JP7303971B1 - スーパージャンクション構造を有する半導体素子の製造方法 - Google Patents

スーパージャンクション構造を有する半導体素子の製造方法 Download PDF

Info

Publication number
JP7303971B1
JP7303971B1 JP2022170586A JP2022170586A JP7303971B1 JP 7303971 B1 JP7303971 B1 JP 7303971B1 JP 2022170586 A JP2022170586 A JP 2022170586A JP 2022170586 A JP2022170586 A JP 2022170586A JP 7303971 B1 JP7303971 B1 JP 7303971B1
Authority
JP
Japan
Prior art keywords
trench
growth
epitaxial growth
silicon
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022170586A
Other languages
English (en)
Other versions
JP2024062620A (ja
Inventor
彰一 高見澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022170586A priority Critical patent/JP7303971B1/ja
Application granted granted Critical
Publication of JP7303971B1 publication Critical patent/JP7303971B1/ja
Priority to PCT/JP2023/027740 priority patent/WO2024089963A1/ja
Priority to TW112129371A priority patent/TWI851374B/zh
Publication of JP2024062620A publication Critical patent/JP2024062620A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

【課題】シリコン基板に形成した開口幅が小さくアスペクト比が大きなトレンチを、開口部の閉塞を防ぎつつ、高速のエピタキシャル成長により埋め込む方法を提供する。【解決手段】高アスペクト比のトレンチが形成されたシリコン基板を選択エピタキシャル成長によりトレンチ開口部に閉塞が生じないように成長温度を950℃から1050℃の範囲に設定し、高濃度の塩化シランをシリコンソースとする反応ガスに塩化水素ガスをトレンチのアスペクト比に応じた量を添加して閉塞が生じない範囲で高速な成長速度でトレンチをエピタキシャル成長で埋め込む。【選択図】 図1

Description

本発明は、シリコン基板(表面が鏡面仕上げされたシリコンウエーハ)にディープトレンチをストライプ状に多数形成し、基板と異なる導電型のシリコンエピタキシャル成長層で、前記トレンチを埋め戻す半導体基板の製造方法に関する。
パワーMOSFETの技術進展にともなって、オン抵抗の低減効果が顕著となる600V前後の高耐圧製品を中心に、シリコン基板にストライプ状にpnのコラムを多数形成し耐圧に対し低オン抵抗特性を有するスーパージャンクションMOSFET(SJMOS)の実用化が進展してきている。スーパージャンクション(SJ)構造の製造法には、シリコン基板と同じ導電型の薄いエピタキシャル層を成長する工程とフォトリソグラフィー工程後に基板と異なる導電型のドーパントをイオン注入し、再び前記基板と同じ導電型の薄いエピタキシャル層を成長する工程を多数回繰り返すマルチエピ法と、ドライエッチングでシリコン基板にディープトレンチを形成し基板と異なる導電型のエピタキシャル成長によりトレンチを埋め戻すディープトレンチ法(以下トレンチ埋め込み法と表記)がある。微細トレンチが形成しやすく、製造方法が単純なトレンチ埋め込み法でのSJMOSの開発が一時期勢力的に進められた。しかし、トレンチを形成したシリコン基板(以下ではトレンチ基板と表記)をエピタキシャル成長で埋め込む際にトレンチ開口部が閉塞しボイドが発生するという問題があり、ボイド発生を回避するために成長速度を遅くせざるを得ず、生産性が著しく悪化することから実用化は限定されている。
それに対し、マルチエピ法では、薄いエピタキシャル成長とフォトリソグラフィーとイオンインプラを交互に繰り返すことによりpnコラムを形成するので、個々の製造工程は技術的に確立している。但し、微細なpnコラムを形成するためには、薄いエピタキシャル成長層を形成してイオンインプラをおこなう工程をpnコラムの厚さが素子の耐圧に対応した厚さになるまで多数回繰り返すことが必要となり、製造工程が著しく長く複雑になり、コストが上昇するという問題がある。
マルチエピ法は、最先端のロジック系CMOSIC用のシリコン基板にp/p+型エピタキシャル基板が広く用いられるようになり、枚葉式エピタキシャル装置の改良や3μm~5μmの厚さのエピタキシャル成長プロセス技術が進歩して、品質の向上やコスト低減が進んだこと、及び、300mmφの基板がマルチエピ法SJMOSの製造にも用いられ始め、面積当たりのエピ製造コストが半減する状況となっている。そのような背景と、微細なトレンチをボイドの発生を避けて効率よく埋めこむトレンチ埋め込み法の技術開発が進んでいないこともあり、現状ではSJMOSはマルチエピ法で大半が生産されるようになっている。
トレンチ埋め込み法は、トレンチ内にボイドが発生すると耐圧低下やリーク電流増大の原因となるので、それを回避してトレンチをどの様に埋め込むかが技術課題となる。トレンチをエピタキシャル成長で埋込むとき、トレンチ開口部が閉塞してボイド発生の原因になり易く、その対策が最大の課題となる。初期には埋め込み途中で閉塞しかかったトレンチ開口部を塩化水素ガスによるエッチバックで広げた後に埋め込み工程を再開する方法が用いられたが生産性が極めて悪かった。生産性向上のために、エピタキシャル成長の反応ガスにハロゲン化物ガスを添加してトレンチ開口部近傍の成長速度を底部より遅くして閉塞を防ぐ手法や、埋め込みエピタキシャル成長を反応律速条件で行い開口部での閉塞を防ぐという手法が比較的早い段階で提案されている。(特許文献1、2)しかし、それらの提案を具体的に実施していく段階でボイドの発生防止を効率的に、安定的に実施することが難しく、多くの提案がなされたが、ボイドの発生が起らないエピタキシャル成長条件を試行錯誤的に求める内容の提案が大半で低生産性の問題解決のための提案は殆ど無かった。(特許文献5[0008])
