JP2001096280A - Waste water treatment - Google Patents

Waste water treatment

Info

Publication number
JP2001096280A
JP2001096280A JP27443999A JP27443999A JP2001096280A JP 2001096280 A JP2001096280 A JP 2001096280A JP 27443999 A JP27443999 A JP 27443999A JP 27443999 A JP27443999 A JP 27443999A JP 2001096280 A JP2001096280 A JP 2001096280A
Authority
JP
Japan
Prior art keywords
wastewater
fluorine
metal
compound
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27443999A
Other languages
Japanese (ja)
Inventor
Fumio Tanno
文夫 丹野
Hironori Tateiwa
宏則 立岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Mitsui Mining and Smelting Co Ltd
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Research Institute of Innovative Technology for the Earth RITE filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP27443999A priority Critical patent/JP2001096280A/en
Publication of JP2001096280A publication Critical patent/JP2001096280A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste water treatment method for removing a fluorine compound and a valuable metallic compound from the waste water containing the both, cleaning the waste water and also recovering valuable metal. SOLUTION: Alkali hydroxide is added to the waste water incorporating the fluorine compound and the metallic compound to form easily soluble alkali fluoride and hard soluble metallic hydroxide, etc., then the fluorine compound and the metallic compound are separated. A calcium compound is added to the waste water containing the fluorine compound to form hard soluble calcium fluoride and by removing this, metal and fluorine are removed from the waste water and the waste water is cleaned and also calcium fluoride less in heavy metals can be recovered. The sludge containing hard soluble metal is washed with alkali and then with water, thus a valuable metal compound not incorporating impurities such as fluorine is recovered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、少なくともフッ素
と金属を含む排水を処理して金属とフッ素を分離する排
水処理方法に関し、より詳細には排水からフッ素及び金
属をほぼ完全に除去して排水を清浄化するとともに排水
中に含有される有価金属を回収する排水処理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method for treating wastewater containing at least fluorine and metal to separate the metal and fluorine, and more particularly to a method for removing fluorine and metal from wastewater almost completely. The present invention relates to a wastewater treatment method for purifying wastewater and recovering valuable metals contained in wastewater.

【0002】[0002]

【従来の技術】近年エレクトロニクスの発展に伴い、半
導体洗浄、プリント基板洗浄等の要請が強くなり、洗浄
排水としてフッ素を含む排水が大量に生成している。こ
の他にセラミックス製造業でもフッ素を含む排水が排出
されている。排水中に含まれる各種洗浄用フッ素化合物
としては、例えばイオン注入用としての三フッ化硼素
(BF3 )、エッチングレジスト除去用や化学蒸着(C
DV)用としての四フッ化炭素(CF4 )、エッチング
レジスト除去用としての三フッ化メタン(CHF3 )、
器具・工具及びウェハ及びチップ洗浄用としての三フッ
化三塩化エタン(C2 3 Cl3 )、エッチングレジス
ト除去用及び器具・工具及びウェハ及びチップ洗浄用と
してのフッ化水素(HF)、エッチングレジスト除去用
及びウェハ及びチップ洗浄用としてのフッ化アンモニウ
ム(NH4 F)等が、それぞれ使用されている。又産業
構造の多角化や複雑化に応じて排水の種類も多様にな
り、フッ素と金属を同時に含有する排水も生成してい
る。これらの排水は、排水基準をクリアして排出させる
必要があるとともに、フッ素や有価金属は回収して再利
用することが、コスト低減のために必須になっている。
2. Description of the Related Art In recent years, with the development of electronics, demands for semiconductor cleaning, printed circuit board cleaning, and the like have increased, and a large amount of fluorine-containing wastewater has been generated as cleaning wastewater. In addition, wastewater containing fluorine is discharged in the ceramics manufacturing industry. Examples of various cleaning fluorine compounds contained in the wastewater include boron trifluoride (BF 3 ) for ion implantation, etching resist removal and chemical vapor deposition (C
Carbon tetrafluoride (CF 4 ) for DV), methane trifluoride (CHF 3 ) for etching resist removal,
Ethane trifluoride (C 2 F 3 Cl 3 ) for cleaning tools, tools, wafers and chips, hydrogen fluoride (HF) for etching resist removal and cleaning tools, tools, wafers and chips, etching Ammonium fluoride (NH 4 F) or the like is used for resist removal and wafer and chip cleaning. In addition, as the industrial structure becomes more diversified and more complex, the types of wastewater have become diversified, and wastewater containing both fluorine and metal has been generated. It is necessary to discharge these wastewaters in accordance with the wastewater standards, and it is essential to recover and reuse fluorine and valuable metals for cost reduction.

【0003】[0003]

【発明が解決しようとする課題】従来の産業排水のう
ち、これらのフッ素化合物と金属化合物を含む排水の処
理に関しては、これまでに殆ど研究されておらず、該排
水を無害化して放流可能にするとともに、それ自身価値
のあるフッ素及び有価金属を有意な収率が回収できれ
ば、環境保護及びコスト低減の両観点から優れた排水処
理方法となる。フッ素を含む排水処理の一般的な方法
は、金属化合物とフッ素化合物を含む排水にカルシウム
イオンを添加して前記フッ素化合物中のフッ素イオンは
難溶性のフッ化カルシウムとして、又重金属類は水酸化
物もしくは炭酸塩として沈澱させている。しかしながら
該方法で得られる沈澱物から有価金属を回収するために
は、スラッジに含まれるフッ素がネックとなり、ほぼ全
量が廃棄処分にされている。本発明は、これらの欠点を
解消し満足できるレベルでの回収を実現しようとするも
ので、少なくともフッ素化合物と金属化合物とを含む排
水からこれらを分離し、あるいはフッ素化合物と金属化
合物を別個に回収して排水の清浄化を図るとともに高価
なフッ素や有価金属を再利用できる排水処理方法を提供
することを目的とする。
Among the conventional industrial wastewaters, the treatment of wastewater containing these fluorine compounds and metal compounds has not been studied so far, and the wastewater is made harmless and can be discharged. In addition, if significant yields of fluorine and valuable metals, which have their own value, can be recovered, a wastewater treatment method excellent in terms of both environmental protection and cost reduction can be obtained. A common method of treating wastewater containing fluorine is to add calcium ions to wastewater containing a metal compound and a fluorine compound so that the fluorine ions in the fluorine compound are hardly soluble calcium fluoride, and heavy metals are hydroxides. Alternatively, it is precipitated as a carbonate. However, in order to recover valuable metals from the precipitate obtained by the method, fluorine contained in the sludge becomes a bottleneck, and almost all of the waste is disposed of. The present invention is intended to eliminate these drawbacks and realize a satisfactory level of recovery, by separating them from wastewater containing at least a fluorine compound and a metal compound, or recovering the fluorine compound and the metal compound separately. It is an object of the present invention to provide a wastewater treatment method capable of purifying wastewater and reusing expensive fluorine and valuable metals.

