JP2009095806A - Filtration method and filtration apparatus - Google Patents

Filtration method and filtration apparatus Download PDF

Info

Publication number
JP2009095806A
JP2009095806A JP2007271976A JP2007271976A JP2009095806A JP 2009095806 A JP2009095806 A JP 2009095806A JP 2007271976 A JP2007271976 A JP 2007271976A JP 2007271976 A JP2007271976 A JP 2007271976A JP 2009095806 A JP2009095806 A JP 2009095806A
Authority
JP
Japan
Prior art keywords
filtration
stock solution
liquid
pressure
fine bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007271976A
Other languages
Japanese (ja)
Inventor
Yuzo Takemura
祐三 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOEI AQUA TEKKU KK
Original Assignee
TOEI AQUA TEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOEI AQUA TEKKU KK filed Critical TOEI AQUA TEKKU KK
Priority to JP2007271976A priority Critical patent/JP2009095806A/en
Publication of JP2009095806A publication Critical patent/JP2009095806A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a filtration process at high-efficiency without using a body feed method or pre-coating method in a filtration process for a suspension stock solution by a pressure filtration or suction filtration. <P>SOLUTION: The filtration is performed in a state that fine bubbles are mixed in the suspension stock solution. When the diameter of fine bubbles becomes 50 μm or less, the fine bubbles have characteristics different from normal bubbles, have negative charges to be deposited on suspension particles, and the bubbles are mutually repulsive to be uniformly dispersed in the liquid and are extremely slow in the rising speed in the liquid. Accordingly, deposition layers of suspension particles are formed while uniformly forming fine bubbles and channels for liquid on the surface of filter media, the fine bubbles are expanded due to large pressure drop near the surface of the filter media, and the fine bubbles lost charges mutually bond, thereby weakening the deposition layers to exfoliate from the inside. In addition, when a filtration flow rate decreases, the pressure on the downstream side of the filter media is reduced (reduced more in the suction filtration), thereby promoting the exfoliation and collapse. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は加圧濾過又は減圧濾過による濾過方法及び濾過装置に係り、特に微細気泡(マイクロバブル)の性質を利用して濾過効率を向上させる技術に関する。   The present invention relates to a filtration method and a filtration device using pressure filtration or reduced pressure filtration, and more particularly to a technique for improving filtration efficiency by utilizing the properties of fine bubbles.

プリント配線基板(PCB)の製造プロセスにおいては、銅張積層板に対して感光性レジスト塗布やスクリーン印刷を行う前に整面研磨工程が介在する。この目的は、予め表面の銅を研磨しておくことで感光性レジストや配線パターン印刷材の密着性を良好にし、正確なエッチングが実行できるようにすることにある。また、光学素子や液晶表示装置のフラットパネルやハードディスク用のガラス基板の加工においても、所要の表面粗さや平行度や平坦度等が得られるように研磨加工が施される。   In the manufacturing process of a printed wiring board (PCB), a surface-polishing process is interposed before applying a photosensitive resist or screen printing on a copper-clad laminate. The purpose is to improve the adhesion of the photosensitive resist and the wiring pattern printing material by polishing the surface copper in advance so that accurate etching can be performed. Also, in the processing of optical elements, flat panels of liquid crystal display devices and glass substrates for hard disks, polishing is performed so as to obtain required surface roughness, parallelism, flatness, and the like.

その場合、実際の研磨段階と研磨後の洗浄には多量の清水を必要とし、当然にその使用後の排液には研磨された銅やガラスの微粒子が混濁しており、更に、研磨剤として砥粒を使用するときには、砥粒が破砕された微粒子も排液中に混濁する。そして、前記研磨工程での排液に含まれる微粒子の大きさは0.1〜50(μm)程度であり、微粒子の濃度は50〜1000(mg/l)程度で比較的低いが、その排液をそのまま放流することについては水質汚濁防止法で禁じられており、懸濁粒子(微粒子)の濃度を一定の基準まで低下させた後に放流することが義務付けられている。また、前記のように濃度を低下させた水溶液は循環再利用される場合も少なくない。   In that case, a large amount of clean water is required for the actual polishing step and cleaning after polishing, and naturally the drained liquid after use is turbid with fine particles of polished copper and glass. When using abrasive grains, the fine particles whose abrasive grains are crushed also become turbid in the drainage. The size of the fine particles contained in the drainage liquid in the polishing step is about 0.1 to 50 (μm), and the concentration of the fine particles is about 50 to 1000 (mg / l), which is relatively low. Discharging the liquid as it is is prohibited by the Water Pollution Control Law, and it is obliged to discharge it after reducing the concentration of suspended particles (fine particles) to a certain standard. In addition, the aqueous solution having a reduced concentration as described above is often recycled.

従って、前記排液を濾過処理するようになっているが、懸濁粒子が微細であると堆積微粒子による目詰まりが生じて濾過効率が悪くなるため、解決法として一般的にパーライトや珪藻土等の濾過助剤を添加して濾過を行うボディーフィード法が採用されている。このボディーフィード法の効果は添加する濾過助剤の種類や量によって変わるが、一般的に懸濁原液の含有固形物量の1.5〜3倍程度の濾過助剤量を添加することにより、濾過量が多くとれると共に、濾過時間を2〜3倍に延ばすことができるとされており、下記特許文献1〜3等では様々な懸濁原液を対象とするボディーフィードによる濾過方法が開示されている。   Therefore, the drainage is filtered. However, if the suspended particles are fine, clogging with the deposited fine particles occurs and the filtration efficiency deteriorates. Therefore, as a solution, pearlite or diatomaceous earth is generally used as a solution. A body feed method in which a filtration aid is added for filtration is employed. The effect of this body feed method varies depending on the type and amount of filter aid to be added. In general, the amount of filter aid added is about 1.5 to 3 times the amount of solid matter contained in the suspension stock solution. It is said that the amount can be increased and the filtration time can be extended by 2 to 3 times. The following Patent Documents 1 to 3 disclose the filtration method using body feed for various suspension stock solutions. .

また、高い濾過効率を維持しながら濾過を行う方法として、従来からプレコート法が採用されており、前記ボディーフィード法と併用されていることも少なくない。このプレコート方法は、濾材面に予め珪藻土等の濾過助剤でプレコート層を形成しておき、濾過速度が低下した場合に、プレコート層で補足された懸濁粒子の堆積層をプレコート層の表皮と共に削り取って濾過速度を回復させるものであり、下記特許文献4〜6等にはプレコート層の表皮を更新させるための各種方法が提案されている。   Further, as a method for performing filtration while maintaining high filtration efficiency, a precoat method has been conventionally employed, and it is often used in combination with the body feed method. In this pre-coating method, a pre-coat layer is formed in advance on the filter medium surface with a filter aid such as diatomaceous earth, and when the filtration speed is reduced, the suspended particle accumulation layer supplemented with the pre-coat layer is combined with the skin of the pre-coat layer. Various methods for renewing the skin of the precoat layer are proposed in the following Patent Documents 4 to 6 and the like.

特開2007−135579号公報JP 2007-135579 A 特開2004−107629号公報JP 2004-107629 A 特開2000−32973号公報Japanese Patent Laid-Open No. 2000-32773 特開2005−177549号公報JP 2005-177549 A 特開平10−258208号公報JP-A-10-258208 特開平5−228314号公報JP-A-5-228314

ところで、ボディーフィード法やプレコート法は濾過助剤を必要とし、濾過助剤は懸濁原液に応じた材料の選択と添加量の管理を行わなければならない。また、ボディーフィード法では懸濁原液への添加工程が、プレコート法では当初に濾過助剤だけを用いたプレコート層の形成工程が必要になると共に、懸濁原液の濾過が一定時間行われた段階での削り取り工程がそれぞれ介在し、更には、濾過によって濾材表面に形成された懸濁粒子の堆積層にエアーブローをかけてケーキとして回収するため、その一連の工程が常に介在する。従って、本来の濾過工程以外に前記各工程に要する時間が占める割合がかなり大きくなっている。また、ボディーフィード法やプレコート法ではケーキに濾過助剤が混在しているため、捕捉された懸濁粒子の量に対してケーキの容積が大きくなるという問題もある。その他にも、捕捉する懸濁粒子が有価物である場合には、濾過助剤が異物として混入していると、回収による再資源化を図る上で不利になるという短所もある。   By the way, the body feed method and the precoat method require a filter aid, and the filter aid must select a material according to the suspension stock solution and manage the amount of addition. In addition, the body feed method requires an addition step to the suspension stock solution, and the precoat method requires a precoat layer formation step using only a filter aid at the beginning, and the suspension stock solution is filtered for a certain period of time. In addition, a series of steps are always involved because air is blown over the accumulated layer of suspended particles formed on the surface of the filter medium by filtration to recover the cake as a cake. Therefore, the ratio of the time required for each step other than the original filtration step is considerably large. In addition, since the filter aid is mixed in the cake in the body feed method or the precoat method, there is also a problem that the volume of the cake becomes larger than the amount of suspended particles captured. In addition, when the suspended particles to be captured are valuable materials, if the filter aid is mixed as a foreign substance, there is a disadvantage in that it is disadvantageous for recycling by recovery.

そこで、本発明は、加圧濾過又は減圧濾過による懸濁原液の濾過処理において、ボディーフィード法やプレコート法を用いることなく、濾材に形成される懸濁粒子の堆積層が濾過動作中に剥離・崩落して常に濾過面を更新させることが可能な濾過方法と、同方法を合理的に実現する濾過装置を提供し、以って懸濁原液を高い効率で濾過処理できるようにすることを目的とする。   Therefore, in the present invention, in the filtration process of the suspension stock solution by pressure filtration or vacuum filtration, the accumulated layer of suspended particles formed on the filter medium is peeled off during the filtration operation without using the body feed method or the precoat method. The purpose is to provide a filtration method capable of constantly renewing the filtration surface by collapsing, and a filtration device that rationally realizes the method, so that the suspension stock solution can be filtered with high efficiency. And

第1の発明は、加圧濾過又は減圧濾過による懸濁原液の濾過方法において、懸濁原液に微細気泡を混入させた状態で濾過を行うことを特徴とする濾過方法に係る。   A first invention relates to a filtration method of a suspension stock solution by pressure filtration or reduced pressure filtration, wherein the filtration is performed in a state where fine bubbles are mixed in the suspension stock solution.