トレンチ埋め込み法の一部で、ボイドが発生してもSJMOSの電気特性に殆ど影響しない位置にボイドが発生するようにして、エピタキシャル成長速度が比較的速いプロセス技術開発がおこなわれ、製品の製造がかなりの規模でおこなわれている。素子特性の悪化を招いたり製造工程に大きな支障をきたしたりする表層部にボイドが発生しないように、結晶方位の選択やプロセスの工夫によりある程度の生産性を確保して、大規模な製品販売が実現されてきている。しかし、微細化への対応に限界にあることから、マルチエピ法以上の微細化には対応出来ていない。(特許文献4)
2010年頃からSJMOSの微細化、低オン抵抗化は、マルチエピ法によりエピタキシャル層を薄くして多層化することにより行われるようになり、トレンチ埋め込み法による先端SJMOSの製品開発は殆ど行われなくなっている。マルチエピ法ではエピタキシャル層を薄くし15層位まで層数を増やして微細化、低オン抵抗化がおこなわれてきている。工程の複雑化やイオンインプラ層の横方向の拡散等の問題もあり、微細化は限界に近付いている。その為、200mmφ化への移行が課題として残されているが、SiCやGaN on Siなどの新材料を用いた素子による高性能パワー半導体に次世代製品の開発の重点が移っているのが実情である。
何れにしろ、シリコン系のパワーMOSのニーズはインバータ用を中心として今後一段と拡大していくことは明らかである。先端品だけでなく汎用品の性能向上、コスト低減、省エネルギー化も進めていく必要がある。SJMOSは耐圧が600V前後の製品に主に用いられてきているが、100V前後の低耐圧パワーMOSにはマルチエピ法の適用は難しいがトレンチ埋め込み法は適用可能であり、SiCやGaN on Siなどに開発の主体が移った現在、シリコン基板を用いる今後のパワーMOS全体の性能向上を考えたとき、 トレンチ埋め込み型SJMOSの可能性をもう一度原点に戻り再検討し、可能性があるなら、その技術を埋没させないようにすべきであると考えられる。
特許第3915984号 特許第4773716号 特許第4879545号 特許第5072221号 特許第5702622号
S.Yamauchi,et.al,Proc.ISPSD 2001,p363
SJMOSのオン抵抗特性は、素子の微細化で高性能化が実現される。(図2参照)しかし、微細化にはマルチエピ法にもトレンチ埋め込み法にも課題がある。マルチエピ法では微細化の限界が具体的に見通せるが、トレンチ埋め込み法は、ボイドを発生させずにどの程度微細なトレンチを埋め込めるかについては、トレンチ埋め込みエピタキシャル技術次第である。マルチエピ法では耐圧600V前後の製品では12層以上の薄いエピタキシャル層を積み重ねて必要な厚さにする必要があるが、トレンチ埋め込み法はエピタキシャル成長で微細なトレンチを容易に埋め込めればエピタキシャル成長が1度で済むので、それが実現されれば低オン抵抗のSJMOSの製法の本命となることは確かである。しかし、トレンチ部の埋め込み不良(ボイド)の発生を回避するための技術的ハードルは予想以上に高く、製法の進展がない状態が続いてきた。その一方で、ロジック系CMOS用の3~5μmの厚さの平坦なエピタキシャル成長のコストが低下してきたことから、SJMOSについてはマルチエピ法で大半の製品が供給されるようになった。トレンチ埋め込み法については、開発を終了する前にその高い技術的ハードルが何かを徹底的な解析、検討する必要がある。
トレンチ埋め込み法は、デイープトレンチアイソレーションやDRAMのトレンチキャパシターをLPCVDによりポリシリコンで埋め込む技術をトレンチ埋め込みエピタキシャル技術に発展させた非特許文献1が原点となっていると考えられる。エピタキシャル成長とするために成長温度を650℃から850℃、成長圧力を10Paから10Paに高くしている。その為、トレンチ開口部近傍の成長速度が速くなり閉塞が起りやすくなるので、成長途中で1000℃以上に昇温し塩化水素ガスでトレンチ開口部をエッチバックして広げ、低温化して再び成長をしている。トレンチの深さ40μm、アスペクト比を12として先端的マルチエピ法を超える特性を目指すもので、トレンチ埋め込み法の可能性を示したものであるが、高温の水素雰囲気で最後にアニールをしてもトレンチ底部に微細なボイドが残り、また、RTA装置を用いるため生産性の低下にも課題は残されていた。
トレンチ埋め込み法については、エピタキシャル成長でトレンチを埋め込む時、トレンチ内にボイドが発生すると素子の電気特性の悪化や製造工程に支障をきたすことになるので、ボイドの発生の問題解決が優先されてきた。ボイド発生の問題を解決するための技術的対応としてエピタキシャル成長の反応ガスにハロゲン化物ガスを添加してトレンチ開口部近傍でエッチングやエピタキシャル成長を阻害することにより、トレンチ開口部近傍の成長速度を底部より遅くして閉塞を防ぐというトレンチ埋め込み手法が早い段階で提案されている。(特許文献1、2)成長ガスに塩化水素ガスを添加することでトレンチ部のボイドの発生をある程度抑制出来ることが具体的な結果により示されている。しかし、成長ガスに添加したハロゲン化物ガスがボイド発生の抑制にどのように寄与しいるかの定量的な確認は行われておらず、その現象を原理的に理解して更なる技術的な進展を図るといった状況には至っていない。
前述の特許文献1,2においては、トレンチの埋め込み性の向上のために埋め込みエピタキシャル成長を反応律速条件で行うという提案もされている。塩化水素ガスの添加により開口部に閉塞を起こさない具体的な実施例の提示や事例の説明はされているが、トレンチ埋め込みエピタキシャル成長を反応律速成長とする具体的な方法や有効性について原理的な解説はなされていない。最適なトレンチ埋め込みエピタキシャル条件は、特許文献5に見られるように試行錯誤的に決められ、多数のパラメータを設定して最適条件を決める手法が煩雑なものとなっている。最適条件が存在する範囲を更に絞り込む方策を見出す必要がある。
SJMOSでは、トレンチ開口幅、pnコラムのストライプのピッチを狭小化することにより低オン抵抗化が実現される。しかし、これまでの試作では、微細で高アスペクト比のトレンチをボイドの発生を抑制しエピタキシャル成長で埋め込んでSJ構造を製作するためには、埋め込みエピタキシャル成長の速度を大幅に低下させる必要があるという結果になっている。これ迄のトレンチ埋め込みSJMOSの製造手法の特許提案はボイドの発生を防ぐ手法が主たる内容であって、埋め込みエピタキシャル成長時間を短時間化するための手法について触れられたものは殆どない。具体的な時間が提示されている事例では条件によって60分から200分との報告があるが、(特許文献3)実施例での成長時間の明確な報告は殆ど見出せない。微細なトレンチの埋め込みエピタキシャル成長について、ボイドの発生防止と、成膜時間の短縮を両立する技術提案が望まれる。
