JP2013075288A - Apparatus and method for metal recovery - Google Patents

Apparatus and method for metal recovery Download PDF

Info

Publication number
JP2013075288A
JP2013075288A JP2012036378A JP2012036378A JP2013075288A JP 2013075288 A JP2013075288 A JP 2013075288A JP 2012036378 A JP2012036378 A JP 2012036378A JP 2012036378 A JP2012036378 A JP 2012036378A JP 2013075288 A JP2013075288 A JP 2013075288A
Authority
JP
Japan
Prior art keywords
water
filter aid
filter
treated
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012036378A
Other languages
Japanese (ja)
Other versions
JP5826668B2 (en
Inventor
Taro Fukaya
太郎 深谷
Kenji Tsutsumi
剣治 堤
Atsushi Yamazaki
厚 山崎
Ichiro Yamanashi
伊知郎 山梨
Hiroshi Noguchi
博史 野口
Yasutaka Kikuchi
靖崇 菊池
Hideji Seki
秀司 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012036378A priority Critical patent/JP5826668B2/en
Publication of JP2013075288A publication Critical patent/JP2013075288A/en
Application granted granted Critical
Publication of JP5826668B2 publication Critical patent/JP5826668B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and method for metal recovery, capable of directly performing solid-liquid separation of a crystal particle of a fine metal compound precipitated in water, without requiring a special reaction operation.SOLUTION: The metal recovery apparatus has: a precipitation tank 2 for precipitating the crystal particle of the metal compound from the water to be treated that contains a metal ion; a filter aid supply device 5 for supplying a filter aid having an average particle size of 0.5-20 μm in a free particle or aggregate containing a magnetic material; a mixing tank 6 for mixing the filter aid supplied from the filter aid supply device 5 with a dispersion medium; a solid-liquid separator 3 having a filter 33 for filtering a mixture supplied from the mixing tank 6 and for filtering the water to be treated that is supplied from the precipitation tank 2 to form a deposition layer of a metal compound crystal particle with the filter aid in the mixture; and a separation tank 4 for separating the metal compound crystal particle and the filter aid included in an exfoliated matter discharged from the solid-liquid separator 3 with the exfoliation water.

Description

本発明の実施形態は、イオンの形態で水中に存在する金属を回収する金属回収装置及び金属回収方法に関する。   Embodiments described herein relate generally to a metal recovery apparatus and a metal recovery method for recovering metal present in water in the form of ions.

昨今、工業の発達や人口の増加により水資源の有効利用が求められている。そのためには、工業排水などの排水の再利用が重要である。排水を再利用するには、水の浄化、すなわち水中から他の物質を分離することが必要である。水中から他の物質を分離する方法として、膜分離法、遠心分離法、活性炭吸着法、オゾン処理法、凝集による浮遊物質の除去法など種々の方法がある。これらの方法を用いて水中に含まれるリンや窒素などの環境に影響の大きい物質を除去することや、水中に分散した油類やクレイなどを除去することなどができる。   In recent years, effective use of water resources is required due to industrial development and population growth. For this purpose, it is important to reuse wastewater such as industrial wastewater. In order to reuse wastewater, it is necessary to purify water, that is, to separate other substances from the water. As a method for separating other substances from water, there are various methods such as a membrane separation method, a centrifugal separation method, an activated carbon adsorption method, an ozone treatment method, and a removal method of suspended substances by aggregation. Using these methods, it is possible to remove substances having a large environmental impact such as phosphorus and nitrogen contained in water, and to remove oils and clays dispersed in water.

これら各種の水処理方法のうち、膜分離法は水中の不溶物質を除去するのに最も一般的に使用されている方法のひとつであるが、膜の保護の観点や、難脱水性の物質を含む水の通水速度を上げる観点から、ろ過助剤が膜分離法に利用されている。   Among these various water treatment methods, the membrane separation method is one of the most commonly used methods for removing insoluble substances in water. From the viewpoint of increasing the water flow rate of the contained water, filter aids are used in membrane separation methods.

一方、水中から有害物や有価物を除去する方法として、水中に溶解する物質に何らかの反応を起こさせて析出物として析出させ、固液分離する方法が知られている。例えば特許文献1には、水中の銅イオンを析出させ、凝集機能をもつポリマーを添加して析出銅を凝集させ、凝集体として銅を分離回収する方法が記載されている。   On the other hand, as a method for removing harmful substances and valuables from water, a method is known in which some kind of reaction is caused to a substance dissolved in water to cause precipitation as a precipitate, followed by solid-liquid separation. For example, Patent Document 1 describes a method in which copper ions in water are precipitated, a polymer having an aggregating function is added to aggregate precipitated copper, and copper is separated and recovered as an aggregate.

特開2006−122817号公報JP 2006-122817 A

しかしながら、従来の方法においては、凝集体そのものが多量のポリマーを含むために、凝集体の単位体積当たりの銅純度が低く、回収効率が低いという問題点がある。また、凝集体から銅を分離した後に残る汚泥の量が多く、汚泥は最終的には廃棄されるものであるため、廃棄物量が多くなるという問題点がある。   However, in the conventional method, since the aggregate itself contains a large amount of polymer, there is a problem that the copper purity per unit volume of the aggregate is low and the recovery efficiency is low. In addition, there is a problem that the amount of sludge remaining after separating copper from the agglomerate is large, and the sludge is finally discarded.

本発明は上記課題を解決するためになされたものであり、特別な反応操作が必要でなく、水中で析出される細かい金属化合物の結晶粒子を直接的に固液分離できる金属回収装置及び金属回収方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and does not require a special reaction operation, and is capable of directly solid-liquid separating fine metal compound crystal particles precipitated in water, and a metal recovery apparatus. It aims to provide a method.

ここに記載する実施の形態に係る金属回収装置は、金属イオンを含む被処理水から金属化合物の結晶粒子を析出させる析出槽と、磁性体を含む単体粒子または凝集体の平均粒子径が0.5〜20μmのろ過助剤を供給するろ過助剤供給装置と、前記ろ過助剤供給装置から供給されるろ過助剤と分散媒とを混合する混合槽と、前記混合槽から供給される混合物をろ過し、その上に前記析出槽から供給される被処理水をろ過して前記被処理水中の金属化合物結晶粒子と前記混合物中のろ過助剤との堆積層を形成するフィルタを有する固液分離装置と、前記析出槽から前記固液分離装置に被処理水を供給するための被処理水供給ラインと、前記被処理水供給ラインに接続され、前記混合槽からの混合物を前記被処理水に合流させる混合ラインと、前記フィルタ上から前記堆積層を剥離して除去するための剥離水を前記フィルタ上に供給する剥離水供給ラインと、前記固液分離装置から剥離水とともに排出される剥離物に含まれる金属化合物結晶粒子とろ過助剤とを分離する分離槽と、前記固液分離装置から前記分離槽に前記剥離物を排出する剥離物排出ラインと、前記分離槽で分離されたろ過助剤を前記ろ過助剤供給装置へ戻すろ過助剤返送ラインと、を有することを特徴とする。   In the metal recovery device according to the embodiment described herein, a precipitation tank for depositing crystal particles of a metal compound from water to be treated containing metal ions, and an average particle size of single particles or aggregates containing a magnetic substance is 0.5 to Filtration of a filter aid supply device for supplying a filter aid of 20 μm, a mixing tank for mixing the filter aid and dispersion medium supplied from the filter aid supply device, and a mixture supplied from the mixing tank. And a solid-liquid separation device having a filter on which the water to be treated supplied from the precipitation tank is filtered to form a deposited layer of the metal compound crystal particles in the water to be treated and the filter aid in the mixture; The treated water supply line for supplying the treated water from the precipitation tank to the solid-liquid separator and the treated water supply line, and the mixture from the mixing tank is joined to the treated water. Mixing line and the fill A stripping water supply line for supplying stripping water for stripping and removing the deposited layer from above onto the filter, and metal compound crystal particles contained in the stripped material discharged together with stripping water from the solid-liquid separator, A separation tank for separating the filter aid, a peeled material discharge line for discharging the peeled material from the solid-liquid separator to the separation tank, and a filter aid supply device for separating the filter aid separated in the separation tank. And a filter-auxiliary agent return line.

また、ここに記載する実施の形態に係る金属回収装置は、磁性体を含む単体粒子または凝集体の平均直径が0.5〜20μmのろ過助剤と金属イオンを含む被処理水とを混合させるとともに、前記被処理水をアルカリ性にして金属化合物の結晶粒子を析出させる混合析出槽と、前記混合析出槽に前記ろ過助剤を供給するろ過助剤供給装置と、前記混合析出槽から供給される被処理水をろ過するとともに、前記混合析出槽から供給される混合物をろ過し、その上に前記被処理水中の金属化合物結晶粒子と前記混合物中のろ過助剤との堆積層を形成するフィルタを有する固液分離装置と、前記混合析出槽から前記固液分離装置に被処理水を供給するための被処理水供給ラインと、前記フィルタ上から前記堆積層を剥離して除去するための剥離水を前記フィルタ上に供給する剥離水供給ラインと、前記固液分離装置から剥離水とともに排出される剥離物に含まれる金属化合物とろ過助剤とを分離する分離槽と、前記固液分離装置から前記分離槽に前記剥離物を排出する剥離物排出ラインと、前記分離槽で分離されたろ過助剤を前記ろ過助剤供給装置へ戻すろ過助剤返送ラインと、を有することを特徴とする。   In addition, the metal recovery apparatus according to the embodiment described herein mixes a filter aid having an average diameter of 0.5 to 20 μm with single particles or aggregates containing a magnetic substance and water to be treated containing metal ions, A mixed precipitation tank for making the water to be treated alkaline and depositing crystal particles of a metal compound, a filter aid supply device for supplying the filter aid to the mixed precipitation tank, and a treatment to be supplied from the mixed precipitation tank The solid solution having a filter that filters water and filters the mixture supplied from the mixing precipitation tank and forms a deposition layer of metal compound crystal particles in the water to be treated and a filter aid in the mixture on the water. A liquid separator, a water supply line for supplying water to be treated from the mixed precipitation tank to the solid-liquid separator, and peeling water for peeling and removing the deposited layer from the filter. Phi A separation water supply line that is supplied onto the separator, a separation tank that separates the metal compound and filter aid contained in the peeled material discharged together with the separation water from the solid-liquid separation device, and the separation from the solid-liquid separation device It has a peeling thing discharge line which discharges the exfoliation thing to a tank, and a filter aid return line which returns the filter aid separated by the separation tank to the filter aid supply device.

ここに記載する実施の形態に係る金属回収方法は、(a)金属イオンを含有する被処理水から金属化合物の結晶粒子を析出させ、(b)磁性体を含む単体粒子または凝集体の平均直径が0.5〜20μmのろ過助剤と前記被処理水とを混合して混合物を作製し、(c)固液分離装置のフィルタにより前記混合物をろ過して、前記フィルタ上に前記ろ過助剤が堆積してなるろ過助剤層を形成し、(d)被処理水を前記フィルタ上に供給し、該被処理水を前記ろ過助剤層に透過させ、被処理水に含まれる前記金属化合物結晶粒子を前記ろ過助剤に捕捉させ、(e)剥離水を前記固液分離装置に供給し、剥離水により前記フィルタ上から前記ろ過助剤とともに前記金属化合物結晶粒子を剥離除去し、(f)剥離除去したろ過助剤から前記金属化合物結晶粒子を分離回収し、(g)分離回収したろ過助剤を前記(b)工程で再使用する、ことを特徴とする。   In the metal recovery method according to the embodiment described herein, (a) a crystal particle of a metal compound is precipitated from water to be treated containing metal ions, and (b) an average diameter of single particles or aggregates containing a magnetic substance. Is prepared by mixing the filter aid of 0.5 to 20 μm and the water to be treated, and (c) filtering the mixture with a filter of a solid-liquid separator, and depositing the filter aid on the filter. And (d) supplying the water to be treated onto the filter, allowing the water to be treated to permeate the filter aid layer, and the metal compound crystal particles contained in the water to be treated. (E) supplying stripping water to the solid-liquid separator, stripping and removing the metal compound crystal particles together with the filter aid from above the filter with stripping water, and (f) stripping The metal compound crystal particles from the removed filter aid Separated and recovered, reused in (g) the separated recovered filter aid (b) step, characterized by.

また、ここに記載する実施の形態に係る金属回収方法は、(i)金属イオンを含有する被処理水から金属化合物の結晶粒子を析出させ、(ii)磁性体を含む単体粒子または凝集体の平均直径が0.5〜20μmのろ過助剤と前記被処理水とを混合してスラリー液を作製し、(iii)固液分離装置のフィルタにより前記スラリー液をろ過して、前記フィルタ上に前記ろ過助剤と金属化合物結晶粒子が堆積してなるろ過助剤/金属化合物結晶粒子混合層を形成し、(iv)剥離水を前記固液分離装置に供給し、剥離水により前記フィルタ上からろ過助剤とともに前記金属化合物結晶粒子を剥離除去し、(v)剥離除去したろ過助剤から前記金属化合物結晶粒子を分離回収し、(vi)分離回収したろ過助剤を前記(ii)工程で再使用する、ことを特徴とする。   Further, the metal recovery method according to the embodiment described herein includes (i) precipitating crystal particles of a metal compound from water to be treated containing metal ions, and (ii) single particles or aggregates including a magnetic substance. A slurry aid is prepared by mixing a filter aid having an average diameter of 0.5 to 20 μm and the water to be treated. (Iii) The slurry solution is filtered by a filter of a solid-liquid separator, and the filtration is performed on the filter. A filter aid / metal compound crystal particle mixed layer is formed by depositing an auxiliary agent and metal compound crystal particles, and (iv) supplying stripping water to the solid-liquid separator, and filtering aid from above the filter by stripping water. The metal compound crystal particles are peeled and removed together with the agent, (v) the metal compound crystal particles are separated and recovered from the removed filter aid, and (vi) the separated and recovered filter aid is reused in the step (ii). It is characterized by.

第1の実施形態に係る金属回収装置を示す構成ブロック図。The block diagram which shows the metal collection | recovery apparatus which concerns on 1st Embodiment. 図1の装置を用いるプレコート法による金属回収方法を示す工程図。Process drawing which shows the metal collection | recovery method by the precoat method using the apparatus of FIG. (a)はポリマーで被覆された磁性体粒子を示す断面模式図、(b)は磁性体粒子が凝集した凝集体を示す断面模式図。(A) is a cross-sectional schematic diagram which shows the magnetic body particle | grains coat | covered with the polymer, (b) is a cross-sectional schematic diagram which shows the aggregate which the magnetic body particle aggregated. 第2の実施形態に係る金属回収装置を示す構成ブロック図。The block diagram which shows the metal collection | recovery apparatus which concerns on 2nd Embodiment. 図2の装置を用いるボディーフィード法による金属回収方法を示す工程図。Process drawing which shows the metal collection | recovery method by the body feed method using the apparatus of FIG. 第3の実施形態に係る金属回収装置を示す構成ブロック図。The block diagram which shows the metal collection | recovery apparatus which concerns on 3rd Embodiment.

本願発明者らは、ろ過膜を用いて排水中の水酸化銅析出物を直接固液分離することについて多くの実験を行い種々の検討を重ねた結果、排水から析出される水酸化銅析出物の粒子径(初期直径)が細かすぎるため、これを直接ろ過することが困難であるという知見を得た。ここに記載する実施の形態は、このような知見に基づいてなされたものである。   The inventors of the present application have conducted many experiments on direct solid-liquid separation of copper hydroxide precipitates in wastewater using a filtration membrane, and as a result of various studies, copper hydroxide precipitates precipitated from wastewater. Since the particle diameter (initial diameter) of this was too fine, it was found that it was difficult to directly filter it. The embodiment described here has been made based on such knowledge.

以下に種々の実施の形態をそれぞれ説明する。   Various embodiments will be described below.