この発明において、加圧濾過では濾材より上流側が加圧されており、減圧濾過では濾材の下流側が減圧されているため、懸濁原液中の懸濁粒子と微細気泡は液体と共に濾材の表面へ移動してゆく。そして、微細気泡は直径50μm以下のマイクロバブルになるとコロイドとしての特性を有して負に帯電しており、一部は正に帯電している懸濁粒子に付着し、また、懸濁粒子に付着していない微細気泡同士では反発しあって懸濁液原液中での気泡濃度が均一に保たれる。従って、濾材の表面には、濾過の進行過程で微細気泡と液体の流路が葉脈の如くほぼ均一に形成されながら懸濁粒子の堆積層が形成されてゆく。従って、堆積層が厚くなっても通液量の低下が少なく、高い濾過効率が得られる。更に、濾材の表面付近では圧力の降下が大きいために微細気泡は膨張する傾向があり、また電荷を失った微細気泡は流路中で相互に結合し合う傾向があることから、堆積層を脆弱にして内部から剥離させる。尚、気泡となる気体は空気に限らず、窒素ガスや懸濁原液の種類に応じたガスが用いられる。   In this invention, in the pressure filtration, the upstream side of the filter medium is pressurized, and in the vacuum filtration, the downstream side of the filter medium is depressurized, so the suspended particles and fine bubbles in the suspension stock solution move together with the liquid to the surface of the filter medium. I will do it. When the microbubbles become microbubbles having a diameter of 50 μm or less, they have colloidal characteristics and are negatively charged, and some of them adhere to the positively charged suspended particles. The fine bubbles that are not attached repel each other, and the bubble concentration in the suspension suspension is kept uniform. Therefore, a deposition layer of suspended particles is formed on the surface of the filter medium while the fine bubbles and the liquid flow paths are formed almost uniformly like leaf veins in the course of filtration. Therefore, even if the deposited layer becomes thick, the decrease in the amount of liquid flow is small and high filtration efficiency can be obtained. Furthermore, since the pressure drop is large near the surface of the filter medium, the microbubbles tend to expand, and the microbubbles that have lost their charge tend to bond with each other in the flow path. And peel from inside. In addition, the gas which becomes a bubble is not limited to air, and a gas corresponding to the type of nitrogen gas or suspension stock solution is used.

前記第1の発明において、濾過に際して懸濁原液に微細気泡を混入させた状態とするための方式としては、懸濁原液に高圧下で気体を溶解させ、前記気体が溶解した懸濁原液を濾過室に注入し、濾過室内で懸濁原液中に微細気泡を発生させる方式や、気液混合手段によって懸濁原液に微細気泡を混入させる処理を行い、前記処理後の懸濁原液をそのまま濾過室に注入する方式が採用できる。特に、圧力濾過を行う場合に前者の方式は有効である。   In the first aspect of the invention, as a method for mixing fine bubbles in the suspension stock solution during filtration, gas is dissolved in the suspension stock solution under high pressure, and the suspension stock solution in which the gas is dissolved is filtered. A method of generating fine bubbles in the suspension stock solution in the filtration chamber and a process of mixing fine bubbles into the suspension stock solution by gas-liquid mixing means, and the suspension stock solution after the treatment is directly applied to the filtration chamber The method of injecting into the can be adopted. In particular, the former method is effective when performing pressure filtration.

また、濾過面を鉛直方向に構成しておき、濾過対象液の流量を計測しながら濾過を行い、前記計測流量が低下した場合に、前記濾過面より下流側の圧力を低下させるようにすれば、濾過面に徐々に厚く形成されてゆく懸濁粒子の堆積層の剥離と落下を助長でき、強制的に新しい濾過面を形成させて高い濾過効率を維持させることができる。   Further, if the filtration surface is configured in the vertical direction, filtration is performed while measuring the flow rate of the filtration target liquid, and the pressure downstream of the filtration surface is lowered when the measured flow rate is reduced. It is possible to promote the separation and dropping of the accumulated layer of suspended particles that are gradually formed thick on the filtration surface, and to forcefully form a new filtration surface to maintain high filtration efficiency.

第2の発明は、前記第1の発明を加圧濾過方法で実施するための濾過装置であり、鉛直方向の内壁面に通水層を介在させて濾材が装着されている濾過室を有し、外部から前記濾過室へ濾過対象液を注入するための注入孔、及び前記通水層から濾過水を外部へ排出させるための排水孔が形成されている濾過体と、高圧下で懸濁原液に気体を溶解させることにより、又は気液混合処理により懸濁原液に微細気泡を混入させて濾過対象液を生成する原液処理手段と、前記原液処理手段により生成された濾過対象液を前記濾過体の注入孔を通じて前記濾過室へ圧送する圧送手段とを備えたことを特徴とする濾過装置に係る。   A second invention is a filtration device for carrying out the first invention by a pressure filtration method, and has a filtration chamber in which a filter medium is mounted on a vertical inner wall surface with a water-permeable layer interposed. A filter body in which an injection hole for injecting the liquid to be filtered from the outside into the filtration chamber, and a drain hole for discharging the filtered water from the water passage layer to the outside, and a suspension stock solution under high pressure A raw solution processing means for producing a liquid to be filtered by mixing fine gas into the suspension stock solution by gas-liquid mixing treatment, and a filtration target liquid produced by the stock solution processing means And a pressure feeding means for pressure feeding to the filtration chamber through the injection hole.

また、第2の発明において、前記圧送手段により圧送される懸濁原液の流量を検出する流量検出手段と、前記流量検出手段による検出流量値が所定値以下になった場合に、前記濾過体の排水孔側の圧力を低下させる減圧手段とを設けておけば、前記第1の発明で説明しように、濾過面の堆積層の剥離と落下を助長して濾過機能の更新を強制的に行わせることができる。   Further, in the second invention, when the flow rate detecting means for detecting the flow rate of the suspension stock solution pumped by the pumping means, and when the detected flow rate value by the flow rate detecting means becomes a predetermined value or less, the filter body If pressure reducing means for reducing the pressure on the drain hole side is provided, as described in the first invention, the filtration function is forcibly renewed by promoting separation and dropping of the deposited layer on the filtration surface. be able to.

第3の発明は、前記第1の発明を減圧濾過方法で実施するための濾過装置であり、鉛直方向の内壁面に通水層を介在させて濾材が装着されている濾過室を有し、外部から前記濾過室へ濾過対象液を注入するための注入孔、及び前記通水層から濾過水を外部へ排出させるための排水孔が形成されている濾過体と、高圧下で懸濁原液に気体を溶解させることにより、又は気液混合処理により懸濁原液に微細気泡を混入させて濾過対象液を生成する原液処理手段と、前記原液処理手段により生成された濾過対象液を大気圧より大きい圧力で前記濾過体の注入孔を通じて前記濾過室へ送る液送手段と、前記濾過体の排出孔から濾過水を減圧吸引する減圧手段とを備えたことを特徴とする濾過装置に係る。   A third invention is a filtration device for carrying out the first invention by a vacuum filtration method, and has a filtration chamber in which a filter medium is mounted with a water-permeable layer interposed on an inner wall surface in a vertical direction, A filter body in which an injection hole for injecting a liquid to be filtered from the outside into the filtration chamber, and a drain hole for discharging the filtrate water from the water passage layer to the outside, and a suspension stock solution under high pressure A raw solution processing means for generating a liquid to be filtered by dissolving a gas or mixing fine bubbles into a suspension stock solution by a gas-liquid mixing process, and a liquid to be filtered generated by the stock solution processing means being larger than atmospheric pressure The present invention relates to a filtration apparatus comprising: a liquid feeding means that sends pressure to the filtration chamber through an injection hole of the filter body; and a decompression means that decompresses and sucks filtered water from the discharge hole of the filter body.

また、第3の発明において、前記液送手段により送られる懸濁原液の流量を検出する流量検出手段を設けると共に、前記減圧手段を減圧レベルの変更設定が可能な可変減圧手段とし、前記流量検出手段による検出流量値が所定値より大きい場合には、前記可変減圧手段による減圧レベルを減圧濾過のための第1の減圧レベルに設定し、前記検出流量値が所定値以下になった場合には、前記第1の減圧レベルよりも低い第2の減圧レベルに設定する減圧制御手段を設けておけば、前記第2の発明の場合と同様に、濾過面の堆積層の剥離と落下を助長して濾過機能の更新を強制的に行わせることができる。   In the third aspect of the invention, the flow rate detecting means for detecting the flow rate of the suspension stock solution sent by the liquid feeding means is provided, the pressure reducing means is a variable pressure reducing means capable of changing the pressure reduction level, and the flow rate detecting means If the detected flow rate value by the means is greater than a predetermined value, the reduced pressure level by the variable pressure reducing means is set to the first reduced pressure level for vacuum filtration, and if the detected flow rate value is less than the predetermined value If a decompression control means for setting the second decompression level lower than the first decompression level is provided, as in the case of the second invention, the separation and fall of the deposited layer on the filtration surface are promoted. Thus, the filtration function can be forcibly updated.

以上のように第2及び第3の発明においては、濾材に付着した懸濁粒子の堆積層がスラリーとして崩壊・落下せしめることが可能になるが、第2の発明では濾過対象液が濾過室へ圧送されており、第3の発明の発明では濾過対象液が大気圧より大きい圧力で濾過室へ送り込まれている。従って、前記濾過体の濾過室内の最下部又はその近傍に外部へ通じるスラリー排出孔を形成しておき、前記スラリー排出孔に第1の開閉弁を接続させておけば、濾過工程の中で逐次スラリーを排出させることができる。また、前記濾過体の濾過室内の最上部又はその近傍に外部へ通じるガス排出孔を形成しておき、前記ガス排出孔に第2の開閉弁を接続させておけば、濾材を通過せずに濾過室の上部へ上昇した微細気泡が結合して滞留している気体を排出させることができる。   As described above, in the second and third inventions, it becomes possible to cause the accumulated layer of suspended particles adhering to the filter medium to collapse and fall as a slurry, but in the second invention, the liquid to be filtered enters the filtration chamber. In the invention of the third aspect, the liquid to be filtered is sent into the filtration chamber at a pressure higher than atmospheric pressure. Therefore, if a slurry discharge hole leading to the outside is formed in the lowermost part of the filtration chamber of the filter body or in the vicinity thereof, and the first on-off valve is connected to the slurry discharge hole, the filtration step is sequentially performed. The slurry can be discharged. In addition, if a gas discharge hole leading to the outside is formed in the uppermost part of the filtration chamber of the filter body or in the vicinity thereof, and a second on-off valve is connected to the gas discharge hole, the filter medium does not pass through. The fine bubbles rising to the upper part of the filtration chamber can be combined and discharged.

尚、前記のスラリー排出機能とガス排出機能を実現する上で、濾過室は、直方体の上側側面と下側側面に四角錐が接合した形状に相当する中空部として、又は円板状の中空部として構成されているのが合理的である。   In realizing the slurry discharge function and the gas discharge function, the filtration chamber is a hollow portion corresponding to a shape in which a quadrangular pyramid is joined to the upper side surface and the lower side surface of the rectangular parallelepiped, or a disk-shaped hollow portion. It is reasonable to be configured as

本発明の濾過方法及び濾過装置は、以上の構成に基づいて、次のような効果を奏する。懸濁原液に微細気泡を混入させた状態で濾過することにより、ボディーフィード法やプリコート法のように濾過助剤を用いることなく、極めて高い効率での濾過処理を可能にすると共に、懸濁粒子が有価物であるような場合に、その回収による再資源化を容易にする。また、濾材に形成される懸濁粒子の堆積層は気泡による流路の確保によって脆弱な層になっており、剥離や崩壊が生じて自然落下する場合には、常に新しい濾過面での濾過がなされるため、濾過効率を常に高く維持できる。更に、濾材に懸濁粒子が厚く堆積して濾過効率が低下した場合に、その状態を検出して堆積層の剥離・落下を助長させることにより、濾過効率を回復させることも可能である。尚、前記懸濁粒子の堆積層は剥離・落下して濾過室の底部でスラリーとなり、また濾材を通過しなかった微細気泡は上昇して濾過室の上部でガス溜りとなるが、本発明の濾過装置ではそれらを適宜外部へ排出させる構成を実現している。   The filtration method and filtration apparatus of the present invention have the following effects based on the above configuration. By filtering with fine air bubbles mixed in the suspension stock solution, it is possible to perform filtration processing with extremely high efficiency without using a filter aid as in the body feed method and precoat method, and suspended particles. Makes it easy to recycle by collecting it. In addition, the suspended particle deposit layer formed on the filter medium is a fragile layer due to the securing of the flow path by bubbles, and when it falls off due to separation or collapse, it always filters on a new filtration surface. As a result, the filtration efficiency can always be kept high. Further, when the suspended particles are deposited thickly on the filter medium and the filtration efficiency is lowered, it is possible to recover the filtration efficiency by detecting the state and promoting the separation / falling of the deposited layer. The suspended particle deposit layer peels off and falls to become a slurry at the bottom of the filtration chamber, and fine bubbles that have not passed through the filter medium rise to form a gas reservoir at the top of the filtration chamber. The filter device realizes a configuration for appropriately discharging them to the outside.