以上の状況から、本発明の課題は、現状で広く用いられている枚葉(型)エピタキシャル装置を前提に、これ迄の特許提案のような定性的な議論ではなくエピタキシャル反応機構に基づいた定量的な議論により、マルチエピ法で実現されている以上に微細で高アスペクト比のトレンチをエピタキシャル法により高速成長条件でボイドの発生を抑制して埋め込むことができるかを考察し、その考察に基づいて高性能、低コストのトレンチ埋め込み型SJMOSの具体的な製造方法を提供することにある。
上記課題解決のため、請求項1の発明は、シリコン基板に形成したストライプ状のトレンチを、該シリコン基板と異なる導電型のエピタキシャル層で埋め込むスーパージャンクション構造の製造において、枚葉型反応器による選択エピタキシャル成長法を用いる方法であって、
第一の準備工程で、トレンチを形成する前記シリコン基板と同じ結晶方位のシリコン低抵抗基板1へのエピタキシャル成長が安定的な高速拡散律速成長となる条件を設定し、その時の反応ガスのシリコンソースガス流量とキャリア水素ガス流量条件とその温度での成長速度から前記シリコン基板単位表面へ単位時間に供給されるシリコンソースのモル量を求め、更に成長温度のみを変化させた時の各温度でのシリコンソースの供給量を計算で求め、
第二の準備工程で、前記反応ガスの各流量条件を変えず、前記シリコン基板に形成されたアスペクト比Aのトレンチを埋め込む選択エピタキシャル成長の温度を1000土50℃の好適な温度に下げ、該温度で、第一の準備工程で求めた前記シリコン基板単位表面へ時間当たり供給されるソースのモル量を、その単位表面領域でのアスペクト比Aのトレンチを埋め込むエピタキシャル成長で時間当たり消費されるソースのモル量が超えないエピタキシャル成長速度を計算から求め,トレンチが形成される前記シリコン基板と同じ結晶方位のシリコン低抵抗基板への前記反応ガス条件に塩化水素ガスを添加した前記好適な成長温度での選択エピタキシャル成長の速度が計算から求めた速度となる反応ガスに添加する塩化水素ガス流量を把握し、
前記第一及び第二の準備工程により設定された反応ガス条件と好適な成長温度と把握された塩化水素ガスの添加流量条件を用いた選択エピタキシャル成長方法で前記シリコン基板に形成されたトレンチを埋め込むことにより、トレンチ部の単位表面でシリコンソースの消費量をソースの供給量が上回る反応律速的エピタキシャル成長を進行させることで、ボイドが生じない範囲で高速な成長速度でトレンチを埋め込むことを特徴とするスーパージャンクション構造を有する半導体素子の製造方法であり、拡散律速条件で高速エピタキシャル成長条件を設定することで、基板に時間当たり供給されるシリコンソースのモル量を把握でき、その量が大きい時は高速で反応律速成長が可能となる。トレンチが加工された基板の単位表面ではエピタキシャル成長が行われる面積が平坦な表面のシリコン基板に対しアスペクト比に略比例して増大するので、反応律速的条件が狭くなる。選択エピタキシャル成長で比較的高温で反応律速条件を満たせる成長速度範囲が分かっているので出来るだけ高速な条件で対応することをその要旨としている。(図6参照)
請求項2の発明は、第一の準備工程で、前記シリコン基板と同じ結晶方位のシリコン低抵抗基板1へのエピタキシャル成長が拡散律速反応となる1100~1150℃の範囲の成長温度T1で、成長速度Xμm/minが3.0μm/min以上、5.0μm/min以下となるように反応ガスのシリコンソースガス流量と水素キャリアガスの流量条件G1を設定し、第二の準備工程で該反応ガス流量条件G1を変更することなくアスペクト比Aのトレンチを埋め込むエピタキシャル成長温度T2℃を1000土50℃範囲に設定して、反応ガスに塩化水素ガスを添加してトレンチ形成する前記シリコン基板と同じ結晶面のシリコン低抵抗基板2に選択エピタキシャル成長した時の成長速度が[(T1+273)/(T2+273)]-3/2 /(A+1)μm/min以下となる塩化水素ガスの添加流量を求めて、
前記第一及び第二の準備工程により設定された反応ガスの流量条件、成長温度、塩化水素ガスの添加流量による選択エピタキシャル成長により前記シリコン基板に形成されたトレンチを埋め込むことにより、トレンチ全部位で、シリコンソースの供給量が消費量を上回る反応律速的エピタキシャル成長を進行させることにより、ボイドが生じない選択エピタキシャル成長工程でトレンチを埋め込むことを特徴とする請求項1に記載のスーパージャンクション構造を有する半導体素子の製造方法の一例である。拡散律速成長での成長速度は基板表面に供給されたシリコンソースの全量が直ちにエピタキシャル反応することとシリコンソースの気体中の拡散係数は絶対温度の2分の3乗に比例することから、各温度で基板に供給される拡散律速成長でのシリコンソースの量が求められる。このシリコンソースの供給量を大きくすることでボイドを発生させずに高速なエピタキシャル成長でトレンチを埋め込むことを可能にする。
請求項3に記載の発明は、選択エピタキシャル成長により埋め込む前記シリコン基板に形成されたストライプ状のトレンチのピッチが10.0μm以下、且つ、アスペクト比10以上である場合、トレンチを埋め込む選択エピタキシャル成長において、トレンチが形成される前記シリコン基板と同じ結晶面のシリコン低抵抗基板に選択エピタキシャル成長した時の成長速度が1.2X/(A+1)μm/min以下となる、反応ガスに添加する塩化水素ガスの流量を求めて、その添加流量による選択エピタキシャル成長により前記シリコン基板に形成されたトレンチを埋め込むことを特徴とする請求項2に記載のスーパージャンクション構造を有する半導体素子の製造方法であり、トレンチのストイプのピッチが狭くなり、アスペクト比が大きくなるとエピタキシャル成長で生成する面積当たりの塩化水素ガスが増大し、トレンチ基板表面での塩化水素ガスが高濃度化することへの対応で[0051]、[0052]でより詳細な説明をする。(図10,図12,図14参照)
請求項4の発明は, トレンチが形成された前記シリコン基板表面のエピタキシャル成長速度がトレンチの長手方向の側壁の結晶面でのエピタキシャル成長速度よりも高速又は同等となるような結晶面の組み合わせのうち、前記シリコン基板表面が(100)面、トレンチ側壁が(100)面、又は、前記シリコン基板表面が(110)面、トレンチ側壁が(111)面となるようにトレンチを加工した前記シリコン基板を用いることを特徴とする請求項1に記載のスーパージャンクション構造を有する半導体素子の製造方法が要旨である。この対応で開口部に(110)面、トレンチ底部に(310)といった安定した面が成長して閉塞は起こり難くなる。(図12参照)