(1)ここに記載する実施の形態の金属回収装置は、金属イオンを含む被処理水から金属化合物の結晶粒子を析出させる析出槽2と、磁性体を含む単体粒子または凝集体の平均粒子径が0.5〜20μmのろ過助剤を供給するろ過助剤供給装置5と、前記ろ過助剤供給装置から供給されるろ過助剤と分散媒とを混合する混合槽6と、前記混合槽から供給される混合物をろ過し、その上に前記析出槽から供給される被処理水をろ過して前記被処理水中の金属化合物結晶粒子と前記混合物中のろ過助剤との堆積層を形成するフィルタを有する固液分離装置3と、前記析出槽から前記固液分離装置に被処理水を供給するための被処理水供給ラインL2と、前記被処理水供給ラインに接続され、前記混合槽からの混合物を前記被処理水に合流させる混合ラインL7と、前記フィルタ上から前記堆積層を剥離して除去するための剥離水を前記フィルタ上に供給する剥離水供給ラインL31と、前記固液分離装置から剥離水とともに排出される剥離物に含まれる金属化合物結晶粒子とろ過助剤とを分離する分離槽4と、前記固液分離装置から前記分離槽に前記剥離物を排出する剥離物排出ラインL4と、前記分離槽で分離されたろ過助剤を前記ろ過助剤供給装置へ戻すろ過助剤返送ラインL5と、を有する。   (1) A metal recovery apparatus according to an embodiment described herein includes a precipitation tank 2 for precipitating crystal particles of a metal compound from water to be treated containing metal ions, and an average particle diameter of single particles or aggregates containing a magnetic substance. Is supplied from the mixing tank, a filter aid supplying device 5 for supplying a filter aid of 0.5 to 20 μm, a mixing tank 6 for mixing the filter aid supplied from the filter aid supplying apparatus and the dispersion medium, and A filter that forms a deposition layer of the metal compound crystal particles in the water to be treated and the filter aid in the mixture by filtering the water to be treated supplied from the precipitation tank. Solid-liquid separation device 3, treated water supply line L2 for supplying treated water from the precipitation tank to the solid-liquid separation device, connected to the treated water supply line, and the mixture from the mixing tank A mixing line L7 for joining the water to be treated, and the Stripping water supply line L31 for supplying stripping water for stripping and removing the deposited layer from the filter onto the filter, and metal compound crystals contained in the stripped material discharged together with the stripping water from the solid-liquid separator Separation tank 4 for separating particles and filter aid, stripped material discharge line L4 for discharging the stripped material from the solid-liquid separator to the separation tank, and filtering the filter aid separated in the separation tank. And a filter aid return line L5 for returning to the aid supply device.

本実施形態では、析出槽において被処理水をアルカリ性にして金属化合物の結晶粒子を析出させ、混合槽において磁性体を含む単体粒子または凝集体の平均粒子径が0.5〜20μmのろ過助剤と分散媒とを混合し、この混合物を被処理水供給ラインを介して混合槽から固液分離装置に供給し、ろ過助剤の堆積層をフィルタ上に形成し、次いで被処理水供給ラインを介して析出槽から固液分離装置に被処理水を供給し、ろ過助剤層に被処理水を透過させて金属化合物の結晶粒子をろ過助剤に捕捉させ、さらに剥離水供給ラインを介して剥離水を固液分離装置に供給し、フィルタ上からろ過助剤とともに金属化合物の結晶粒子を剥離除去し、剥離物排出ラインを介して固液分離装置から分離槽に剥離物を排出し、分離槽において洗浄除去したろ過助剤から金属化合物の結晶粒子を分離し、分離した金属化合物の結晶粒子を回収する一方で、ろ過助剤返送ラインを介して分離槽からろ過助剤供給装置に分離回収したろ過助剤を戻し、ろ過助剤供給装置において分離回収したろ過助剤を再使用することができ、特別な反応操作を要することなく、析出される細かい粒径の金属化合物結晶粒子を被処理水中から直接的に固液分離することができる(図1、図6)。水中において金属化合物の結晶粒子の形態で析出しうる金属として、銅、亜鉛、アルミニウム、カドミウム、ガリウム、金、銀、鉄、クロム、コバルト、ニッケル、鉛、ベリリウム、マグネシウム、マンガンを挙げることができ、ここに記載する実施の形態に係る金属回収装置及び金属回収方法は、水中にイオンの形態で存在するこれらの金属を回収するために用いられる。なお、ここに記載する実施の形態において金属化合物は水酸化物および水酸化物塩を含むものである。また、ここに記載する実施の形態において金属化合物の一例としての水酸化銅とは、水酸化銅(II)だけでなく、水酸化銅を含有する複塩や混合塩も含まれる。例えば、炭酸銅と水酸化銅、硫酸銅と水酸化銅等の組み合わせが挙げられる。   In this embodiment, the water to be treated is made alkaline in the precipitation tank to precipitate the metal compound crystal particles, and in the mixing tank, a single particle or agglomerate containing a magnetic substance is dispersed with a filter aid having an average particle diameter of 0.5 to 20 μm. The mixture is supplied to the solid-liquid separation device from the mixing tank via the treated water supply line, a deposited layer of filter aid is formed on the filter, and then the treated water supply line is used. The water to be treated is supplied from the precipitation tank to the solid-liquid separator, the water to be treated is permeated through the filter aid layer, and the crystal particles of the metal compound are captured by the filter aid. Further, the peel water is supplied via the peel water supply line. Is supplied to the solid-liquid separator, and the crystal particles of the metal compound are peeled and removed from the filter together with the filter aid, and the peeled material is discharged from the solid-liquid separator to the separation tank via the peeled material discharge line. Filter aid removed by washing While separating the crystal particles of the metal compound and collecting the separated metal compound crystal particles, the filter aid separated and recovered from the separation tank to the filter aid supply device via the filter aid return line is returned to the filter aid. The filter aid separated and recovered in the agent supply device can be reused, and the precipitated metal compound crystal particles with a fine particle size are directly solid-liquid separated from the water to be treated without requiring a special reaction operation. (FIGS. 1 and 6). Examples of metals that can be precipitated in the form of crystal grains of metal compounds in water include copper, zinc, aluminum, cadmium, gallium, gold, silver, iron, chromium, cobalt, nickel, lead, beryllium, magnesium, and manganese. The metal recovery apparatus and the metal recovery method according to the embodiments described herein are used to recover these metals present in the form of ions in water. In the embodiment described here, the metal compound includes a hydroxide and a hydroxide salt. In the embodiment described herein, copper hydroxide as an example of a metal compound includes not only copper (II) hydroxide but also double salts and mixed salts containing copper hydroxide. For example, a combination of copper carbonate and copper hydroxide, copper sulfate and copper hydroxide, or the like can be given.

(2)上記(1)の装置において、ろ過助剤が、表面をポリマーで被覆された磁性体粒子が凝集してなる凝集体からなり、磁性体粒子の平均粒子径D1が0.5〜20μmの範囲にあり、凝集体の平均凝集径D2がD1<D2≦20μmを満たし、ポリマーの平均被覆厚さtが0.01≦t≦0.25μmを満たすことが好ましい(図3)。   (2) In the apparatus of (1) above, the filter aid is composed of an aggregate formed by aggregating magnetic particles whose surfaces are coated with a polymer, and the average particle diameter D1 of the magnetic particles is in the range of 0.5 to 20 μm. It is preferable that the average aggregate diameter D2 of the aggregate satisfies D1 <D2 ≦ 20 μm, and the average coating thickness t of the polymer satisfies 0.01 ≦ t ≦ 0.25 μm (FIG. 3).

本実施形態では、磁性体粒子の平均粒子径D1は0.5〜20μmの範囲とすることが好ましいが、より好ましくは径D1を0.5〜15μmの範囲とする。磁性体粒子の平均粒子径D1が0.5μm未満になると、粒子が緻密に凝集しすぎて粒子間の距離が小さくなりすぎ、実効的な通水量が得られにくくなる。一方、平均粒子径D1が20μmを超えると、粒子が粗く凝集して粒子間の距離が大きくなりすぎ、水中の微細な析出物を通過させやすくなり、析出した水酸化銅の回収効率が大幅に低下してしまう。さらに平均粒子径D1を15μm以下にすると、水酸化銅粒子の回収効率がさらに向上する。ところで、本願発明者らは実証試験を行うことにより、磁性体粒子の平均粒子径D1が例えば26μmの場合は実効的な銅の回収効率を達成できないという知見を得ている。このことからも磁性体粒子の平均粒子径D1が過大になると、銅の回収効率が低下することが分かる。   In this embodiment, the average particle diameter D1 of the magnetic particles is preferably in the range of 0.5 to 20 μm, more preferably the diameter D1 is in the range of 0.5 to 15 μm. When the average particle diameter D1 of the magnetic particles is less than 0.5 μm, the particles are too densely aggregated and the distance between the particles becomes too small, making it difficult to obtain an effective water flow rate. On the other hand, when the average particle diameter D1 exceeds 20 μm, the particles are coarsely aggregated and the distance between the particles becomes too large, making it easy to pass fine precipitates in water, and the recovery efficiency of precipitated copper hydroxide is greatly increased. It will decline. Further, when the average particle diameter D1 is set to 15 μm or less, the recovery efficiency of the copper hydroxide particles is further improved. By the way, the inventors of the present application have obtained knowledge that by performing a verification test, effective copper recovery efficiency cannot be achieved when the average particle diameter D1 of the magnetic particles is, for example, 26 μm. This also shows that when the average particle diameter D1 of the magnetic particles becomes excessive, the copper recovery efficiency decreases.

本実施形態では、磁性体粒子の凝集体の平均凝集径D2はD1<D2≦20μmを満たすようにすることが好ましいが、より好ましくはD1<D2≦15μmを満たすようにする。凝集体の平均凝集径D2が20μmを超えると、上記と同様に水中の微細な析出物を通過させやすくなり、水酸化銅の回収効率が低下する。さらに平均凝集径D2を15μmにすると、上記と同様に水酸化銅粒子の回収効率がさらに向上する。   In the present embodiment, the average aggregate diameter D2 of the aggregates of the magnetic particles preferably satisfies D1 <D2 ≦ 20 μm, but more preferably satisfies D1 <D2 ≦ 15 μm. When the average aggregate diameter D2 of the aggregates exceeds 20 μm, it becomes easy to pass fine precipitates in water as described above, and the recovery efficiency of copper hydroxide decreases. Further, when the average agglomerated diameter D2 is set to 15 μm, the recovery efficiency of the copper hydroxide particles is further improved as described above.

本実施形態では、ポリマーの平均被覆厚さtが0.01≦t≦0.25μmを満たすことが好ましいが、より好ましくは厚さtが0.01≦t≦0.15μmを満たすようにする。ポリマーの平均被覆厚さtが0.01μm未満であると、所望の被覆効果が得られないだけでなく、凝集体の強度が低下して使用することができない。一方、被覆厚さtが0.25μmを超えると、凝集体中の磁性体粒子間の隙間が樹脂で埋まってしまい、被処理水の通水速度が低下するだけでなく、凹凸が小さくなるため、水酸化銅の回収効率が低下しやすくなる。さらに被覆厚さtを0.15μm以下にすると、適度な凹凸を有するため水酸化銅粒子を捕捉する捕捉性能が高くなり、被処理水の通水速度が大きくなるため、水酸化銅の回収効率がさらに向上する。   In this embodiment, the average coating thickness t of the polymer preferably satisfies 0.01 ≦ t ≦ 0.25 μm, but more preferably the thickness t satisfies 0.01 ≦ t ≦ 0.15 μm. When the average coating thickness t of the polymer is less than 0.01 μm, not only the desired coating effect cannot be obtained, but the strength of the agglomerates is lowered and cannot be used. On the other hand, when the coating thickness t exceeds 0.25 μm, the gap between the magnetic particles in the aggregate is filled with resin, not only the flow rate of the water to be treated is decreased, but also the unevenness is reduced. The recovery efficiency of copper hydroxide tends to decrease. Furthermore, when the coating thickness t is 0.15 μm or less, since it has moderate irregularities, the capturing performance for capturing copper hydroxide particles is increased, and the water flow rate of the water to be treated is increased, so that the copper hydroxide recovery efficiency is increased. Further improve.

(3)上記(1)または(2)のいずれかの装置において、固液分離装置の導入スペースの上部に接続され、前記導入スペースに水道水を供給して前記フィルタ上の堆積層に含まれる銅化合物中のイオン分を除去する脱塩ラインL10をさらに有することが好ましい(図6)。   (3) In either of the above-mentioned apparatuses (1) or (2), the apparatus is connected to the upper part of the introduction space of the solid-liquid separator, and tap water is supplied to the introduction space to be included in the deposited layer on the filter. It is preferable to further have a desalting line L10 for removing ions in the copper compound (FIG. 6).

本実施形態によれば、脱塩ラインを介して固液分離装置の導入スペースに豊富な水量の水道水を導入し、堆積層に含まれるイオン分(Naイオン、Caイオン、Mgイオンなど)を効果的に除去することができる。   According to this embodiment, a large amount of tap water is introduced into the introduction space of the solid-liquid separation device via the desalting line, and ions (Na ions, Ca ions, Mg ions, etc.) contained in the deposited layer are introduced. It can be effectively removed.

(4)上記(1)〜(3)のいずれかの装置において、固液分離装置の導入スペースの側部に接続され、前記導入スペースに水道水を側方から供給して前記フィルタ上から堆積層を剥離させて除去する洗浄ラインL11をさらに有することが好ましい(図6)。   (4) In the apparatus of any one of the above (1) to (3), connected to the side portion of the introduction space of the solid-liquid separator, and tap water is supplied from the side to the introduction space and deposited from above the filter. It is preferable to further have a cleaning line L11 for peeling off and removing the layers (FIG. 6).

本実施形態によれば、洗浄ラインを介して固液分離装置の導入スペースに側方から水量および圧力ともに十分な水道水を導入し、水の圧力でフィルタ上から堆積層を剥離させ、除去することができる。この場合に、洗浄ラインと固液分離装置との接続部分に噴射ノズルを取り付け、ノズルから水を勢いよく噴射させるようにすると、堆積層の剥離効果が高まり、除去効率が向上する。   According to the present embodiment, a sufficient amount of tap water is introduced from the side into the introduction space of the solid-liquid separator via the washing line, and the deposited layer is peeled off from the filter by the water pressure and removed. be able to. In this case, if an injection nozzle is attached to the connection portion between the cleaning line and the solid-liquid separation device and water is jetted vigorously from the nozzle, the effect of removing the deposited layer is enhanced and the removal efficiency is improved.

(5)ここに記載する実施の形態の金属回収装置は、磁性体を含む単体粒子または凝集体の平均直径が0.5〜20μmのろ過助剤と金属イオンを含む被処理水とを混合させるとともに、前記被処理水をアルカリ性にして金属化合物の結晶粒子を析出させる混合析出槽2Aと、前記混合析出槽に前記ろ過助剤を供給するろ過助剤供給装置5と、前記混合析出槽から供給される被処理水をろ過するとともに、前記混合析出槽から供給される混合物をろ過し、その上に前記被処理水中の金属化合物結晶粒子と前記混合物中のろ過助剤との堆積層を形成するフィルタを有する固液分離装置3と、前記混合析出槽から前記固液分離装置に被処理水を供給するための被処理水供給ラインL2と、前記フィルタ上から前記堆積層を剥離して除去するための剥離水を前記フィルタ上に供給する剥離水供給ラインL31と、前記固液分離装置から剥離水とともに排出される剥離物に含まれる金属化合物とろ過助剤とを分離する分離槽4と、前記固液分離装置から前記分離槽に前記剥離物を排出する剥離物排出ラインL4と、前記分離槽で分離されたろ過助剤を前記ろ過助剤供給装置へ戻すろ過助剤返送ラインL5と、を有する。   (5) The metal recovery apparatus according to the embodiment described herein mixes a filter aid having an average diameter of 0.5 to 20 μm with single particles or aggregates containing a magnetic substance and water to be treated containing metal ions, Supplied from the mixed precipitation tank 2A for making the water to be treated alkaline and depositing crystal particles of the metal compound, a filter aid supply device 5 for supplying the filter aid to the mixed precipitation tank, and the mixed precipitation tank A filter that filters the water to be treated, filters the mixture supplied from the mixing precipitation tank, and forms a deposited layer of the metal compound crystal particles in the water to be treated and the filter aid in the mixture on the filter. A solid-liquid separation device 3 having, a treated water supply line L2 for supplying treated water from the mixed precipitation tank to the solid-liquid separation device, and for removing the deposited layer by peeling off the filter Release water The separation water supply line L31 to be supplied onto the separator, the separation tank 4 for separating the metal compound and the filter aid contained in the peeled material discharged together with the separation water from the solid-liquid separation device, and the solid-liquid separation device. A separation product discharge line L4 for discharging the separation product to the separation tank, and a filter aid return line L5 for returning the filter aid separated in the separation tank to the filter aid supply device.