以下、本発明の濾過方法及び濾過装置の実施形態を図面に基づいて詳細に説明する。
[実施形態1]
先ず、図1は濾過装置の概略構成図である。同図において、10はシステム制御部、11は懸濁原液を貯留する原水槽、12は開閉弁、13は液送ポンプ、14〜16は開閉弁、17は流量計、18は圧力計、19は逆止め弁、20は減圧弁、21は圧力計、22はエアー流量計、23は開閉弁、24は気液混合機、25は加圧タンク、25aは液面計、26,27は開閉弁、28は排気用電磁弁、29は開閉弁、30は圧力計、31は濾過体、32はスラリー排出用電磁弁、33は排気用電磁弁、34,35は開閉弁を示し、この濾過装置全体はシステム制御部10によって制御され、システム制御部10が圧力・流量・液面等の検出信号を受けて、液送ポンプ13や気液混合機24や各電磁弁28,32,33を制御するようになっている。尚、この実施形態における懸濁原液はPCBの製造プロセスにおける整面研磨工程で生じる排液であり、上記のように0.1〜50(μm)程度の銅と砥粒の懸濁粒子が50〜1000(mg/l)程度の濃度で液体中に混在しているものである。
Hereinafter, embodiments of a filtration method and a filtration device of the present invention will be described in detail with reference to the drawings.
[Embodiment 1]
First, FIG. 1 is a schematic configuration diagram of a filtration device. In the figure, 10 is a system control unit, 11 is a raw water tank for storing a suspension stock solution, 12 is an on-off valve, 13 is a liquid feed pump, 14 to 16 are on-off valves, 17 is a flow meter, 18 is a pressure gauge, 19 Is a check valve, 20 is a pressure reducing valve, 21 is a pressure gauge, 22 is an air flow meter, 23 is an on-off valve, 24 is a gas-liquid mixer, 25 is a pressurized tank, 25a is a liquid level gauge, and 26 and 27 are open and close Valve, 28 is an exhaust solenoid valve, 29 is an on-off valve, 30 is a pressure gauge, 31 is a filter, 32 is a slurry discharge solenoid valve, 33 is an exhaust solenoid valve, and 34 and 35 are on-off valves. The entire apparatus is controlled by the system control unit 10. The system control unit 10 receives detection signals such as pressure, flow rate, and liquid level, and controls the liquid feed pump 13, the gas-liquid mixer 24, and the electromagnetic valves 28, 32, and 33. It comes to control. The suspension stock solution in this embodiment is a drainage liquid generated in the surface-polishing step in the PCB manufacturing process. As described above, about 50 to 50 suspended particles of copper and abrasive grains are present. It is mixed in the liquid at a concentration of about ~ 1000 (mg / l).

濾過体31は図2[(A)は断面図、(B)は(A)のX-X矢視断面図(濾布は省略)]に示すような構成になっている。即ち、中央領域が凹部として形成された2枚の盤体41,42を接合させて、各凹部で構成される空間を濾過室43とし、その濾過室43における前記各凹部の底面に相当する各内壁面にはそれぞれ金属製又は樹脂製のネット44a,44bを介在させて濾布45a,45bが展設されている。   The filter 31 is configured as shown in FIG. 2 [(A) is a cross-sectional view, and (B) is a cross-sectional view taken along the line XX of (A) (filter cloth is omitted)]. That is, the two plate bodies 41 and 42 having a central region formed as a concave portion are joined together to form a space constituted by the concave portions as a filtration chamber 43, and each of the filtration chambers 43 corresponding to the bottom surface of the concave portion. Filter cloths 45a and 45b are provided on the inner wall surface with metal or resin nets 44a and 44b interposed therebetween.

ここに、ネット44a,44bは一定の厚みをもって金属線又は樹脂線を編んだものが適用されるが、多数の孔を穿設したパンチングボードを濾過室43の前記内壁面からスペーサを介して離隔させた状態で取り付ける方式や、濾過室43の前記内壁面に凹凸を形成しておく方式等を採用してもよく、いずれにしても濾布45a,45bの背後に通水層を構成する方式であればよい。   Here, the nets 44a and 44b are made by braiding metal wires or resin wires with a certain thickness, but a punching board having a large number of holes is separated from the inner wall surface of the filtration chamber 43 through a spacer. A method of attaching in a state of being allowed to pass, a method of forming irregularities on the inner wall surface of the filtration chamber 43, etc. may be adopted, and in any case, a method of forming a water flow layer behind the filter cloth 45a, 45b If it is.

また、盤体41,42は相互の接合部分となる枠部で濾布45a,45bの周縁部をシール部材46を介して挟圧しており、濾過室43の内面全体が濾布45a,45bで内張りされた構成になっている。尚、盤体41,42を接合させる機構については、図2に示すように、各盤体41,42の四隅に設けた孔を利用してボルト・ナットの締め付けによる方式や、一方の盤体41を固定しておき、他方の盤体42をガイド機構で案内しながら油圧シリンダで押圧する方式等が採用される。   In addition, the board bodies 41 and 42 are sandwiched between the peripheral portions of the filter cloths 45a and 45b through the seal member 46 at the frame portions that serve as joint portions, and the entire inner surface of the filter chamber 43 is formed by the filter cloths 45a and 45b. It is lined up. As shown in FIG. 2, as for the mechanism for joining the board bodies 41, 42, a method by tightening bolts and nuts using holes provided at the four corners of each board body 41, 42, or one board body. For example, a method in which 41 is fixed and the other disk body 42 is pressed by a hydraulic cylinder while being guided by a guide mechanism is employed.

そして、濾過室43への濾過対象液の注入は、一方の盤体41とネット44aと濾布45aを貫通した注入孔47を通じて行われるようになっており、その注入孔47の濾過室43側の開口部には濾布45aとネット44aを盤体41の内壁面へ挟着させるためにフランジナットが螺着されている。また、各盤体41,42におけるネット44a,44bの下側領域に対応する位置には排水孔48a,48bが形成されており、各ネット44a,44bによって構成されている各通水層に流入した濾過水を排出できるようになっている。   Then, the injection of the liquid to be filtered into the filtration chamber 43 is performed through the injection hole 47 penetrating the one plate body 41, the net 44a, and the filter cloth 45a, and the injection hole 47 side of the filtration chamber 43 A flange nut is screwed into the opening portion in order to clamp the filter cloth 45a and the net 44a to the inner wall surface of the disc body 41. In addition, drain holes 48a and 48b are formed at positions corresponding to the lower regions of the nets 44a and 44b in the respective board bodies 41 and 42, and flow into the water flow layers formed by the nets 44a and 44b. The drained filtered water can be discharged.

ところで、図2に示すように、濾過室43は直方体の上側側面と下側側面に四角錐が接合した形状に相当する中空空間になっており、濾過室43の最上部と最下部は各四角錐部分の頂点位置となる。この実施形態では、各盤体41,42における最上部側の頂点位置の近傍には外部と連通するエアー排出孔49a,49bが、また、最下部側の頂点位置の近傍には外部と連通するスラリー排出孔50a,50bが形成されており、図1に示したように、エアー排出孔49a,49bには排気用電磁弁33が、スラリー排出孔50a,50bにはスラリー排出用電磁弁32がそれぞれ接続されている。   By the way, as shown in FIG. 2, the filtration chamber 43 is a hollow space corresponding to a shape in which a quadrangular pyramid is joined to the upper side surface and the lower side surface of the rectangular parallelepiped. It becomes the apex position of the pyramid part. In this embodiment, the air discharge holes 49a and 49b communicate with the outside in the vicinity of the apex position on the uppermost side in each board 41 and 42, and communicate with the outside in the vicinity of the apex position on the lowermost side. Slurry discharge holes 50a and 50b are formed, and as shown in FIG. 1, the air discharge holes 49a and 49b have exhaust solenoid valves 33, and the slurry discharge holes 50a and 50b have slurry discharge solenoid valves 32. Each is connected.

次に、この実施形態に係る濾過装置の動作を説明する。先ず、開閉弁12,14,15,23,26,29,35を開放し、開閉弁16,27,34を閉鎖した状態にし、システム制御部10はコンプレッサーエアー供給側の回路の圧力計21とエアー流量計22の計測値及び懸濁原液供給側の回路の圧力計18と流量計17の計測値を参照しながら液送ポンプ13と気液混合器24の動作を制御し、液送ポンプ13で原水槽11から送られた懸濁原液とコンプレッサーエアーとを気液せん断法で混合して微細気泡が混入した懸濁原液を得ると共に、それを加圧タンク25の中へ送り込む。ここで、加圧タンク25の中は排気用電磁弁28を制御することにより一定の高圧状態に維持されており、前記のように懸濁原液が微細気泡を混入させた状態で送り込まれると、微細気泡は自己加圧効果によって容易に懸濁原液中に溶け込み、過飽和状態までエアーが溶け込んだ溶液となる。   Next, the operation of the filtration device according to this embodiment will be described. First, the on-off valves 12, 14, 15, 23, 26, 29, and 35 are opened and the on-off valves 16, 27, and 34 are closed, and the system control unit 10 is connected to the pressure gauge 21 in the circuit on the compressor air supply side. The operation of the liquid feed pump 13 and the gas-liquid mixer 24 is controlled while referring to the measured value of the air flow meter 22 and the pressure gauge 18 and flow meter 17 of the circuit on the suspension stock solution supply side, and the liquid feed pump 13 The suspension stock solution sent from the raw water tank 11 and the compressor air are mixed by the gas-liquid shearing method to obtain a suspension stock solution mixed with fine bubbles, and it is fed into the pressurized tank 25. Here, the pressurized tank 25 is maintained at a constant high pressure by controlling the exhaust solenoid valve 28, and when the suspension stock solution is fed in a state in which fine bubbles are mixed as described above, The fine bubbles easily dissolve in the suspension stock solution by the self-pressurizing effect, and become a solution in which air is dissolved to a supersaturated state.

そして、加圧タンク25は一定の高圧に保たれているため、懸濁原液は濾過体31へ圧送される。その場合、懸濁原液は注入孔47を通じて濾過室43内に導かれるが、濾過室43は濾布45a,45bとネット44a,44bの通水層から排水孔48a,48bと開閉弁35を介して外部に連通しているために加圧タンク25内よりも低圧であり、懸濁原液に溶け込んでいたエアーが再び微細気泡となって液中に出現する。   Since the pressurized tank 25 is maintained at a constant high pressure, the suspension stock solution is pumped to the filter body 31. In this case, the suspension stock solution is introduced into the filtration chamber 43 through the injection hole 47, and the filtration chamber 43 passes through the drainage holes 48a and 48b and the open / close valve 35 from the water passage layers of the filter cloths 45a and 45b and the nets 44a and 44b. Since the air is in communication with the outside, the pressure is lower than that in the pressurized tank 25, and the air dissolved in the suspension stock solution again becomes fine bubbles and appears in the liquid.