請求項5に記載の発明は、トレンチを形成する反応性イオンエッチングにおいて、生産性に優れた貫通電極用深堀エッチングに用いられるボッシュ法を用い、ボッシュ法に伴うエッチング面に生ずるスキャロップと呼ばれる微小な凹凸を、選択エピタキシャル成長の温度条件を1000土50℃として塩化水素ガスの添加流量により反応律速的条件を満たし、シリコンソースのサーフェスマイグレーションが大きいエピタキシャル条件として成長初期に成長面を平滑化することにより、マイクロボイドやミスフィット転位の発生がない良好な結晶品質のエピタキシャル層でトレンチを埋め込むことを特徴とする請求項1に記載のスーパージャンクション構造を有する半導体素子の製造方法が要旨であり,トレンチ側面のテーパー角度の極めて厳密な加工はこの方法では必須でなくなる。
請求項6に記載の発明は、請求項1において、トレンチがエピタキシャル成長により埋め込まれていくとトレンチ部の成長面積が減少し、シリコンソースの時間当たりの消費量が低下するので、その変化に対応して、反応律速的条件を保持できる範囲で塩化水素ガスの添加量を少なくし、或いは、成長温度を上昇させ埋め込みエピタキシャル成長速度を高速にして成長時間を短縮し生産性を向上させることを特徴とする請求項1に記載のトレンチ埋め込みエピタキシャル成長条件を用いるスーパージャンクション構造を有する半導体素子の製造方法を要旨としている。(図12参照)
技術的検討から、アスペクト比Aのトレンチ基板へのエピタキシャル成長では基板単位表面での反応面積が平坦な表面のシリコン基板に対し(A+1)倍になることへの理解が従来欠けていたことが解り、シリコンソースの供給量をその分増やすか成長速度をその分低下させて反応律速的な埋め込み成長条件でトレンチを埋め込むことが必要であることを理解した。その問題を解決するために、トレンチ埋込エピタキシャル成長において出来るだけ時間当たりのシリコンソースの供給量が多くなるように反応ガス条件を設定し、選択エピタキシャル成長における塩化水素ガスの添加条件の設定方法を考案して、選択エピタキシャル成長法によりトレンチ開口部で閉塞を生じさせず高アスペクト比のトレンチを比較的高温、高速で埋め込むことが可能であることを示した。このトレンチ埋め込み法により、更なる高性能なSJMOSFETの実用化を実現できることを具体的に示した。
本発明に係る半導体装置の一例を説明する概略断面図である。 スーパージャンクションMOSFETのオン抵抗とpnコラムのピッチとの関係の一例を示す図である。 本発明におけるスーパージャンクション構造をトレンチ埋め込みエピタキシャル成長により形成する製造工程の一例を示すフロー図である。 輻射加熱型枚葉エピタキシャル成長装置の断面概略図である。 シリコン基板へのシリコンエピタキシャル成長の成長機構を説明する図面である。 シリコン基板(a)とアスペクト比Aのトレンチ基板(b)との基板単位表面Sにおけるエピタキシャル成長面の面積の違いを示す概念図である 平行平板型装置のアウレニウスプロットプロットの一例でシリコン基板表面へのシリコンソースの供給量と反応で消費されるシリコンソースの量の関係を示す図である。 シリコン基板に選択エピタキシャル成長したときの成長速度と塩化水素ガスの添加流量の関係の例を示した図である。 トレンチ埋め込み選択エピタキシャル成長の概略フロー図である。 CVDのステップカバレッジにおける堆積膜の形状とサーフェスマイグレーション及び平均自由行程との関係を示す概略図である。 トリクロロシランをシリコンソースとする埋め込みエピタキシャル成長において供給ガスに塩化水素を添加した場合の成長中の塩化水素の濃度分布の変化を説明する図である。 シリコン基板表面とトレンチ側壁の結晶方位によるトレンチ開口部のエピタキシャル成長の違いを説明する概念図と表面/トレンチ側壁が(100)であるときの成長途中の開口部の断面SEM写真である。 トレンチをエピタキシャル成長で埋め込む途中の状況を断面SEMで観察した時の概略図と断面SEMの写真である。 実施例のトレンチ埋め込みエピタキシャルウエーハを断面SEMでボイドの発生状況を調べた結果をアスペクト比と成長速度の関係についてまとめた図である。
本実施形態に係る半導体装置については、特許文献を含め多くの文献で説明されている。以下では、プレーナー型SJMOSの構造について、その概要を説明する。最近では微細化に有利なトレンチゲート型のSJMOS構造が用いられるようになっているがトレンチ埋め込み工程以降で素子製造工程が若干異なるだけで、そこに大きな技術課題はないので以下ではトレンチ埋め込み後の平坦化研磨までの工程について説明をする。
図1に示す本実施形態に係る半導体装置は、スーパージャンクション構造を備えた縦形のMOSFETの構成となっている。このデバイス構造では、半導体基板として、n+型の単結晶シリコン基板11上に、n型のシリコンエピタキシャル層12が設けられている。また、n型エピタキシャル層12内においては、p型コラム13と、n型シリコン層12がストライプ状に交互に配列されたスーパージャンクション構造(SJ構造)が形成されている。SJ構造においてはpnコラムそれぞれの幅に対応して不純物濃度が決められる。pnコラムの深さで素子の耐圧がきまる。また、pnコラのピッチを小さく出来れば7×1015atoms/cc程度の不純物濃度を更に高くでき低オン抵抗化が実現される。(図2)p型コラム13は、n型エピタキシャル層12の上面からn+型シリコン基板11に近接する所定の深さに形成される。その深さは素子の耐圧を決める。
n型シリコン層12内に形成されたp型コラム13の直上域には、トレンチの長手方向に延びるp型ベース領域14が形成されている。p型ベース領域14の上層部分には、トレンチの長手方向に延びる一対のn+型のソース領域15が相互に離隔するよう選択的に形成されている。n型シリコン層12上にはn型シリコン層12上には制御電極であるゲート電極16がゲート絶縁膜17に包まれるように設けられている。ゲート電極16は、普通、ドープしたポリシリコンにより形成される。ゲート絶縁膜17は、多くの場合、シリコン酸化物により形成されている。
p型ベース領域14と隣のp型ベース領域14に跨るように絶縁膜で覆われたゲート電極16が形成される。ソース領域15の端部直上にその端部がくるように配置されている。ゲート電極16下の酸化膜の厚さは、ソース領域15とn型シリコン層12の間のp型ベース領域部で薄くなっており、それ以外の部分では厚くなっている。ゲート電極16は上に凸となるような形状となっている。ゲート電極16間には、ソース電極18が設けられソース領域に接続されている。ソース電極18はゲート絶縁膜上にも形成され、各ソース電極間を接続されている。n+型シリコン基板11の下面上には、ドレイン電極19がn+型シリコン基板11に接続されている。ソース電極18およびドレイン電極19は、一般的には金属が用いられる。ゲート構造をトレンチゲート型にしたSJMOSについても基本的な構造は大きく変わるものではない。