本実施形態では、混合析出槽において被処理水をアルカリ性にして金属化合物の結晶粒子を析出させ、この混合析出槽内にろ過助剤供給装置からろ過助剤を供給し、ろ過助剤に金属化合物の結晶粒子を吸着捕捉させ、被処理水供給ラインを介して混合析出槽から固液分離装置に被処理水を供給し、固液分離装置においてフィルタ上にろ過助剤と金属化合物の結晶粒子とが堆積してなるろ過助剤/金属化合物結晶粒子混合層を形成し、さらに剥離水供給ラインを介して剥離水を固液分離装置に供給し、フィルタ上からろ過助剤とともに金属化合物の結晶粒子を剥離除去し、剥離物排出ラインを介して固液分離装置から分離槽に剥離物を排出し、分離槽において洗浄除去したろ過助剤から金属化合物の結晶粒子を分離し、分離した金属化合物の結晶粒子を回収する一方で、ろ過助剤返送ラインを介して分離槽からろ過助剤供給装置に分離回収したろ過助剤を戻し、ろ過助剤供給装置において分離回収したろ過助剤を再使用することができ、特別な反応操作を要することなく、析出される細かい粒径の金属化合物の結晶粒子を被処理水中から直接的に固液分離することができる(図4)。   In the present embodiment, the water to be treated is made alkaline in the mixed precipitation tank to precipitate metal compound crystal particles, and the filter aid is supplied from the filter aid supply device into the mixed precipitation tank, and the metal compound is supplied to the filter aid. The crystal particles are adsorbed and captured, and the water to be treated is supplied from the mixed precipitation tank to the solid-liquid separation device via the water to be treated supply line. A filter aid / metal compound crystal particle mixed layer is formed by depositing, and further, stripping water is supplied to the solid-liquid separator through the stripping water supply line, and the crystal particles of the metal compound are combined with the filter aid from above the filter. The exfoliated material is removed from the solid-liquid separation device through the exfoliated material discharge line to the separation tank, and the crystal particles of the metal compound are separated from the filter aid washed and removed in the separation tank. Result While collecting particles, return the filter aid separated and recovered from the separation tank to the filter aid supply device via the filter aid return line, and reuse the filter aid separated and recovered in the filter aid supply device Thus, the crystal particles of the metal compound having a fine particle size can be directly separated from the water to be treated without requiring a special reaction operation (FIG. 4).

(6)上記(5)の装置において、ろ過助剤が、表面をポリマーで被覆された磁性体粒子が凝集してなる凝集体からなり、磁性体粒子の平均粒子径D1が0.5〜20μmの範囲にあり、凝集体の平均凝集径D2がD1<D2≦20μmを満たし、ポリマーの平均被覆厚さtが0.01≦t≦0.25μmを満たすことが好ましい(図3)。   (6) In the apparatus of (5) above, the filter aid is composed of an aggregate formed by aggregating magnetic particles whose surfaces are coated with a polymer, and the average particle diameter D1 of the magnetic particles is in the range of 0.5 to 20 μm. It is preferable that the average aggregate diameter D2 of the aggregate satisfies D1 <D2 ≦ 20 μm, and the average coating thickness t of the polymer satisfies 0.01 ≦ t ≦ 0.25 μm (FIG. 3).

本実施形態では、上記(2)と同様の作用効果が得られる。   In the present embodiment, the same effect as the above (2) can be obtained.

(7)ここに記載する実施の形態の金属回収方法は、(a)金属イオンを含有する被処理水から金属化合物の結晶粒子を析出させ、(b)磁性体を含む単体粒子または凝集体の平均直径が0.5〜20μmのろ過助剤と前記被処理水とを混合して混合物を作製し、(c)固液分離装置のフィルタにより前記混合物をろ過して、前記フィルタ上に前記ろ過助剤が堆積してなるろ過助剤層を形成し、(d)被処理水を前記フィルタ上に供給し、該被処理水を前記ろ過助剤層に透過させ、被処理水に含まれる前記金属化合物結晶粒子を前記ろ過助剤に捕捉させ、(e)剥離水を前記固液分離装置に供給し、剥離水により前記フィルタ上から前記ろ過助剤とともに前記金属化合物結晶粒子を剥離除去し、(f)剥離除去したろ過助剤から前記金属化合物結晶粒子を分離回収し、(g)分離回収したろ過助剤を前記(b)工程で再使用する。   (7) In the metal recovery method of the embodiment described here, (a) crystal particles of a metal compound are precipitated from water to be treated containing metal ions, and (b) single particles or aggregates containing a magnetic substance A mixture of a filter aid having an average diameter of 0.5 to 20 μm and the water to be treated is prepared. (C) The mixture is filtered by a filter of a solid-liquid separator, and the filter aid is placed on the filter. And (d) supplying the water to be treated onto the filter, allowing the water to be treated to permeate the filter aid layer, and the metal compound contained in the water to be treated. Crystal particles are captured by the filter aid, (e) stripping water is supplied to the solid-liquid separator, and the metal compound crystal particles are stripped and removed from the filter together with the filter aid by stripping water, (f ) The metal compound crystal grains from the removed filter aid The separated and recovered, reused in (g) the separated recovered filter aid (b) step.

本実施形態では、被処理水をアルカリ性にして金属化合物の結晶粒子を析出させ、磁性体を含む単体粒子または凝集体の平均直径が0.5〜20μmのろ過助剤と分散媒とを混合し、この混合物を被処理水供給ラインを介して混合槽から固液分離装置に供給し、ろ過助剤の堆積層をフィルタ上に形成し、次いで被処理水供給ラインを介して析出槽から固液分離装置に被処理水を供給し、ろ過助剤層に被処理水を透過させて金属化合物の結晶粒子をろ過助剤に捕捉させ、さらに剥離水供給ラインを介して剥離水を固液分離装置に供給し、フィルタ上からろ過助剤とともに金属化合物の結晶粒子を剥離除去し、剥離物排出ラインを介して固液分離装置から分離槽に剥離物を排出し、分離槽において剥離除去したろ過助剤から金属化合物の結晶粒子を分離し、分離した金属化合物の結晶粒子を回収する一方で、ろ過助剤返送ラインを介して分離槽からろ過助剤供給装置に分離回収したろ過助剤を戻し、ろ過助剤供給装置において分離回収したろ過助剤を再使用することができ、特別な反応操作を要することなく、析出される細かい粒径の金属化合物の結晶粒子を被処理水中から直接的に固液分離することができる(図2)。   In the present embodiment, the water to be treated is made alkaline to precipitate crystal particles of the metal compound, and a single particle or agglomerate containing a magnetic substance is mixed with a filter aid having a mean diameter of 0.5 to 20 μm and a dispersion medium. The mixture is supplied from the mixing tank to the solid-liquid separator via the water supply line to be treated, and a deposition layer of filter aid is formed on the filter, and then the solid-liquid separator from the precipitation tank via the water to be treated supply line The water to be treated is supplied to the filter aid layer so that the water to be treated passes through the filter aid layer, and the crystal particles of the metal compound are captured by the filter aid. Then, the crystal particles of the metal compound are peeled and removed together with the filter aid from the filter, and the peeled material is discharged from the solid-liquid separation device to the separation tank via the peeled material discharge line. Separate crystal particles of metal compounds While collecting the separated crystal particles of the metal compound, the filter aid separated and recovered from the separation tank is returned to the filter aid supply device via the filter aid return line, and the filter aid separated and recovered by the filter aid supply device is recovered. The agent can be reused, and the crystal particles of the fine metal particle precipitated can be directly separated from the water to be treated without requiring a special reaction operation (FIG. 2).

(8)ここに記載する実施の形態の金属回収方法は、(i)金属イオンを含有する被処理水から金属化合物の結晶粒子を析出させ、(ii)磁性体を含む単体粒子または凝集体の平均直径が0.5〜20μmのろ過助剤と前記被処理水とを混合してスラリー液を作製し、(iii)固液分離装置のフィルタにより前記スラリー液をろ過して、前記フィルタ上に前記ろ過助剤と金属化合物結晶粒子が堆積してなるろ過助剤/金属化合物結晶粒子混合層を形成し、(iv)剥離水を前記固液分離装置に供給し、剥離水により前記フィルタ上からろ過助剤とともに前記金属化合物結晶粒子を剥離除去し、(v)剥離除去したろ過助剤から前記金属化合物結晶粒子を分離回収し、(vi)分離回収したろ過助剤を前記(ii)工程で再使用する。   (8) In the metal recovery method of the embodiment described herein, (i) a crystal particle of a metal compound is precipitated from water to be treated containing metal ions, and (ii) single particles or aggregates including a magnetic substance A slurry aid is prepared by mixing a filter aid having an average diameter of 0.5 to 20 μm and the water to be treated. (Iii) The slurry solution is filtered by a filter of a solid-liquid separator, and the filtration is performed on the filter. A filter aid / metal compound crystal particle mixed layer is formed by depositing an auxiliary agent and metal compound crystal particles, and (iv) supplying stripping water to the solid-liquid separator, and filtering aid from above the filter by stripping water. The metal compound crystal particles are peeled and removed together with the agent, (v) the metal compound crystal particles are separated and recovered from the removed filter aid, and (vi) the separated and recovered filter aid is reused in the step (ii). To do.

本実施形態では、被処理水をアルカリ性にして金属化合物の結晶粒子を析出させ、これにろ過助剤を添加し、析出した金属化合物の結晶粒子をろ過助剤に捕捉させ、被処理水供給ラインを介して混合析出槽から固液分離装置に被処理水を供給し、固液分離装置においてフィルタ上にろ過助剤と金属化合物の結晶粒子とが堆積してなるろ過助剤/金属化合物結晶粒子混合層を形成し、さらに剥離水供給ラインを介して剥離水を固液分離装置に供給し、フィルタ上からろ過助剤とともに金属化合物の結晶粒子を剥離除去し、剥離物排出ラインを介して固液分離装置から分離槽に剥離物を排出し、分離槽において洗浄除去したろ過助剤から金属化合物の結晶粒子を分離し、分離した金属化合物の結晶粒子を回収する一方で、ろ過助剤返送ラインを介して分離槽からろ過助剤供給装置に分離回収したろ過助剤を戻し、ろ過助剤供給装置において分離回収したろ過助剤を再使用することができ、特別な反応操作を要することなく、析出される細かい粒径の金属化合物の結晶粒子を被処理水中から直接的に固液分離することができる(図5)。   In the present embodiment, the water to be treated is made alkaline to precipitate metal compound crystal particles, a filter aid is added thereto, the precipitated metal compound crystal particles are captured by the filter aid, and the water to be treated is supplied. The water to be treated is supplied from the mixed precipitation tank to the solid-liquid separation device through the filter, and the filter aid / metal compound crystal particles are formed by depositing the filter aid and the metal compound crystal particles on the filter in the solid-liquid separation device. A mixed layer is formed, stripping water is further supplied to the solid-liquid separation device through the stripping water supply line, and the crystal particles of the metal compound are stripped and removed together with the filter aid from the filter, and the solid particles are separated through the stripping material discharge line. The exfoliation material is discharged from the liquid separator to the separation tank, and the crystal particles of the metal compound are separated from the filter aid washed and removed in the separation tank, and the separated crystal particles of the metal compound are recovered, while the filter aid return line Through The filter aid separated and recovered from the separation tank to the filter aid supply device can be returned, and the filter aid separated and recovered in the filter aid supply device can be reused and deposited without requiring a special reaction operation. The crystal particles of the metal compound having a fine particle size can be directly solid-liquid separated from the water to be treated (FIG. 5).

以下、添付の図面を参照して種々の好ましい実施の形態およびその具体的な実施例を説明する。   Hereinafter, various preferred embodiments and specific examples thereof will be described with reference to the accompanying drawings.

以下に述べる実施の形態または実施例では、硫酸銅水溶液などの銅イオンを含有する被処理水に直接アルカリ水溶液を投入して、水酸化銅を析出させる。アルカリの種類は特に問わないが、水酸化ナトリウムが最も適している。このようなアルカリ溶液の直接投入は、析出する銅粒子の粒子径を細かくしてしまい、水中からの分離が非常に困難となる。しかし、本実施形態の方法を用いると、これらの微細な銅化合物粒子(平均粒子径0.01〜10μm)を除去することができるので、工程も減り、装置も簡略化しやすい。   In the embodiments or examples described below, an aqueous alkali solution is directly introduced into water to be treated containing copper ions such as an aqueous copper sulfate solution to precipitate copper hydroxide. The type of alkali is not particularly limited, but sodium hydroxide is most suitable. Such direct charging of the alkali solution makes the particle size of the copper particles precipitated fine, and separation from water becomes very difficult. However, since the fine copper compound particles (average particle diameter of 0.01 to 10 μm) can be removed by using the method of the present embodiment, the number of processes is reduced and the apparatus is easily simplified.

金属回収方法にはプレコート法とボディーフィード法の2種類の方法があるが、各方法に用いられる装置は構成が異なるところがあるので、以下それぞれについて述べる。   There are two types of metal recovery methods, a pre-coating method and a body feed method, but the apparatus used for each method is different in configuration, so each will be described below.

(第1の実施形態)
先ず図1を参照して第1の実施形態としてのプレコート法に用いられる金属回収装置を説明する。本実施形態は銅を回収する場合について記載しているが、水中において金属化合物の結晶粒子が析出可能な金属であれば適用することができる。
(First embodiment)
First, with reference to FIG. 1, the metal recovery apparatus used for the precoat method as 1st Embodiment is demonstrated. Although this embodiment describes the case of recovering copper, any metal that can precipitate metal compound crystal particles in water can be applied.

本実施形態の金属回収装置1は、プレコート法に用いられる装置であり、特に被処理水中に析出させた銅化合物の濃度が低い場合に有効に用いられる。金属回収装置1は、析出槽2、固液分離装置3、分離槽4、ろ過助剤タンク5、混合槽6、図示しない原水供給源、アルカリ添加装置および銅濃縮水貯留槽を有しており、これらの機器及び装置が複数の配管ラインL1〜L8により互いに接続されている。配管ラインL1〜L8には各種のポンプP1〜P9、バルブV1〜V3、図示しない計測器およびセンサが取り付けられている。これらの計測器およびセンサから図示しない制御器の入力部に検出信号が入り、当該制御器の出力部からポンプP1〜P9およびバルブV1〜V3にそれぞれ制御信号が出され、それらの動作が制御されるようになっている。このように金属回収装置1の全体は図示しない制御器によって統括的にコントロールされるようになっている。   The metal recovery apparatus 1 of this embodiment is an apparatus used for the precoat method, and is effectively used particularly when the concentration of the copper compound precipitated in the water to be treated is low. The metal recovery apparatus 1 has a precipitation tank 2, a solid-liquid separation apparatus 3, a separation tank 4, a filter aid tank 5, a mixing tank 6, a raw water supply source (not shown), an alkali addition apparatus, and a copper concentrated water storage tank. These devices and apparatuses are connected to each other by a plurality of piping lines L1 to L8. Various pumps P1 to P9, valves V1 to V3, measuring instruments and sensors (not shown) are attached to the piping lines L1 to L8. Detection signals are input from these measuring instruments and sensors to an input section of a controller (not shown), and control signals are output from the output section of the controller to pumps P1 to P9 and valves V1 to V3, respectively, and their operations are controlled. It has become so. As described above, the entire metal recovery apparatus 1 is comprehensively controlled by a controller (not shown).

析出槽2は、被処理水を撹拌する撹拌スクリュウを有し、図示しない原水供給源からラインL1を介して被処理水となる銅イオンを含む工場排水が導入され、被処理水を一時的に貯留しておく間に図示しないアルカリ添加装置から適量の水酸化ナトリウム(NaOH)が投入され、被処理水中に含まれる銅イオンを水酸化銅として析出させるものである。   The precipitation tank 2 has a stirring screw that stirs the water to be treated. Factory drainage containing copper ions serving as the water to be treated is introduced from a raw water supply source (not shown) via the line L1 to temporarily store the water to be treated. During storage, an appropriate amount of sodium hydroxide (NaOH) is introduced from an alkali addition device (not shown) to precipitate copper ions contained in the water to be treated as copper hydroxide.

固液分離装置3は、内部を上方の導入スペース31と下方の排出スペース32とに仕切るフィルタ33を内蔵している。フィルタ33は、例えばポリエステル、ナイロン、ポリプロピレン、フッ素繊維、セルロースアセテートなどのポリマー繊維を平織り、綾織り、二重織り、などで編んだものなどを用いることができる。フィルター厚さは概ね1mm以下であり、フィルター目開きは概ね1〜20μm程度である。   The solid-liquid separation device 3 includes a filter 33 that partitions the interior into an upper introduction space 31 and a lower discharge space 32. As the filter 33, for example, a polymer fiber such as polyester, nylon, polypropylene, fluorine fiber, or cellulose acetate knitted with a plain weave, a twill weave, a double weave, or the like can be used. The filter thickness is approximately 1 mm or less, and the filter aperture is approximately 1 to 20 μm.

固液分離装置の導入スペース31は、加圧ポンプP1を有する被処理水供給ラインL2を介して析出槽2に接続されている。また、導入スペース31の側部にはポンプP5を有する洗浄ラインL31および洗浄排出水ラインL4がそれぞれ接続されている。   The introduction space 31 of the solid-liquid separator is connected to the precipitation tank 2 via a water to be treated supply line L2 having a pressure pump P1. Further, a cleaning line L31 having a pump P5 and a cleaning discharge water line L4 are respectively connected to the side portions of the introduction space 31.