従って、濾過体31では微細気泡が混入している懸濁原液を対象として加圧濾過を行うことになるが、ある程度の時間が経過した段階での濾過状態を濾布付近の拡大断面図で示すと図4のようになる。同図において、61は発生した微細気泡が混在している懸濁原液、62は濾布45a(45b)に付着した懸濁粒子の堆積層である。この場合、濾布45a(45b)は0.1(μm)以上の懸濁粒子を除去できる平膜MF(精密濾過)膜が適用されており、ボディーフィード法を採用せず、またプレコートも行うことなく、最初から懸濁原液に対する濾過を行っている。   Therefore, in the filter body 31, pressure filtration is performed on the suspension stock solution in which fine bubbles are mixed, and the filtration state after a certain amount of time has been shown in an enlarged sectional view near the filter cloth. And as shown in FIG. In the figure, 61 is a suspension stock solution in which generated fine bubbles are mixed, and 62 is a deposition layer of suspended particles adhering to the filter cloth 45a (45b). In this case, the filter cloth 45a (45b) is applied with a flat membrane MF (microfiltration) membrane capable of removing suspended particles of 0.1 (μm) or more, does not employ the body feed method, and performs pre-coating. Instead, the suspension stock solution is filtered from the beginning.

一方、懸濁原液中の微細気泡は、10(μm)付近に気泡サイズの分布のピークがあり、個数は数千(個/ml)以上となっており、懸濁原液は白く濁った状態となっている。その状態では、微細気泡は負に帯電しているために、相互に反発して分散状態が保たれるが、一部は正に帯電している懸濁粒子に付着する。そのため、懸濁粒子は微細気泡が付着した状態で濾布45a側へ引き寄せられるように移動するが、初期段階では濾布45a(45b)の表面に引っ掛かって微細気泡だけが液体と共にネット44a(44b)側の通水層へ通過し、濾布45a(45b)の表面に徐々に懸濁粒子の堆積層62が形成されようになると、その堆積層62の表面で懸濁粒子が引っ掛かり、微細気泡と水だけが先に堆積した懸濁粒子に付着していた微細気泡の通過流路を通じて濾布45a(45b)側へ流れる。また、一般に低圧方向[濾布45a(45b)側]への微細気泡の移動速度は懸濁粒子や水よりも速いため、懸濁粒子に付着していない微細気泡は初期段階から堆積層62に形成されてゆく通過流路へ取り込まれ、その流路を維持させる役割を果たす。換言すれば、堆積層62が厚くなってもその層内に多数の流路が確保されているため、濾過効率を低下させることなく濾過動作を進行させることができる。   On the other hand, the fine bubbles in the suspension stock solution have a bubble size distribution peak around 10 (μm), the number is more than several thousand (pieces / ml), and the suspension stock solution is white and cloudy. It has become. In this state, since the fine bubbles are negatively charged, they repel each other and maintain the dispersed state, but some of them adhere to the positively charged suspended particles. Therefore, the suspended particles move so as to be attracted to the filter cloth 45a side with the fine bubbles attached, but in the initial stage, only the fine bubbles are trapped on the surface of the filter cloth 45a (45b) and the net 44a (44b) together with the liquid. ) When passing through the water-passing layer on the side and the sedimentation layer 62 of suspended particles is gradually formed on the surface of the filter cloth 45a (45b), the suspended particles are caught on the surface of the deposition layer 62, and fine bubbles are generated. Only water and water flow to the filter cloth 45a (45b) side through the passage of fine bubbles adhering to the suspended particles previously deposited. Further, since the movement speed of fine bubbles in the low pressure direction [filter cloth 45a (45b) side] is generally faster than that of suspended particles or water, fine bubbles that are not attached to the suspended particles enter the deposition layer 62 from the initial stage. It is taken into the passing passage that is formed and plays the role of maintaining the passage. In other words, even if the deposited layer 62 becomes thick, a large number of flow paths are secured in the layer, so that the filtration operation can proceed without reducing the filtration efficiency.

ところで、懸濁粒子の堆積層62は濾過の進行と共に厚くなるが、前記のような微細気泡の作用により、図4に示すようにその堆積層62の内部には表面から濾布45aに通じる多数の流路63が蟻の巣のように縦横に構成され、各流路63を微細気泡と水が交互に流れる。そして、堆積層62の流路63を流れる微細気泡は電荷を失って他の微細気泡と結合することがあり、また濾布45aに近いほど圧力が低くなるため、各流路63内の微細気泡は除々に大きくなる傾向がある。従って、堆積層62は比較的脆弱に構成されてゆき、厚くなると自重によって剥離・崩落し、濾過室43の底部にスラリーとして滞留する。   By the way, the deposited layer 62 of suspended particles becomes thicker as the filtration progresses. However, due to the action of the fine bubbles as described above, as shown in FIG. The flow paths 63 are configured vertically and horizontally like ant nests, and fine bubbles and water alternately flow through the flow paths 63. The fine bubbles flowing through the flow path 63 of the deposition layer 62 may lose their charge and combine with other fine bubbles, and the pressure becomes lower as the filter cloth 45a is closer, so the fine bubbles in each flow path 63 Tends to grow gradually. Accordingly, the deposited layer 62 is configured to be relatively fragile, and when it becomes thicker, it peels and collapses due to its own weight, and stays as a slurry at the bottom of the filtration chamber 43.

以上の濾過メカニズムに基づいて、この濾過装置は図3のフローチャートに示す手順でスラリー排出用電磁弁32と排気用電磁弁33を制御する。但し、システム制御部10は各電磁弁32,33を通常状態では閉設定にしている。先ず、懸濁原液(研磨排液)にエアーを過飽和状態まで溶解させた被濾過液が圧力タンク25から濾過体31の濾過室43に注入されると、前記のように濾過室43内で溶け込んでいたエアーが微細気泡となって懸濁原液中に混在した状態になるが、システム制御部10は圧力計30の検出信号から注入圧力Pinが所定値Po以上になったことを確認した段階で、濾過室43内に被濾過液が充満して定常的な濾過状態へ移行したものとみなし、タイマーTs,Taを起動させる(S1〜S3)。   Based on the filtration mechanism described above, the filtration device controls the slurry discharge solenoid valve 32 and the exhaust solenoid valve 33 in the procedure shown in the flowchart of FIG. However, the system control unit 10 closes the electromagnetic valves 32 and 33 in the normal state. First, when a liquid to be filtered, in which air is dissolved in a suspension stock solution (polishing waste liquid) to a supersaturated state, is injected from the pressure tank 25 into the filtration chamber 43 of the filter body 31, it dissolves in the filtration chamber 43 as described above. The air that has come out becomes fine bubbles and is mixed in the suspension stock solution, but the system control unit 10 has confirmed from the detection signal of the pressure gauge 30 that the injection pressure Pin has become a predetermined value Po or more. The filtration chamber 43 is filled with the liquid to be filtered and the state is changed to a steady filtration state, and the timers Ts and Ta are started (S1 to S3).

そして、タイマーTsの計測時間tsが所定時間THs以上になると、電磁弁32を一定時間だけ開放させる(S4,S5)。また、その開放が終了すると電磁弁32を閉設定に戻し、タイマーTsの計測時間tsを0にして、再びタイマーTsを起動させて所定時間THsになるかどうかを確認するという動作を繰り返す(S5,S6→S4)。即ち、前記のように懸濁粒子の堆積層62が剥離・崩壊してスラリーとなって濾過室43の底部に溜まるため、それを所定時間THs毎に外部へ排出させるようにしている。   When the measurement time ts of the timer Ts becomes equal to or longer than the predetermined time THs, the solenoid valve 32 is opened for a certain time (S4, S5). When the opening is completed, the solenoid valve 32 is returned to the closed setting, the measurement time ts of the timer Ts is set to 0, and the timer Ts is started again to check whether or not the predetermined time THs is reached (S5). , S6 → S4). That is, as described above, the suspended particle deposition layer 62 peels and collapses to form a slurry and accumulates at the bottom of the filtration chamber 43, so that it is discharged to the outside every predetermined time THs.

システム制御部10は、もう一方のタイマーTaに関してもその計測時間taが所定時間THa以上になるかどうかを確認しており、所定時間THa以上になると電磁弁33を一定時間だけ開放して濾過室43の上部に滞留しているエアーを外部へ排出させ、前記と同様に、タイマーTaの計測時間taを0にして、再びタイマーTaを起動させて再び所定時間THaになるかどうかを確認するという動作を繰り返す[(S4)→S7〜S9→(S4)]。即ち、微細気泡は体積が極めて小さいために上昇速度が遅いが、濾過動作が長時間行われている内に濾過室43の上部に少しずつ気泡が集まってエアー溜まりができるため、そのエアーを所定時間THa毎に外部へ排出させるようにしている。   The system control unit 10 confirms whether or not the measurement time ta of the other timer Ta is equal to or longer than the predetermined time THa, and when it exceeds the predetermined time THa, the electromagnetic valve 33 is opened for a predetermined time and the filtration chamber is opened. The air staying in the upper part of 43 is discharged to the outside, and the measurement time ta of the timer Ta is set to 0, and the timer Ta is started again to check whether or not the predetermined time THa is reached again. The operation is repeated [(S4) → S7 to S9 → (S4)]. That is, although the fine bubbles have a very small volume, the rising speed is slow, but the air is collected little by little at the top of the filtration chamber 43 while the filtration operation is performed for a long time, so that the air is stored in a predetermined amount. It discharges to the outside every time THa.

尚、この実施形態では時間管理により各電磁弁32,33の開閉制御をおこなっているが、濾過室43内の最上部付近にエアーが溜まっていることを検出するセンサを、最下部付近にスラリーが滞留していることを検出するセンサを設けておき、それぞれのセンサの検出信号に基づいて開閉制御を行うようにしてもよい。また、前記の濾過メカニズムによれば、各電磁弁32,33の開放時間は短時間であるものの濾過室43内の圧力を低下させることになり、それによっても堆積層62の剥離・崩落が助長される。   In this embodiment, the solenoid valves 32 and 33 are controlled to be opened and closed by time management. A sensor for detecting that air has accumulated in the vicinity of the uppermost part in the filtration chamber 43 is provided with a slurry in the vicinity of the lowermost part. It is also possible to provide a sensor for detecting that the gas is staying, and to perform opening / closing control based on the detection signal of each sensor. Further, according to the filtration mechanism described above, although the electromagnetic valves 32 and 33 are open for a short time, the pressure in the filtration chamber 43 is reduced, which also promotes the separation and collapse of the deposited layer 62. Is done.

