手段を介して混合槽13に供給されるように構成されている。粉体の不溶性粒子をフィーダーなどで供給してもよいし、不溶性粒子を液体などに混合させて圧縮エアなどで供給してもよい。ろ過装置での処理を考慮すると不溶性粒子は液体と混合するよりも粉体で供給することも好ましい。供給した不溶性粒子が飛散しないように不溶性粒子供給手段34の先端部の設置位置を調整することが望ましい。例えば不溶性粒子として珪藻土を圧縮エアで送供する場合、不溶性粒子供給手段34の先端部が混合槽内の上澄み液に接触していると圧縮エアによって上澄み液がバブリングして珪藻土が飛散し、沈降槽12に混入することがある。そのため該先端部は液面に接触しないように設置することが望ましい。 The insoluble particle supplying means 34 is means for supplying insoluble particles to the supernatant liquid supplied to the mixing tank 13 . The tip portion of the insoluble particle supplying means 34 is not particularly limited, and known supplying means such as a nozzle can be employed. The insoluble particle supply means 34 is connected to an insoluble particle supply source such as an insoluble particle storage tank (not shown), and is configured to supply the insoluble particles to the mixing tank 13 via a supply means such as a pump. The powdery insoluble particles may be supplied by a feeder or the like, or the insoluble particles may be mixed with a liquid or the like and supplied by compressed air or the like. Considering the treatment with a filtering device, it is also preferable to supply the insoluble particles in the form of powder rather than mixing them with the liquid. It is desirable to adjust the installation position of the tip of the insoluble particle supply means 34 so that the supplied insoluble particles do not scatter. For example, when diatomaceous earth is supplied as insoluble particles by compressed air, when the tip of the insoluble particle supply means 34 is in contact with the supernatant liquid in the mixing tank, the supernatant liquid is bubbled by the compressed air, causing the diatomaceous earth to scatter, and the sedimentation tank. 12 may be mixed. Therefore, it is desirable to install the tip portion so as not to contact the liquid surface.

攪拌・混合手段35は、上澄み液と不溶性粒子を攪拌し、混合する手段である。攪拌・混合手段35は先端部にノズル37a、37bなどの噴射手段を有しており、該ノズル37a、37bから射出される液体、乃至気体などの射出物によって上澄み液を流動させる。混合時に有価金属粉の微細化を抑制する観点からは、噴射手段は攪拌・混合手段35の先端部は射出物によって上澄み液が渦巻き状に流動するように設置することが望ましい。効率的に上澄み液を流動させる観点からは底面21近傍であることがより好ましい。攪拌・混合手段35の設置数は1又は2以上であり、好ましくは2である。図示例では水平面における対角線上に噴射手段であるノズル37a、37bを設置している。攪拌混合手段35は混合槽13の下部、即ち、排出口33と接続されている。稼働中は図示しないポンプを介して混合槽13から抜き出した上澄み液は攪拌・混合手段35の供給口35aから供給され、ノズル37a、37bから上澄み液中に射出される。 The stirring/mixing means 35 is means for stirring and mixing the supernatant liquid and the insoluble particles. The stirring/mixing means 35 has injection means such as nozzles 37a and 37b at the tip thereof, and the liquid or gas ejected from the nozzles 37a and 37b causes the supernatant liquid to flow. From the viewpoint of suppressing the fineness of the valuable metal powder at the time of mixing, it is desirable that the injection means be installed so that the supernatant liquid flows in a spiral shape by the injection material at the tip of the stirring/mixing means 35 . From the viewpoint of efficiently flowing the supernatant liquid, the vicinity of the bottom surface 21 is more preferable. The number of stirring/mixing means 35 installed is one or two or more, preferably two. In the illustrated example, nozzles 37a and 37b, which are injection means, are installed on diagonal lines in the horizontal plane. The stirring/mixing means 35 is connected to the bottom of the mixing tank 13 , that is, to the discharge port 33 . During operation, the supernatant liquid extracted from the mixing tank 13 via a pump (not shown) is supplied from the supply port 35a of the stirring/mixing means 35 and injected into the supernatant liquid from the nozzles 37a and 37b.