一方、固液分離装置の排出スペース32は、3つの三方弁V1,V2,V3を有する処理水配水ラインL3に接続されている。第1の三方弁V1のところで被処理水配水ラインL3から上述の剥離水供給ラインL31が分岐している。第2の三方弁V2のところで被処理水配水ラインL3からポンプP2を有する処理水ラインL32が分岐している。第3の三方弁V3のところで被処理水配水ラインL3から2つのラインL33とL34がそれぞれ分岐している。一方の分岐ラインL33は、ポンプP4を有し、後述する分離槽4に接続されている。他方の分岐ラインL34は、ポンプP5を有し、後述する混合槽6に接続されている。   On the other hand, the discharge space 32 of the solid-liquid separator is connected to a treated water distribution line L3 having three three-way valves V1, V2, and V3. At the first three-way valve V1, the above-described separation water supply line L31 branches from the treated water distribution line L3. A treated water line L32 having a pump P2 branches from the treated water distribution line L3 at the second three-way valve V2. At the third three-way valve V3, two lines L33 and L34 are branched from the treated water distribution line L3. One branch line L33 has a pump P4 and is connected to a separation tank 4 described later. The other branch line L34 has a pump P5 and is connected to a mixing tank 6 described later.

分離槽4は、剥離物排出ラインL4を通って固液分離装置の導入スペース31から受け入れた洗浄排出水を撹拌するための撹拌スクリュウを有し、かつ析出銅化合物とろ過助剤とに分離するための電磁石41を内蔵している。電磁石41は、図示しない制御器によりオンオフ制御される電源(図示せず)に接続されている。   The separation tank 4 has a stirring screw for stirring the washing discharged water received from the introduction space 31 of the solid-liquid separation device through the peeled material discharge line L4, and separates into a precipitated copper compound and a filter aid. An electromagnet 41 is built in. The electromagnet 41 is connected to a power source (not shown) that is on / off controlled by a controller (not shown).

分離槽4の上部には、剥離物排出ラインL4の他に、処理水配水ラインL3から分岐する分岐ラインL33が接続されており、固液分離装置のフィルタ33を透過した処理水の一部が分離槽4に供給され、分離槽4において処理水の一部が再利用されるようになっている。一方、分離槽4の下部には銅濃縮水排出ラインL8およびろ過助剤返送ラインL5がそれぞれ接続されている。銅濃縮水排出ラインL8は、ポンプP9を有し、分離槽4から図示しない貯留槽に銅濃縮水を排出するための配管である。ろ過助剤返送ラインL5は、ポンプP6を有し、分離槽4から分離されたろ過助剤をろ過助剤タンク5に戻すための配管である。   In addition to the separated product discharge line L4, a branch line L33 branched from the treated water distribution line L3 is connected to the upper part of the separation tank 4, and a part of the treated water that has passed through the filter 33 of the solid-liquid separator is part of it. A part of the treated water is supplied to the separation tank 4 and reused in the separation tank 4. On the other hand, a copper concentrate discharge line L8 and a filter aid return line L5 are connected to the lower part of the separation tank 4, respectively. The copper concentrate discharge line L8 has a pump P9 and is a pipe for discharging copper concentrate from the separation tank 4 to a storage tank (not shown). The filter aid return line L5 has a pump P6 and is a pipe for returning the filter aid separated from the separation tank 4 to the filter aid tank 5.

ろ過助剤タンク5は、図示しないろ過助剤供給源から新たにろ過助剤が補給されるとともに、分離槽4で分離されたろ過助剤が上述のろ過助剤返送ラインL5を通って返送されるようになっている。また、ろ過助剤タンク5は、ポンプP7を有するろ過助剤供給ラインL6を介して混合槽6に適量のろ過助剤を供給するようになっている。   The filter aid tank 5 is newly replenished with a filter aid supply source (not shown), and the filter aid separated in the separation tank 4 is returned through the above-described filter aid return line L5. It has become so. The filter aid tank 5 is adapted to supply an appropriate amount of filter aid to the mixing tank 6 via a filter aid supply line L6 having a pump P7.

混合槽6は、水を撹拌するための撹拌スクリュウを有し、ろ過助剤タンク5から供給されたろ過助剤に分散媒を添加して撹拌混合し、ろ過助剤を含む混合物(懸濁液)を作製するようになっている。分散媒として水を使用するのが好ましい。混合槽6の上部には、処理水配水ラインL3から分岐する分岐ラインL34が接続され、固液分離装置のフィルタ33を透過した処理水の一部が混合槽6に供給され、混合槽6において処理水の一部が分散媒として再利用されるようになっている。   The mixing tank 6 has a stirring screw for stirring water, and a dispersion medium is added to the filter aid supplied from the filter aid tank 5 and mixed by stirring. ). It is preferable to use water as the dispersion medium. A branch line L34 branched from the treated water distribution line L3 is connected to the upper part of the mixing tank 6, and a part of the treated water that has passed through the filter 33 of the solid-liquid separator is supplied to the mixing tank 6. A part of the treated water is reused as a dispersion medium.

また、混合槽6の適所にはポンプP8を有する混合ラインL7が連通している。混合ラインL7は、被処理水供給ラインL2の適所にて接続・合流している。混合ラインL7からのろ過助剤を含む混合物(懸濁液)が被処理水供給ラインL2を流れる被処理水に添加されるようになっている。なお、混合ラインL7には図示しない流量制御弁が取り付けられ、ろ過助剤を含む混合物(懸濁液)の流量が制御器により調整されるようになっている。   In addition, a mixing line L7 having a pump P8 communicates with an appropriate place of the mixing tank 6. The mixing line L7 is connected and joined at an appropriate position of the treated water supply line L2. The mixture (suspension) containing the filter aid from the mixing line L7 is added to the water to be treated flowing through the water to be treated supply line L2. A flow rate control valve (not shown) is attached to the mixing line L7, and the flow rate of the mixture (suspension) containing the filter aid is adjusted by the controller.

(第1の金属回収方法)
次に、図2と図1を参照して上記の装置を用いる第1の金属回収方法としてのプレコート法を説明する。
(First metal recovery method)
Next, with reference to FIG. 2 and FIG. 1, the precoat method as a 1st metal collection | recovery method using said apparatus is demonstrated.

最初に、混合槽6内で磁性体含有ろ過助剤と分散媒とを混合し、ろ過助剤を含む懸濁液を調整する(工程S1)。ろ過助剤は磁性体粒子を含み、さらに磁性体粒子を被覆するポリマーを含むものであってもよい。分散媒は主に水を用いるが、適宜その他の分散媒を用いることができる。懸濁液中のろ過助剤濃度は以下の操作によってプレコート層、すなわち粒子堆積層が形成できれば特に問わないが、例えば10000〜200000mg/L程度に調整する。   First, the magnetic substance-containing filter aid and the dispersion medium are mixed in the mixing tank 6 to prepare a suspension containing the filter aid (step S1). The filter aid includes magnetic particles and may further include a polymer that coats the magnetic particles. As the dispersion medium, water is mainly used, but other dispersion mediums can be appropriately used. The concentration of the filter aid in the suspension is not particularly limited as long as a precoat layer, that is, a particle deposition layer can be formed by the following operation, but is adjusted to, for example, about 10,000 to 200,000 mg / L.

次いで、懸濁液を固液分離装置3のフィルタ33に通水し、懸濁液中のろ過助剤をろ別して、フィルタ上に残留させ、ろ過助剤が凝集してなる粒子堆積層(プレコート層)を形成する(工程S2)。なお、加圧ポンプP1によるフィルタ33への通水は、所定の圧力で行われる。また、プレコート層は、上述のように外力の作用によって形成及び保持されるので、上述したフィルタリングは、例えば、上記フィルタを所定の容器の容器口を塞ぐようにして配置し、このように配置したフィルタ33上にろ過助剤が残留し、配列及び積層されるようにする。この場合、上記容器の壁面からの外力及び上方に位置するろ過助剤の重さに起因した下方に向けての外力(重力)によって、プレコート層は形成及び保持されることになる。なお、プレコート層の厚さは、処理する液の濃度で変わってくるが、概ね0.5〜10mm程度である。   Next, the suspension is passed through the filter 33 of the solid-liquid separator 3, the filter aid in the suspension is filtered off, and is left on the filter. Layer) is formed (step S2). In addition, the water flow to the filter 33 by the pressurizing pump P1 is performed at a predetermined pressure. In addition, since the precoat layer is formed and held by the action of external force as described above, the above-described filtering is performed, for example, by placing the filter so as to close a container opening of a predetermined container. The filter aid remains on the filter 33 so that it is arranged and stacked. In this case, the precoat layer is formed and held by the external force from the wall surface of the container and the downward external force (gravity) due to the weight of the filter aid positioned above. The thickness of the precoat layer varies depending on the concentration of the liquid to be processed, but is about 0.5 to 10 mm.

次いで、上述のようにして形成したプレコート層に対して銅化合物を析出させた排水を通水して不溶物を除去する(工程S3)。通水は主に加圧下で行われる。このとき、銅化合物(主に水酸化銅)は、プレコート層、具体的にはプレコート層を構成するろ過助剤の表面に吸着することによって除去される。このとき、ろ過助剤を後述するように特殊な構成とすることにより、この不溶物をトラップし、十分な通水速度を得ることができる。   Next, the waste water on which the copper compound is deposited is passed through the precoat layer formed as described above to remove insoluble matters (step S3). Water flow is mainly performed under pressure. At this time, the copper compound (mainly copper hydroxide) is removed by adsorbing on the surface of the precoat layer, specifically, the filter aid constituting the precoat layer. At this time, by setting the filter aid to a special configuration as described later, this insoluble matter can be trapped and a sufficient water flow rate can be obtained.

水中の銅化合物を除去した後は、プレコート層を分散媒中に分散させ、プレコート層をろ過助剤に分解するとともに、ろ過助剤を洗浄する(工程S4)。この洗浄はフィルタの設置されている容器内で行ってもよいし、他の容器でおこなってもよい。他の容器で行う場合は、洗浄などの手段を用いてプレコート層をろ過助剤に分解した後、輸送する。洗浄には水を使用するが、界面活性剤や有機溶媒を用いて洗浄することも可能である。   After removing the copper compound in water, the precoat layer is dispersed in the dispersion medium, the precoat layer is decomposed into a filter aid, and the filter aid is washed (step S4). This cleaning may be performed in a container in which a filter is installed, or may be performed in another container. When using other containers, the precoat layer is decomposed into filter aids by means such as washing, and then transported. Although water is used for washing, washing with a surfactant or an organic solvent is also possible.

次いで、洗浄後のろ過助剤を磁気分離を用いて回収する(工程S5)。磁気分離の方法は特に問わないが、容器中に永久磁石又は電磁石を投入して回収する方法や、磁石で磁化した金網などで回収して、磁場を開放することにより粒子を回収する方法などが挙げられる。具体的には、ろ過助剤を電磁石で固定したあと、洗浄容器の排水口から洗浄液を排出するか、または電磁石でろ過助剤を固定したあとに他の容器に移動させて回収する。   Next, the washed filter aid is recovered using magnetic separation (step S5). The method of magnetic separation is not particularly limited, but there are a method of collecting permanent magnets or electromagnets in a container and recovering, a method of recovering particles by opening a magnetic field by recovering with a metal mesh magnetized by a magnet, etc. Can be mentioned. Specifically, after the filter aid is fixed with an electromagnet, the cleaning liquid is discharged from the drain of the cleaning container, or the filter aid is fixed with an electromagnet and then moved to another container and collected.

なお、第1の銅回収方法では、フィルタ上に予めプレコート層を形成しておき、その後、排水を通水するので、処理時間とともに、ろ過助剤の表面に吸着する銅化合物の量が増大する。その結果、特に過剰に吸着した銅化合物が、ろ過助剤の空隙を埋設してしまうようになるので、通水速度が低下してしまうようになる。したがって、上述したように、第1の方法は、水中の銅化合物の濃度が低い場合に有効である。   In the first copper recovery method, a precoat layer is formed on the filter in advance, and then drainage is passed through, so that the amount of copper compound adsorbed on the surface of the filter aid increases with the treatment time. . As a result, especially the excessively adsorbed copper compound embeds the voids of the filter aid, so that the water flow rate is reduced. Therefore, as described above, the first method is effective when the concentration of the copper compound in water is low.

(ろ過助剤)
次に、ろ過助剤を詳しく説明する。
(Filter aid)
Next, the filter aid will be described in detail.

ろ過助剤は、磁性体粒子を含み、その平均粒子径が0.5〜20μmの範囲にあるものを用いる。ろ過助剤は、磁性体の単体粒子であってもよく、また、図3の(a)に示すように磁性体粒子11の表面をポリマーのような被覆剤12で被覆されていてもよい。また、ろ過助剤は、ポリマー被覆された磁性体粒子11が図3の(b)に示すように凝集した凝集体13であってもよい。   As the filter aid, one containing magnetic particles and having an average particle size in the range of 0.5 to 20 μm is used. The filter aid may be a single particle of magnetic material, or the surface of the magnetic particle 11 may be coated with a coating agent 12 such as a polymer as shown in FIG. The filter aid may be an aggregate 13 in which the polymer-coated magnetic particles 11 are aggregated as shown in FIG.

ろ過助剤は、より好ましくは、磁性体の平均粒径D1が0.5〜20μmであり、この磁性体がポリマーまたはトリアルコキシシランによって一部が凝集され、その平均凝集径D2がD1<D2≦20μmを満たし、かつポリマーの表面被覆厚さtが0.01≦t≦0.25μmの範囲にあることが望ましい。ここで、平均粒子径は、レーザー回折法により測定されたものである。具体的には、株式会社島津製作所製のSALD−DS21型測定装置(商品名)などにより測定することができる。一次粒子としての磁性体の平均粒子径が20μmを超えると、粒子間の距離が大きくなりすぎて後述する水中の微細な析出物を通過させてしまう場合がある。一方、一次粒子径が0.5μmより小さくなると、粒子が緻密に凝集し、水中の微細な析出物を除去できるものの、実効的な通水量を得ることができなくなる場合もある。   More preferably, the filter aid has an average particle diameter D1 of the magnetic substance of 0.5 to 20 μm, and the magnetic substance is partly aggregated by the polymer or trialkoxysilane, and the average aggregate diameter D2 is D1 <D2 ≦ 20 μm. And the polymer surface coating thickness t is preferably in the range of 0.01 ≦ t ≦ 0.25 μm. Here, the average particle diameter is measured by a laser diffraction method. Specifically, it can be measured by a SALD-DS21 type measuring device (trade name) manufactured by Shimadzu Corporation. When the average particle diameter of the magnetic material as the primary particles exceeds 20 μm, the distance between the particles becomes too large, and fine precipitates in water described later may pass therethrough. On the other hand, when the primary particle diameter is smaller than 0.5 μm, the particles are densely aggregated and fine precipitates in the water can be removed, but an effective water flow rate may not be obtained.

例えば磁性体としては強磁性物質を全般的に用いることができ、例えば鉄、および鉄を含む合金、磁鉄鉱、チタン鉄鉱、磁硫鉄鉱、マグネシアフェライト、コバルトフェライト、ニッケルフェライト、バリウムフェライト、などが挙げられる。これらのうち水中での安定性に優れたフェライト系化合物であればより効果的に本発明を達成することができる。例えば磁鉄鉱であるマグネタイト(Fe)は安価であるだけでなく、水中でも磁性体として安定し、元素としても安全であるため、水処理に使用しやすいので好ましい。また、磁性体は、球状、多面体、不定形など種々の形状を取り得るが特に限定されない。用いるに当って望ましい磁性体の粒径や形状は、製造コストなどを鑑みて適宜選択すれば良く、特に球状または角が面取りされた多面体構造が好ましい。これらの磁性体は、必要であればCuメッキ、Niメッキなど、通常のメッキ処理が施されていてもよい。 For example, a ferromagnetic substance can be generally used as the magnetic material, and examples thereof include iron and iron-containing alloys, magnetite, titanite, pyrrhotite, magnesia ferrite, cobalt ferrite, nickel ferrite, barium ferrite, and the like. . Of these, ferrite compounds having excellent stability in water can achieve the present invention more effectively. For example, magnetite (Fe 3 O 4 ), which is a magnetite, is preferable because it is not only inexpensive, but also stable as a magnetic substance in water and safe as an element, so that it can be easily used for water treatment. The magnetic body can take various shapes such as a spherical shape, a polyhedron, and an indeterminate shape, but is not particularly limited. The particle size and shape of the magnetic material desirable for use may be appropriately selected in view of the manufacturing cost, and a polyhedral structure with spherical or chamfered corners is particularly preferable. These magnetic materials may be subjected to normal plating treatment such as Cu plating and Ni plating if necessary.