以上のように、この実施形態の濾過装置によれば、微細気泡を懸濁原液に混入させておくことにより、濾過助剤を用いないで、濾布45a,45bに堆積した懸濁粒子による目詰まりが生じない高効率な濾過処理を行うことができる。また、濾過体31を開枠した状態での洗浄を行うことなく、長時間に亘って連続的に稼動させることができる。そして、この濾過装置はコンプレッサーエアーを利用した逆洗浄も可能になっており、図1において、開閉弁26,35と電磁弁32,33を閉じておき、開閉弁27,34を開いて排水孔48a,48bから通水層へコンプレッサーエアーを供給すれば、濾布45a,45bの逆洗浄がなされ、濾過室43内から追い出された懸濁原液は開閉弁27を通じて排水される。   As described above, according to the filtration device of this embodiment, the fine bubbles are mixed in the suspension stock solution, so that the particles by the suspended particles accumulated on the filter cloths 45a and 45b can be obtained without using a filter aid. High-efficiency filtration that does not cause clogging can be performed. In addition, the filter 31 can be continuously operated for a long time without washing in a state where the filter 31 is opened. This filtration device can also perform reverse cleaning using compressor air. In FIG. 1, the on-off valves 26 and 35 and the solenoid valves 32 and 33 are closed, and the on-off valves 27 and 34 are opened to open the drain holes. When compressor air is supplied from 48a and 48b to the water flow layer, the filter cloths 45a and 45b are back-washed, and the suspension stock solution expelled from the filtration chamber 43 is drained through the on-off valve 27.

[実施形態2]
この実施形態は、前記の実施形態1の濾過装置に対して更に改良を加えたものであり、その要部は図5に示される。この濾過装置の特徴は、濾過体31の注入孔47への濾過対象液の圧送経路に流量計71を設けると共に、濾過水の排水側にエゼクター72を設け、エゼクター72を介して排出されて濾過水槽73に貯留してある濾過水を液送ポンプ74でエゼクター72へ循環させることにより、濾過体31の排水孔48a,48bから送られてくる濾過水をエゼクター72によって強制的に吸引するようになっている点にある。
[Embodiment 2]
This embodiment is obtained by further improving the filtration device of the first embodiment, and its main part is shown in FIG. A feature of this filtration device is that a flow meter 71 is provided in the pressure feed path of the liquid to be filtered to the injection hole 47 of the filter body 31, and an ejector 72 is provided on the drain side of the filtrate water, and is discharged through the ejector 72 and filtered. By circulating the filtered water stored in the water tank 73 to the ejector 72 by the liquid feed pump 74, the filtered water sent from the drain holes 48a and 48b of the filter body 31 is forcibly sucked by the ejector 72. It is in the point.

そして、システム制御部10は流量計71から得られる流量検出信号を確認しながら、図6のフローチャートに示す制御手順を実行する。先ず、被濾過液が圧力タンク25から濾過体31の濾過室43に注入され、圧力計30の圧力検出信号から注入圧力Pinが所定値Po以上になったことが確認された時点で、濾過室43内に被濾過液が充満して定常的な濾過状態へ移行したとみなすことは実施形態1の場合と同様である(S21,S22)。   The system control unit 10 executes the control procedure shown in the flowchart of FIG. 6 while confirming the flow rate detection signal obtained from the flow meter 71. First, when the liquid to be filtered is injected from the pressure tank 25 into the filtration chamber 43 of the filter body 31 and it is confirmed from the pressure detection signal of the pressure gauge 30 that the injection pressure Pin is equal to or higher than the predetermined value Po. It is the same as in the case of Embodiment 1 that 43 is filled with the liquid to be filtered and the state is shifted to a steady filtration state (S21, S22).

ここで、システム制御部10は、その時点から流量計71の検出値Fvが所定閾値THv1以下か否かを常時確認し、その条件(Fv≦THv1)を満たせば、液送ポンプ74を起動させてエグゼクター72による濾過水の吸引を開始させる(S23,S24)。この場合の閾値THv1は濾布45a,45bへの懸濁粒子の堆積層62が厚くなって濾過効率が低下した場合の流量閾値に相当し、そのようになった場合には、濾過体13の濾過水排出側の圧力を低下させて濾過室43における通水層の圧力を低下させることにより、堆積層62の剥離・崩落を強制的に引き起こすようにしている。即ち、濾布45a,45bの背後にネット44a,44bで構成されている通水層の圧力が低下すると、堆積層62の内部に多数形成されている流路63を微細気泡と水とがより勢いよく流れることになるが、同時に微細気泡は減圧により膨張する傾向を呈し、堆積層62を内部から崩壊させて剥離し易くする。   Here, the system control unit 10 constantly checks whether or not the detected value Fv of the flow meter 71 is equal to or less than a predetermined threshold value THv1 from that point of time, and activates the liquid feed pump 74 if the condition (Fv ≦ THv1) is satisfied. Then, suction of filtered water by the executor 72 is started (S23, S24). The threshold value THv1 in this case corresponds to the flow rate threshold value when the sedimentation layer 62 of the suspended particles on the filter cloths 45a and 45b is thick and the filtration efficiency is lowered. The pressure on the drain side of the filtrate is lowered to lower the pressure of the water passage layer in the filtration chamber 43, thereby forcibly causing separation / collapse of the deposited layer 62. That is, when the pressure of the water flow layer formed by the nets 44a and 44b behind the filter cloths 45a and 45b is reduced, the fine bubbles and the water are caused to flow through the flow path 63 formed inside the deposition layer 62. At the same time, the fine bubbles tend to expand due to the reduced pressure, causing the deposited layer 62 to collapse from the inside and easily peel off.

一方、通水層の大きな減圧は前記効果を引き起こすが、その後も大きな減圧状態を継続させると懸濁粒子と微細気泡が常に濾布45a,45b側へ強力に吸引されて、堆積層62が圧潰される態様で形成されるため、堆積層62の内部に流路63が構成され難くなって逆に濾過効率が低下する。そこで、堆積層62の剥離・崩落によって流量計71の検出値Fvが所定閾値THv2以上に回復すると、システム制御部10は直ちに液送ポンプ74を停止させてエグゼクター72による濾過水の吸引を停止し、それにより通常の圧縮濾過状態に戻す(S25,S26)。尚、閾値THv2は閾値THv1より充分に大きい値である。   On the other hand, the large pressure reduction of the water flow layer causes the above-mentioned effect, but if the large pressure reduction state is continued thereafter, the suspended particles and the fine bubbles are always strongly attracted to the filter cloth 45a, 45b side, and the deposited layer 62 is crushed. Therefore, the flow path 63 is hardly formed inside the deposition layer 62, and the filtration efficiency is lowered. Therefore, when the detected value Fv of the flow meter 71 recovers to a predetermined threshold value THv2 or more due to the separation / collapse of the deposited layer 62, the system control unit 10 immediately stops the liquid feed pump 74 and stops the suction of filtered water by the executor 72. , Thereby returning to the normal compression filtration state (S25, S26). Note that the threshold value THv2 is sufficiently larger than the threshold value THv1.

そして、システム制御部10が前記手順(S23〜S26)によるエグゼクター72の起動/停止制御手順を繰り返し実行することにより、実施形態1のように濾過過程における堆積層62の自然な剥離・崩落だけに依存するのではなく、強制的に堆積層62を剥離・崩落させて、より安定的に高い濾過効率を維持させることが可能になる。尚、実施形態1に示した時間管理によるスラリー排出/エアー排出の処理手順(図3)も並行して実行されるが、この場合は濾過効率が更に向上してスラリーが濾過室43の底部に溜まる速度が早い、タイマーTsの計測時間tsに係る閾値THsは実施形態1の場合よりも小さく設定される。   Then, the system control unit 10 repeatedly executes the start / stop control procedure of the executor 72 according to the procedure (S23 to S26), so that only the natural separation / collapse of the deposited layer 62 in the filtration process as in the first embodiment. Rather than relying on it, it is possible to forcibly peel and collapse the deposited layer 62 to maintain higher filtration efficiency more stably. In addition, although the processing procedure (FIG. 3) of slurry discharge / air discharge by time management shown in Embodiment 1 is executed in parallel, in this case, the filtration efficiency is further improved and the slurry is placed at the bottom of the filtration chamber 43. The threshold value THs related to the measurement time ts of the timer Ts at which the accumulation speed is high is set smaller than that in the first embodiment.

[実施形態3]
この実施形態は、前記の実施形態1,2が加圧濾過方法の濾過装置であるのに対して減圧濾過方法の濾過装置に係り、その概略構成図は図7(A)に示される。尤も、実施形態1の濾過装置(図1)における圧力タンク25より前段にある気液混合処理回路等は、そのままこの実施形態の装置にも適用されている。但し、この実施形態では、気液混合機24で懸濁原液に微細気泡が混入した濾過対象液が得られると、それを直ちに濾過体31の濾過室43へ送り込んで注入している。従って、濾過対象液は圧送されているわけではないが、コンプレッサーエアーと懸濁原液はそれぞれ所定圧力で気液混合機24に送られるため、濾過対象液は少なくとも大気圧よりも大きい圧力で濾過室43へ送り込まれる。
[Embodiment 3]
This embodiment relates to the filtration device of the vacuum filtration method, while the first and second embodiments are the filtration device of the pressure filtration method, and a schematic configuration diagram thereof is shown in FIG. However, the gas-liquid mixing processing circuit and the like in the preceding stage of the pressure tank 25 in the filtration device (FIG. 1) of the first embodiment are applied to the device of this embodiment as it is. However, in this embodiment, when a liquid to be filtered in which fine bubbles are mixed in the suspension stock solution is obtained by the gas-liquid mixer 24, it is immediately sent to the filtration chamber 43 of the filter 31 and injected. Therefore, although the liquid to be filtered is not pumped, the compressor air and the suspension stock solution are each sent to the gas-liquid mixer 24 at a predetermined pressure, so that the liquid to be filtered is at least at a pressure larger than atmospheric pressure in the filtration chamber It is sent to 43.

一方、濾過体31からの濾過水の排水側には、実施形態2の場合と同様に、エゼクター72と濾過水槽73と液送ポンプ74とからなる濾過水の循環方式での吸引減圧部が設けられている。そして、システム制御部10は、図8に示す手順で液送ポンプ74を制御することにより、減圧濾過を実行させる。先ず、懸濁原液に微細気泡が混入した濾過対象液が濾過装置に注入されると、液送ポンプ74を起動させてエゼクター72に濾過水を高速で通じさせ、濾過水排出側の圧力を低下させて濾過室43における通水層の圧力を低下させる(S31,S32)。   On the other hand, on the drain side of the filtered water from the filter body 31, as in the case of the second embodiment, a suction pressure reducing part in the circulating system of filtered water comprising an ejector 72, a filtered water tank 73 and a liquid feed pump 74 is provided. It has been. Then, the system control unit 10 controls the liquid feed pump 74 according to the procedure shown in FIG. First, when the liquid to be filtered, in which fine bubbles are mixed in the suspension stock solution, is injected into the filtration device, the liquid feed pump 74 is activated to cause the ejector 72 to pass the filtered water at a high speed, and the pressure on the filtered water discharge side is reduced. Thus, the pressure of the water passage layer in the filtration chamber 43 is reduced (S31, S32).