排出口33は不溶性粒子が混合された上澄み液(以下、混合液という)の抜き出し手段である。排出口33と接続されている配管は分岐して供給口35と接続していると共に、ろ過装置11と接続している。分岐した配管には夫々バルブなどの調整手段を設けることが好ましい。排出口33は混合槽13の底面に設けられており、混合液を排出口33から適宜抜き出し、図示しない配管を通ってろ過装置11の混合液供給手段40からろ過膜39に供給される。例えばバルブや一時貯留タンクなどの調整手段を設けてろ過装置11への上澄み液の供給量を調整してもよい。 The discharge port 33 is means for extracting the supernatant liquid mixed with the insoluble particles (hereinafter referred to as mixed liquid). The pipe connected to the discharge port 33 is branched and connected to the supply port 35 and the filter device 11 . It is preferable that each of the branched pipes is provided with an adjusting means such as a valve. The discharge port 33 is provided on the bottom surface of the mixing tank 13, and the mixed liquid is appropriately extracted from the discharge port 33 and supplied to the filtration membrane 39 from the mixed liquid supply means 40 of the filtering device 11 through a pipe (not shown). For example, adjusting means such as a valve or a temporary storage tank may be provided to adjust the amount of supernatant liquid supplied to the filtering device 11 .

ろ過装置
本発明で使用するろ過装置は工業的に利用されているろ過装置を使用できる。そのため図示例に限定されず、適宜変更可能である。ろ過装置11は上澄み液を有価金属粉含有残渣と有価金属粉が除去された廃液(以下、処理液という)とに分離する手段である。ろ過装置11はろ過膜39、混合液供給手段40を有する。ろ過膜39には所望のろ過性能を有するろ過膜を用いる。ろ過膜39の周縁部は保護板44などの固定手段により固定されていていることが好ましい。なお、図示例ではろ過膜39を示すために透過させている。
Filtration Device As the filtration device used in the present invention, an industrially used filtration device can be used. Therefore, it is not limited to the illustrated example, and can be changed as appropriate. The filtering device 11 is means for separating the supernatant liquid into a valuable metal powder-containing residue and a waste liquid from which the valuable metal powder has been removed (hereinafter referred to as a treated liquid). The filtering device 11 has a filtering membrane 39 and a liquid mixture supplying means 40 . A filtration membrane having desired filtration performance is used for the filtration membrane 39 . It is preferable that the peripheral portion of the filtration membrane 39 is fixed by a fixing means such as a protective plate 44 . In the illustrated example, the filter membrane 39 is shown through.

混合液供給手段40は混合槽13から送給される混合液をろ過膜39に供給する手段である。混合液供給手段40は混合液をろ過膜39に供給する供給口42を有する。図示例では混合液が垂直方向に流下するように設置された供給経路43aと混合液が水平方向に流通するように設置された供給経路43bを介して供給口42から混合液がろ過膜39に供給されるように構成されている。具体的には供給経路43bは図4(C)に示す様にリング状に形成されている。また供給口42はリング状の供給経路43bの外側斜め下方向、好ましくは混合液が保護板44に当たるように設置されている。このような構成により、供給口42から供給された混合液の落下衝撃を保護板44で減衰させてからろ過膜39に供給される。また供給口42から保護板44までの距離が離れていると供給口42から落下した液滴の跳ね返りが生じてろ過膜39を損傷させることがある。したがって供給口42と保護板44との距離はできるだけ近いことが好ましい。具体的な距離は液滴のサイズ、ろ過膜の強度などを考慮して適宜設定できる。なお、図4(C)ではプリコート層41を省略している。ろ過液はろ過液タンク46に一時的に貯蔵され、その後、適宜処理される。 The mixed liquid supply means 40 is means for supplying the mixed liquid supplied from the mixing tank 13 to the filtration membrane 39 . The mixed liquid supply means 40 has a supply port 42 for supplying the mixed liquid to the filtration membrane 39 . In the illustrated example, the liquid mixture is supplied to the filtration membrane 39 from the supply port 42 via the supply path 43a installed so that the mixed liquid flows down in the vertical direction and the supply path 43b installed so that the mixed liquid flows in the horizontal direction. configured to be supplied. Specifically, the supply path 43b is formed in a ring shape as shown in FIG. 4(C). Further, the supply port 42 is arranged obliquely downward on the outer side of the ring-shaped supply path 43 b , preferably so that the mixed liquid hits the protective plate 44 . With such a configuration, the mixed liquid supplied from the supply port 42 is supplied to the filtration membrane 39 after the drop impact is attenuated by the protective plate 44 . Moreover, if the distance from the supply port 42 to the protective plate 44 is long, the droplets dropped from the supply port 42 may rebound and damage the filtration membrane 39 . Therefore, it is preferable that the distance between the supply port 42 and the protection plate 44 is as short as possible. A specific distance can be appropriately set in consideration of the droplet size, the strength of the filtration membrane, and the like. Note that the precoat layer 41 is omitted in FIG. 4(C). The filtrate is temporarily stored in filtrate tank 46 and then treated as appropriate.