また、ポリマーにより表面が被覆された磁性体粒子が凝集した凝集体では、磁性体をコア、その表面を被覆するポリマーの層がシェルを構成するコア/シェル構造の1次粒子が凝集して凝集体を構成している。   In addition, in an aggregate in which magnetic particles whose surfaces are coated with a polymer are aggregated, primary particles having a core / shell structure in which the magnetic material is a core and a polymer layer covering the surface constitutes a shell are aggregated to aggregate. It constitutes a collection.

本発明において、磁性体粒子の表面を被覆するとともに粒子を凝集させるポリマーは、目的に応じて適した材料を選択することができる。好ましくは、磁性体に被覆しやすく、耐酸・アルカリ性を有するポリアクリロニトリル、ポリメチルメタクリレート、ポリスチレン、フッ素樹脂やこれらの共重合体、水中での分散に優れるフェノール樹脂、磁性体と強固に接着して水中での安定性の高いトリアルコキシシラン縮合物が好適に用いられる。このポリマーの平均表面被覆厚さtは0.01≦t≦0.25μmになるように被覆するのが好ましい。0.01μmより薄い場合は二次凝集体の強度が弱くなり水中で使用することが困難な場合があり、0.25μmより厚い場合は粒子間の空隙が狭くなり、ろ過助剤として用いたときに実効的な通水量を確保することができない場合がある。ポリマーの被覆量の計算は光学顕微鏡や走査型電子顕微鏡(SEM)などによる観察で測定しても良いが、好ましくは無酸素状態で高温に上げ、ろ過助剤を熱分解させて重量減少量、すなわちポリマー被覆量を求め、粒子の比表面積からポリマー層の平均厚さを計算すると正確に求めることができる。   In the present invention, as the polymer that coats the surface of the magnetic particles and aggregates the particles, a suitable material can be selected according to the purpose. Preferably, it is easy to coat on a magnetic material, and is strongly adhered to polyacrylonitrile, polymethyl methacrylate, polystyrene, fluororesin and copolymers thereof having acid resistance and alkali resistance, a phenol resin excellent in dispersion in water, and a magnetic material. A trialkoxysilane condensate having high stability in water is preferably used. The average surface coating thickness t of this polymer is preferably coated such that 0.01 ≦ t ≦ 0.25 μm. If it is thinner than 0.01μm, the strength of the secondary agglomerates will be weak and it may be difficult to use it in water. If it is thicker than 0.25μm, the gap between particles will be narrow, which is effective when used as a filter aid. May not be able to secure a reasonable water flow rate. The polymer coating amount may be measured by observation with an optical microscope, a scanning electron microscope (SEM), etc., but preferably it is raised to a high temperature in an oxygen-free state, and the filter aid is thermally decomposed to reduce the weight. That is, when the polymer coating amount is obtained and the average thickness of the polymer layer is calculated from the specific surface area of the particles, it can be accurately obtained.

また、上述の磁性体がポリマーで被覆された粒子が凝集した凝集体を含んでなる場合、この凝集体は特徴的な形状を有することが好ましい。すなわち、本実施形態によるろ過助剤において、磁性体の平均粒子径をD1としたときの前記凝集体の平均凝集径D2がD1<D2≦20μmを満たす。この大きさで凝集させると、粒子径がきれいに球状に凝集して凝集体になることはなく、いびつな形として形成される。このいびつな形を有することにより、ろ過助剤またはプレコート材として用いた時に、ろ過堆積中に適度な空隙を有するようになり、被処理水中の銅化合物をトラップしつつ、ろ過流量を得ることができる。凝集体13の平均凝集径D2が20μmを超えて大きくなりすぎると、凝集体間の空隙が大きくなり、水中の銅析出物をトラップすることができない場合がある。さらにD1<D2≦15μmとすることがより好ましい。凝集体の平均凝集径D2を15μm以下とすることにより水中の銅析出物をさらにトラップしやすくなるからである。   In addition, when the above-described magnetic substance includes an aggregate in which particles coated with a polymer are aggregated, the aggregate preferably has a characteristic shape. That is, in the filter aid according to the present embodiment, the average aggregate diameter D2 of the aggregate satisfies D1 <D2 ≦ 20 μm, where the average particle diameter of the magnetic substance is D1. When the particles are aggregated at this size, the particle diameter is not neatly aggregated into a spherical shape and formed into an irregular shape. By having this irregular shape, when used as a filter aid or precoat material, it has moderate voids during filtration deposition, and it is possible to obtain a filtration flow rate while trapping copper compounds in the water to be treated. it can. If the average aggregate diameter D2 of the aggregates 13 exceeds 20 μm and becomes too large, the gaps between the aggregates may increase, and copper precipitates in water may not be trapped. Further, it is more preferable that D1 <D2 ≦ 15 μm. This is because it becomes easier to trap copper precipitates in the water by setting the average aggregate diameter D2 of the aggregates to 15 μm or less.

ここに記載する実施の形態に用いるろ過助剤は、上述したようなろ過助剤の構造を実現できるものであれば任意の方法により製造することができる。このような方法の一例として、ポリマーを溶解し得る有機溶媒にポリマーを溶解させ、その溶液中に磁性体を分散させた組成物を調整し、その組成物を噴霧することにより有機溶媒を除去するスプレードライ法が挙げられる。この方法によれば、スプレードライの環境温度や噴出速度などを調整することにより1次粒子が凝集した2次凝集体の平均粒子径が調整できる上、凝集した1次粒子の間から有機溶媒が除去される際に孔が形成され、好適な多孔質構造を容易に形成させることもできる。   The filter aid used in the embodiment described herein can be produced by any method as long as it can realize the structure of the filter aid as described above. As an example of such a method, a polymer is dissolved in an organic solvent capable of dissolving the polymer, a composition in which a magnetic material is dispersed in the solution is prepared, and the organic solvent is removed by spraying the composition. A spray drying method is mentioned. According to this method, the average particle diameter of the secondary aggregate in which the primary particles are aggregated can be adjusted by adjusting the environmental temperature of spray drying, the ejection speed, and the like, and the organic solvent can be removed from between the aggregated primary particles. When removed, pores are formed, and a suitable porous structure can be easily formed.

一方、工業的には、ポリマーを溶解し得る溶媒にポリマーを溶解させたポリマー溶液を調製し、型などに入れられた磁性体の表面にポリマー溶液を流し込み、さらに溶媒を除去して固化させたものを破砕したり、あるいはポリマー溶液に磁性体を分散させた組成物から有機溶媒を除去して固化させたもの破砕したりすることによっても、本発明によるろ過助剤を形成させることができる。また、ヘンシェルミキサー、ボールミル、または造粒機などに、ポリマーを溶媒に溶解した組成物を滴下し、乾燥させることでろ過助剤を製造することができる。この時、磁性体の表面を覆うような製造条件と、その磁性体を凝集させるような条件の2工程を経ると、好ましいろ過助剤を製造することができる。   On the other hand, industrially, a polymer solution was prepared by dissolving a polymer in a solvent capable of dissolving the polymer, and the polymer solution was poured onto the surface of a magnetic body placed in a mold, and the solvent was removed and solidified. The filter aid according to the present invention can also be formed by crushing a product, or crushing a product obtained by removing an organic solvent from a composition in which a magnetic material is dispersed in a polymer solution and crushing the product. Moreover, a filter aid can be manufactured by dripping the composition which melt | dissolved the polymer in the solvent to a Henschel mixer, a ball mill, or a granulator, and making it dry. At this time, a preferred filter aid can be produced through two steps of production conditions for covering the surface of the magnetic material and conditions for aggregating the magnetic material.

次に、製造時におけるポリマー被覆厚さの調整方法およびポリマー被覆磁性体粒子が凝集した凝集体の凝集径の調整方法について説明する。   Next, a method for adjusting the polymer coating thickness during production and a method for adjusting the aggregate diameter of the aggregate in which the polymer-coated magnetic particles are aggregated will be described.

磁性体表面の表面被覆厚さを製造時に決定するには、ポリマーと磁性体の混合割合と、樹脂の密度、磁性体の比表面積から計算する。すなわち、添加する樹脂の重量と密度から添加する樹脂の体積を求め、磁性体の重量と比表面積から求めた磁性体の表面積で除してやると、ポリマーの平均被覆厚さtとなる。また、粒子径の制御は噴霧液の種類や噴霧方法によって異なるが、凝集体を小さくするには噴霧乾燥する液滴の液滴径を小さくすればよく、例えば噴霧ノズルの噴霧圧力を高くしたり、噴霧速度を遅くしたり、噴霧ディスクの回転を早くすると、製造される凝集体の粒子径は小さくなる。   In order to determine the surface coating thickness on the surface of the magnetic material, it is calculated from the mixing ratio of the polymer and the magnetic material, the density of the resin and the specific surface area of the magnetic material. That is, when the volume of the resin to be added is obtained from the weight and density of the resin to be added and divided by the surface area of the magnetic body obtained from the weight and specific surface area of the magnetic body, the average coating thickness t of the polymer is obtained. In addition, the control of the particle size varies depending on the type of spray liquid and the spraying method, but in order to reduce the aggregate, the droplet size of the droplet to be spray-dried can be reduced, for example, the spray pressure of the spray nozzle can be increased. If the spraying speed is slowed or the spraying disk is rotated faster, the particle size of the produced aggregates becomes smaller.

次に、既にできている凝集体中のポリマー被覆厚さの測定方法について説明する。   Next, a method for measuring the thickness of the polymer coating in the already formed aggregate will be described.

ポリマーの被覆厚さの計算は光学顕微鏡やSEMなどによる観察で測定しても良いが、好ましくは無酸素状態で高温に上げ、樹脂複合体を熱分解させて重量減少量、すなわちポリマー被覆重量を求め、粒子の比表面積からポリマー層の平均厚さを計算すると正確に求めることができる。   The calculation of the coating thickness of the polymer may be measured by observation with an optical microscope or SEM. However, the polymer coating thickness is preferably raised to a high temperature in an oxygen-free state and the resin composite is thermally decomposed to reduce the weight loss, that is, the polymer coating weight It can be accurately obtained by calculating and calculating the average thickness of the polymer layer from the specific surface area of the particles.

(第2の実施形態)
図4を参照してボディーフィード法に用いられる第2の実施形態の金属回収装置1Aを説明する。本実施形態は銅を回収する場合について記載しているが、水中において金属化合物の結晶粒子が析出可能な金属であれば適用することができる。なお、本実施形態が上記の実施形態と重複する部分の説明は省略する。
(Second Embodiment)
With reference to FIG. 4, a metal recovery apparatus 1A according to a second embodiment used in the body feed method will be described. Although this embodiment describes the case of recovering copper, any metal that can precipitate metal compound crystal particles in water can be applied. In addition, description of the part which this embodiment overlaps with said embodiment is abbreviate | omitted.

本実施形態の金属回収装置1Aは、ボディーフィード法に用いられ、とくに水中の銅化合物濃度が高い場合に有効に利用されるものである。本実施形態の金属回収装置1Aが上記第1の実施形態の装置1と異なる点は、装置1Aでは、混合槽6が無く、析出槽2の代わりに混合析出槽2Aを設けている。この混合析出槽2Aは、アルカリを被処理水に添加して銅化合物を析出させる析出機能と、ろ過助剤を被処理水に添加して両者を混合させる混合機能とを兼ね備えている。すなわち、本実施形態の金属回収装置1Aでは、ろ過助剤は、混合槽を経由することなく、ろ過助剤タンク5からラインL6を介して混合析出槽2A内に直接供給されるようになっている。   The metal recovery apparatus 1A of the present embodiment is used for the body feed method, and is effectively used particularly when the copper compound concentration in water is high. The difference between the metal recovery apparatus 1A of the present embodiment and the apparatus 1 of the first embodiment is that the apparatus 1A has no mixing tank 6 and is provided with a mixed precipitation tank 2A instead of the precipitation tank 2. The mixed precipitation tank 2A has both a precipitation function of adding alkali to the water to be treated and precipitating a copper compound, and a mixing function of adding a filter aid to the water to be treated and mixing them. That is, in the metal recovery apparatus 1A of the present embodiment, the filter aid is directly supplied from the filter aid tank 5 into the mixed precipitation tank 2A via the line L6 without going through the mixing tank. Yes.

(第2の金属回収方法)
次に、図5と図4を参照して上記の装置を用いる第2の金属回収方法としてのボディーフィード法を説明する。
(Second metal recovery method)
Next, a body feed method as a second metal recovery method using the above apparatus will be described with reference to FIGS.

本実施形態においても、最初にろ過助剤と分散媒とを混合し懸濁液を調整するが、この場合に使用する分散媒は、混合析出槽2A内に存在する被処理水とする。すなわち、本方法では被処理水である原水中にろ過助剤を直接投入して原水から懸濁液を調整する(工程K1)。懸濁液中のろ過助剤濃度は以下の操作によってろ過層が形成できれば特に問わないが、例えば10000〜200000mg/L程度に調整する。   Also in this embodiment, the filter aid and the dispersion medium are first mixed to adjust the suspension. The dispersion medium used in this case is treated water existing in the mixed precipitation tank 2A. That is, in this method, the filter aid is directly added to the raw water that is the water to be treated to adjust the suspension from the raw water (step K1). The concentration of the filter aid in the suspension is not particularly limited as long as a filtration layer can be formed by the following operation, but is adjusted to, for example, about 10,000 to 200,000 mg / L.

次いで、懸濁液(被処理水)をフィルタに通水し、懸濁液中のろ過助剤をろ別して、フィルタ上に残留させ、ろ過助剤が凝集してなるろ過層を形成する(工程K2)。なお、通水は加圧下で行われる。   Next, the suspension (water to be treated) is passed through a filter, the filter aid in the suspension is filtered off and left on the filter to form a filter layer formed by aggregation of the filter aid (step) K2). In addition, water flow is performed under pressure.

また、ろ過層は、上述のように外力の作用によって形成及び保持されるので、上述したフィルタリングは、例えば、上記フィルタを所定の容器の容器口を塞ぐようにして配置し、このように配置したフィルタ上にろ過助剤が残留し、配列及び積層されるようにする。この場合、上記容器の壁面からの外力及び上方に位置するろ過助剤の重さに起因した下方に向けての外力(重力)によって、上記ろ過層は形成及び保持されることになる。   Moreover, since the filtration layer is formed and held by the action of an external force as described above, the above-described filtering is performed, for example, by placing the filter so as to close a container opening of a predetermined container. The filter aid remains on the filter so that it can be arranged and stacked. In this case, the filtration layer is formed and held by an external force (gravity) downward due to the external force from the wall surface of the container and the weight of the filter aid positioned above.

上述のようにして排水中の銅化合物を除去した後は、ろ過層を分散媒中に分散させ、ろ過層をろ過助剤に分解するとともに、ろ過助剤を洗浄する(工程K3)。この洗浄はフィルタの設置されている容器内で行っても、他の容器で行っても構わない。他の容器で行う場合は、洗浄などの手段を用いてろ過層をろ過助剤に分解した後、輸送する。洗浄には水を使用するが、界面活性剤や有機溶媒を用いて洗浄することも可能である。   After removing the copper compound in the wastewater as described above, the filter layer is dispersed in the dispersion medium, the filter layer is decomposed into a filter aid, and the filter aid is washed (step K3). This cleaning may be performed in a container in which a filter is installed or in another container. When using other containers, the filter layer is decomposed into filter aids using means such as washing, and then transported. Although water is used for washing, washing with a surfactant or an organic solvent is also possible.

次いで、洗浄後のろ過助剤を磁気分離を用いて回収する(工程K4)。磁気分離の方法は特に問わないが、容器中に永久磁石又は電磁石を投入して回収する方法や、磁石で磁化した金網などで回収して、磁場を開放することにより粒子を回収する方法などが挙げられる。   Next, the washed filter aid is recovered using magnetic separation (step K4). The method of magnetic separation is not particularly limited, but there are a method of collecting permanent magnets or electromagnets in a container and recovering, a method of recovering particles by opening a magnetic field by recovering with a metal mesh magnetized by a magnet, etc. Can be mentioned.

なお、第2の金属回収方法では、ろ層を構成するろ過助剤は上記被処理水、すなわちこの水を利用して調整した懸濁液中に含まれているので、除去すべき銅化合物を含む被処理水水(懸濁液)とともに、常に凝集体が供給されることになる。   In the second metal recovery method, since the filter aid constituting the filter layer is contained in the water to be treated, that is, the suspension prepared using this water, the copper compound to be removed is removed. The aggregate is always supplied together with the water to be treated (suspension).