それにより、濾過体31の濾過室43には濾過対象液が取り込まれると共に、濾過室43に充満した状態で圧力計30が示す注入圧力Pinがほぼ一定値(大気圧よりも大きい圧力値)で安定するようになるが、その状態は定常的な減圧濾過が始まったことに他ならない(S33)。そして、その減圧濾過状態においても、図4で説明した濾過メカニズムによって堆積層62の剥離と崩落を伴った高効率な濾過が行われることになるが、濾過の進行により濾布45a,45bへの懸濁粒子の堆積層62が除々に厚くなり、やがて濾過効率が低下することになる。   As a result, the filtration target liquid is taken into the filtration chamber 43 of the filter body 31 and the injection pressure Pin indicated by the pressure gauge 30 in a state where the filtration chamber 43 is filled is a substantially constant value (a pressure value larger than the atmospheric pressure). Although it becomes stable, the state is nothing but the beginning of steady vacuum filtration (S33). Even in the reduced-pressure filtration state, high-efficiency filtration with separation and collapse of the deposited layer 62 is performed by the filtration mechanism described with reference to FIG. 4, but the filtration to the filter cloths 45a and 45b is performed by the progress of filtration. The accumulated layer 62 of suspended particles gradually increases in thickness, and eventually the filtration efficiency decreases.

そこで、システム制御部10は、注入圧力Pinがほぼ一定値で安定した時点から流量計17の検出値Fvを常時確認し、検出値Fvが所定閾値THv1以下になれば、濾過効率が低下しているとみなして、液送ポンプ74を通常の減圧濾過状態の場合よりも強力に駆動させてエゼクター72による吸引力を増大させる(S34,S35)。この吸引力の増大は実施形態2の場合において液送ポンプ74を起動してエゼクター72を作動させた状態に相当し、この実施形態では通水層が予めオフセットとしての減圧レベルにあり、そのレベルから更に大きく減圧することになる。従って、実施形態2の場合と同様に、通常の濾過メカニズムによる堆積層62の自然な剥離・崩落だけでなく、強制的に堆積層62を剥離・崩落させて、高い濾過効率を維持させることができる。   Therefore, the system control unit 10 always confirms the detection value Fv of the flow meter 17 from the time when the injection pressure Pin is stabilized at a substantially constant value, and if the detection value Fv falls below the predetermined threshold THv1, the filtration efficiency decreases. As a result, the liquid feed pump 74 is driven more strongly than in the normal vacuum filtration state to increase the suction force by the ejector 72 (S34, S35). This increase in suction force corresponds to the state in which the liquid feed pump 74 is activated and the ejector 72 is activated in the case of the second embodiment. In this embodiment, the water-permeable layer is at a depressurization level as an offset in advance. Therefore, the pressure is further reduced. Therefore, as in the case of the second embodiment, not only the natural peeling / collapse of the deposited layer 62 by a normal filtration mechanism but also the deposited layer 62 can be forcibly peeled / collapsed to maintain high filtration efficiency. it can.

そして、それによって濾過効率が上がり、流量計17の検出値Fvが回復して所定閾値THv2以上になると、液送ポンプ74を元の駆動状態に戻し、エゼクター72を通常の減圧濾過状態に適合した吸引圧力に設定する(S36,S37)。従って、通常の濾過メカニズムに戻り、システム制御部10は流量計17の検出値Fvが所定閾値THv1以下になるか否かの確認状態となり、以降、前記ステップS34〜S37の手順を繰り返し実行することになる(S34〜S37→S34)。尚、時間管理によるスラリー排出/エアー排出の処理手順(図3)が並行して実行されることも、実施形態2の場合と同様である。即ち、基本的には減圧濾過方法によるのであるが、濾過室43内は大気圧よりも大きい圧力に保たれているため、前記の実施形態1,2の場合と同様にスラリー排出/エアー排出を行わせることができる。   As a result, the filtration efficiency increases, and when the detected value Fv of the flow meter 17 recovers and exceeds the predetermined threshold THv2, the liquid feed pump 74 is returned to the original driving state, and the ejector 72 is adapted to the normal vacuum filtration state. Set to suction pressure (S36, S37). Accordingly, returning to the normal filtration mechanism, the system control unit 10 enters a confirmation state as to whether or not the detected value Fv of the flow meter 17 is equal to or less than the predetermined threshold value THv1, and thereafter, the steps S34 to S37 are repeatedly executed. (S34 to S37 → S34). Note that the slurry discharge / air discharge processing procedure (FIG. 3) based on time management is also executed in the same manner as in the second embodiment. That is, although it is basically based on the vacuum filtration method, the inside of the filtration chamber 43 is maintained at a pressure higher than the atmospheric pressure, so that slurry discharge / air discharge is performed in the same manner as in the first and second embodiments. Can be done.

この実施形態3の濾過装置によれば、減圧濾過であるために実施形態1,2の場合のように加圧タンク25を必要とせず、また、堆積層62の剥離・崩落を強制的に引き起こさせるための通水層の減圧レベルの変化も、液送ポンプ74の駆動制御だけで足りるため、システムの小型化が図れるという利点がある。尚、図7(A)の構成では気液混合機24で得られた濾過対象液を直接的に濾過体31の濾過室43へ送り込んでいるが、図7(B)に示すように、濾過対象液の貯留槽75を設けておき、液送ポンプ76で貯留槽75内の下部側から汲み出した貯留液に対して気液混合機77で微細気泡を混入させて貯留槽75へ戻すという循環路を構成し、撹拌機78で貯留槽75内を撹拌させて濾過対象液における微細気泡の混入濃度を均一に保ちながら、貯留槽75内の濾過対象液を液送ポンプ79で濾過体31側へ送り込むようにしてもよい。   According to the filtration device of the third embodiment, since it is a vacuum filtration, the pressurized tank 25 is not required as in the first and second embodiments, and the peeling / collapse of the deposited layer 62 is forcibly caused. Since the change in the pressure reduction level of the water passage layer is only required to drive the liquid feed pump 74, there is an advantage that the system can be downsized. 7A, the liquid to be filtered obtained by the gas-liquid mixer 24 is directly sent to the filtration chamber 43 of the filter 31. As shown in FIG. Circulation in which a storage tank 75 for the target liquid is provided, and fine bubbles are mixed into the storage tank 75 by the gas-liquid mixer 77 with respect to the storage liquid pumped from the lower side of the storage tank 75 by the liquid feed pump 76. The path is configured, the inside of the storage tank 75 is stirred by the stirrer 78, and the mixing concentration of the fine bubbles in the liquid to be filtered is kept uniform, and the liquid to be filtered in the storage tank 75 is filtered by the liquid feed pump 79 on the filter 31 side. You may make it send to.

[実施形態4]
この実施形態は濾過体の変形例に係るものである。前記実施形態1乃至3では、図2に示したように、直方体の上側側面と下側側面に四角錐が接合した形状に相当する中空部を濾過室43とした濾過体31が用いられている。これは、実施形態1で説明したように、濾過室43内に残った微細気泡が上昇してできるエアー溜まりと堆積層62が剥離・崩落してできるスラリーをそれぞれ濾過室43の最上部と最下部に集めるのに都合が良いからである。そして、その観点からみると、図9[(A)は断面図、(B)は(A)のX-X矢視断面図(濾布は省略)]に示す濾過体80は濾過室が円板状の中空部として構成されており、前記機能を合理的に実現できる。
[Embodiment 4]
This embodiment relates to a modification of the filter body. In the first to third embodiments, as shown in FIG. 2, a filter body 31 is used in which a hollow portion corresponding to a shape in which a quadrangular pyramid is joined to the upper side surface and the lower side surface of a rectangular parallelepiped is used as the filter chamber 43. . As described in the first embodiment, this is because the air pool formed by rising fine bubbles remaining in the filtration chamber 43 and the slurry formed by the separation and collapse of the deposited layer 62 are separated from the uppermost portion and the uppermost portion of the filtration chamber 43, respectively. This is because it is convenient to collect at the bottom. From this point of view, the filter 80 shown in FIG. 9 [(A) is a cross-sectional view, (B) is a cross-sectional view taken along the line XX of (A) (filter cloth is omitted)] has a circular filter chamber. It is comprised as a plate-shaped hollow part and can implement | achieve the said function rationally.

図9において、81,82は中央領域が円板状の凹部として形成された盤体、83は濾過室、84a,84bは通水層を形成するネット、85a,85bは濾布、86はシール部材、87は濾過対象液の注入孔、88a,88bは濾過水の排水孔、89a,89bはエアー排出孔、90a,90bはスラリー排出孔であり、各盤体81,82を接合させて、それらの凹部で構成される円板状の空間を濾過室83とし、その濾過室83における前記各凹部の底面に相当する各内壁面にはネット84a,84bを介在させて濾布85a,85bが展設されている。但し、濾布85a,85bは濾過室83の内面全体に内張りされており、その周縁部は各盤体81,82の接合面に挟圧されている。尚、各盤体81,82の接合機構については、図2に示した濾過体31の場合と同様に、各盤体81,82の周縁部に設けた孔を利用してボルト・ナットの締め付けによる方式や、一方の盤体81を固定し、他方の盤体82を油圧シリンダ等で押圧させる方式等が採用される。   In FIG. 9, 81 and 82 are disc bodies whose central region is formed as a disk-shaped recess, 83 is a filtration chamber, 84 a and 84 b are nets forming a water-permeable layer, 85 a and 85 b are filter cloths, and 86 is a seal. Member, 87 is an injection hole for the liquid to be filtered, 88a and 88b are drainage holes for filtered water, 89a and 89b are air discharge holes, 90a and 90b are slurry discharge holes, and the plate bodies 81 and 82 are joined together. A disk-shaped space constituted by the recesses is defined as a filtration chamber 83, and filter cloths 85a and 85b are provided on the inner wall surfaces corresponding to the bottom surfaces of the recesses in the filtration chamber 83 with nets 84a and 84b interposed therebetween. It is set up. However, the filter cloths 85a and 85b are lined on the entire inner surface of the filtration chamber 83, and the peripheral edge portions are sandwiched between the joint surfaces of the respective plate bodies 81 and 82. As for the joining mechanism of each panel 81, 82, as in the case of the filter 31 shown in FIG. 2, the bolts and nuts are tightened using the holes provided in the peripheral edge of each panel 81, 82. Or a system in which one panel 81 is fixed and the other panel 82 is pressed by a hydraulic cylinder or the like.

図2の濾過体31では、各盤体41,42の接合体として構成されるために、エアー排出孔49a,49bとスラリー排出孔50a,50bを濾過室43の最上部と最下部に形成できず、最上部と最下部の近傍に形成せざるを得ない。また、その場合における各排出孔49a,49b,50a,50bの濾過室43側の開口部ではそれぞれフランジナットによって濾布45a,45bを押さえるようになっているため、近傍ではあっても最上部と最下部から少し離隔した位置になり、その結果、エアー排出孔49a,49bより上側にあるエアーが外部へ抜けず、スラリー排出孔50a,50bより下側にあるスラリーも外部へ抜けないことになる。   Since the filter body 31 of FIG. 2 is configured as a joined body of the respective board bodies 41 and 42, the air discharge holes 49a and 49b and the slurry discharge holes 50a and 50b can be formed at the uppermost part and the lowermost part of the filtration chamber 43. Therefore, it must be formed in the vicinity of the uppermost part and the lowermost part. In that case, the filter cloths 45a and 45b are pressed by the flange nuts at the openings of the discharge holes 49a, 49b, 50a, and 50b on the filtration chamber 43 side, so that even if they are in the vicinity, As a result, the air above the air discharge holes 49a and 49b does not escape to the outside, and the slurry below the slurry discharge holes 50a and 50b does not escape to the outside. .