【0004】[0004]

【課題を解決するための手段】本発明は、少なくともフ
ッ素化合物と金属化合物を含有する排水にアルカリ金属
水酸化物及び/又は炭酸塩を添加して排水のpHを8〜
12に維持し、易溶性のフッ化アルカリと難溶性の金属水
酸化物及び/又は金属炭酸塩を形成し、該難溶性の有価
金属水酸化物及び/又は炭酸塩を排水から除去すること
を特徴とする排水の処理方法、及びこれに続いてこの排
水にカルシウム化合物を添加して排水のpHを4〜12に
維持して難溶性のフッ化カルシウムを生成させ、該フッ
化物を排水から除去することを特徴とする排水の処理方
法、及びこの難溶性フッ化物生成に代えて、生成する金
属スラッジを易溶性のフッ化アルカリを含む排水から分
離した後に排水のpHを9〜12に維持しながらアルカリ
洗浄し更に水洗浄を行って排水中の金属を有価金属とし
て回収することを特徴とする方法、及び前記有価金属水
酸化物及び/又は炭酸塩を排水から除去した後に前記難
溶性フッ素化合物生成及び有価金属回収を行うことを特
徴とする方法である。
According to the present invention, a wastewater containing at least a fluorine compound and a metal compound is added with an alkali metal hydroxide and / or a carbonate to adjust the pH of the wastewater to 8 to 10.
12 to form a hardly soluble alkali fluoride and a hardly soluble metal hydroxide and / or metal carbonate, and remove the hardly soluble valuable metal hydroxide and / or carbonate from the wastewater. A method for treating wastewater, and subsequently, a calcium compound is added to the wastewater to maintain the pH of the wastewater at 4 to 12 to generate insoluble calcium fluoride, and the fluoride is removed from the wastewater. A method of treating wastewater, and, in place of producing the hardly soluble fluoride, maintaining the pH of the wastewater at 9 to 12 after separating generated metal sludge from wastewater containing easily soluble alkali fluoride. A method of recovering metals in wastewater as valuable metals by performing alkali washing while further washing with water, and the hardly soluble fluorine compound after removing the valuable metal hydroxides and / or carbonates from wastewater. Raw And a method which is characterized in that the recovery of valuable metals.

【0005】以下本発明を詳細に説明する。本発明では
少なくともフッ素化合物(フッ素イオンとして含有され
ていることもある)と金属化合物(金属イオンとして含
有されていることもある)を含む排水を対象とするが、
このような排水としては金属表面処理排水、ステンレス
鋼板製造排水等の排水が含まれる。フッ素化合物として
はフッ素イオン(F- )と金属イオンやアンモニウムイ
オンとの化合物が代表的な化合物であり、この他にアル
カリ金属イオンと反応して易溶性フッ素化合物を形成す
る化合物が含まれ、前記易溶性化合物はカルシウム化合
物と反応して難溶性化合物を生成することが望ましく、
排水からフッ素イオンを除去する形態では前記難溶性化
合物の生成が必須になる。
Hereinafter, the present invention will be described in detail. In the present invention, wastewater containing at least a fluorine compound (which may be contained as a fluorine ion) and a metal compound (which may be contained as a metal ion) is targeted.
Such wastewater includes wastewater such as metal surface treatment wastewater and stainless steel plate manufacturing wastewater. As the fluorine compound, a compound of a fluorine ion (F ) and a metal ion or an ammonium ion is a typical compound. In addition, a compound that reacts with an alkali metal ion to form a readily soluble fluorine compound is included. It is desirable that the easily soluble compound reacts with the calcium compound to form a hardly soluble compound,
In the form of removing fluorine ions from wastewater, the formation of the hardly soluble compound is essential.

【0006】金属化合物はアルカリ金属水酸化物や炭酸
塩と反応して難溶性化合物を生成する任意金属イオンを
含む化合物である。特に鉄、ニッケル及びクロム等の有
価金属の場合には排水から除去するとともに回収するこ
とにより環境保全とコスト削減の効果が生ずる。本発明
では、これらの排水に、フッ素イオンと反応して難溶性
のフッ素化合物を生成しない水酸化ナトリウムや炭酸ナ
トリウム等のアルカリ金属水酸化物及び/又は炭酸塩を
添加して中和処理する。このアルカリ金属塩の添加によ
り排水に含まれるフッ素化合物はフッ化ナトリウム等の
易溶性フッ素化合物に、金属化合物は難溶性の金属水酸
化物や金属炭酸塩にそれぞれ変換される。
The metal compound is a compound containing an arbitrary metal ion which reacts with an alkali metal hydroxide or carbonate to form a hardly soluble compound. Particularly, in the case of valuable metals such as iron, nickel and chromium, by removing and recovering them from wastewater, the effects of environmental conservation and cost reduction are produced. In the present invention, the wastewater is neutralized by adding an alkali metal hydroxide and / or a carbonate such as sodium hydroxide or sodium carbonate which does not generate a hardly soluble fluorine compound by reacting with fluorine ions. By the addition of the alkali metal salt, the fluorine compound contained in the waste water is converted into a readily soluble fluorine compound such as sodium fluoride, and the metal compound is converted into a hardly soluble metal hydroxide or metal carbonate.

【0007】アルカリ金属水酸化物や炭酸塩は溶液とし
て又は固体のままのいずれで添加しても良いが、添加後
の排水のpHが8〜12、好ましくは10〜11の弱アルカリ
性となるようにする。pHが高いほどつまりアルカリ性
が強いほど金属スラッジに吸着するフッ素が少なくな
り、フッ素化合物と金属化合物の分離は効率的に行われ
るが、使用するアルカリの量が増えてコスト高になるた
め、pHの上限は12程度とすることが前記分離を効果的
に行うために必要である。一方pHの下限は、難溶性金
属スラッジへのフッ素イオンの吸着による混入許容割合
を考慮して決定する。pHが低くなるほど添加するアル
カリの量が低減されてコスト的には有利になるが、金属
イオンを水酸化物や炭酸塩に変換して難溶性とするため
に必要なアルカリ量が不足しやすくなり、かつ排水中の
フッ素イオンが生成する金属スラッジに吸着してフッ素
と金属を十分に分離できなくなる恐れがある。従ってp
Hの下限は前述の通り8とすることが必要で、これによ
り経済的にフッ素と有価金属を分離できる。pHの下限
を10とすると難溶性金属化合物が確実に生成し、かつ排
水中のフッ素イオンの金属スラッジへの混入が最低限に
抑えられる。
The alkali metal hydroxide or carbonate may be added as a solution or as a solid, but the pH of the waste water after the addition is 8 to 12, preferably 10 to 11, which is weakly alkaline. To The higher the pH, that is, the higher the alkalinity, the less fluorine is adsorbed on the metal sludge, and the separation of the fluorine compound and the metal compound is performed efficiently. The upper limit is required to be about 12 in order to effectively perform the separation. On the other hand, the lower limit of the pH is determined in consideration of the permissible mixing ratio of fluorine ions to the poorly soluble metal sludge by adsorption. The lower the pH, the lower the amount of alkali to be added, which is advantageous in terms of cost.However, the amount of alkali required to convert metal ions to hydroxides and carbonates to make them less soluble tends to be insufficient. Further, there is a possibility that fluorine ions in the wastewater are adsorbed by the generated metal sludge and the fluorine and the metal cannot be sufficiently separated. Therefore p
As described above, the lower limit of H needs to be 8, and thereby fluorine and valuable metals can be economically separated. When the lower limit of the pH is set to 10, a poorly soluble metal compound is surely generated, and the incorporation of fluorine ions in wastewater into metal sludge can be minimized.