ろ過膜上には必要に応じてプリコート層41を設けてもよい。プリコート層41には既に例示した各種公知のプリコート材を使用できる。本発明の不溶性粒子を使用することも可能である。 A precoat layer 41 may be provided on the filtration membrane as necessary. For the precoat layer 41, various known precoat materials already exemplified can be used. It is also possible to use insoluble particles of the invention.

以下、本発明の上記装置を利用したレジスト廃液からの有価金属粉の回収方法について説明する。 Hereinafter, a method for recovering valuable metal powder from a resist waste liquid using the apparatus of the present invention will be described.

レジスト廃液はレジスト廃液供給口19から沈降槽12にバッチ式、乃至連続的に供給される。レジスト廃液はレジスト廃液受け部15に設けた開口部15aから壁面20cをつたって第1沈降部30に供給され、更に流路板14下端と底面21との間の空隙を通って第2沈降部31側に供給される。第2沈降部31内でレジスト廃液の液面が隔壁17の上端よりも高くなると越流して混合槽13に供給される。沈降槽12の下部には有価金属粉を含む沈殿物が堆積する。またレジスト廃液の液面に浮遊している有価金属粉の一部は遮断板16上に集積する。混合槽13に導入された上澄み液には不溶性粒子供給手段34から不溶性粒子が供給される。また排出口33から抜き出された上澄み液はノズル37a、37bから上澄み液に射出される。上澄み液は該射出により渦巻き状に流動して上澄み液と不溶性粒子との混合が行われる。所定時間混合した後、混合液は排出口33から抜き出された混合液はろ過装置11の混合液供給手段に供給される。混合液は供給経路43a、43bを経由して供給口42からろ過膜39に供給される。ろ過膜39によって混合液は有価金属粉を含む固体と有価金属粉が除去された処理液とに分離され、処理液はろ過膜39を通過して、ろ過液タンク46へと排出される。有価金属粉は沈降槽12から沈殿物、遮断板16上の集積物として、またろ過装置11からろ過残渣として回収される。 The resist waste liquid is supplied batchwise or continuously from the resist waste liquid supply port 19 to the sedimentation tank 12 . The resist waste liquid is supplied to the first sedimentation section 30 through the wall surface 20c from the opening 15a provided in the resist waste liquid receiving section 15, and further through the gap between the lower end of the channel plate 14 and the bottom surface 21 to the second sedimentation section. 31 side. When the liquid surface of the resist waste liquid becomes higher than the upper end of the partition wall 17 in the second sedimentation section 31 , it overflows and is supplied to the mixing tank 13 . A sediment containing valuable metal powder accumulates in the lower part of the sedimentation tank 12 . Also, part of the valuable metal powder floating on the liquid surface of the resist waste liquid accumulates on the blocking plate 16 . Insoluble particles are supplied from the insoluble particle supplying means 34 to the supernatant introduced into the mixing tank 13 . Also, the supernatant liquid extracted from the discharge port 33 is injected into the supernatant liquid from the nozzles 37a and 37b. The supernatant liquid is swirled by the injection, and the supernatant liquid and the insoluble particles are mixed. After being mixed for a predetermined time, the mixed liquid extracted from the discharge port 33 is supplied to the mixed liquid supply means of the filtering device 11 . The mixed liquid is supplied to the filtration membrane 39 from the supply port 42 via the supply paths 43a and 43b. The mixed liquid is separated by the filtration membrane 39 into a solid containing valuable metal powder and a treated liquid from which the valuable metal powder has been removed. Valuable metal powder is recovered from the sedimentation tank 12 as a sediment, as an accumulation on the blocking plate 16, and from the filter 11 as a filtration residue.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be modified appropriately within the scope that can conform to the gist of the above and later descriptions. It is of course possible to implement them, and all of them are included in the technical scope of the present invention.

実験1
下記条件でレジスト廃液から金粉の回収を行って使用したろ過膜の寿命について調べた。ろ過膜の寿命はろ過膜へのレジスト廃液供給速度がろ過速度以上となった場合にろ過寿命に達したと判断した。具体的にはろ過速度が0.043mL/sec・4.9cm2未満となった時点をろ過寿命と判断した。各実験結果を表1に示すと共に、ろ過膜の処理量とろ過速度との関係を図5に示した。
Experiment 1
Gold powder was recovered from the resist waste liquid under the following conditions, and the service life of the used filtration membrane was examined. The life of the filtration membrane was judged to have reached its end when the resist waste liquid supply rate to the filtration membrane exceeded the filtration rate. Specifically, the filtration life was determined when the filtration rate became less than 0.043 mL/sec·4.9 cm 2 . The results of each experiment are shown in Table 1, and the relationship between the throughput of the filtration membrane and the filtration rate is shown in FIG.