図3は本実施形態に係る半導体装置の製造工程の前半のトレンチ埋め込み後の表面平坦化研磨までの工程フローと各工程完了段階のウエーハ概略断面図を示したものである。本発明の半導体装置の製造で使用するシリコン基板1は、燐、ヒ素、または、アンチモンが高濃度にドープされたn+型シリコン基板11上にエピタキシャル成長法により1Ωcm前後の抵抗率のn型エピタキシャル層12を成長させたn/n+型シリコンエピタキシャル基板1を用いることができる。ここで、該基板の表面の面方位は(100)とすることができる。また、オリフラ方位あるいはノッチ方位を(100)とすることでウエーハ表面とトレンチ側壁の結晶面方位を(100)に統一でき、結晶面方位によるエピタキシャル成長速度の差異を考慮しなくて済むので、以下ではオリフラ方位あるいはノッチ方位を(100)として説明をする。次に、エピタキシャル基板1の表面に、熱酸化膜を形成し周知のフォトリソグラフィー技術により、ストライプ状酸化膜を9形成し反応性イオンエッチングでトレンチを加工する際のマスク酸化膜9とする(図3(b))。
上記方法で形成された酸化膜をマスクとして、例えば、反応性イオンエッチング(RIE)などのドライエッチング法により、縞状のpnコラム構造を形成するための所定の深さのトレンチ20を形成する(図3(c))。 シリコン貫通電極形成用のボッシュ法のRIE装置を使用すれば、アスペクト比20以上で開口幅2μm以下の微細なトレンチを高速で高精度に形成することができる。トレンチのエッチング時にポリマーやダメージが残留するので洗浄やエッチング等でそれらを除去し、次工程のエピタキシャル成長において結晶欠陥が発生しないようにする。ボッシュ法ではトレンチ側面にスキャロップと呼ばれる微細な凹凸が生じる。この凹凸は本方法ではエピタキシャル工程中で平滑化する。トレンチ形成工程でマスクとして酸化膜9を用いる。その酸化膜9をトレンチ形成後に湿式エッチングにより除去する方法もあるが、本方法では、酸化膜9を残し選択エピタキシャル成長によりトレンチを埋め込む方法を用いた。この方法を用いると1100℃の水素雰囲気の熱処理でもトレンチ開口部で変形が起らない等のメリットがあるが、酸化膜とシリコンの熱応力による欠陥が生じやすい等のデメリットが存在する。埋め込みエピタキシャル成長のオーバーグロース層を表面研磨した後にアライメントマークを残せるので、その後のアライメントにとって都合がよいことを考慮して選択している。マスク酸化膜を除去する方法でもよい。
次に、トレンチを形成したエピタキシャル基板2上にp型の埋め込みエピタキシャル層13を気相成長させる(図3(d))。 具体的には、エピタキシャル成長装置内にトレンチ基板2を載置して所定温度(例えば1100℃、水素雰囲気中)で熱処理し、シリコン表面の自然酸化膜を除去した後、該基板を所定の温度に降下させて、p型埋め込みエピタキシャル層13を気相成長する。
図4は直径150mmから300mmのシリコン基板に広く用いられている平行平板型枚葉エピタキシャル装置の断面概略図の一例を示したものである。図4に示すように、気相成長装置は、天板22と、シリコン基板を水平に載置するウエーハ載置部と、側壁部とによって、各々、上面、下面、側面が画成された反応室にウエーハ31を載置して回転しながらエピタキシャル成長を行うエピタキシャル成長装置であり、その一端に形成されたガス導入口24からエピタキシャル成長のための反応(原料)ガスが反応管内に導入される。反応ガスは反応管内部空間を水平かつ一方向に層流条件で流れることにより厚さが略一定の境界層(boundary layer)32が形成される。ウエーハ載置部のサセプター23上にシリコン基板31が1枚載置されサセプター23と共に回転する。また、反応ガス導入口24の反対側にガス排出口29が形成されている。導入された反応ガスは、シリコン基板の表面上を所定の流速で通過した後、エピタキシャル反応で消費されなかったガスと反応生成ガスが、ガス排出口29から排気される。
ここで、シリコンソースガスは、例えばトリクロロシランガスを使用することができる。このトリクロロシランガスは、液体のトリクロロシラン(SiHCl)中に水素ガスをバブリングさせて一定濃度の混合気体とし、マスフローコントローラにより流量を調整しつつ、キャリア水素ガスと混合して3%~8%程度の濃度に希釈され反応管に導入される。ドーパントガスとして水素ガスに一定の濃度に希釈された微量のジボラン(B)がマスフローコントローラにより調整されて、同様に希釈用の水素ガスと混合される。更に、塩化水素ガスもマスフローコントローラにより調整されて、同様に希釈用の水素ガスと混合される。これらのガスが混合された反応ガスは反応容器内に層流が形成されやすくなるように多数の導入口から送り込まれる。
そして、シリコン基板31はサセプター23とともに回転駆動され、さらにハロゲンランプ21により上面、下面から所定の温度に加熱されながら、反応ガスの供給を受けて、トレンチ内にエピタキシャル層が形成される。反応容器内の圧力は常圧、或は、730torrから750torrの微減圧となるように設定される。本方法では常圧条件前提で説明するが70torr程度の減圧条件まで圧力を下げてエピタキシャル成長をおこなうことも可能である。本方法ではトレンチ埋め込みエピタキシャル成長は1000℃でおこなった。トレンチ部でコンフォーマルな成長を実現するために好適な温度である。温度測定は輻射温度計33が主に用いられるが、酸化膜を残した表面では輻射率が変わるので補正が必要である。出来るだけ1000℃に温度設定するよう配慮することで成長条件を安定させることができ、ボイドの発生を防ぐことができる。
従来のトレンチ埋め込み型のSJMOSの製造においては、図3(d)のトレンチ20をエピタキシャル成長で埋め込む工程で、トレンチ開口部8での閉塞によるボイドの発生を防止するための対策により成長速度を遅くせざるを得なくなり低コストの生産が実現されていなかった。この工程が最大の課題となっているので、本発明のトレンチ埋め込みエピタキシャル成長技術を確立するに至る考察の過程を詳細に説明しながら本方法を具体的に説明していく。先ず、エピタキシャル成長機構について用語の統一をしながら説明し、ボイドの発生とエピタキシャル成長条件の関係について説明し、同時にトレンチをエピタキシャル成長で埋め込む際、ボイドの発生防ぎつつ成長速度を最大限にする手法について具体的な説明をする。