【0008】生成するフッ素化合物が易溶性で金属化合
物が難溶性であるため、両者は濾過等により容易に固易
分離できる。このアルカリ添加によるフッ素化合物と金
属化合物の分離後の排水中にはフッ素イオンとアルカリ
金属イオンが存在している。この排水にカルシウムの化
合物、例えば塩化カルシウムを添加すると、カルシウム
イオンとフッ素イオンが反応して不純物の少ないフッ化
カルシウムを生成して沈澱する。この沈澱を濾過等で分
離すると排水中には低濃度のナトリウムイオン等のアル
カリ金属イオンと低濃度の塩素イオンのみが存在し、こ
れは実質的に低濃度食塩水であり、排水が効果的に清浄
化されると共に、不純物の少ないフッ化カルシウムも回
収できる。
Since the generated fluorine compound is easily soluble and the metal compound is hardly soluble, the two can be easily separated easily by filtration or the like. Fluorine ions and alkali metal ions are present in the waste water after separation of the fluorine compound and the metal compound by the addition of the alkali. When a calcium compound, for example, calcium chloride, is added to the wastewater, calcium ions and fluorine ions react to form calcium fluoride with few impurities and precipitate. When this precipitate is separated by filtration or the like, only low-concentration alkali metal ions such as sodium ions and low-concentration chlorine ions are present in the wastewater. This is substantially low-concentration saline, and the wastewater is effectively discharged. As well as being purified, calcium fluoride with few impurities can be recovered.

【0009】このときに添加するカルシウムの量は添加
後の処理液のカルシウム濃度が通常0.5 〜10g/リット
ル、好ましくは2〜3g/リットル、pHが4〜12、好
ましくは6〜9になるように添加する。pHが4未満で
あるとフッ酸の解離(HF→H+ +F- 、pKa=3.2
)が不十分でフッ素がイオン化しにくく、従ってフッ
素が除去しにくい。フッ素除去はpHをあまり高くして
も効率が良くなる訳でなく、処理液を放流する際の中和
剤量を節約するためにもpHの上限は12程度とする。一
方前記アルカリ添加によりフッ素化合物が除去された金
属スラッジには僅かな量のフッ素化合物が残存してい
る。
The amount of calcium added at this time is such that the calcium concentration of the treatment liquid after addition is usually 0.5 to 10 g / l, preferably 2 to 3 g / l, and the pH is 4 to 12, preferably 6 to 9. To be added. If the pH is less than 4, the dissociation of hydrofluoric acid (HF → H + + F , pKa = 3.2
) Is insufficient, so that fluorine is not easily ionized, and thus fluorine is not easily removed. The efficiency of the fluorine removal is not improved even if the pH is too high, and the upper limit of the pH is set to about 12 in order to save the amount of the neutralizing agent when the treatment liquid is discharged. On the other hand, a small amount of the fluorine compound remains in the metal sludge from which the fluorine compound has been removed by the alkali addition.

【0010】該金属スラッジ中の金属を金属として回収
するためにはこの残存フッ素化合物の除去が必要であ
る。そのために本発明では、アルカリ性の化合物を添加
して洗浄し、残存フッ素化合物を除去する。このアルカ
リ性化合物は溶液として添加し、残存するフッ素化合物
を流し去るのと同時に依然として該フッ素化合物が難溶
性化合物として存在する場合又は金属スラッジに吸着し
ている場合には易溶性のフッ素化合物に変換して溶解除
去することもできる。前記アルカリ性化合物はアルカリ
金属の水酸化物や炭酸塩が好ましく、微量のフッ素化合
物除去を目的とするため、高濃度のアルカリ溶液を少量
使用するのではなく、希釈されたアルカリ溶液を大量に
使用することが望ましい。このときのアルカリ溶液のp
Hは9〜12程度とし11〜12が望ましい。
[0010] In order to recover the metal in the metal sludge as a metal, it is necessary to remove the residual fluorine compound. For this purpose, in the present invention, washing is performed by adding an alkaline compound to remove the remaining fluorine compound. This alkaline compound is added as a solution, and at the same time as the remaining fluorine compound is washed away, when the fluorine compound still exists as a hardly soluble compound or when it is adsorbed on metal sludge, it is converted into a readily soluble fluorine compound. Can be dissolved and removed. The alkaline compound is preferably a hydroxide or carbonate of an alkali metal, and for the purpose of removing a trace amount of a fluorine compound, instead of using a small amount of a high-concentration alkaline solution, use a large amount of a diluted alkaline solution. It is desirable. The p of the alkaline solution at this time
H is set to about 9 to 12, and preferably 11 to 12.

【0011】このアルカリ洗浄で得られた洗浄液にはフ
ッ素化合物が溶解しているため、前述の金属スラッジ分
離時の易溶性フッ素化合物を含む排水に加えて、フッ素
回収に供しても良い。このアルカリ溶液による洗浄で殆
どフッ素化合物が含まない金属スラッジが得られるが、
洗浄に使用したアルカリと極微量のフッ素化合物が残存
している可能性があるため、アルカリ洗浄後の金属スラ
ッジを更に水洗洗浄することが望ましい。
Since the fluorine solution is dissolved in the cleaning solution obtained by the alkali cleaning, the cleaning solution may be subjected to fluorine recovery in addition to the wastewater containing the readily soluble fluorine compound at the time of separating the metal sludge. Although metal sludge containing almost no fluorine compound is obtained by washing with this alkaline solution,
Since there is a possibility that the alkali used for the cleaning and a trace amount of the fluorine compound may remain, it is desirable to further wash the metal sludge after the alkali cleaning with water.