この実施形態の濾過体80によれば、エアー排出孔89a,89bとスラリー排出孔90a,90bをそれぞれ濾過室83の最上部と最下部に形成でき、濾過過程で生じた濾過室83内のエアー溜まりやスラリー溜まりを図3の電磁弁制御手順に基づいて完全に外部へ排出できる。更には、盤体81,82の凹部が円板状であるため、図2の盤体41,42と比較して加工が容易になり、濾布85a,85bの展着に際しても隅角が存在しないために容易になるという利点がある。   According to the filter body 80 of this embodiment, the air discharge holes 89a and 89b and the slurry discharge holes 90a and 90b can be formed at the uppermost part and the lowermost part of the filtration chamber 83, respectively. The pool and slurry pool can be completely discharged to the outside based on the solenoid valve control procedure of FIG. Furthermore, since the recesses of the disc bodies 81 and 82 are disk-shaped, processing is easier than the disc bodies 41 and 42 in FIG. 2, and there are corners when the filter cloths 85a and 85b are spread. There is an advantage that it becomes easy to not.

また、以上の実施形態においては、濾過室が単体である濾過体について説明したが、フィルタープレス型のように盤体を積層させて懸濁原液の注入孔が連通した多数の濾過室を備えた構成も採用できる。例えば、図10に示すように、両側端の盤体として実施形態1の濾過体31(図2)に用いた盤体41,42とし、その中間に連結用盤体95を3枚介装して濾過室が4室構成された濾過体とすることができる。ここで、連結用盤体95は、隣接する盤体との各対向面の構成が実施形態1の盤体41と同様になっており、その注入孔47に相当する孔が懸濁原液を通じさせるための連通孔96になっていると共に、排水孔48aに相当する孔97は、各対向面の通水層を連通させて、その中間で下側端面に通じた排水路が形成された構成になっている。尚、連結用盤体95にも盤体41,42のエアー排出孔49a,49bとスラリー排出孔50a,50bに相当するものが構成されている。   Further, in the above embodiment, the filter body having a single filtration chamber has been described. However, the filter body is provided with a number of filtration chambers in which the plate bodies are stacked and the injection holes for the suspension stock solution communicate with each other like a filter press mold. A configuration can also be adopted. For example, as shown in FIG. 10, the plate bodies 41 and 42 used in the filter body 31 (FIG. 2) of the first embodiment are used as the plate bodies at both ends, and three connecting plate bodies 95 are interposed between them. Thus, a filter body having four filter chambers can be obtained. Here, the connection board 95 has the same configuration of each facing surface as the board 41 of the first embodiment, and the hole corresponding to the injection hole 47 allows the suspension stock solution to pass therethrough. The hole 97 corresponding to the drainage hole 48a communicates with the water-passing layer of each opposing surface, and has a configuration in which a drainage channel communicating with the lower end surface is formed in the middle of the hole 97 corresponding to the drainage hole 48a. It has become. The connecting plate body 95 is also configured to correspond to the air discharge holes 49a, 49b and the slurry discharge holes 50a, 50b of the plate bodies 41, 42.

そして、濾過装置に実際に適用するに際しては、懸濁原液の注入については注入孔47から行われて、4つの濾過室を同時に使用した加圧濾過又は減圧濾過がなされることになるが、上記の実施形態1,2,3で説明した制御は全ての濾過室についてシステム制御部10が一括して行うことができる。尤も、エアー排気用とスラリー排出用の電磁弁に関しては個別の濾過室単位で行っても良い。   And when actually applied to the filtration device, the suspension stock solution is injected from the injection hole 47, and pressure filtration or vacuum filtration using four filtration chambers at the same time is performed. The control described in the first, second, and third embodiments can be performed collectively by the system control unit 10 for all the filtration chambers. However, the solenoid valves for air exhaust and slurry discharge may be performed in units of individual filtration chambers.

本発明は加圧濾過又は減圧濾過による濾過装置に適用することができる。   The present invention can be applied to a filtration apparatus using pressure filtration or vacuum filtration.

実施形態1の濾過装置の概略構成図である。It is a schematic block diagram of the filtration apparatus of Embodiment 1. (A)は濾過体の断面図、(B)は(A)におけるX-X矢視断面図(但し、濾布は省略)である。(A) is sectional drawing of a filter body, (B) is XX arrow sectional drawing in (A) (however, a filter cloth is abbreviate | omitted). 濾過体に接続されているスラリー排出用電磁弁と排気用電磁弁の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the solenoid valve for slurry discharge | emission connected to the filter body, and the solenoid valve for exhaust_gas | exhaustion. 濾過作用を説明するための濾過部分の拡大断面図である。It is an expanded sectional view of a filtration part for explaining filtration action. 実施形態2の濾過装置(要部のみ)の概略構成図である。It is a schematic block diagram of the filtration apparatus (only the principal part) of Embodiment 2. 減圧駆動部(エゼクター・ポンプ)の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of a pressure reduction drive part (ejector pump). (A)は実施形態3の濾過装置の概略構成図である。(B)は濾過対象液の生成と濾過体への送り込みを行う部分の他の構成例を示す図である。(A) is a schematic block diagram of the filtration apparatus of Embodiment 3. FIG. (B) is a figure which shows the other structural example of the part which produces | generates the filtration object liquid, and sends to a filter body. 減圧駆動部(エゼクター・ポンプ)の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of a pressure reduction drive part (ejector pump). (A)は実施形態4に係る濾過体の断面図、(B)は(A)におけるX-X矢視断面図(但し、濾布は省略)である。(A) is sectional drawing of the filter body which concerns on Embodiment 4, (B) is XX arrow sectional drawing in (A) (however, a filter cloth is abbreviate | omitted). 盤体を積層させて複数の濾過室を構成した場合の濾過体の断面図である。It is sectional drawing of the filter body at the time of laminating | stacking a board body and comprising a some filtration chamber.

符号の説明Explanation of symbols

10…システム制御部、11…原水槽、12…開閉弁、13…液送ポンプ、14〜16…開閉弁、17…流量計、18…圧力計、19…逆止め弁、20…減圧弁、21…圧力計、22…エアー流量計、23…開閉弁、24…気液混合機、25…加圧タンク、25a…液面計、26,27…開閉弁、28…排気用電磁弁、29…開閉弁、30…圧力計、31…濾過体、32…スラリー排出用電磁弁、33…排気用電磁弁、34,35…開閉弁、41,42…盤体、43…濾過室、44a,44b…ネット、45a,45b…濾布、46…シール部材、47…注入孔、48a,48b…排水孔、49a,49b…エアー排出孔、50a,50b…スラリー排出孔、61…微細気泡が混在している懸濁原液、62…懸濁粒子の堆積層、63…微細気泡と液体の流路、71…流量計、72…エゼクター、73…濾過水槽、74…液送ポンプ、75…貯留槽、76…液送ポンプ、77…気液混合機、78…撹拌機、79…液送ポンプ、80…濾過体、81,82…盤体、83…濾過室、84a,84b…ネット、85a,85b…濾布、86…シール部材、87…注入孔、88a,88b…排水孔、89a,89b…エアー排出孔、90a,90b…スラリー排出孔、95…連結用盤体、96…連通孔、97…排水孔。 10 ... System control unit, 11 ... Raw water tank, 12 ... Open / close valve, 13 ... Liquid feed pump, 14-16 ... Open / close valve, 17 ... Flow meter, 18 ... Pressure gauge, 19 ... Check valve, 20 ... Pressure reducing valve, 21 ... Pressure gauge, 22 ... Air flow meter, 23 ... Open / close valve, 24 ... Gas-liquid mixer, 25 ... Pressurized tank, 25a ... Liquid level gauge, 26, 27 ... Open / close valve, 28 ... Exhaust solenoid valve, 29 ... Open / close valve, 30 ... Pressure gauge, 31 ... Filter body, 32 ... Solenoid discharge solenoid valve, 33 ... Exhaust solenoid valve, 34, 35 ... Open / close valve, 41, 42 ... Board body, 43 ... Filtration chamber, 44a, 44b ... Net, 45a, 45b ... Filter cloth, 46 ... Sealing member, 47 ... Injection hole, 48a, 48b ... Drainage hole, 49a, 49b ... Air discharge hole, 50a, 50b ... Slurry discharge hole, 61 ... Mixed bubbles Suspended undiluted liquid, 62 ... Sedimentation layer of suspended particles, 63 ... Flow path of fine bubbles and liquid, 71 ... Flow meter, 72 ... Ejector, 73 ... Filtration water tank, 74 ... Liquid feed pump, 75 ... Storage tank 76 ... Liquid feed pump, 77 ... Gas-liquid mixer, 78 ... Stirrer, 79 ... Liquid feed pump, 80 ... Filter body, 81, 82 ... Board body, 83 ... Filtration chamber, 84a, 84b ... Net, 85a, 85b ... Filter cloth, 86 ... Seal member, 87 ... Injection hole, 88a, 88b ... Drain hole, 89a, 89b ... Air Discharge holes, 90a, 90b ... slurry discharge holes, 95 ... connecting body, 96 ... communication holes, 97 ... drainage holes.

Claims (12)