ろ過膜寿命は、4Lの上澄み液を200mlずつろ過し、ろ過時間の推移データグラフを作成した。そのグラフの関数からろ過速度が許容できる下限(0.043ml/sec・4.9cm2)となる時の通液量を求め、設置が想定される工場から排出される平均的なレジスト廃液量(L/日)から日数を算出した。 Filtration membrane lifetime was obtained by filtering 200 ml of 4 L of supernatant liquid at a time and creating a filtration time transition data graph. From the function of the graph, the amount of liquid passing when the filtration rate becomes the lower limit (0.043 ml/sec 4.9 cm 2 ) that can be tolerated is obtained, and the average amount of resist waste liquid discharged from the factory where the installation is assumed ( L/day) was used to calculate the number of days.

比較例1
半導体製造工場から排出されるレジスト成分、レジスト剥離液、及び金粉(0.04g/L)を含有するレジスト廃液(52L)を沈降槽(幅320mm×奥行460mm×高さ500mm)に供給して有価金属粉の沈降分離を行った。50分経過後、上澄み液(10L)を抜き出して吸引ろ過(ろ過圧:-0.07MPa)を行った。ろ紙は1μmのガラスろ紙(ろ過面積:4.9cm2)を用い、ボディフィード、プリコートは共に行わなかった。
Comparative example 1
Resist components discharged from semiconductor manufacturing plants, resist stripping solution, and resist waste liquid (52 L) containing gold powder (0.04 g / L) are supplied to a sedimentation tank (width 320 mm x depth 460 mm x height 500 mm) Sedimentation separation of metal powder was performed. After 50 minutes, the supernatant liquid (10 L) was extracted and subjected to suction filtration (filtration pressure: -0.07 MPa). A 1 μm glass filter paper (filtration area: 4.9 cm 2 ) was used as the filter paper, and neither body feeding nor precoating was performed.

比較例2
ろ過する際に珪藻土(0.2g:昭和化学工業社製ラジオライト(登録商標)#800)によるプリコート層を形成した以外は比較例1と同様にしてろ過を行った。ろ過面積:4.9cm2に対して0.2gの珪藻土をプリコートした。
Comparative example 2
Filtration was performed in the same manner as in Comparative Example 1, except that a precoat layer of diatomaceous earth (0.2 g: Radiolite (registered trademark) #800 manufactured by Showa Kagaku Kogyo Co., Ltd.) was formed during the filtration. Filtration area: precoated with 0.2 g of diatomaceous earth per 4.9 cm 2 .

実施例1
比較例1と同様にしてレジスト廃液を沈降槽に供給して金粉の沈降分離を行った。沈降分離後、上澄み液(10L)を別のビーカーに移し替え、不溶性粒子として珪藻土粉末0.5gを添加した後、ガラス棒で10秒程度、攪拌して上澄み液と珪藻土を混合した。得られた混合液を吸引ろ過(ろ過圧:-0.07MPa)した。ろ紙は1μmのガラスろ紙(ろ過面積:4.9cm2)を用いた。
Example 1
In the same manner as in Comparative Example 1, the resist waste liquid was supplied to the sedimentation tank to separate the gold powder by sedimentation. After sedimentation and separation, the supernatant (10 L) was transferred to another beaker, 0.5 g of diatomaceous earth powder was added as insoluble particles, and the mixture was stirred with a glass rod for about 10 seconds to mix the supernatant and diatomaceous earth. The resulting mixed solution was subjected to suction filtration (filtration pressure: -0.07 MPa). A 1 μm glass filter paper (filtering area: 4.9 cm 2 ) was used as the filter paper.

実施例2
ろ過する際に珪藻土(0.2g)によるプリコート層をろ過膜上に2mm程度形成した以外は実施例1と同様にしてろ過を行った。
Example 2
Filtration was performed in the same manner as in Example 1, except that a precoat layer of diatomaceous earth (0.2 g) was formed on the filtration membrane to a thickness of about 2 mm.

Figure 0007305090000001
Figure 0007305090000001

表1、図5から以下のことがわかる。
実施例1、2では上澄み液に不溶性粒子を添加することでろ過膜の寿命が著しく伸長したことがわかる。更にプリコート層を設けることでより一層、ろ過膜の寿命が伸びたことがわかる。
Table 1 and FIG. 5 show the following.
It can be seen that in Examples 1 and 2, the life of the filtration membrane was remarkably extended by adding insoluble particles to the supernatant. Furthermore, it can be seen that the life of the filtration membrane was further extended by providing the precoat layer.