現在、広く用いられている平行平板型枚葉エピタキシャル装置を前提にしたエピタキシャル成長の反応機構の概要を図5に示した。反応ガスを層流条件で反応管内を流し、境界層の厚さが一定となる領域に載置されたウエーハにメインガスフローから境界層中を拡散してシリコンソースをシリコン(鏡面)基板に輸送する。シリコン基板表面に到達したシリコンソースは吸着し、サーフェスマイグレーションで成長点に至り化学反応し結晶格子に組み込まれ、一定速度でエピタキシャル成長が進む。この時、境界層を拡散してシリコン基板表面に輸送されるシリコンソースの流速F1は次式で示される。
Figure 0007303971000002

ここでh=D/δは輸送係数である。Cはメインガスフロー(反応ガス)中の、Cは基板表面のシリコンソースの濃度である。基板表面に到達したシリコンソースは、吸着しサーフェスマイグレーションにより結晶成長点に至り化学反応し結晶格子に取り込まれる。この化学反応(結晶成長)で単位時間に消費されるシリコンソースの量F2は次式で表すことができる。
Figure 0007303971000003

ここでk=k
(‐Ea/kT)は表面反応係数である。Eaは反応の活性化エネルギー、kはボルツマン定数である。エピタキシャル成長中はF=Fとなるので成長速度vは次式で示すことができる。
Figure 0007303971000004


ここでNはシリコン単結晶の原子密度である。
≫kの場合には、v≒kS・/N≒CG・exp (‐Ea/kT)/Nとなり、エピタキシャル成長の速度は基板表面での化学反応の速度によって決まるようになる。所謂、反応律速エピタキシャル成長となる。このとき基板表面のシリコンソースの濃度Csはメインガスのシリコンソース濃度Cに近くなる。k≫hの場合には、v≒hG・/N≒(D/δ)・C/Nとなり、エピタキシャル成長の速度は境界層の厚さとその中のシリコンソースの拡散速度によって決まる。所謂、拡散律速エピタキシャル成長となる。このとき基板表面のシリコンソースの濃度Csはゼロに近い濃度になる。これらの二つのケースは極端な場合であり、実際のエピタキシャル成長では比率は異なってもhとk双方に影響されることも理解しておく必要がある。
ここまでのエピタキシャル成長機構については平坦な表面に垂直な方向へのシリコンソースの輸送を考えて成長速度がどのようになるかを検討してきた。また、これまでのトレンチ埋め込み型SJMOSのエピタキシャル成長に関する特許出願においては、埋め込みエピタキシャル成長を反応律速にして閉塞を防ぐという提案が多くある。しかし、平坦でないステップ形状やトレンチ形状の表面をもつ基板へのエピタキシャル成長ではシリコンソースの輸送を一方向に限定して成長速度を考えることができなくなる。トレンチ基板にエピタキシャル成長するとき、トレンチ全ての部位で成長速度が同じになるとは限らなくなるので、成長反応の律速性を一義的に判断することができなくなる。ボイドの発生が無い高速のトレンチ埋め込みエピタキシャル成長の最適な条件を決める有効なパラメータが不明確であるため試行錯誤的に模索されてきた。(特許文献5)
ステップやトレンチ形状の基板表面への薄膜の堆積における膜形状については、様々な成膜法についてステップカバレッジの問題として検討されてきている。シリコンのエピタキシャル成長の場合でもシリコンソースの気相中の輸送現象や表面での反応種の挙動を2次元、3次元的に考察する必要があり議論は複雑になる。以下では定量的な考察をおこなうために、シリコン基板へのエピタキシャル成長の反応機構をベースに近似的考察を進める。200mmφ以上のシリコン基板に広く用いられる平行平板型のシリコン枚葉エピタキシャル装置を用いた場合、図5に示した境界層の厚さδは10~15mm程度となることがシミュレーションで知られている。それに対して比較的高耐圧の600V級SJMOSではそのトレンチの深さは50μm前後で設計される。境界層を通して基板表面に垂直方向のシリコンソースの流速F或いは、輸送係数h(=D/δ)はトレンチ開口部8に対しトレンチ底部7では0.99以上となる垂直方向の輸送に関してはトレンチ開口部と底部への輸送はトレンチ基板も平坦な表面のシリコン基板も同等と近似することができる。
トレンチ基板でのエピタキシャル成長は、表面とトレンチ底面と側壁で成長反応が進む。トレンチ部の温度は一定であるので結晶面方位が同じならば、トレンチ側壁の表面反応係数ksはシリコン基板表面と同じになる。トレンチ基板へのエピタキシャル反応では、表面に水平方向の輸送も考慮する必要がある。トレンチ基板でもトレンチ加工前のシリコン基板の表面積Sの領域に境界層を通して単位時間に垂直方向から供給されるシリコンソースの最大モル量(Cs=0の時)は同じである。しかし、トレンチ基板ではその表面積Sの領域においてエピタキシャル成長が起る面積は大きく異なる。図6に示すようにアスペクト比Aのトレンチ基板では反応面積が酸化膜9を除去した場合にはシリコン基板の(A+1)倍になる。
垂直方向の輸送に関してはトレンチ基板を平坦なシリコン基板に近似することができるが、それと同時にエピタキシャル成長に係る基板の実効表面積がシリコン基板の(A+1)倍であると近似する必要がある。
もし、時間当たり、境界層を通して供給されるシリコンソースのモル量が、トレンチ領域でのエピタキシャル成長で消費されるモル量より少なくなるh<(A+1)ksとなる場合は、トレンチが形成された基板表面でCsは0に近い値となり、成長は拡散律速的になる。このような状況になると境界層を通ってトレンチ基板表面に輸送されてきたシリコンソースはトレンチ開口部コーナーに到達する比率が大きくなる。Csがゼロにならなくてもトレンチ開口部上部からシリコンソースはトレンチ側壁のエピタキシャル成長で消費されてCsは底部に向かって減少する。その結果、開口部近傍での成長が速くなり閉塞が起るようになる。トレンチ基板表層でそのような拡散律速的な反応が起らないようにするためには、h>(A+1)ksとする必要がある。この条件を満たすためには、境界層を通して単位時間当たり単位表面積Sに供給されるシリコンソースの最大モル量をシリコン基板への反応律速的エピタキシャル成長の場合に対して(A+1)倍以上にするか、トレンチ部の表面反応係数ks、つまり、成長速度を1/(A+1)にする必要がある。これまでのトレンチ埋め込みエピタキシャル成長の技術検討ではこの点についての認識が無かった。