【0012】次に本発明の排水処理及び有価金属回収を
図1に示すフローチャートにより詳細に説明する。図1
のフローチャートで、フッ素イオンと、ニッケルイオン
やクロムイオン等の有価金属イオンを含む工業排水(フ
ッ素及び金属含有排水)に水酸化ナトリウムもしくは炭
酸ナトリウムを水溶液として加えて十分に攪拌混合して
中和すると、有価金属水酸化物又は炭酸塩が沈澱し、排
水中のフッ素成分はフッ化ナトリウムになって排水中に
溶解する。前記金属沈澱をろ過によりフッ化ナトリウム
を含む排水から分離し、該分離された金属スラッジには
微量のフッ素成分が混入しているため、希釈したアルカ
リ洗浄液を使用して前記金属水溶液をアルカリ洗浄して
前記フッ素成分を除去する。該洗浄により得られるアル
カリ洗浄濾液は前記フッ化ナトリウムと混合しても、フ
ッ素成分を含有する排水に循環して混合しても良い。
Next, the wastewater treatment and valuable metal recovery of the present invention will be described in detail with reference to the flowchart shown in FIG. FIG.
In the flow chart of the above, sodium hydroxide or sodium carbonate is added as an aqueous solution to industrial wastewater containing fluorine ions and valuable metal ions such as nickel ions and chromium ions (fluorine and metal-containing wastewater), and the mixture is thoroughly stirred and neutralized. The valuable metal hydroxide or carbonate precipitates, and the fluorine component in the waste water becomes sodium fluoride and dissolves in the waste water. The metal precipitate is separated from the wastewater containing sodium fluoride by filtration, and the separated metal sludge contains a trace amount of a fluorine component. To remove the fluorine component. The alkali washing filtrate obtained by the washing may be mixed with the sodium fluoride, or may be mixed by circulating in a wastewater containing a fluorine component.

【0013】アルカリ洗浄を行った金属スラッジには前
記アルカリ洗浄時の残留アルカリ及び依然として除去さ
れていないフッ素成分が含有されており、これらの除去
のために多量の水を使用して洗浄する。該洗浄により処
理前の排水に含まれていたフッ素がほぼ完全に除去さ
れ、該排水に含有されていた金属のみがその水酸化物等
として含む水洗浄スラッジが得られる。この水洗浄スラ
ッジに他の不純物が含まれる場合には各不純物に応じた
除去工程を経ることによりほぼ純粋な有価金属のみが回
収される。前記アルカリ洗浄濾液が混合された前記中和
固液分離後の中和濾液には塩化カルシウム等のカルシウ
ム化合物を添加することで、重金属等の不純物を含まな
いフッ化カルシウムの沈澱が生成する。この沈澱を排水
から濾過等により除去すると、条件にも依るが、通常は
フッ素イオン濃度が10mg/リットル以下の脱フッ素排水
が得られる。
[0013] The metal sludge subjected to the alkali cleaning contains the residual alkali and the fluorine component which has not been removed during the alkali cleaning, and is cleaned by using a large amount of water to remove these. By the washing, fluorine contained in the wastewater before the treatment is almost completely removed, and a water washing sludge containing only the metal contained in the wastewater as its hydroxide or the like is obtained. When other impurities are contained in the water washing sludge, only a substantially pure valuable metal is recovered by performing a removing step corresponding to each impurity. By adding a calcium compound such as calcium chloride to the neutralized filtrate after the neutralization solid-liquid separation mixed with the alkali washing filtrate, a precipitate of calcium fluoride containing no impurities such as heavy metals is generated. When this precipitate is removed from the wastewater by filtration or the like, usually, depending on the conditions, a defluorinated wastewater having a fluorine ion concentration of 10 mg / liter or less is obtained.

【0014】[0014]

【発明の実施の形態】本発明による排水処理方法の実施
例を記載するが、該実施例は本発明を限定するものでは
ない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the wastewater treatment method according to the present invention will be described, but the embodiment is not intended to limit the present invention.

【0015】実施例1 図1のフローチャートに従って試験液の処理を行った。
純水1リットルに、金属鉄(22.5g/リットル)、塩化
クロム(クロム換算で2.7 g/リットル)、塩化ニッケ
ル(ニッケル換算で0.8 g/リットル)及びフッ化水素
酸(フッ素換算で18.5g/リットル、全金属量に対する
フッ素の重量比は71%)を溶解して試験液とした。この
試験液に6Nの水酸化ナトリウム水溶液をpHが12にな
るまで添加し中和した後、生成した金属スラッジ(中和
スラッジ)を濾過して排水(中和濾液)と分離した。
Example 1 Processing of a test solution was performed according to the flowchart of FIG.
In 1 liter of pure water, metallic iron (22.5 g / l), chromium chloride (2.7 g / l in chromium conversion), nickel chloride (0.8 g / l in nickel conversion) and hydrofluoric acid (18.5 g / l in fluorine conversion) Liter, the weight ratio of fluorine to the total amount of metals is 71%) to prepare a test solution. The test solution was neutralized by adding a 6N aqueous solution of sodium hydroxide until the pH reached 12, and the resulting metal sludge (neutralized sludge) was filtered to separate it from waste water (neutralized filtrate).

【0016】この中和スラッジに含まれる鉄、クロム、
ニッケル及びフッ素の元素分析を行ったところ、表1に
示す結果が得られ、全金属量に対するフッ素の重量比は
5.6%であり、試験液の71%から大きく減少した。又中
和濾液の各金属量及びフッ素含有量を測定したところ、
金属は全て検出限界以下(<1mg/L)であり、フッ素含有
量は14.3g/リットルであった。次いで中和スラッジを
pH12の水酸化ナトリウム水溶液0.3 リットルに懸濁さ
せた後、濾過してアルカリ洗浄スラッジとアルカリ洗浄
濾液とした。このアルカリ洗浄スラッジに含まれる金属
及びフッ素の元素分析を行ったところ、表1に示す結果
が得られ、全金属量に対するフッ素の重量比は0.28%で
あり、中和スラッジの0.98%から大きく減少した。
The neutralized sludge contains iron, chromium,
When elemental analysis of nickel and fluorine was performed, the results shown in Table 1 were obtained, and the weight ratio of fluorine to the total amount of metals was:
5.6%, a significant decrease from 71% of the test solution. Also, when the metal content and the fluorine content of the neutralized filtrate were measured,
All metals were below the detection limit (<1 mg / L) and the fluorine content was 14.3 g / L. Next, the neutralized sludge was suspended in 0.3 liter of an aqueous solution of sodium hydroxide having a pH of 12, and filtered to obtain an alkali-washing sludge and an alkali-washing filtrate. Elemental analysis of the metals and fluorine contained in this alkali cleaning sludge gave the results shown in Table 1. The weight ratio of fluorine to the total metal was 0.28%, which was significantly reduced from 0.98% of the neutralized sludge. did.