一方、不溶性粒子を添加しなかった比較例1、2ではプリコート層の有無にかかわらず、ろ過膜の寿命が著しく低かった。ろ過膜寿命について比較例1と比べると実施例1は3倍以上、実施例2は4倍以上であった。 On the other hand, in Comparative Examples 1 and 2, in which no insoluble particles were added, the lifetime of the filtration membrane was remarkably short regardless of the presence or absence of the precoat layer. Compared with Comparative Example 1, Example 1 was three times or more, and Example 2 was four times or more.

なお、実施例1、2、及び比較例1、2のろ過後の処理液中の金粉濃度を調べたが、いずれも金粉は含まれていなかった。この結果はろ過膜のろ過性能によって達成されたものであるが、上記の様に処理方法によってろ過膜の寿命が異なっている。したがってろ過寿命を考慮すると実施例1、2は比較例1、2と比べて優れた効果を有する。 In addition, when the concentration of gold powder in the treated liquid after filtration in Examples 1 and 2 and Comparative Examples 1 and 2 was examined, gold powder was not contained in any of them. This result was achieved by the filtration performance of the filtration membrane, but the life of the filtration membrane differs depending on the treatment method as described above. Therefore, Examples 1 and 2 have superior effects as compared with Comparative Examples 1 and 2 in consideration of filtration life.

実験2
上記実施例1における不溶性粒子の添加量を表2に示すように変更してろ過膜の寿命を同様に調べた。なお、使用したレジスト廃液の金粉含有量は同じであったが(0.04g/L)、更新前の剥離液を含むレジスト廃液であったため実験1よりもレジスト成分の濃度が高く、高粘性であった。各実験結果を表2に示すと共に、ろ過膜の処理量とろ過速度との関係を図6に示した。
Experiment 2
The amount of the insoluble particles added in Example 1 was changed as shown in Table 2, and the service life of the filtration membrane was similarly examined. Although the gold powder content of the resist waste liquid used was the same (0.04 g/L), the resist waste liquid contained the stripping solution before the renewal, so the concentration of the resist component was higher than in Experiment 1, and the viscosity was high. there were. The results of each experiment are shown in Table 2, and the relationship between the throughput of the filtration membrane and the filtration rate is shown in FIG.

Figure 0007305090000002
Figure 0007305090000002

表2より、上澄み液に添加した不溶性粒子の濃度が高くなる程、ろ過寿命が向上した。 As shown in Table 2, the higher the concentration of the insoluble particles added to the supernatant, the longer the filtration life.

実験3
No.3-1
実験2で使用したレジスト廃液を使用した以外は実施例1と同様にして実験を行った。
No.3-2
実験2で使用したレジスト廃液を使用した以外は実施例2と同様にして実験を行った。
結果を表3に示す。
Experiment 3
No. 3-1
An experiment was conducted in the same manner as in Example 1 except that the resist waste liquid used in Experiment 2 was used.
No. 3-2
An experiment was conducted in the same manner as in Example 2, except that the resist waste liquid used in Experiment 2 was used.
Table 3 shows the results.

Figure 0007305090000003
Figure 0007305090000003

表3に示すようにプリコート層を形成すると、ろ過膜の寿命がより長くなった。また実施例1、2の結果も考慮すると、プリコート層を形成することでレジスト廃液の性質にかかわらずろ過膜の寿命が長くなり、メンテナンス頻度を低減できる。 Forming a precoat layer as shown in Table 3 extended the life of the filtration membrane. Considering the results of Examples 1 and 2, the formation of the precoat layer extends the life of the filtration membrane regardless of the properties of the resist waste liquid, and can reduce the frequency of maintenance.

実験4
沈降分離前後の金粉濃度を調べた。具体的には実験1で使用したレジスト廃液(5L)を沈降槽(幅320mm×奥行57.5mm×高さ500mm)に表4に示す通液量で供給し、処理前のレジスト廃液に含まれている金粉濃度と処理後のレジスト廃液に含まれている金粉濃度をそれぞれ測定し、沈降分離での金粉の除去率を調べた。なお、通液流量以外は同一条件とした。沈降分離前のレジスト廃液に含まれている金粉濃度は各回共に0.3045g/Lであった。沈降分離後のレジスト廃液に含まれている金粉濃度を調べた結果を表4に示す。同じレジスト廃液を使用して実験を4回行った。結果を表4に示す。
Experiment 4
The gold powder concentration before and after sedimentation was investigated. Specifically, the resist waste liquid (5 L) used in Experiment 1 was supplied to a sedimentation tank (width 320 mm × depth 57.5 mm × height 500 mm) at the amount shown in Table 4, and The concentration of gold powder contained in the treated resist waste liquid and the concentration of gold powder contained in the resist waste liquid after treatment were measured, respectively, and the removal rate of gold powder in the sedimentation separation was investigated. The conditions were the same except for the liquid flow rate. The concentration of gold powder contained in the resist waste liquid before sedimentation and separation was 0.3045 g/L each time. Table 4 shows the results of examining the concentration of gold powder contained in the resist waste liquid after sedimentation and separation. Experiments were performed four times using the same resist effluent. Table 4 shows the results.