したがって、特に被処理水(懸濁液)中の銅化合物物の量が多い場合においても、銅化合物の供給とろ過助剤の供給とは同時に行われることになるので、上述の第1の実施形態のように、過剰に吸着した銅化合物が、ろ過助剤の空隙を埋設してしまうことがない。このため、長時間ろ過速度を維持することができる。結果として、上述したように、第2の実施形態の金属回収方法は、排水中の銅化合物濃度が高い場合に有効である。   Therefore, even when the amount of the copper compound in the water to be treated (suspension) is large, the supply of the copper compound and the supply of the filter aid are performed at the same time. Like the form, the excessively adsorbed copper compound does not bury the voids of the filter aid. For this reason, the filtration rate can be maintained for a long time. As a result, as described above, the metal recovery method of the second embodiment is effective when the concentration of the copper compound in the wastewater is high.

また、第1,2のいずれの金属回収方法においても、回収する銅化合物の洗浄(脱塩処理)を容易におこなうことができる。すなわち、フィルタ上に堆積したろ過助剤と銅化合物に水を一定時間通水することで、銅化合物中に付着するイオン成分を除去することが可能になる。   In both the first and second metal recovery methods, the recovered copper compound can be easily washed (desalted). That is, it is possible to remove ionic components adhering to the copper compound by passing water through the filter aid and the copper compound deposited on the filter for a certain period of time.

(第3の実施形態)
図6を参照してプレコート法に利用される第3の銅回収装置1Bを説明する。なお、本実施形態が上記の実施形態と重複する部分の説明は省略する。
(Third embodiment)
With reference to FIG. 6, the 3rd copper collection | recovery apparatus 1B utilized for a precoat method is demonstrated. In addition, description of the part which this embodiment overlaps with said embodiment is abbreviate | omitted.

本実施形態の金属回収装置1Bでは、固液分離装置3Bの導入スペース31に水道水を供給するための2つのラインである脱塩ラインL10および剥離水供給ラインL11がそれぞれ接続されている。脱塩ラインL10は、固液分離装置3Bの導入スペース31の上部に接続され、導入スペース31に水道水を供給してフィルタ33上の堆積層に含まれる銅化合物中のイオン分を除去するものである。脱塩ラインL10を介して固液分離装置の導入スペースに豊富な水量の水道水を導入し、堆積層に含まれるイオン分(Naイオン、Caイオン、Mgイオンなど)を効果的に除去することができる。   In the metal recovery apparatus 1B of the present embodiment, a desalting line L10 and a stripping water supply line L11, which are two lines for supplying tap water to the introduction space 31 of the solid-liquid separator 3B, are connected to each other. The desalting line L10 is connected to the upper part of the introduction space 31 of the solid-liquid separator 3B, and supplies tap water to the introduction space 31 to remove ions in the copper compound contained in the deposited layer on the filter 33. It is. Introducing abundant amounts of tap water into the introduction space of the solid-liquid separator via the desalting line L10, and effectively removing ions (Na ions, Ca ions, Mg ions, etc.) contained in the sedimentary layer Can do.

剥離水供給ラインL11は、固液分離装置3Bの導入スペース31の側部に接続され、導入スペース31に水道水を側方から供給してフィルタ33上から堆積層を剥離させて除去するものである。剥離水供給ラインL11を介して固液分離装置3Bの導入スペース31に側方から水量および圧力ともに十分な水道水を導入し、水の圧力でフィルタ33上から堆積層を剥離させ、除去することができる。この場合に、剥離水供給ラインL11と固液分離装置3Bとの接続部分に噴射ノズルを取り付け、ノズルから水を勢いよく噴射させるようにすると、堆積層の剥離効果が高まり、除去効率がさらに向上する。   The stripping water supply line L11 is connected to the side portion of the introduction space 31 of the solid-liquid separator 3B, and tap water is supplied to the introduction space 31 from the side to remove the deposited layer from the filter 33 and remove it. is there. A sufficient amount of tap water is introduced from the side into the introduction space 31 of the solid-liquid separator 3B via the peeling water supply line L11, and the deposited layer is peeled off from the filter 33 by the water pressure and removed. Can do. In this case, if an injection nozzle is attached to the connection portion between the separation water supply line L11 and the solid-liquid separation device 3B, and water is ejected vigorously from the nozzle, the effect of removing the deposited layer is enhanced and the removal efficiency is further improved. To do.

以下に実施例を用いてより詳細に説明する。   This will be described in more detail below using examples.

[ろ過助剤の準備]
上述の水処理方法に用いるろ過助剤として次の6種類のろ過助剤A〜Fを準備した。
[Preparation of filter aid]
The following six types of filter aids A to F were prepared as filter aids used in the water treatment method described above.

(ろ過助剤A)
マグネタイト粒子(平均粒子径2μm)を準備した。
(Filter aid A)
Magnetite particles (average particle size 2 μm) were prepared.

(ろ過助剤B)
マグネタイト粒子(平均粒子径0.5μm)を準備した。
(Filter aid B)
Magnetite particles (average particle size 0.5 μm) were prepared.

(ろ過助剤C)
マグネタイト粒子(平均粒子径5μm)を準備した。
(Filter aid C)
Magnetite particles (average particle size 5 μm) were prepared.

(ろ過助剤D)
ポリメチルメタクリレート30重量部を、3リットルのテトラヒドロフラン中に溶解させて溶液とし、その溶液中に平均粒子径D1が2μmのマグネタイト粒子300重量部を分散させて組成物を得た。この組成物を、ミニスプレードライヤー(柴田科学株式会社製、B−290型)を用いてゆっくり噴霧し、球状に凝集した平均凝集径(平均2次粒子径)D2が約11μmのろ過助剤を作製した。平均被覆厚さtは0.038μmであった。
(Filter aid D)
30 parts by weight of polymethyl methacrylate was dissolved in 3 liters of tetrahydrofuran to obtain a solution, and 300 parts by weight of magnetite particles having an average particle diameter D1 of 2 μm were dispersed in the solution to obtain a composition. The composition is sprayed slowly using a mini spray dryer (B-290 type, manufactured by Shibata Kagaku Co., Ltd.), and a filter aid having an average aggregate diameter (average secondary particle diameter) D2 of about 11 μm aggregated in a spherical shape is obtained. Produced. The average coating thickness t was 0.038 μm.

(ろ過助剤E)
ポリメチルメタクリレート30重量部を、3リットルのテトラヒドロフラン中に溶解させて溶液とし、その溶液中に平均粒子径2μm(A)のマグネタイト粒子300重量部を分散させて組成物を得た。この組成物を、ミニスプレードライヤー(柴田科学株式会社製、B−290型)を用いてゆっくり噴霧し、球状に凝集した平均2次粒子径D2が約18μmのろ過助剤を作製した。平均被覆厚さは0.038μm(C)であった。
(Filter aid E)
30 parts by weight of polymethyl methacrylate was dissolved in 3 liters of tetrahydrofuran to obtain a solution, and 300 parts by weight of magnetite particles having an average particle diameter of 2 μm (A) were dispersed in the solution to obtain a composition. This composition was slowly sprayed using a mini spray dryer (B-290 type, manufactured by Shibata Kagaku Co., Ltd.) to prepare a filter aid having an average secondary particle diameter D2 of about 18 μm aggregated in a spherical shape. The average coating thickness was 0.038 μm (C).

(ろ過助剤F)
レゾール型フェノール樹脂40重量部を、3リットルの水中に溶解して溶液とし、その溶液中に平均粒子径2μm(A)のマグネタイト粒子300重量部(比表面積2.5m/g)を分散させて組成物を得た。この組成物を、ミニスプレードライヤー(柴田科学株式会社製、B−290型)を用いてゆっくり噴霧し、球状に凝集した平均2次粒子径が約11μmのろ過助剤を作製した。ポリフェノール樹脂の密度、マグネタイトの比表面積から計算した平均被覆厚さは0.044μm(C)であった。
(Filter aid F)
40 parts by weight of a resol type phenol resin is dissolved in 3 liters of water to form a solution, and 300 parts by weight of magnetite particles (specific surface area 2.5 m 2 / g) having an average particle diameter of 2 μm (A) are dispersed in the solution. To obtain a composition. This composition was sprayed slowly using a mini spray dryer (B-290 type, manufactured by Shibata Kagaku Co., Ltd.) to produce a filter aid having an average secondary particle size of about 11 μm aggregated in a spherical shape. The average coating thickness calculated from the density of the polyphenol resin and the specific surface area of the magnetite was 0.044 μm (C).

(実施例1)
図1に概略を示す装置1を作製した。銅を含有する被処理水を析出槽2に供給し、この析出槽に水酸化ナトリウム水溶液(図中ではNaOHと表記)を添加してアルカリ性にし、水酸化銅を析出させる。また、ろ過助剤タンク5から混合槽6へろ過助剤が送られ、一部再利用する処理水と混合してろ過助剤スラリーが作られる。このろ過助剤スラリーを先に固液分離装置3の導入スペース31に送り、フィルタ33上にろ過助剤の膜を形成する。その後、銅を析出させた被処理液を圧力下で固液分離装置3に供給し、あらかじめ形成しておいたろ過助剤の膜で固液分離(ろ過)を行う。ろ過液は銅の除去された弱アルカリ性の処理液であり中和槽を通して排水してもよいが、固液分離装置3の洗浄水や分離槽4の磁石41の洗浄水、混合槽6のろ過助剤スラリー作製時の液体としても使用可能である。被処理水のろ過が終了すると、固液分離装置3内のフィルタ33に、ろ過助剤と析出した銅化合物のケーキが存在する。これを剥離するため、フィルタ33の横から剥離水を供給してケーキを崩し、分離槽4へ供給する。分離槽4は攪拌機構と磁石41(磁気分離機構)を備えており、混合しながらろ過助剤と銅化合物を分離し、ろ過助剤のみを磁石で回収して分離する。ろ過助剤を回収した液は、高濃度の銅化合物を含有する銅濃縮水として回収され、供給された洗浄水で洗われろ過助剤タンク5へ返送される。このようにして返送されたろ過助剤は、混合槽6に供給され、再利用される。
Example 1
A device 1 shown schematically in FIG. 1 was produced. To-be-treated water containing copper is supplied to the precipitation tank 2, and an aqueous sodium hydroxide solution (denoted as NaOH in the figure) is added to the precipitation tank to make it alkaline, thereby precipitating copper hydroxide. Moreover, a filter aid is sent from the filter aid tank 5 to the mixing tank 6 and mixed with treated water that is partially reused to produce a filter aid slurry. This filter aid slurry is first sent to the introduction space 31 of the solid-liquid separator 3 to form a filter aid film on the filter 33. Then, the to-be-processed liquid which precipitated copper is supplied to the solid-liquid separation apparatus 3 under pressure, and solid-liquid separation (filtration) is performed with the membrane of the filter aid formed previously. The filtrate is a weakly alkaline treatment liquid from which copper has been removed, and may be drained through a neutralization tank. However, the washing water of the solid-liquid separation device 3, the washing water of the magnet 41 of the separation tank 4, and the filtration of the mixing tank 6 are used. It can also be used as a liquid when preparing an auxiliary slurry. When filtration of the water to be treated is completed, the filter 33 in the solid-liquid separator 3 has a cake of the filter aid and the precipitated copper compound. In order to peel this, peeling water is supplied from the side of the filter 33 to break up the cake, which is then supplied to the separation tank 4. The separation tank 4 includes a stirring mechanism and a magnet 41 (magnetic separation mechanism), separates the filter aid and the copper compound while mixing, and collects and separates only the filter aid with a magnet. The liquid recovered from the filter aid is recovered as copper concentrated water containing a high concentration of copper compound, washed with the supplied wash water, and returned to the filter aid tank 5. The filter aid returned in this way is supplied to the mixing tank 6 and reused.

被処理水として、銅換算で50mg/L含有する硫酸銅水溶液を準備した。これを析出槽2に供給して、さらに48%水酸化ナトリウムを滴下し、pH10に調整した。しばらく混合していると、薄緑色の水酸化銅を主成分とした水酸化銅と硫酸銅の混合塩(銅)化合物の析出が確認された。   As water to be treated, an aqueous copper sulfate solution containing 50 mg / L in terms of copper was prepared. This was supplied to the precipitation tank 2, and 48% sodium hydroxide was further added dropwise to adjust the pH to 10. When mixed for a while, precipitation of a mixed salt (copper) compound of copper hydroxide and copper sulfate containing light green copper hydroxide as a main component was confirmed.

また、ろ過助剤Aが充填されたろ過助剤タンク5から混合槽6にろ過助剤を供給して水を混合し、ろ過助剤スラリーを作製した。これを固液分離装置3に供給し、フィルタ33上に平均1mmの厚さのろ過助剤の層を作製した。この後、析出槽2から固液分離装置3に被処理水を供給し、ろ過を行ったところ、ろ過水(処理水)中の銅の99%以上が回収されていることが確認できた。ろ過処理後、固液分離装置3のフィルタ33の側方から洗浄水を供給し、フィルタ33上に形成されている層を壊して分離槽4に供給した。分離槽4内の攪拌機を動作させてろ過助剤と銅化合物を分離したあと、磁石41を動作させてろ過助剤のみを分離し、液体を排出して銅濃縮液を得た。銅濃縮液を分析したところ、そのスラリーの主成分は水酸化銅を主成分とした水酸化銅と硫酸銅の混合塩であることが確認できた。その後、磁石41の磁場を解除し、洗浄水を供給してろ過助剤スラリーにしたあと、ろ過助剤タンク5に返送した。この後に、混合槽6に供給し、同様の操作を行ったが、問題なく再利用できた。   Moreover, the filter aid was supplied from the filter aid tank 5 filled with the filter aid A to the mixing tank 6 and mixed with water to prepare a filter aid slurry. This was supplied to the solid-liquid separator 3, and a layer of filter aid having an average thickness of 1 mm was produced on the filter 33. After that, when water to be treated was supplied from the precipitation tank 2 to the solid-liquid separator 3 and filtered, it was confirmed that 99% or more of copper in the filtrate (treated water) was recovered. After the filtration treatment, washing water was supplied from the side of the filter 33 of the solid-liquid separator 3, and the layer formed on the filter 33 was broken and supplied to the separation tank 4. After operating the stirrer in the separation tank 4 to separate the filter aid and the copper compound, the magnet 41 was operated to separate only the filter aid, and the liquid was discharged to obtain a copper concentrate. When the copper concentrate was analyzed, it was confirmed that the main component of the slurry was a mixed salt of copper hydroxide and copper sulfate containing copper hydroxide as the main component. Thereafter, the magnetic field of the magnet 41 was released, cleaning water was supplied to make a filter aid slurry, and then returned to the filter aid tank 5. Thereafter, the mixture was supplied to the mixing tank 6 and the same operation was performed, but it could be reused without any problem.

(実施例2)
実施例1と同じ装置を用い、ろ過助剤Aの代わりにろ過助剤Bを用いたこと以外は同様に試験をおこなった。銅の回収率は99%以上であった。実施例1と比較して固液分離装置の通水速度が半分となったが、問題なく運転できた。
(Example 2)
A test was performed in the same manner except that filter aid B was used instead of filter aid A using the same apparatus as in Example 1. The recovery rate of copper was 99% or more. Compared with Example 1, the water flow rate of the solid-liquid separator was halved, but it could be operated without problems.

(実施例3)
実施例1と同じ装置を用い、ろ過助剤Aの代わりにろ過助剤Cを用いたこと以外は同様に試験をおこなった。銅の回収率は99%以上であった。実施例1と比較して固液分離装置の通水速度がほぼ倍となったが、問題なく運転できた。
(Example 3)
Using the same apparatus as in Example 1, a test was conducted in the same manner except that filter aid C was used instead of filter aid A. The recovery rate of copper was 99% or more. Compared with Example 1, the water flow rate of the solid-liquid separator almost doubled, but it could be operated without any problems.

(比較例1)
実施例1と同じ装置を用い、ろ過助剤Aの代わりに平均粒子径0.3μmのマグネタイト粒子を用いたこと以外は同様に試験をおこなった。ろ過をおこなったところ、フィルタが目詰まりして、十分なろ過流速を得ることができなかった。
(Comparative Example 1)
A test was performed in the same manner except that magnetite particles having an average particle size of 0.3 μm were used in place of the filter aid A using the same apparatus as in Example 1. When filtration was performed, the filter was clogged, and a sufficient filtration flow rate could not be obtained.