【0017】又アルカリ洗浄濾液の各金属量及びフッ素
含有量を測定したところ、金属は全て検出限界以下(<1
mg/L)であり、フッ素含有量は1.8 g/リットルであっ
た。次いで前記アルカリ洗浄スラッジを純水0.3 リット
ルに懸濁させた後、濾過して水洗浄スラッジと水洗浄濾
液とした。この水洗浄スラッジに含まれる金属及びフッ
素の元素分析を行ったところ、表1に示す結果が得ら
れ、全金属量に対するフッ素の重量比は0.14%であり、
アルカリ洗浄スラッジの0.28%から半減した。又水洗浄
濾液の各金属量及びフッ素含有量を測定したところ、金
属は全て検出限界以下(<1mg/L)であり、フッ素含有量
は0.06g/リットルであった。
When the contents of each metal and the fluorine content of the alkaline washing filtrate were measured, all the metals were below the detection limit (<1
mg / L) and the fluorine content was 1.8 g / liter. Next, the alkali washing sludge was suspended in 0.3 liter of pure water and filtered to obtain a water washing sludge and a water washing filtrate. Elemental analysis of the metals and fluorine contained in the water-washed sludge yielded the results shown in Table 1. The weight ratio of fluorine to the total metal was 0.14%.
Alkaline cleaning sludge was halved from 0.28%. Further, when the amounts of each metal and the fluorine content of the water-washed filtrate were measured, all the metals were below the detection limit (<1 mg / L), and the fluorine content was 0.06 g / liter.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例2〜4 実施例1における中和時のpH12及びアルカリ洗浄時の
pH12をそれぞれpH11及びpH11としたこと以外は同
一条件で試験液の処理を行った(実施例2)。その結果
を表1に示した。実施例1と比較してpHが低いため
(アルカリ性が弱いため)スラッジ中のフッ素残存量が
大きかったが、十分な量のフッ素が排水(中和濾液、ア
ルカリ洗浄濾液及び水洗浄濾液)へ移行していることが
分かる。
Examples 2 to 4 The test solution was treated under the same conditions as in Example 1 except that the pH 12 during neutralization and the pH 12 during alkali washing were changed to pH 11 and pH 11, respectively (Example 2). The results are shown in Table 1. Although the pH was lower than in Example 1 (because the alkalinity was weak), the residual amount of fluorine in the sludge was large, but a sufficient amount of fluorine was transferred to the wastewater (neutralized filtrate, alkali-washed filtrate and water-washed filtrate). You can see that it is doing.

【0020】実施例1における中和時のpH12及びアル
カリ洗浄時のpH12をそれぞれpH10及びpH11とした
こと以外は同一条件で試験液の処理を行った(実施例
3)。その結果を表1に示した。実施例1と比較してp
Hが低いため、実施例1と比較してもスラッジ中のフッ
素残存量が大きかったが、本実施例でも十分な量のフッ
素が排水へ移行していることが分かる。実施例1におけ
る中和時のpH12及びアルカリ洗浄時のpH12をそれぞ
れpH9及びpH11としたこと以外は同一条件で試験液
の処理を行った(実施例4)。その結果を表1に示し
た。実施例1と比較してpHが低いため、実施例1と比
較してスラッジ中のフッ素残存量が大きかったが、十分
な量のフッ素が排水へ移行していることが分かる。
The test solution was treated under the same conditions as in Example 1 except that the pH 12 during neutralization and the pH 12 during alkaline washing were respectively set to pH 10 and pH 11 (Example 3). The results are shown in Table 1. P compared to Example 1
Since H was low, the amount of fluorine remaining in the sludge was large as compared with Example 1. However, it can be seen that a sufficient amount of fluorine was transferred to the wastewater also in this example. The test solution was treated under the same conditions as in Example 1 except that pH 12 during neutralization and pH 12 during alkali washing were set to pH 9 and pH 11, respectively (Example 4). The results are shown in Table 1. Since the pH was lower than in Example 1, the residual amount of fluorine in the sludge was larger than in Example 1, but it can be seen that a sufficient amount of fluorine was transferred to the wastewater.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例5〜8 実施例1における中和時のpH12及びアルカリ洗浄時の
pH12をそれぞれpH8.5 及びpH11としたこと以外は
同一条件で試験液の処理を行った(実施例5)。その結
果を表2に示した。実施例1及び実施例2〜4と比較し
て特に中和時のpHが低いためスラッジ中のフッ素残存
量が大きかったが、最終的な水洗浄スラッジ中のフッ素
成分量が0.59%で、実施例1の0.14%、実施例4の0.23
%と比較して増えているが,従来技術と比較すると十分
なフッ素含有量の低減が見られた。実施例1における中
和時のpH12及びアルカリ洗浄時のpH12をそれぞれp
H10及びpH10としたこと以外は同一条件で試験液の処
理を行った(実施例6)。その結果を表2に示した。実
施例1と比較してpHが低いため、実施例1の0.14%
(水洗浄スラッジ中のフッ素含有量)と比較してスラッ
ジ中のフッ素残存量が0.22%と大きかったが、実施例3
(0.21%)及び実施例4(0.23%)とはほぼ同等の値を
示した。
Examples 5 to 8 The test solution was treated under the same conditions as in Example 1 except that the pH 12 during neutralization and the pH 12 during alkaline washing were respectively set to pH 8.5 and pH 11 (Example 5). . The results are shown in Table 2. Compared with Example 1 and Examples 2 to 4, the residual amount of fluorine in the sludge was large because the pH at the time of neutralization was particularly low, but the final amount of fluorine in the water-washed sludge was 0.59%. 0.14% of Example 1, 0.23 of Example 4
%, But a sufficient decrease in the fluorine content was observed as compared with the prior art. In Example 1, pH 12 during neutralization and pH 12 during alkaline washing were respectively p
The test solution was treated under the same conditions except that H10 and pH 10 were used (Example 6). The results are shown in Table 2. 0.14% of Example 1 due to lower pH as compared to Example 1
The amount of fluorine remaining in the sludge was as large as 0.22% as compared with (the fluorine content in the water-washed sludge).
(0.21%) and Example 4 (0.23%) showed almost the same value.