図7に広く用いられている平行平板型の枚葉エピタキシャル装置を用いたシリコン(鏡面)基板へのエピタキシャル成長の代表的なアウレニウスプロットを示した。成長速度vは、v≒kS・/N、v≒hG・/Nと近似できる。破線F はシリコンソースの拡散係数が絶対温度の2分の3乗に比例するので、高速成長反応のガス条件の2例について各温度における基板に供給されるシリコンソースの最大量hG・ を成長速度で示している。実用化されているアスペクト比10のトレンチをhG・>(A+1)ksとなる反応律速的なエピタキシャル成長で埋め込むためには、成長温度を900℃に下げた場合、1150℃での反応ガス条件を4.0μm/minとなるようにしても十分とは言えず、6.0μm/min程度となる反応ガス条件が必要となる。この成長速度は限られたエピタキシャル装置でなければ実現できない成長速度である。成長温度を900℃以下にして成長速度を下げ条件を満たしても、その温度では良好な品質のエピタキシャル層は得られない。
エピタキシャル成長反応を遅くする手法として、成長温度を下げること以外に、エピタキシャル反応の生成ガスである塩化水素ガスを反応ガスに添加する方法がある。酸化膜をマスクとする選択エピタキシャル成長は以前からおこなわれてきた。特に、酸化膜上では核成長が起こり難くなりエピタキシャル成長がシリコン結晶の露出部分だけで進むようにできる。トリクロロシランを原料とするエピタキシャル反応は次式で表される。
Figure 0007303971000005

この反応は逆反応も起こる平衡反応であるが、反応領域(基板表面近傍)へ一定の濃度のSiHClが供給されてエピタキシャル成長が進み、生成ガスの塩化水素ガス(HCl)がその領域から同時に排出され、一定速度で反応が進行する非平衡定常反応である。反応ガスにHClガスが添加されると生成ガスのHClが境界層を拡散して反応炉外への排出される速度が低下し、エピタキシャル反応起こる基板表面のHClガスが高濃度となり、逆反応の速度k-1は[HCl]に比例して高くなることからエピタキシャル反応は遅くなる。(ルシャトリエの原理)一定温度下でSiHClの供給条件を変えずにHClを添加することにより成長速度を1桁以上低下させることができる。
図8に塩化水素ガスを添加した反応ガスによりシリコン(鏡面)基板にエピタキシャル成長した時の成長速度と添加量の関係の例を示した。SiHClと同程度の流量のHClガスを添加した時、成長速度は10分の1以下に低下する。平行平板型のエピタキシャル装置を用いた図8の場合、反応ガスの流量は70Lから75L程度に設定されているので、HClガス添加時の反応ガス総流量の増加、SiHClの濃度Cの低下は5%以下である。塩化水素を添加することで、成長温度を変化させずにエピタキシャル成長において、シリコンソースの供給量と成長速度を独立に制御できることが理解される。
CVDのステップカバレッジの教科書ではCVDの条件と堆積膜の形状について図10のように纏められている。サーフェスマイグレーションがコンフォーマルな膜形状を得るために重要であることが解る。シリコンのエピタキシャル成長でサーフェスマイグレーションが殆ど起こらない状況は、シリコンソースが基板に到達した時、高温ではk≫h、Cs≒0となりサーフェスマイグレーションが起る前に直ちに反応しシリコン原子が結晶格子に取り込まれる拡散律速的反応(図10(c))か、低温でサーフェスマイグレーションが殆ど起こらない状態の何れかである。自然酸化膜が除去されていれば水素雰囲気下で900℃より高温になっていくとシリコン原子のサーフェスマイグレーションが徐々に活発化し、面粗さの低下、つまり、表面積の低下による表面エネルギーの低下が始まり、1100℃では1,2分でトレンチ開口部の曲率が低下し閉塞が起こる現象(シリコン・オン・ナッシング)が観察されることが知られている。900度~1100℃の温度領域の反応律速的成長で図10(A)のようなコンフォーマルな成膜が実現されると考えられる。
以上の検討から、1150℃前後の拡散律速成長となる高温T1℃において、ある反応ガス条件下でのシリコン(鏡面)基板へのエピタキシャル成長速度がXμm/minであるとき(請求項2の第1の準備工程)、反応ガス条件を変えることなく成長温度を1000℃前後のT2℃に下げて選択エピタキシャル成長をおこなったときのシリコンソースの基板表面への供給量は[(T1+273)/(T2+273)]-3/2X μm/minとなる。前記条件の反応ガスに塩化水素ガスを添加してシリコン基板に選択エピタキシャル成長した時の成長速度が[(T+273)/(T2+273)]-3/2X/(A+1) μm/minより低くなる流量の塩化水素(請求項2の第2の準備工程による)を反応ガスに添加してアスペクト比Aのトレンチ基板に選択エピタキシャル成長をすることにより、トレンチが形成された基板への選択エピタキシャル成長においてシリコンソースの供給量が消費量上回るようにすることができることが解る。選択エピタキシャル成長の成長温度は900度~1100℃の間にある必要があるが、950℃~1050℃の範囲であることが望ましい。
トリクロロシランを水素ガスに混合した反応ガスに塩化水素ガスを添加して選択エピタキシャル成長でトレンチを埋め込んだ場合、シリコン基板へのエピタキシャル成長と比較してトレンチ部の局所的な成長速度が遅くなることが成長途中のトレンチを断面SEMで観察した結果等で確認される。トレンチ部において基板表面積あたりエピタキシャル成長で消費されるシリコンソースの量がアスペクト比に対応して大きくなることから、反応生成物のHClガスの基板表面積当たりの発生量も大きくなる。HClガスは境界層を拡散してメインガスフローに流入し反応室から排出されるので、エピタキシャル成長がおこなわれる境界層基板側のHClガス濃度はシリコン基板の場合より高くなる。トレンチ深さが40~50μm、pnコラムのピッチ10μm以下、アスペクト比が10から20のトレンチ基板では、請求項2の第2準備工程での反応ガスへのHClの添加量を成長速度が1.2X/(A+1)μm/min以下になる条件で決定すればボイドの発生が起らないことが経験的に知られている。(図14参照)又、例えば、トレンチの幅が1μm以下、深さが10μm以下、耐圧が100V前後の低耐圧PMOSをトレンチ埋め込み型SJMOSで製造する場合や、トレンチ深さが80~100μmの耐圧1000V前後のSJMOSを製造する場合には境界層基板側のHClガス濃度を計算で求められないので、最適なHClの添加量は経験的な方法で決定する必要がある。
これ迄のトレンチ埋め込み型SJMOSの製造技術開発では、反応ガスにハロゲン化物ガスを拡散律速条件で添加してエピタキシャル成長と並行して開口部近傍でエッチングや成長を阻害してトレンチ底部より開口部の成長速度小さくして閉塞が起こらないようにするという手法が提案され具体的方策が検討された。しかし、それが実現されていることの確認は成長速度の測定が難しく明確にはなされていない。塩化水素ガスを添加し、ジクロロシランやトリクロロシランをソースとする場合には、図10に示したように、生成物のHClガスがトレンチ内に充満し開口部から境界層を拡散し反応炉から排出されるので、トレンチ開口部付近の成長速度を底部より低くすることは原理的に無理と考えられる。