(実施例4)
図4に概略を示す装置1Aを作製した。銅を含有する被処理水を混合析出槽2Aに供給し、この混合析出槽2Aに水酸化ナトリウム水溶液(図中ではNaOHと表記)を添加してアルカリ性にし、水酸化銅を析出させる。また、ろ過助剤タンク5からもろ過助剤が混合析出槽2Aに供給され、銅析出物とろ過助剤の混合スラリーが作られる。このろ過助剤スラリーを先に固液分離装置3に送り、フィルタ33上にろ過助剤の膜を形成すると共に銅化合物を除去する。ろ過液は銅の除去された弱アルカリ性の処理液であり中和槽を通して排水してもよいが、固液分離装置3の剥離水や分離槽4の磁石41の洗浄水としても使用可能である。被処理水のろ過が終了すると、固液分離装置3内のフィルタ33に、ろ過助剤と析出した銅化合物のケーキが存在する。このケーキをフィルタ33から剥離するため、フィルタ33の側方から剥離水を供給してケーキを崩し、分離槽4へ供給する。分離槽4は攪拌機構と磁石41(磁気分離機構)を備えており、混合しながらろ過助剤と銅化合物を分離し、ろ過助剤のみを磁石で回収して分離する。ろ過助剤を回収した液は、高濃度の銅化合物を含有する銅濃縮水として回収され、供給された洗浄水で洗われろ過助剤タンク5へ返送される。このようにして返送されたろ過助剤は、混合析出槽2Aに供給され、再利用される。
Example 4
A device 1A schematically shown in FIG. 4 was produced. Water to be treated containing copper is supplied to the mixed precipitation tank 2A, and an aqueous sodium hydroxide solution (indicated as NaOH in the figure) is added to the mixed precipitation tank 2A to make it alkaline, thereby depositing copper hydroxide. Further, the filter aid is also supplied from the filter aid tank 5 to the mixed precipitation tank 2A, and a mixed slurry of the copper deposit and the filter aid is made. This filter aid slurry is first sent to the solid-liquid separator 3 to form a filter aid film on the filter 33 and to remove the copper compound. The filtrate is a weakly alkaline treatment liquid from which copper has been removed and may be drained through a neutralization tank, but can also be used as stripping water for the solid-liquid separation device 3 and washing water for the magnet 41 in the separation tank 4. . When filtration of the water to be treated is completed, the filter 33 in the solid-liquid separator 3 has a cake of the filter aid and the precipitated copper compound. In order to peel this cake from the filter 33, peeling water is supplied from the side of the filter 33 to break the cake and supply it to the separation tank 4. The separation tank 4 includes a stirring mechanism and a magnet 41 (magnetic separation mechanism), separates the filter aid and the copper compound while mixing, and collects and separates only the filter aid with a magnet. The liquid recovered from the filter aid is recovered as copper concentrated water containing a high concentration of copper compound, washed with the supplied wash water, and returned to the filter aid tank 5. The filter aid returned in this way is supplied to the mixed precipitation tank 2A and reused.

被処理水として、銅換算で1000mg/L含有する硫酸銅水溶液を準備した。これを混合析出槽2Aに供給して、さらに48%水酸化ナトリウムを滴下し、pH10に調整した。しばらく混合していると、薄緑色の水酸化銅を主成分とした水酸化銅と硫酸銅の混合塩(銅化合物)の析出が確認された。また、ろ過助剤Aが充填されたろ過助剤タンク5から混合析出槽2Aにろ過助剤を10000mg/Lとなるよう供給し、ろ過助剤と銅析出物のスラリーを作製した。これを固液分離装置3に供給し、フィルタ33上でろ過を行ったところ、ろ過水(処理水)中の銅の99%以上が回収されていることが確認できた。ろ過処理後、固液分離装置3のフィルタ33の側方から洗浄水を供給し、フィルタ33上に形成されている層を壊して分離槽4に供給した。分離槽4内の攪拌機を動作させてろ過助剤と銅化合物を分離したあと、磁石41を作動させてろ過助剤のみを分離し、液体を排出して銅濃縮液を得た。銅濃縮液を分析したところ、そのスラリーの主成分は水酸化銅を主成分とした水酸化銅と硫酸銅の混合塩であることが確認できた。その後、磁石41の磁場を解除し、洗浄水を供給してろ過助剤スラリーにしたあと、ろ過助剤タンク5に返送した。この後混合析出槽2Aに供給し同様の操作を行ったが、問題なく再利用できた。   As the water to be treated, an aqueous copper sulfate solution containing 1000 mg / L in terms of copper was prepared. This was supplied to the mixed precipitation tank 2A, and 48% sodium hydroxide was further added dropwise to adjust the pH to 10. When mixed for a while, precipitation of a mixed salt (copper compound) of copper hydroxide and copper sulfate containing light green copper hydroxide as a main component was confirmed. Moreover, the filter aid was supplied from the filter aid tank 5 filled with the filter aid A to the mixed precipitation tank 2A so as to be 10000 mg / L, thereby preparing a slurry of the filter aid and the copper precipitate. When this was supplied to the solid-liquid separator 3 and filtered on the filter 33, it was confirmed that 99% or more of the copper in the filtrate (treated water) was recovered. After the filtration treatment, washing water was supplied from the side of the filter 33 of the solid-liquid separator 3, and the layer formed on the filter 33 was broken and supplied to the separation tank 4. After operating the stirrer in the separation tank 4 to separate the filter aid and the copper compound, the magnet 41 was operated to separate only the filter aid, and the liquid was discharged to obtain a copper concentrate. When the copper concentrate was analyzed, it was confirmed that the main component of the slurry was a mixed salt of copper hydroxide and copper sulfate containing copper hydroxide as the main component. Thereafter, the magnetic field of the magnet 41 was released, cleaning water was supplied to make a filter aid slurry, and then returned to the filter aid tank 5. Thereafter, the mixture was supplied to the mixed precipitation tank 2A and the same operation was performed, but it could be reused without any problem.

(実施例5)
実施例4と同じ装置を用い、ろ過助剤Aの代わりにろ過助剤Dを用いたこと以外は同様に試験をおこなった。銅の回収率は99%以上であった。実施例4と比較して固液分離装置の通水速度が1.3倍となったが、問題なく運転できた。
(Example 5)
A test was performed in the same manner except that filter aid D was used instead of filter aid A using the same apparatus as in Example 4. The recovery rate of copper was 99% or more. Although the water flow rate of the solid-liquid separator was 1.3 times that of Example 4, it could be operated without any problems.

(実施例6)
実施例4と同じ装置を用い、ろ過助剤Aの代わりにろ過助剤Eを用いたこと以外は同様に試験をおこなった。銅の回収率は99%以上であった。実施例4と比較して固液分離装置の通水速度が約2倍となったが、問題なく運転できた。
(Example 6)
A test was performed in the same manner except that filter aid E was used instead of filter aid A using the same apparatus as in Example 4. The recovery rate of copper was 99% or more. Compared with Example 4, the water flow rate of the solid-liquid separator was approximately doubled, but could be operated without any problems.

(実施例7)
実施例4と同じ装置を用い、ろ過助剤Aの代わりにろ過助剤Eを用いたこと以外は同様に試験をおこなった。銅の回収率は99%以上であった。実施例4と比較して固液分離装置の通水速度が1.2倍となったが、問題なく運転できた。
(Example 7)
A test was performed in the same manner except that filter aid E was used instead of filter aid A using the same apparatus as in Example 4. The recovery rate of copper was 99% or more. Although the water flow rate of the solid-liquid separator was 1.2 times that of Example 4, the operation was possible without any problem.

(実施例8)
図3に概略を示す装置1Bを作製した。この装置1Bが図1の装置1と異なる点は、固液分離装置3Bの導入スペース31の上部に脱塩ラインL10に連通する市水(上水道水)供給口をつけ、固液分離後に市水を供給して脱塩できるようにしたことである。また、固液分離装置3Bの導入スペース31の側部にも剥離水供給ラインL11に連通する市水(上水道水)供給口をつけ、固液分離機内部のフィルタの洗浄も市水でおこなえるようにした。
(Example 8)
A device 1B schematically shown in FIG. 3 was produced. This device 1B is different from the device 1 of FIG. 1 in that a city water (tap water) supply port communicating with the desalting line L10 is provided at the top of the introduction space 31 of the solid-liquid separation device 3B, and the city water is separated after the solid-liquid separation. To allow desalting. In addition, a city water (tap water) supply port communicating with the separation water supply line L11 is also provided on the side of the introduction space 31 of the solid-liquid separator 3B so that the filter inside the solid-liquid separator can be washed with city water. I made it.

実施例1と同様に、被処理水として、銅換算で50mg/L含有する硫酸銅水溶液を準備した。これを析出槽2に供給して、さらに48%水酸化ナトリウムを滴下し、pH10に調整した。しばらく混合していると、薄緑色の水酸化銅を主成分とした水酸化銅と硫酸銅の混合塩(銅化合物)の析出が確認された。また、ろ過助剤Aが充填されたろ過助剤タンク5から混合槽6にろ過助剤を供給して水を混合し、ろ過助剤スラリーを作製した。これを固液分離装置3に供給し、フィルタ33上に平均1mmの厚さのろ過助剤の層を作製した。この後、析出槽2から固液分離装置3に被処理水を供給し、ろ過を行ったところ、ろ過水(処理水)中の銅の99%以上が回収されていることが確認できた。ろ過処理後、被処理水から市水へ切り替えて1分間通水を継続し、フィルタ33上に堆積した銅化合物中のイオン分を除去した。その後、固液分離装置3のフィルタ33の側方から市水を供給し、フィルタ33上に形成されている層を剥離して分離槽4に供給した。分離槽4内の攪拌機を動作させてろ過助剤と銅化合物を分離したあと、磁石41を作動させてろ過助剤のみを分離し、液体を排出して銅濃縮液を得た。銅濃縮液を分析したところ、そのスラリーの主成分は水酸化銅を主成分とした水酸化銅と硫酸銅の混合塩であることが確認できた。その後、磁石の磁場を解除し、洗浄水を供給してろ過助剤スラリーにしたあと、ろ過助剤タンク5に返送した。この後に混合槽6に供給し、同様の操作を行ったが、問題なく再利用できた。   As in Example 1, an aqueous copper sulfate solution containing 50 mg / L in terms of copper was prepared as the water to be treated. This was supplied to the precipitation tank 2, and 48% sodium hydroxide was further added dropwise to adjust the pH to 10. When mixed for a while, precipitation of a mixed salt (copper compound) of copper hydroxide and copper sulfate containing light green copper hydroxide as a main component was confirmed. Moreover, the filter aid was supplied from the filter aid tank 5 filled with the filter aid A to the mixing tank 6 and mixed with water to prepare a filter aid slurry. This was supplied to the solid-liquid separator 3, and a layer of filter aid having an average thickness of 1 mm was produced on the filter 33. After that, when water to be treated was supplied from the precipitation tank 2 to the solid-liquid separator 3 and filtered, it was confirmed that 99% or more of copper in the filtrate (treated water) was recovered. After the filtration treatment, the water to be treated was switched from the treated water to the city water, and the water flow was continued for 1 minute, and the ion content in the copper compound deposited on the filter 33 was removed. Thereafter, city water was supplied from the side of the filter 33 of the solid-liquid separator 3, and the layer formed on the filter 33 was peeled off and supplied to the separation tank 4. After operating the stirrer in the separation tank 4 to separate the filter aid and the copper compound, the magnet 41 was operated to separate only the filter aid, and the liquid was discharged to obtain a copper concentrate. When the copper concentrate was analyzed, it was confirmed that the main component of the slurry was a mixed salt of copper hydroxide and copper sulfate containing copper hydroxide as the main component. Thereafter, the magnetic field of the magnet was released, washing water was supplied to make a filter aid slurry, and then returned to the filter aid tank 5. Thereafter, the mixture was supplied to the mixing tank 6 and the same operation was performed, but it could be reused without any problem.

(実施例9)
実施例8と同じ装置を用いた。被処理水として、Cr3+を500mg/L含有する排水を準備した。この排水を析出槽2に収容し、水酸化ナトリウムを添加して排水をpH8.5に調整し、排水中のCr3+を水酸化クロムとして析出させた。また、ろ過助剤Aが充填されたろ過助剤タンク5から混合槽6にろ過助剤を供給して水を混合し、ろ過助剤スラリーを作製した。これを固液分離装置3に供給し、フィルタ33上に平均1mmの厚さのろ過助剤の層を作製した。この後、析出槽2から固液分離装置3に被処理水を供給し、ろ過を行ったところ、ろ過水(処理水)中のクロムの99%以上が回収されていることが確認できた。
Example 9
The same apparatus as in Example 8 was used. As water to be treated, waste water containing 500 mg / L of Cr 3+ was prepared. This waste water was accommodated in the precipitation tank 2, sodium hydroxide was added to adjust the waste water to pH 8.5, and Cr 3+ in the waste water was precipitated as chromium hydroxide. Moreover, the filter aid was supplied from the filter aid tank 5 filled with the filter aid A to the mixing tank 6 and mixed with water to prepare a filter aid slurry. This was supplied to the solid-liquid separator 3, and a layer of filter aid having an average thickness of 1 mm was produced on the filter 33. After that, when water to be treated was supplied from the precipitation tank 2 to the solid-liquid separator 3 and filtered, it was confirmed that 99% or more of chromium in the filtrate (treated water) was recovered.

(実施例10)
実施例8と同じ装置を用いた。被処理水として、ニッケル換算で500mg/L含有するニッケル錯体排水を準備した。この排水を析出槽2に収容し、水酸化ナトリウムを添加して排水をpH9.8に調整し、排水中のNi2+を水酸化ニッケルとして析出させた。また、ろ過助剤Aが充填されたろ過助剤タンク5から混合槽6にろ過助剤を供給して水を混合し、ろ過助剤スラリーを作製した。これを固液分離装置3に供給し、フィルタ33上に平均1mmの厚さのろ過助剤の層を作製した。この後、析出槽2から固液分離装置3に被処理水を供給し、ろ過を行ったところ、ろ過水(処理水)中のニッケルの99%以上が回収されていることが確認できた。
(Example 10)
The same apparatus as in Example 8 was used. As treated water, nickel complex waste water containing 500 mg / L in terms of nickel was prepared. This waste water was accommodated in the precipitation tank 2, sodium hydroxide was added to adjust the waste water to pH 9.8, and Ni 2+ in the waste water was precipitated as nickel hydroxide. Moreover, the filter aid was supplied from the filter aid tank 5 filled with the filter aid A to the mixing tank 6 and mixed with water to prepare a filter aid slurry. This was supplied to the solid-liquid separator 3, and a layer of filter aid having an average thickness of 1 mm was produced on the filter 33. After that, when water to be treated was supplied from the precipitation tank 2 to the solid-liquid separator 3 and filtered, it was confirmed that 99% or more of nickel in the filtrate (treated water) was recovered.

上記実施形態の方法を用いて、水中の水酸化イオンと反応して水酸化物を生成し、生成した水酸化物が水中で沈降して沈殿物として分離・回収できる金属を以下に列記する。   The metals that can be reacted with hydroxide ions in water to form hydroxides using the method of the above embodiment, and the generated hydroxides settle in water to be separated and recovered as precipitates are listed below.

Cu,Cr,Ni,Zn,Al,Cd,Ga,Au,Ag,Co,Fe,Pb,Be,Mg,Mn
上記の実施の形態によれば、特別な反応操作が必要でなく、水中で析出される細かい金属化合物粒子を直接固液分離することができる。
Cu, Cr, Ni, Zn, Al, Cd, Ga, Au, Ag, Co, Fe, Pb, Be, Mg, Mn
According to the above embodiment, no special reaction operation is required, and the fine metal compound particles precipitated in water can be directly solid-liquid separated.

1,1A,1B…金属回収装置、2…析出槽、2A…混合析出槽、
3,3B…固液分離装置、31…導入スペース、32…排出スペース、
33…フィルタ、
4…分離槽、5…ろ過助剤タンク、6…混合槽、
11…ろ過助剤(磁性体の単体粒子)、12…被覆剤(ポリマー)、
13…ろ過助剤(磁性体粒子の凝集体)、
P1〜P9…ポンプ、V1〜V3…バルブ(三方弁)、
L2…被処理水供給ライン、L3…処理水配水ライン、L31…剥離水供給ライン、L32…処理水搬出ライン、L33…処理水再利用ライン、L34…処理水再利用ライン、
L4…剥離物排出ライン、L5…ろ過助剤返送ライン、L6…ろ過助剤供給ライン、L7…混合ライン、L8…銅濃縮水排出ライン、
L10…脱塩ライン、L11…剥離水供給ライン。
1, 1A, 1B ... Metal recovery device, 2 ... Precipitation tank, 2A ... Mixed precipitation tank,
3, 3B ... solid-liquid separator, 31 ... introduction space, 32 ... discharge space,
33 ... filter,
4 ... separation tank, 5 ... filter aid tank, 6 ... mixing tank,
11: Filter aid (magnetic single particles), 12: Coating agent (polymer),
13 ... Filter aid (aggregates of magnetic particles),
P1-P9 ... pump, V1-V3 ... valve (three-way valve),
L2 ... treated water supply line, L3 ... treated water distribution line, L31 ... stripped water supply line, L32 ... treated water carry-out line, L33 ... treated water reuse line, L34 ... treated water reuse line,
L4 ... exfoliation discharge line, L5 ... filter aid return line, L6 ... filter aid supply line, L7 ... mixing line, L8 ... copper concentrated water discharge line,
L10 ... desalting line, L11 ... stripping water supply line.