【0023】中和に使用する試薬を水酸化ナトリウムか
ら炭酸ナトリウムに代えたこと以外は実施例6と同一条
件で試験液の処理を行った(実施例7)。その結果を表
2に示した。実施例6と比較すると各段階のスラッジ中
のフッ素含有量に変動はあるものの最終的には水洗浄ス
ラッジ中のフッ素含有量が0.15%と実施例6の0.22%よ
り低くなり、更に各段階のスラッジ中の全金属量に対す
るフッ素の比は実施例6を下回っていた。実施例7にお
ける中和時のpH10及びアルカリ洗浄時のpH10をそれ
ぞれpH9及びpH9としたこと以外は同一条件で試験
液の処理を行った(実施例8)。その結果を表2に示し
た。実施例7と比較してpHが低いため、全体的にスラ
ッジ中のフッ素含有量が大きく、全金属量に対するフッ
素の比も実施例7と同じかこれを上回っていた。
The test solution was treated under the same conditions as in Example 6 except that the reagent used for neutralization was changed from sodium hydroxide to sodium carbonate (Example 7). The results are shown in Table 2. As compared with Example 6, although the fluorine content in the sludge at each stage fluctuates, the fluorine content in the water-washed sludge is finally 0.15%, which is lower than 0.22% of Example 6, and The ratio of fluorine to total metal in the sludge was lower than in Example 6. The test solution was treated under the same conditions as in Example 7 except that the pH 10 during neutralization and the pH 10 during alkali washing were respectively set to pH 9 and pH 9 (Example 8). The results are shown in Table 2. Since the pH was lower than that of Example 7, the fluorine content in the sludge was large as a whole, and the ratio of fluorine to the total metal amount was the same as or higher than that of Example 7.

【0024】実施例9 実施例1の中和濾液(フッ素含有量14.3g/リットル)
を試験液とし、これに塩化カルシウム及び水酸化ナトリ
ウムを添加して該試験液のカルシウム濃度が1g/リッ
トル、pHが12になるように調整し、得られた塩化カル
シウムの沈澱のカルシウム含有率及びフッ素含有率、及
び脱フッ素排水中のカルシウム含有量及びフッ素含有量
を測定した。その結果を表3に示した。生成するフッ化
カルシウムスラッジのフッ素とカルシウムの合計重量は
全体の43.5重量%で、残りは水分であると考えられる。
一方脱フッ素排水に残存するフッ素イオン量は9.8 mg/
リットルで処理開始前の試験液の18.5g/リットルの約
0.05%まで減少した。
Example 9 Neutralized filtrate of Example 1 (fluorine content 14.3 g / l)
Was used as a test solution, and calcium chloride and sodium hydroxide were added thereto to adjust the calcium concentration of the test solution to 1 g / liter and the pH to 12, and the calcium content of the obtained calcium chloride precipitate and The fluorine content, the calcium content and the fluorine content in the defluorinated wastewater were measured. Table 3 shows the results. The total weight of fluorine and calcium in the resulting calcium fluoride sludge is 43.5% by weight, and the remainder is considered to be water.
On the other hand, the amount of fluorine ions remaining in the defluorinated wastewater was 9.8 mg /
18.5 g / liter of test liquid before starting treatment
Decreased to 0.05%.

【0025】実施例10〜14 実施例1の中和濾液を試験液とし、これに塩化カルシウ
ム及び塩酸を添加して該試験液のカルシウム濃度が1g
/リットル、pHが8になるように調整し(実施例1
0)、得られた塩化カルシウムの沈澱のカルシウム含有
率及びフッ素含有率、及び脱フッ素排水中のカルシウム
含有量及びフッ素含有量を測定した。その結果を表3に
示した。この実施例では脱フッ素排水中のフッ素は9.4
mg/リットルまで除去できた。pHを6としたこと以外
は実施例10と同じ条件で測定を行った(実施例11)。そ
の結果を表3に示した。この実施例でもフッ素排水中の
フッ素は9.4 mg/リットルまで除去できた。
Examples 10 to 14 The neutralized filtrate of Example 1 was used as a test solution, and calcium chloride and hydrochloric acid were added to the test solution to adjust the calcium concentration of the test solution to 1 g.
/ Liter, pH is adjusted to 8 (Example 1
0), the calcium content and the fluorine content of the obtained precipitate of calcium chloride, and the calcium content and the fluorine content in the defluorinated wastewater were measured. Table 3 shows the results. In this example, the fluorine in the defluorinated wastewater was 9.4.
It could be removed up to mg / liter. The measurement was performed under the same conditions as in Example 10 except that the pH was set to 6 (Example 11). Table 3 shows the results. Also in this example, fluorine in the fluorine wastewater could be removed up to 9.4 mg / liter.

【0026】カルシウム添加量を5.2 gに変えたこと以
外は実施例10と同じ条件で測定を行った(実施例12)。
その結果を表3に示した。この実施例ではフッ素イオン
量は更に減少し、約0.02%まで減少した。カルシウム添
加量を5.6 gに変えたこと以外は実施例10と同じ条件で
測定を行った(実施例13)。その結果を表3に示した。
この実施例ではフッ素イオン量は更に減少し、約0.01%
まで減少した。pHを4としたこと以外は実施例10と同
じ条件で測定を行った(実施例14)。その結果を表3に
示した。この実施例ではフッ素イオン量は約0.05%まで
減少した。
The measurement was carried out under the same conditions as in Example 10 except that the amount of calcium added was changed to 5.2 g (Example 12).
Table 3 shows the results. In this example, the amount of fluorine ions was further reduced, to about 0.02%. The measurement was performed under the same conditions as in Example 10 except that the amount of added calcium was changed to 5.6 g (Example 13). Table 3 shows the results.
In this embodiment, the amount of fluorine ions is further reduced to about 0.01%
Down to. The measurement was performed under the same conditions as in Example 10 except that the pH was set to 4 (Example 14). Table 3 shows the results. In this example, the amount of fluorine ions was reduced to about 0.05%.

【0027】比較例1 pHを3としたこと以外は実施例10と同じ条件で測定を
行ったが、塩化カルシウム沈澱は生成せず、かつ脱フッ
素排水中フッ素含有量は中和濾液の14.3g/リットルと
ほぼ等しい13.6g/リットルであった。
Comparative Example 1 The measurement was carried out under the same conditions as in Example 10 except that the pH was set to 3. However, no calcium chloride precipitate was formed, and the fluorine content in the defluorinated wastewater was 14.3 g of the neutralized filtrate. 13.6 g / liter, which is almost equal to 1 / liter.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【発明の効果】本発明は、少なくともフッ素化合物と金
属化合物を含有する排水にアルカリ金属水酸化物及び/
又は炭酸塩を該排水のpHが8〜12になるように添加
し、易溶性のフッ化アルカリと難溶性の金属水酸化物及
び/又は金属炭酸塩を形成し、該難溶性の金属水酸化物
及び/又は炭酸塩を排水から除去することを特徴とする
排水の処理方法(請求項1)である。この処理方法によ
り、アルカリ金属化合物を排水を所定pHに維持しなが
ら添加するという簡単な手法により、易溶性のフッ素化
合物と難溶性の金属化合物が生成し、排水中のフッ素化
合物と金属化合物を分離でき、排水から実質的に金属化
合物を除去して不純物の少ない排水へと変換できる。
According to the present invention, an alkali metal hydroxide and / or a waste water containing at least a fluorine compound and a metal compound are contained.
Alternatively, a carbonate is added so that the pH of the waste water becomes 8 to 12 to form a sparingly soluble alkali fluoride and a sparingly soluble metal hydroxide and / or a carbonate. A method for treating wastewater, comprising removing matter and / or carbonate from wastewater (claim 1). By this treatment method, a soluble fluorine compound and a hardly soluble metal compound are generated by a simple method of adding an alkali metal compound while maintaining the wastewater at a predetermined pH, and the fluorine compound and the metal compound in the wastewater are separated. Thus, the metal compounds can be substantially removed from the wastewater to be converted to wastewater containing less impurities.