Figure 0007305090000004
Figure 0007305090000004

表4の結果から、通液流量が多かった4回目の実験では沈降分離後のレジスト廃液中の金粉濃度が高かった。したがって通液流量を適切にコントロールすることで沈降分離後のレジスト廃液に含まれる金粉濃度を低減できることがわかる。なお、試験毎の金粉の粒度分布が一定ではないため、通過率等が変動しているが、概ね良好な結果となった。 From the results in Table 4, the concentration of gold powder in the resist waste liquid after sedimentation separation was high in the fourth experiment in which the liquid flow rate was high. Therefore, it can be seen that the concentration of gold powder contained in the resist waste liquid after sedimentation and separation can be reduced by appropriately controlling the liquid flow rate. Since the particle size distribution of the gold powder was not constant for each test, the passage rate and the like fluctuated, but generally good results were obtained.

1 レジスト廃液発生源
2 レジスト廃液貯蔵タンク
3 沈降分離工程
4 添加工程
5 不溶性粒子貯蔵タンク
6 プリコート層
7 ろ過工程
8a~8e 配管
10 沈殿混合装置
11 ろ過装置
12 沈降槽
13 混合槽
14 流路板
15 レジスト廃液受け部
15a 開口部
16 遮断板
17 隔壁
18 傾斜板
19 レジスト廃液供給口
20a、20b、20c 壁面
21 底面
22 天井面
30 第1沈降部
31 第2沈降部
32 空隙
33 排出口
34 不溶性粒子供給手段
35 攪拌・混合手段
35a 供給口
36 抜き出し口
37a、37b ノズル
38 排出口
39 ろ過膜
40 混合液供給手段
41 プリコート層
42 供給口
43a 43b 供給経路
44 保護板
46 ろ過液タンク
1 Resist waste liquid generation source 2 Resist waste liquid storage tank 3 Sedimentation separation process 4 Addition process 5 Insoluble particle storage tank 6 Precoat layer 7 Filtration processes 8a to 8e Pipe 10 Precipitation mixing device 11 Filtering device 12 Sedimentation tank 13 Mixing tank 14 Channel plate 15 Resist waste liquid receiving portion 15a Opening 16 Blocking plate 17 Partition wall 18 Inclined plate 19 Resist waste liquid supply ports 20a, 20b, 20c Wall surface 21 Bottom surface 22 Ceiling surface 30 First sedimentation section 31 Second sedimentation section 32 Gap 33 Discharge port 34 Insoluble particle supply Means 35 Stirring/Mixing Means 35a Supply Port 36 Extraction Ports 37a, 37b Nozzle 38 Discharge Port 39 Filtration Membrane 40 Mixed Liquid Supply Means 41 Precoat Layer 42 Supply Port 43a 43b Supply Path 44 Protective Plate 46 Filtrate Tank

Claims (8)