加圧濾過又は減圧濾過による懸濁原液の濾過方法において、懸濁原液に微細気泡を混入させた状態で濾過を行うことを特徴とする濾過方法。   In the filtration method of the suspension stock solution by pressure filtration or reduced pressure filtration, the filtration method is characterized by performing filtration in a state where fine bubbles are mixed in the suspension stock solution. 懸濁原液に高圧下で気体を溶解させ、前記気体が溶解した懸濁原液を濾過室に注入し、濾過室内で懸濁原液中に微細気泡を発生させて濾過を行う請求項1の濾過方法。   The filtration method according to claim 1, wherein gas is dissolved in the suspension stock solution under high pressure, the suspension stock solution in which the gas is dissolved is poured into a filtration chamber, and filtration is performed by generating fine bubbles in the suspension stock solution in the filtration chamber. . 気液混合手段によって懸濁原液に微細気泡を混入させる処理を行い、前記処理後の懸濁原液を濾過室に注入して濾過を行う請求項1の濾過方法。   The filtration method according to claim 1, wherein a process of mixing fine bubbles into the suspension stock solution by gas-liquid mixing means is performed, and the suspension stock solution after the treatment is injected into a filtration chamber to perform filtration. 濾過面を鉛直方向に構成しておき、濾過対象液の流量を計測しながら濾過を行い、前記計測流量が低下した場合に、前記濾過面より下流側の圧力を低下させるようにした請求項1、請求項2、又は請求項3に記載の濾過方法。   The filtration surface is configured in the vertical direction, and filtration is performed while measuring the flow rate of the liquid to be filtered, and when the measured flow rate is reduced, the pressure downstream from the filtration surface is reduced. The filtration method according to claim 2 or claim 3. 鉛直方向の内壁面に通水層を介在させて濾材が装着されている濾過室を有し、外部から前記濾過室へ濾過対象液を注入するための注入孔、及び前記通水層から濾過水を外部へ排出させるための排水孔が形成されている濾過体と、
高圧下で懸濁原液に気体を溶解させることにより、又は気液混合処理により懸濁原液に微細気泡を混入させて濾過対象液を生成する原液処理手段と、
前記原液処理手段により生成された濾過対象液を前記濾過体の注入孔を通じて前記濾過室へ圧送する圧送手段と
を備えたことを特徴とする濾過装置。
A filtration chamber in which a filter medium is mounted on a vertical inner wall surface with a water-permeable layer interposed; an injection hole for injecting a liquid to be filtered from the outside into the filtration chamber; and filtered water from the water-permeable layer A filter body in which a drainage hole for discharging the water to the outside is formed,
Stock solution processing means for producing a liquid to be filtered by dissolving gas in the suspension stock solution under high pressure or by mixing fine bubbles in the suspension stock solution by gas-liquid mixing processing,
A filtration apparatus comprising: a pressure feeding means for pressure feeding the liquid to be filtered generated by the stock solution treatment means to the filtration chamber through an injection hole of the filter body.
前記圧送手段により圧送される懸濁原液の流量を検出する流量検出手段と、前記流量検出手段による検出流量値が所定値以下になった場合に、前記濾過体の排水孔側の圧力を低下させる減圧手段とを設けた請求項5に記載の濾過装置。   The flow rate detecting means for detecting the flow rate of the suspension stock solution pumped by the pressure feeding means, and the pressure on the drain hole side of the filter body is reduced when the detected flow rate value by the flow rate detecting means becomes a predetermined value or less. The filtration apparatus according to claim 5, further comprising a decompression unit. 鉛直方向の内壁面に通水層を介在させて濾材が装着されている濾過室を有し、外部から前記濾過室へ濾過対象液を注入するための注入孔、及び前記通水層から濾過水を外部へ排出させるための排水孔が形成されている濾過体と、
高圧下で懸濁原液に気体を溶解させることにより、又は気液混合処理により懸濁原液に微細気泡を混入させて濾過対象液を生成する原液処理手段と、
前記原液処理手段により生成された濾過対象液を大気圧より大きい圧力で前記濾過体の注入孔を通じて前記濾過室へ送る液送手段と、
前記濾過体の排出孔から濾過水を減圧吸引する減圧手段と
を備えたことを特徴とする濾過装置。
A filtration chamber in which a filter medium is mounted on a vertical inner wall surface with a water-permeable layer interposed; an injection hole for injecting a liquid to be filtered from the outside into the filtration chamber; and filtered water from the water-permeable layer A filter body in which a drainage hole for discharging the water to the outside is formed,
Stock solution processing means for generating a liquid to be filtered by dissolving gas in the suspension stock solution under high pressure or by mixing fine bubbles into the suspension stock solution by gas-liquid mixing processing,
Liquid feeding means for sending the liquid to be filtered generated by the stock solution processing means to the filtration chamber through the injection hole of the filter body at a pressure larger than atmospheric pressure;
And a pressure reducing means for suctioning filtered water from the discharge hole of the filter body.
前記液送手段により送られる懸濁原液の流量を検出する流量検出手段を設けると共に、前記減圧手段を減圧レベルの変更設定が可能な可変減圧手段とし、前記流量検出手段による検出流量値が所定値より大きい場合には、前記可変減圧手段による減圧レベルを減圧濾過のための第1の減圧レベルに設定し、前記検出流量値が所定値以下になった場合には、前記第1の減圧レベルよりも低い第2の減圧レベルに設定する減圧制御手段を設けた請求項7に記載の濾過装置。   A flow rate detecting means for detecting the flow rate of the suspension stock solution sent by the liquid feeding means is provided, the pressure reducing means is a variable pressure reducing means capable of changing the pressure reduction level, and a flow rate value detected by the flow rate detecting means is a predetermined value. If larger, the decompression level by the variable decompression means is set to the first decompression level for decompression filtration, and when the detected flow rate value is not more than a predetermined value, the first decompression level is exceeded. The filtration device according to claim 7, further comprising a decompression control means for setting the second decompression level to a lower level. 前記濾過体の濾過室内の最下部又はその近傍に外部へ通じるスラリー排出孔が形成されており、前記スラリー排出孔に第1の開閉弁を接続させた請求項5、請求項6、請求項7、又は請求項8に記載の濾過装置。   A slurry discharge hole leading to the outside is formed at or near the lowermost part of the filtration chamber of the filter body, and a first on-off valve is connected to the slurry discharge hole. Or the filtration device according to claim 8. 前記濾過体の濾過室内の最上部又はその近傍に外部へ通じるガス排出孔が形成されており、前記ガス排出孔に第2の開閉弁を接続させた請求項5、請求項6、請求項7、請求項8、又は請求項9に記載の濾過装置。   A gas discharge hole that leads to the outside is formed in the uppermost part of the filtration chamber of the filter body or in the vicinity thereof, and a second on-off valve is connected to the gas discharge hole. The filtration device according to claim 8 or 9. 前記濾過体の濾過室が直方体の上側側面と下側側面に四角錐が接合した形状に相当する中空部として構成されたものである請求項5、請求項6、請求項7、請求項8、請求項9、又は請求項10に記載の濾過装置。   The filtration chamber of the filter body is configured as a hollow portion corresponding to a shape in which a quadrangular pyramid is joined to an upper side surface and a lower side surface of a rectangular parallelepiped, 5, 6, 7, 8, The filtration device according to claim 9 or 10. 前記濾過体の濾過室が円板状の中空部として構成されたものである請求項5、請求項6、請求項7、請求項8、請求項9、請求項10、又は請求項11に記載の濾過装置。   The filter chamber of the filter body is configured as a disk-shaped hollow portion, and the filter chamber according to claim 5, claim 6, claim 7, claim 8, claim 9, claim 10, or claim 11. Filtration equipment.
JP2007271976A 2007-10-19 2007-10-19 Filtration method and filtration apparatus Pending JP2009095806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271976A JP2009095806A (en) 2007-10-19 2007-10-19 Filtration method and filtration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271976A JP2009095806A (en) 2007-10-19 2007-10-19 Filtration method and filtration apparatus

Publications (1)

Publication Number Publication Date
JP2009095806A true JP2009095806A (en) 2009-05-07

Family

ID=40699320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271976A Pending JP2009095806A (en) 2007-10-19 2007-10-19 Filtration method and filtration apparatus

Country Status (1)

Country Link
JP (1) JP2009095806A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150405A1 (en) * 2009-06-26 2010-12-29 旭化成ケミカルズ株式会社 Filtering method, and membrane-filtering apparatus
JP2011104488A (en) * 2009-11-13 2011-06-02 Central Filter Mfg Co Ld Washing method of filtration apparatus
JP2011161409A (en) * 2010-02-15 2011-08-25 Panasonic Environmental Systems & Engineering Co Ltd Apparatus for producing pure water
JP2012000554A (en) * 2010-06-15 2012-01-05 Central Filter Mfg Co Ld Solid recovery method
JP2016140859A (en) * 2015-02-05 2016-08-08 株式会社東芝 Treatment system and treatment method
WO2020045411A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Water treatment device
JP2020122183A (en) * 2019-01-30 2020-08-13 アサヒプリテック株式会社 Method for recovering valuable metal powder from resist waste liquid, and valuable metal powder recovering device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113389A (en) * 1974-07-24 1976-02-02 Ebara Infilco Shintomakuhonyoru bunrihoho
JPS61230707A (en) * 1985-04-06 1986-10-15 Toyota Motor Corp Ultrafiltration method
JP2000197884A (en) * 1999-01-06 2000-07-18 Zenken:Kk Clogging preventing device of filter apparatus
JP2002011332A (en) * 2000-06-29 2002-01-15 Kuraray Co Ltd Internal pressure type crossflow filtering method and apparatus
JP2003135938A (en) * 2001-10-31 2003-05-13 Sanyo Electric Co Ltd Method for removing substance to be removed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113389A (en) * 1974-07-24 1976-02-02 Ebara Infilco Shintomakuhonyoru bunrihoho
JPS61230707A (en) * 1985-04-06 1986-10-15 Toyota Motor Corp Ultrafiltration method
JP2000197884A (en) * 1999-01-06 2000-07-18 Zenken:Kk Clogging preventing device of filter apparatus
JP2002011332A (en) * 2000-06-29 2002-01-15 Kuraray Co Ltd Internal pressure type crossflow filtering method and apparatus
JP2003135938A (en) * 2001-10-31 2003-05-13 Sanyo Electric Co Ltd Method for removing substance to be removed

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150405A1 (en) * 2009-06-26 2010-12-29 旭化成ケミカルズ株式会社 Filtering method, and membrane-filtering apparatus
CN102802769A (en) * 2009-06-26 2012-11-28 旭化成化学株式会社 Filtering method, and membrane-filtering apparatus
KR101354403B1 (en) * 2009-06-26 2014-01-22 아사히 가세이 케미칼즈 가부시키가이샤 Filtering method, and membrane-filtering apparatus
JP5431474B2 (en) * 2009-06-26 2014-03-05 旭化成ケミカルズ株式会社 Filtration method and membrane filtration device
JP2011104488A (en) * 2009-11-13 2011-06-02 Central Filter Mfg Co Ld Washing method of filtration apparatus
JP2011161409A (en) * 2010-02-15 2011-08-25 Panasonic Environmental Systems & Engineering Co Ltd Apparatus for producing pure water
JP2012000554A (en) * 2010-06-15 2012-01-05 Central Filter Mfg Co Ld Solid recovery method
JP2016140859A (en) * 2015-02-05 2016-08-08 株式会社東芝 Treatment system and treatment method
WO2020045411A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Water treatment device
JP2020122183A (en) * 2019-01-30 2020-08-13 アサヒプリテック株式会社 Method for recovering valuable metal powder from resist waste liquid, and valuable metal powder recovering device
JP7305090B2 (en) 2019-01-30 2023-07-10 アサヒプリテック株式会社 Valuable metal powder recovery method from resist waste liquid and valuable metal powder recovery apparatus

Similar Documents

Publication Publication Date Title
JP2009095806A (en) Filtration method and filtration apparatus
EP1680362B1 (en) Liquid filtration apparatus and method embodying super-buoyant filtration particles
US7713427B2 (en) Water filtration and recycling for fabrication equipment
US6638422B1 (en) Liquid filtration apparatus and method embodying filtration particles having specific gravity less than liquid being filtered
JP5717061B2 (en) Vacuum suction processing method and vacuum suction processing system
WO2013191245A1 (en) Turbid-water treatment system and turbid-water treatment method
JP2001120912A (en) Filtering device
JP6088360B2 (en) Filtration device
JP6297415B2 (en) Muddy water treatment system and muddy water treatment method
JP6244444B1 (en) Water treatment equipment
JP2009241043A (en) Backwashing method of membrane filter apparatus
JP3058635B1 (en) Filtration treatment method and filtration treatment device using fibrous filter medium
JP5636040B2 (en) Solid-liquid separation method
JP4318507B2 (en) Filtration device
JP3398356B2 (en) Filtration dehydration apparatus and filtration dehydration method
JPH1066843A (en) Washing of membrane separator
KR100338525B1 (en) Underdrain mat system for rapid filtration
WO2014030358A1 (en) System comprising dehydration unit
CN102159509A (en) Suction filtration/concentration method and suction filtration/concentration device
JP6088359B2 (en) Filtration device
JP4727798B2 (en) Filtration method and filtration device
JP2020185552A (en) Filter cloth cleaning method of filter press
JPS6372310A (en) Clarifying and filtering method
JP3451551B2 (en) Filter plate filter, filter cloth cleaning method in filter plate filter, and filter cloth cleaning device for filter plate filter
JP2000202209A (en) Filtering method and filter device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120622