【0030】このフッ素化合物と金属化合物との分離後
は、排水に塩化カルシウム等のカルシウム化合物をpH
が4〜12になるように添加してフッ化カルシウムを生成
させ(請求項2)、これを濾過等により排水から除去す
れば良い。又この時生成したフッ化カルシウムは重金属
が少なく、鉄鋼用のフラックスもしくはフッ酸原料とし
て利用できる。
After the separation of the fluorine compound and the metal compound, a calcium compound such as calcium chloride is added to the wastewater at pH.
Is added so as to be 4 to 12 to produce calcium fluoride (claim 2), which may be removed from the wastewater by filtration or the like. The calcium fluoride produced at this time is low in heavy metals and can be used as a flux for steel or a hydrofluoric acid raw material.

【0031】又排水中に含まれる金属が有価金属であり
排水の清浄化より有価金属の回収が主眼である場合に
は、前述した難溶性の金属化合物のスラッジを易溶性の
フッ化アルカリを含む排水から分離した後にpH9〜12
でアルカリ洗浄し更に水洗浄を行えば良く(請求項
3)、これにより実質的にフッ素化合物を含まない鉄、
ニッケル及びクロム等の有価金属が回収できる。次い
で、排水の清浄化及び有価金属の回収の両者が必要な場
合には、易溶性のフッ化化合物と難溶性の金属化合物を
含む排水から後者を濾過等で除去して両者を分離し、前
者を含む排水にカルシウム濃度が0.5 g/リットル以上
かつpHが4〜12になるように添加して難溶性のフッ化
カルシウムを生成させ、後者の金属化合物のスラッジを
pH9〜12でアルカリ洗浄し更に水洗浄を行えば良い
(請求項4)。
When the metal contained in the wastewater is a valuable metal and the main purpose is to recover the valuable metal rather than purifying the wastewater, the sludge of the hardly soluble metal compound described above contains a readily soluble alkali fluoride. PH 9-12 after separation from wastewater
It is sufficient to wash with alkali and then with water (Claim 3), whereby iron substantially free of fluorine compounds,
Valuable metals such as nickel and chromium can be recovered. Next, when both purification of wastewater and recovery of valuable metals are necessary, the latter is removed from the wastewater containing a readily soluble fluorinated compound and a poorly soluble metal compound by filtration or the like, and the two are separated. Is added to the wastewater containing water so as to have a calcium concentration of 0.5 g / liter or more and a pH of 4 to 12 to form sparingly soluble calcium fluoride. The sludge of the latter metal compound is alkali-washed at pH 9 to 12. Water washing may be performed (claim 4).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の排水処理方法を実施する要領を例
示するフローチャート。
FIG. 1 is a flowchart illustrating a method for performing a wastewater treatment method according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22B 7/00 C22B 7/00 H 3/00 Q (72)発明者 立岩 宏則 埼玉県上尾市原市1333−2 三井金属鉱業 株式会社金属事業本部製錬技術開発センタ ー内 Fターム(参考) 4D038 AA08 AB41 AB65 AB66 AB67 AB81 AB82 BB13 BB17 BB18 4K001 AA08 AA10 AA19 BA21 CA02 CA08 DB23 EA06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22B 7/00 C22B 7/00 H 3/00 Q (72) Inventor Hironori Tateiwa 1333- Hara-shi, Ageo-shi, Saitama 2 Mitsui Kinzoku Mining Co., Ltd. F-term (Ref.) 4D038 AA08 AB41 AB65 AB66 AB67 AB81 AB82 BB13 BB17 BB18 4K001 AA08 AA10 AA19 BA21 CA02 CA08 DB23 EA06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくともフッ素化合物と金属化合物を
含有する排水にアルカリ金属水酸化物及び/又は炭酸塩
を該排水のpHが8〜12になるように添加し、易溶性の
フッ化アルカリと難溶性の金属水酸化物及び/又は金属
炭酸塩を形成し、該難溶性の金属水酸化物及び/又は炭
酸塩を排水から除去することを特徴とする排水の処理方
法。
1. An alkali metal hydroxide and / or carbonate is added to a waste water containing at least a fluorine compound and a metal compound so that the pH of the waste water becomes 8 to 12, so that the alkali metal hydroxide and / or the carbonate can be easily dissolved. A method for treating wastewater, comprising forming a soluble metal hydroxide and / or metal carbonate and removing the hardly soluble metal hydroxide and / or carbonate from the wastewater.
【請求項2】 少なくともフッ素化合物と金属化合物を
含有する排水にアルカリ金属水酸化物及び/又は炭酸塩
を該排水のpHが8〜12になるように添加して易溶性の
フッ化アルカリと難溶性の金属水酸化物及び/又は金属
炭酸塩を形成し、該難溶性の金属水酸化物及び/又は炭
酸塩を排水から除去し、この排水にカルシウム化合物を
カルシウム濃度0.5 g/リットル以上かつpHが4〜12
になるように添加して難溶性のフッ化カルシウムを生成
させ、該フッ素化合物を排水から除去することを特徴と
する排水の処理方法。
2. An alkali metal hydroxide and / or carbonate is added to a waste water containing at least a fluorine compound and a metal compound so that the pH of the waste water becomes 8 to 12, so that the alkali metal hydroxide and / or the carbonate are easily dissolved. A soluble metal hydroxide and / or metal carbonate is formed, and the hardly soluble metal hydroxide and / or carbonate is removed from the wastewater. Is 4-12
A method for treating wastewater, comprising adding hardly soluble calcium fluoride by adding the fluorine compound to the wastewater and removing the fluorine compound from the wastewater.
【請求項3】 少なくともフッ素化合物と金属化合物を
含有する排水にアルカリ金属水酸化物及び/又は炭酸塩
を該排水のpHが8〜12になるように添加して易溶性の
フッ化アルカリと難溶性の金属水酸化物及び/又は金属
炭酸塩を生成させて金属スラッジを形成し、該金属スラ
ッジを易溶性のフッ化アルカリを含む排水から分離した
後にpH9〜12でアルカリ洗浄し更に水洗浄を行って排
水中の金属を有価金属として回収することを特徴とする
排水処理方法。
3. An alkali metal hydroxide and / or carbonate is added to waste water containing at least a fluorine compound and a metal compound so that the pH of the waste water becomes 8 to 12, so that the alkali metal hydroxide and / or the carbonate can be easily dissolved. A soluble metal hydroxide and / or a metal carbonate is formed to form a metal sludge, and the metal sludge is separated from a wastewater containing a readily soluble alkali fluoride, washed with an alkali at pH 9 to 12, and further washed with water. A wastewater treatment method, wherein the metal in the wastewater is collected as valuable metal.
【請求項4】 少なくともフッ素化合物と金属化合物を
含有する排水にアルカリ金属水酸化物及び/又は炭酸塩
を該排水のpHが8〜12になるように添加して易溶性の
フッ化アルカリと難溶性の金属水酸化物及び/又は金属
炭酸塩を形成し、該難溶性の金属水酸化物及び/又は炭
酸塩を排水から除去し、この排水にカルシウム化合物を
pHが4〜12になるように添加して難溶性のフッ化カル
シウムを生成させ、該フッ素化合物を排水から除去する
とともに、生成した金属スラッジを易溶性のフッ化アル
カリを含む排水から分離した後にpH9〜12でアルカリ
洗浄し更に水洗浄を行って排水中の金属を有価金属とし
て回収することを特徴とする排水処理方法。
4. An alkali metal hydroxide and / or carbonate is added to waste water containing at least a fluorine compound and a metal compound so that the pH of the waste water becomes 8 to 12, so that the alkali metal hydroxide and / or the carbonate can be easily dissolved. A soluble metal hydroxide and / or metal carbonate is formed, and the hardly soluble metal hydroxide and / or carbonate is removed from the wastewater, and a calcium compound is added to the wastewater so that the pH becomes 4 to 12. To form hardly soluble calcium fluoride, remove the fluorine compound from the wastewater, separate the formed metal sludge from the wastewater containing the easily soluble alkali fluoride, wash with alkali at pH 9 to 12, and further wash with water. A wastewater treatment method comprising washing and collecting metals in wastewater as valuable metals.
JP27443999A 1999-09-28 1999-09-28 Waste water treatment Pending JP2001096280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27443999A JP2001096280A (en) 1999-09-28 1999-09-28 Waste water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27443999A JP2001096280A (en) 1999-09-28 1999-09-28 Waste water treatment