有価金属粉を含むレジスト廃液から有価金属粉を回収する方法であって、
前記レジスト廃液を浮遊性有価金属粉含有上澄み液と、沈降性有価金属粉含有沈殿物とに沈降分離する工程、
前記沈降分離する工程に新たなレジスト廃液を供給して液面を上昇させて前記上澄み液の越流を生じさせ、前記沈降分離する工程から越流した上澄み液に不溶性粒子を添加する工程、及び
前記不溶性粒子を含む上澄み液をろ過する工程
を有することを特徴とする有価金属粉回収方法。
A method for recovering valuable metal powder from resist waste liquid containing valuable metal powder,
a step of sedimentation separation of the resist waste liquid into a supernatant liquid containing floating valuable metal powder and a sediment containing sedimentary valuable metal powder;
A step of supplying new resist waste liquid to the sedimentation and separation step to raise the liquid level to cause the supernatant to overflow, and adding insoluble particles to the supernatant that overflowed from the sedimentation and separation step; A method for recovering a valuable metal powder, comprising a step of filtering a supernatant liquid containing the insoluble particles.
前記ろ過する工程は、プリコート層を形成した後、前記上澄み液をろ過するものである請求項1に記載の有価金属粉回収方法。 2. The method for recovering valuable metal powder according to claim 1, wherein the step of filtering comprises filtering the supernatant after forming the precoat layer. 前記レジスト廃液に含まれる有価金属粉は粒径0.1μm以上である請求項1または2に記載の有価金属粉回収方法。 3. The method for recovering valuable metal powder according to claim 1, wherein the valuable metal powder contained in the resist waste liquid has a particle size of 0.1 [mu]m or more. 前記有価金属粉は、金、銀、パラジウム、白金、ロジウム、ルテニウム、イリジウム、銅、ニッケル、コバルト、及びクロムよりなる群から選択される少なくとも1種である請求項1~3のいずれかに記載の有価金属粉回収方法。 The valuable metal powder is at least one selected from the group consisting of gold, silver, palladium, platinum, rhodium, ruthenium, iridium, copper, nickel, cobalt, and chromium, according to any one of claims 1 to 3. Valuable metal powder recovery method. 前記沈降分離する工程では前記レジスト廃液に凝集剤を添加せずに沈降分離させるものである請求項1に記載の有価金属粉回収方法 2. A method for recovering a valuable metal powder according to claim 1, wherein said resist waste liquid is sedimented and separated without adding a coagulant to said resist waste liquid in said sedimentation separation step. 請求項1~のいずれかに記載の有価金属粉回収方法の沈降分離工程、及び不溶性粒子の添加工程に用いる沈殿混合装置であって、
前記沈殿混合装置は、
有価金属粉を含むレジスト廃液を、沈降分離により、浮遊性有価金属粉含有上澄み液と、沈降性有価金属粉含有沈殿物とに分離する沈降分離槽と、
前記沈降分離槽から越流した上澄み液に不溶性粒子を添加する添加混合槽とを有することを特徴とする沈殿混合装置。
A precipitation mixing apparatus used in the precipitation separation step and the insoluble particle addition step of the valuable metal powder recovery method according to any one of claims 1 to 5 ,
The precipitation mixer is
a sedimentation separation tank for separating a resist waste liquid containing valuable metal powder into a supernatant liquid containing floating valuable metal powder and a sediment containing sedimentary valuable metal powder by sedimentation;
and an addition/mixing tank for adding insoluble particles to the supernatant liquid overflowed from the sedimentation/separation tank.
請求項1~のいずれかに記載の有価金属粉回収方法のろ過工程に用いるろ過装置であって、
前記ろ過装置は、
プリコート層、及びろ過膜を有するものであるろ過装置。
A filtering device used in the filtering step of the valuable metal powder recovery method according to any one of claims 1 to 5 ,
The filtering device is
A filtration device comprising a precoat layer and a filtration membrane.
請求項に記載の沈殿混合装置と、請求項に記載のろ過装置とを備えた有価金属粉回収設備。 Valuable metal powder recovery equipment comprising the precipitation mixing device according to claim 6 and the filtering device according to claim 7 .
JP2019014615A 2019-01-30 2019-01-30 Valuable metal powder recovery method from resist waste liquid and valuable metal powder recovery apparatus Active JP7305090B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019014615A JP7305090B2 (en) 2019-01-30 2019-01-30 Valuable metal powder recovery method from resist waste liquid and valuable metal powder recovery apparatus
JP2023081556A JP2023107783A (en) 2019-01-30 2023-05-17 Precipitation mixing apparatus
JP2023081557A JP2023109885A (en) 2019-01-30 2023-05-17 Filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014615A JP7305090B2 (en) 2019-01-30 2019-01-30 Valuable metal powder recovery method from resist waste liquid and valuable metal powder recovery apparatus

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2023081556A Division JP2023107783A (en) 2019-01-30 2023-05-17 Precipitation mixing apparatus
JP2023081557A Division JP2023109885A (en) 2019-01-30 2023-05-17 Filtration device

Publications (2)

Publication Number Publication Date
JP2020122183A JP2020122183A (en) 2020-08-13
JP7305090B2 true JP7305090B2 (en) 2023-07-10

Family

ID=71992268

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019014615A Active JP7305090B2 (en) 2019-01-30 2019-01-30 Valuable metal powder recovery method from resist waste liquid and valuable metal powder recovery apparatus
JP2023081557A Pending JP2023109885A (en) 2019-01-30 2023-05-17 Filtration device
JP2023081556A Pending JP2023107783A (en) 2019-01-30 2023-05-17 Precipitation mixing apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2023081557A Pending JP2023109885A (en) 2019-01-30 2023-05-17 Filtration device
JP2023081556A Pending JP2023107783A (en) 2019-01-30 2023-05-17 Precipitation mixing apparatus

Country Status (1)