Claims (8)

金属イオンを含む被処理水から金属化合物の結晶粒子を析出させる析出槽と、
磁性体を含む単体粒子または凝集体の平均粒子径が0.5〜20μmのろ過助剤を供給するろ過助剤供給装置と、
前記ろ過助剤供給装置から供給されるろ過助剤と分散媒とを混合する混合槽と、
前記混合槽から供給される混合物をろ過し、その上に前記析出槽から供給される被処理水をろ過して前記被処理水中の金属化合物結晶粒子と前記混合物中のろ過助剤との堆積層を形成するフィルタを有する固液分離装置と、
前記析出槽から前記固液分離装置に被処理水を供給するための被処理水供給ラインと、
前記被処理水供給ラインに接続され、前記混合槽からの混合物を前記被処理水に合流させる混合ラインと、
前記フィルタ上から前記堆積層を剥離して除去するための剥離水を前記フィルタ上に供給する剥離水供給ラインと、
前記固液分離装置から剥離水とともに排出される剥離物に含まれる金属化合物結晶粒子とろ過助剤とを分離する分離槽と、
前記固液分離装置から前記分離槽に前記剥離物を排出する剥離物排出ラインと、
前記分離槽で分離されたろ過助剤を前記ろ過助剤供給装置へ戻すろ過助剤返送ラインと、
を有することを特徴とする金属回収装置。
A precipitation tank for precipitating metal compound crystal particles from water to be treated containing metal ions;
A filter aid supply device for supplying a filter aid having an average particle size of 0.5 to 20 μm of single particles or aggregates containing a magnetic substance;
A mixing tank for mixing the filter aid and the dispersion medium supplied from the filter aid supply device;
The mixture supplied from the mixing tank is filtered, and the water to be treated supplied from the precipitation tank is filtered thereon to deposit the metal compound crystal particles in the water to be treated and the filter aid in the mixture. A solid-liquid separation device having a filter to form
A treated water supply line for supplying treated water from the precipitation tank to the solid-liquid separator,
A mixing line that is connected to the treated water supply line and joins the mixture from the mixing tank to the treated water;
A stripping water supply line that supplies stripping water on the filter for stripping and removing the deposited layer from the filter;
A separation tank for separating the metal compound crystal particles and the filter aid contained in the peeled material discharged together with the peeling water from the solid-liquid separation device;
A peeled material discharge line for discharging the peeled material from the solid-liquid separator to the separation tank;
A filter aid return line for returning the filter aid separated in the separation tank to the filter aid supply device;
A metal recovery apparatus comprising:
前記ろ過助剤が、表面をポリマーで被覆された磁性体粒子が凝集してなる凝集体からなり、前記磁性体粒子の平均粒子径D1が0.5〜20μmの範囲にあり、前記凝集体の平均凝集径D2がD1<D2≦20μmを満たし、前記ポリマーの平均被覆厚さtが0.01≦t≦0.25μmを満たすことを特徴とする請求項1記載の装置。   The filter aid comprises an aggregate obtained by aggregating magnetic particles whose surfaces are coated with a polymer, and the average particle diameter D1 of the magnetic particles is in the range of 0.5 to 20 μm, and the average aggregation of the aggregates 2. The apparatus according to claim 1, wherein the diameter D2 satisfies D1 <D2 ≦ 20 μm, and the average coating thickness t of the polymer satisfies 0.01 ≦ t ≦ 0.25 μm. 前記固液分離装置の導入スペースの上部に接続され、前記導入スペースに水道水を供給して前記フィルタ上の堆積層に含まれるイオン分を除去する脱塩ラインをさらに有することを特徴とする請求項1または2のいずれか1項記載の装置。   The apparatus further comprises a desalting line connected to an upper portion of the introduction space of the solid-liquid separator, and supplying tap water to the introduction space to remove ions contained in a deposited layer on the filter. Item 3. The device according to any one of Items 1 and 2. 前記固液分離装置の導入スペースの側部に接続され、前記導入スペースに水道水を側方から供給して前記フィルタ上から堆積層を剥離させて除去する剥離水ラインをさらに有することを特徴とする請求項1乃至3のいずれか1項記載の装置。   The apparatus further comprises a stripping water line connected to a side portion of the introduction space of the solid-liquid separation device, supplying tap water from the side to the introduction space, and stripping and removing the deposited layer from the filter. The apparatus according to any one of claims 1 to 3. 磁性体を含む単体粒子または凝集体の平均直径が0.5〜20μmのろ過助剤と金属イオンを含む被処理水とを混合させるとともに、前記被処理水をアルカリ性にして金属化合物の結晶粒子を析出させる混合析出槽と、
前記混合析出槽に前記ろ過助剤を供給するろ過助剤供給装置と、
前記混合析出槽から供給される被処理水をろ過するとともに、前記混合析出槽から供給される混合物をろ過し、その上に前記被処理水中の金属化合物結晶粒子と前記混合物中のろ過助剤との堆積層を形成するフィルタを有する固液分離装置と、
前記混合析出槽から前記固液分離装置に被処理水を供給するための被処理水供給ラインと、
前記フィルタ上から前記堆積層を剥離して除去するための剥離水を前記フィルタ上に供給する剥離水供給ラインと、
前記固液分離装置から剥離水とともに排出される剥離物に含まれる金属化合物とろ過助剤とを分離する分離槽と、
前記固液分離装置から前記分離槽に前記剥離物を排出する剥離物排出ラインと、
前記分離槽で分離されたろ過助剤を前記ろ過助剤供給装置へ戻すろ過助剤返送ラインと、
を有することを特徴とする金属回収装置。
A single particle or agglomerate containing a magnetic substance is mixed with a filter aid having an average diameter of 0.5 to 20 μm and water to be treated containing metal ions, and the water to be treated is made alkaline to precipitate crystal particles of the metal compound. A mixed precipitation tank;
A filter aid supply device for supplying the filter aid to the mixed precipitation tank;
While filtering the to-be-treated water supplied from the said mixing precipitation tank, the mixture supplied from the said mixing precipitation tank is filtered, and the metal compound crystal particle in the to-be-processed water and the filter aid in the said mixture on it A solid-liquid separator having a filter for forming a deposited layer of
A treated water supply line for supplying treated water from the mixed precipitation tank to the solid-liquid separator,
A stripping water supply line that supplies stripping water on the filter for stripping and removing the deposited layer from the filter;
A separation tank for separating the metal compound and the filter aid contained in the peeled material discharged together with the peeling water from the solid-liquid separation device;
A peeled material discharge line for discharging the peeled material from the solid-liquid separator to the separation tank;
A filter aid return line for returning the filter aid separated in the separation tank to the filter aid supply device;
A metal recovery apparatus comprising:
前記ろ過助剤が、表面をポリマーで被覆された磁性体粒子が凝集してなる凝集体からなり、前記磁性体粒子の平均粒子径D1が0.5〜20μmの範囲にあり、前記凝集体の平均凝集径D2がD1<D2≦20μmを満たし、前記ポリマーの平均被覆厚さtが0.01≦t≦0.25μmを満たすことを特徴とする請求項5記載の装置。   The filter aid comprises an aggregate obtained by aggregating magnetic particles whose surfaces are coated with a polymer, and the average particle diameter D1 of the magnetic particles is in the range of 0.5 to 20 μm, and the average aggregation of the aggregates 6. The apparatus according to claim 5, wherein the diameter D2 satisfies D1 <D2 ≦ 20 μm, and the average coating thickness t of the polymer satisfies 0.01 ≦ t ≦ 0.25 μm. (a)金属イオンを含有する被処理水から金属化合物の結晶粒子を析出させ、
(b)磁性体を含む単体粒子または凝集体の平均直径が0.5〜20μmのろ過助剤と前記被処理水とを混合して混合物を作製し、
(c)固液分離装置のフィルタにより前記混合物をろ過して、前記フィルタ上に前記ろ過助剤が堆積してなるろ過助剤層を形成し、
(d)被処理水を前記フィルタ上に供給し、該被処理水を前記ろ過助剤層に透過させ、被処理水に含まれる前記金属化合物結晶粒子を前記ろ過助剤に捕捉させ、
(e)剥離水を前記固液分離装置に供給し、剥離水により前記フィルタ上から前記ろ過助剤とともに前記金属化合物結晶粒子を剥離除去し、
(f)剥離除去したろ過助剤から前記金属化合物結晶粒子を分離回収し、
(g)分離回収したろ過助剤を前記(b)工程で再使用する、ことを特徴とする金属回収方法。
(A) precipitating metal compound crystal particles from water to be treated containing metal ions;
(B) A single particle or agglomerate containing a magnetic substance is mixed with a filter aid having an average diameter of 0.5 to 20 μm and the water to be treated;
(C) filtering the mixture with a filter of a solid-liquid separator to form a filter aid layer in which the filter aid is deposited on the filter;
(D) supplying the water to be treated onto the filter, allowing the water to be treated to permeate the filter aid layer, and capturing the metal compound crystal particles contained in the water to be treated by the filter aid;
(E) Supplying stripping water to the solid-liquid separator, stripping and removing the metal compound crystal particles together with the filter aid from above the filter with stripping water,
(F) separating and recovering the metal compound crystal particles from the filter aid removed and removed;
(G) A metal recovery method characterized by reusing the separated and recovered filter aid in the step (b).
(i)金属イオンを含有する被処理水から金属化合物の結晶粒子を析出させ、
(ii)磁性体を含む単体粒子または凝集体の平均直径が0.5〜20μmのろ過助剤と前記被処理水とを混合してスラリー液を作製し、
(iii)固液分離装置のフィルタにより前記スラリー液をろ過して、前記フィルタ上に前記ろ過助剤と金属化合物結晶粒子が堆積してなるろ過助剤/金属化合物結晶粒子混合層を形成し、
(iv)剥離水を前記固液分離装置に供給し、剥離水により前記フィルタ上からろ過助剤とともに前記金属化合物結晶粒子を剥離除去し、
(v)剥離除去したろ過助剤から前記金属化合物結晶粒子を分離回収し、
(vi)分離回収したろ過助剤を前記(ii)工程で再使用する、ことを特徴とする金属回収方法。
(I) precipitating metal compound crystal particles from water to be treated containing metal ions;
(Ii) A slurry liquid is prepared by mixing a filter aid having an average diameter of 0.5 to 20 μm with single particles or aggregates containing a magnetic substance and the water to be treated;
(Iii) filtering the slurry liquid through a filter of a solid-liquid separator, forming a filter aid / metal compound crystal particle mixed layer in which the filter aid and metal compound crystal particles are deposited on the filter;
(Iv) supplying stripping water to the solid-liquid separator, stripping and removing the metal compound crystal particles together with the filter aid from above the filter with stripping water,
(V) separating and recovering the metal compound crystal particles from the removed filter aid;
(Vi) A metal recovery method, wherein the separated and recovered filter aid is reused in the step (ii).
JP2012036378A 2011-03-15 2012-02-22 Metal recovery apparatus and metal recovery method Expired - Fee Related JP5826668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012036378A JP5826668B2 (en) 2011-03-15 2012-02-22 Metal recovery apparatus and metal recovery method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011057130 2011-03-15
JP2011057130 2011-03-15
JP2011198710 2011-09-12
JP2011198710 2011-09-12
JP2012036378A JP5826668B2 (en) 2011-03-15 2012-02-22 Metal recovery apparatus and metal recovery method

Publications (2)

Publication Number Publication Date
JP2013075288A true JP2013075288A (en) 2013-04-25
JP5826668B2 JP5826668B2 (en) 2015-12-02

Family

ID=48479191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036378A Expired - Fee Related JP5826668B2 (en) 2011-03-15 2012-02-22 Metal recovery apparatus and metal recovery method

Country Status (1)

Country Link
JP (1) JP5826668B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288247A (en) * 2013-07-01 2013-09-11 山东黄金矿业(莱州)有限公司精炼厂 Process for realizing wastewater zero discharge in gold production process
WO2014136433A1 (en) * 2013-03-08 2014-09-12 株式会社 東芝 Water treatment device and water treatment method
CN104674011A (en) * 2015-01-23 2015-06-03 中国电器科学研究院有限公司 Production line for recycling rare-noble/inert metal from bottom-layer copper/nickel electroplated material
KR101536468B1 (en) * 2013-12-24 2015-07-14 주식회사 포스코 Hydrometallurgical process and equipment
JP2020122183A (en) * 2019-01-30 2020-08-13 アサヒプリテック株式会社 Method for recovering valuable metal powder from resist waste liquid, and valuable metal powder recovering device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129063A (en) * 1976-04-22 1977-10-29 Miura Eng Internatl Kk Filtering using magnetic powder as filtration assisting agent
JP2009268976A (en) * 2008-05-08 2009-11-19 Toshiba Corp Resin composite, water treatment method using the same, and method of producing the same
JP2010099575A (en) * 2008-10-22 2010-05-06 Toshiba Corp Method for recovering oil
JP2010207680A (en) * 2009-03-09 2010-09-24 Toshiba Corp Adsorbent, method for recovering organic matter, and method for recovering oil
JP2010207760A (en) * 2009-03-11 2010-09-24 Toshiba Corp Oil adsorbent and oil recovery method
WO2011004431A1 (en) * 2009-07-08 2011-01-13 株式会社 東芝 Oil absorbent and oil absorbent manufacturing method
JP2011046787A (en) * 2009-08-25 2011-03-10 Toshiba Corp Boron adsorptive resin and adsorbent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129063A (en) * 1976-04-22 1977-10-29 Miura Eng Internatl Kk Filtering using magnetic powder as filtration assisting agent
JP2009268976A (en) * 2008-05-08 2009-11-19 Toshiba Corp Resin composite, water treatment method using the same, and method of producing the same
JP2010099575A (en) * 2008-10-22 2010-05-06 Toshiba Corp Method for recovering oil
JP2010207680A (en) * 2009-03-09 2010-09-24 Toshiba Corp Adsorbent, method for recovering organic matter, and method for recovering oil
JP2010207760A (en) * 2009-03-11 2010-09-24 Toshiba Corp Oil adsorbent and oil recovery method
WO2011004431A1 (en) * 2009-07-08 2011-01-13 株式会社 東芝 Oil absorbent and oil absorbent manufacturing method
JP2011046787A (en) * 2009-08-25 2011-03-10 Toshiba Corp Boron adsorptive resin and adsorbent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136433A1 (en) * 2013-03-08 2014-09-12 株式会社 東芝 Water treatment device and water treatment method
CN103288247A (en) * 2013-07-01 2013-09-11 山东黄金矿业(莱州)有限公司精炼厂 Process for realizing wastewater zero discharge in gold production process
KR101536468B1 (en) * 2013-12-24 2015-07-14 주식회사 포스코 Hydrometallurgical process and equipment
CN104674011A (en) * 2015-01-23 2015-06-03 中国电器科学研究院有限公司 Production line for recycling rare-noble/inert metal from bottom-layer copper/nickel electroplated material
JP2020122183A (en) * 2019-01-30 2020-08-13 アサヒプリテック株式会社 Method for recovering valuable metal powder from resist waste liquid, and valuable metal powder recovering device
JP7305090B2 (en) 2019-01-30 2023-07-10 アサヒプリテック株式会社 Valuable metal powder recovery method from resist waste liquid and valuable metal powder recovery apparatus

Also Published As

Publication number Publication date
JP5826668B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5558419B2 (en) Copper recovery unit
JP5823221B2 (en) Filter aid, filter aid for water treatment, precoat material for water treatment, and water treatment method
JP5319730B2 (en) Fluorine recovery device and fluorine recovery method
JP5826668B2 (en) Metal recovery apparatus and metal recovery method
US9121083B2 (en) Copper recovery apparatus and copper recovery method
WO2016002110A1 (en) Water treatment system and water treatment method
JP5389196B2 (en) Water treatment method and water treatment apparatus
TWI444228B (en) Water treatment filter aids and water treatment methods
JP2015000385A (en) Water treatment method using filter aid, and device for the method
JP2014057920A (en) Water treatment method
JP5710664B2 (en) Water treatment method using filtration aid concentration management device, water treatment device, and filtration aid concentration management device
TWI564252B (en) A water treatment device and a water treatment method
JP5818670B2 (en) Oil-containing wastewater treatment equipment
JP5649749B2 (en) Water treatment method
JP5433389B2 (en) Metal recovery method for recovering metal in wastewater, metal separation agent for recovering metal in wastewater, and water purifier using the same
WO2013145373A1 (en) Water treatment method
JP2014158995A (en) Water treatment method utilizing filter aid concentration management device, water treatment device, and filter aid concentration management device
WO2014136432A1 (en) Method for controlling water treatment device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151014

R151 Written notification of patent or utility model registration

Ref document number: 5826668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

LAPS Cancellation because of no payment of annual fees