Publications (1)

Publication Number Publication Date
JP2001096280A true JP2001096280A (en) 2001-04-10

Family

ID=17541705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27443999A Pending JP2001096280A (en) 1999-09-28 1999-09-28 Waste water treatment

Country Status (1)

Country Link
JP (1) JP2001096280A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Treatment method for pickling waste solution and treatment device for pickling waste solution
JP2009196858A (en) * 2008-02-22 2009-09-03 Ebara Corp Method and apparatus for recovering synthetic fluorite
CN108642298A (en) * 2018-04-24 2018-10-12 山东建筑大学 A kind of black silicon wafer production line method for recovering waste liquid of photovoltaic
JP2020122183A (en) * 2019-01-30 2020-08-13 アサヒプリテック株式会社 Method for recovering valuable metal powder from resist waste liquid, and valuable metal powder recovering device
CN111847738A (en) * 2020-07-09 2020-10-30 天津绿缘环保工程股份有限公司 High-concentration organic wastewater treatment method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Treatment method for pickling waste solution and treatment device for pickling waste solution
JP4544970B2 (en) * 2004-11-09 2010-09-15 Jfeスチール株式会社 Processing method for pickling waste liquid and processing equipment for pickling waste liquid
JP2009196858A (en) * 2008-02-22 2009-09-03 Ebara Corp Method and apparatus for recovering synthetic fluorite
CN108642298A (en) * 2018-04-24 2018-10-12 山东建筑大学 A kind of black silicon wafer production line method for recovering waste liquid of photovoltaic
CN108642298B (en) * 2018-04-24 2020-05-26 山东建筑大学 Waste liquid recovery method for photovoltaic black silicon wafer production line
JP2020122183A (en) * 2019-01-30 2020-08-13 アサヒプリテック株式会社 Method for recovering valuable metal powder from resist waste liquid, and valuable metal powder recovering device
JP7305090B2 (en) 2019-01-30 2023-07-10 アサヒプリテック株式会社 Valuable metal powder recovery method from resist waste liquid and valuable metal powder recovery apparatus
CN111847738A (en) * 2020-07-09 2020-10-30 天津绿缘环保工程股份有限公司 High-concentration organic wastewater treatment method

Similar Documents

Publication Publication Date Title
JP2007297662A (en) Method for producing high purity electrolytic copper from ammonia-based copper etching waste liquid
JP3576550B2 (en) Recovery of metal valuables from process residues
JP4826532B2 (en) Processing method of molten fly ash
JP3635643B2 (en) Waste liquid treatment method
JP4597169B2 (en) Wastewater treatment method containing heavy metals
CN110395726B (en) Purification method of microcrystalline graphite ore
JP4174708B2 (en) Method for recovering and purifying calcium fluoride from a by-product mixed salt containing fluorine
JP2001096280A (en) Waste water treatment
JP4147246B2 (en) Method for recovering metallic copper from waste liquid containing copper chloride
EP1034014B1 (en) A process for separation of heavy metals and halogen from waste material or residue
JP7206009B2 (en) How to recover tungsten
JP2020132988A (en) Method for recovering tungsten
CN108483481A (en) A method of using giving up, acidic etching liquid produces high purity crystalline copper sulphate
JP2015199614A (en) Method for recovering phosphoric acid solution from sewage sludge incineration ash containing phosphorus (p)
JP7083782B2 (en) Treatment method of wastewater containing fluorine
JP2011125812A (en) Method for treating wastewater containing fluorine and silicon, method for producing calcium fluoride, and apparatus for treating fluorine-containing wastewater
JP7275608B2 (en) Method for recovering fluorine concentrates from solutions containing fluorine
US6358424B1 (en) Process for removing cyanide ion from cadmium plating rinse waters
JP4487492B2 (en) Treatment method for fluorine-containing wastewater
JP4767444B2 (en) Wastewater treatment method to reduce chlorine content in treated sludge
JP3788782B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
US20030138366A1 (en) Method of recovering copper
JP4257467B2 (en) Titanium recovery method
JP2769088B2 (en) Manufacturing method of wastewater treatment agent
KR100390589B1 (en) Process for preparing cuprous chloride from cupric chloride waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023