Country Link
JP (3) JP7305090B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096280A (en) 1999-09-28 2001-04-10 Research Institute Of Innovative Technology For The Earth Waste water treatment
JP2004143001A (en) 2002-10-25 2004-05-20 The Inctec Inc Method for recovering cerium
JP2004197175A (en) 2002-12-19 2004-07-15 Asaka Riken Kogyo Kk Method of recovering cerium
JP2009095806A (en) 2007-10-19 2009-05-07 Toei Aqua Tekku Kk Filtration method and filtration apparatus
JP2010284593A (en) 2009-06-11 2010-12-24 Kurita Water Ind Ltd Method for recovering water and metal from washing wastewater in electroplating
JP2013075288A (en) 2011-03-15 2013-04-25 Toshiba Corp Apparatus and method for metal recovery
JP2013108117A (en) 2011-11-18 2013-06-06 Toshiba Corp Method and apparatus for recovering copper from copper etching waste liquid
JP2014239141A (en) 2013-06-07 2014-12-18 株式会社ダルトン Cleaning method and cleaning device
JP2015034784A (en) 2013-08-09 2015-02-19 大日本印刷株式会社 Original sheet for biosensor electrode, biosensor electrode, and biosensor
JP2017104816A (en) 2015-12-11 2017-06-15 株式会社ダルトン Recovery system and cleaning apparatus
JP2018159109A (en) 2017-03-22 2018-10-11 住友金属鉱山株式会社 Smelting method of metal oxide mineral

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142792B2 (en) * 1997-03-14 2001-03-07 川崎重工業株式会社 Wastewater treatment method using carbon-based adsorbent

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096280A (en) 1999-09-28 2001-04-10 Research Institute Of Innovative Technology For The Earth Waste water treatment
JP2004143001A (en) 2002-10-25 2004-05-20 The Inctec Inc Method for recovering cerium
JP2004197175A (en) 2002-12-19 2004-07-15 Asaka Riken Kogyo Kk Method of recovering cerium
JP2009095806A (en) 2007-10-19 2009-05-07 Toei Aqua Tekku Kk Filtration method and filtration apparatus
JP2010284593A (en) 2009-06-11 2010-12-24 Kurita Water Ind Ltd Method for recovering water and metal from washing wastewater in electroplating
JP2013075288A (en) 2011-03-15 2013-04-25 Toshiba Corp Apparatus and method for metal recovery
JP2013108117A (en) 2011-11-18 2013-06-06 Toshiba Corp Method and apparatus for recovering copper from copper etching waste liquid
JP2014239141A (en) 2013-06-07 2014-12-18 株式会社ダルトン Cleaning method and cleaning device
JP2015034784A (en) 2013-08-09 2015-02-19 大日本印刷株式会社 Original sheet for biosensor electrode, biosensor electrode, and biosensor
JP2017104816A (en) 2015-12-11 2017-06-15 株式会社ダルトン Recovery system and cleaning apparatus
JP2018159109A (en) 2017-03-22 2018-10-11 住友金属鉱山株式会社 Smelting method of metal oxide mineral

Also Published As

Publication number Publication date
JP2023109885A (en) 2023-08-08
JP2020122183A (en) 2020-08-13
JP2023107783A (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US20220176276A1 (en) Multilayer Media Bed Filter with Improved Backwash
EP3018101B1 (en) Dissolved air floatation device
US20140190897A1 (en) Enhanced separation of nuisance materials from wastewater
WO2016147229A1 (en) Settling tank
US20140352529A1 (en) Deaeration apparatus and method
JP7305090B2 (en) Valuable metal powder recovery method from resist waste liquid and valuable metal powder recovery apparatus
JPH11188206A (en) Flocculation and settling device
JP2007083179A (en) Treatment method and apparatus for copper particle-containing water
JP6496931B2 (en) Processing fluid treatment system
JP4171248B2 (en) Filtration device using floating filter media
JP2651559B2 (en) Waste water treatment equipment for water jet processing equipment
JP2892948B2 (en) Separation and removal method of mixture in liquid
CN215480108U (en) Air-floatation oil removal device for coking residual ammonia water dissolved air
EP3088367B1 (en) Method for cleaning water collected in a polymer plant
JP2554493B2 (en) Wastewater treatment equipment
JP4506217B2 (en) Flotation filtration device
US20210394096A1 (en) Multilayer Media Bed Filter Comprising Glass Bead Micromedia
WO2008090113A1 (en) Device for separating a liquid and finely distributed, insoluble particles in the liquid
CN117619808A (en) Wafer surface cleaning system capable of avoiding blockage and improving metal recovery efficiency
JPH09295242A (en) Liquid treatment device
TH44028A (en) Fluid filtration method
TH22284B (en) Fluid filtration method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230427

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R150 Certificate of patent or registration of utility model

Ref document number: 7305090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150