トレンチが形成された基板を選択エピタキシャル成長で埋め込む時、シリコン基板での成長速度が[(T1+273)/(T2+273)]-3/2X/(A+1)μm/min以下となる、ように反応ガスへのHClガスの添加流量を決定したが、トレンチの基板の実効反応面積が大きくなると反応領域の塩化水素ガス濃度がシリコン鏡面基板の場合より高くなり、成長速度が多くの場合1.2X/(A+1)μm/min以下になるHClガスの添加流量で良いことが経験的に判った。また、これ迄トレンチ基板全面にトレンチが形成されていることを前提にしていた。しかし、トレンチをRIEによりエッチングする際マスクとして用いた酸化膜を残した場合や、素子周辺部やスクライブライン等のトレンチが形成されない部分があるの場合や、マスクパターン等の状況に対応するために若干の調整が必要になることもある。
トレンチ埋め込みエピタキシャル成長は単結晶にトレンチを加工してエピタキシャル成長で埋め込むので、そのために有利な結晶面の選択が重要であることを[0019]で大まかに説明をしている。ボイドが発生しないようにトレンチを高速なエピタキシャル成長で埋め込むことが最大の課題である。主要な結晶面でのエピタキシャル成長速度は(110)>(100)>(111)となる。成長速度の速い面では成長面へのシリコンソースの供給速度が同じであれば、成長速度の速い面のシリコンソースの濃度が低くなる。図11に示したように結晶面の異なる面が隣接しているとサーフェスマイグレーションにより表面のシリコンソースの高濃度面から低濃度の面にシリコンソースが拡散して結晶に取り込まれるのでその部分の成長速度が速くなる。(100)表面/(110)側面の構造では接合部に(111)面が生じ、そこから表面濃度の低い(110)側に多くのシリコンソースがサーフェスマイグレーションしてトレンチ側壁上部に成長速度の速い部分が生じてボイドの発生の原因となる。表面、側壁が共に(100)面の場合は、接合部に(110)が生じ、側壁(100)の上部に成長速度の速くなる部位は生じないのでトレンチ開口部で閉塞が加速されることはない。酸化膜があっても状況は変わらない。埋め込みエピタキシャル成長中にサーフェスマイグレーションが程々大きい時には、トレンチ開口部にエネルギー的に安定な(110)が形成され、トレンチ底部ではコーナー部での表面積が小さくなるように成長が進み(310)が形成されてボイドが発生し難い形状となり、トレンチの埋め込みが進んでいく。
本方法によれば、反応性イオンエッチングで基板にディープトレンチを形成する手段に、貫通電極形成に採用されされているトレンチを高速でエッチングすることができるボッシュ法を用いることができる。ボッシュ法に特有な微小な凹凸であるスキャロップのみでなく、トレンチの側面の角度を極めて厳密に加工しなくても、サーフェスマイグレーションが適度の大きさを持つようにするので、表面エネルギーが低下、安定するために表面積が小さくなるようにトレンチが埋め込まれていく。トレンチ開口部で曲率が低下して閉塞が生じることがなければ、ボイドが発生することなく、トレンチ内の表面積が小さくなり、やがて平坦化されるように埋め込まれていく。
サーフェスマイグレーションが大きい1000℃のエピタキシャル成長条件でトレンチが埋め込まれていく時、図12にトレンチ埋め込み工程の初期、中期、終了時の断面概略図と中期の断面SEM写真を示した。表面エネルギーが低下するように底部の角から埋め込まれていくことが断面SEMにより観察される。又、表面、トレンチ側壁が共に(100)面の場合トレンチ底部では表面エネルギーの低い(310)面、トレンチ開口部では(110)面が形成される。トレンチ部の反応面積が徐々に低下していくので、成長速度を高くしてもシリコンソースのトレンチ部での消費量が境界層を通してトレンチ部に供給されるシリコンソースの量を上回らないようにできる。このことを考慮して適切な条件で塩化水素ガス濃度を低下させていくなり温度を上げることによりトレンチ部の埋め込み状態に応じて成長速度をあげて短時間でボイドが発生しないように埋め込むことができる。このような対応により、マルチエピ法より優れた生産性、低コストでSJMOSの製造が可能になる。
このようにして求められた選択エピタキシャル成長条件下で、1000℃近傍の温度においてトレンチ埋め込みエピタキシャル成長を行うと、トレンチの内部がエピタキシャル層で徐々に埋まっていき、最終的にトレンチ全体がエピタキシャル層13で埋め込まれる。基板全面でトレンチ部がエピタキシャル層で埋め込まれた後も、さらにエピタキシャル成長を続けてオーバーデポをおこなうと図3(d)に示すように、トレン上部から酸化膜上にエピタキシャル層が広がる。酸化膜が無い場合はサーフェスマイグレーションにより表面エネルギーを小さくなるように表面が平坦になっていく。埋め込みエピタキシャル成長の適切な終点はトレンチの形状や成長速度の面内バラツキにより決まるので、最初は外観を観察しながら判断して決定する。
次に、トレンチ5の開口部の上方に形成されたオーバーデポ層を、コロイダルシリカを用いたメカノケミカル研磨により除去する。この時、トレンチ上部の酸化膜は研磨のストッパーとして働き、酸化膜上のシリコンを研磨で除去した段階で図3(e))のようになる。この段階のアライメントマークをもとに図3(f)で利用できる新たなアライメントマー
クを形成することができる。酸化膜を湿式エッチングで除去して1μm~2μmのシリコンの段差を研磨で除去することで、平坦な表面を持つ図3(f)のような基板が得られる。酸化膜を完全に除去してトレンチ埋め込みエピタキシャル成長をおこなった場合には、トレンチ幅程度のオーバーデポで平坦な表面が得られる。それ以降は、アライメントに関する工夫で、pウエルをp型トレンチ上に形成し、以降は通常のPMOSの製造工程によりSJMOSの製造工程を進めることができる。
以下、本発明の実施例により本発明をより具体的に説明するが、これらに限定されるものではない。本発明では、成長圧力を下げることで、トレンチ深さを100μm程度まで深くすることも、10μm以下の微細な浅いトレンチにも対応可能である。
200mmφの(100)n+型シリコン単結晶基板11上にエピタキシャル成長法により1Ωcm前後の抵抗率、厚さ55μmのエピタキシャル層12を成長させ、n/n+型シリコンエピタキシャル基板1を準備した。この基板1は、表面方位及びノッチ方位が共に(100)のものである。次に、基板1の表面に、酸化膜を形成し、フォトリソグラフィーにより、酸化膜マスクパターンを形成した後、側壁、底面の結晶方位が(100)であるトレンチ20をRIE(ボッシュ法)により深さが50μmとなるように形成した。トレンチの線幅は、3.0μm、4.5μm、6.0μm(ピッチ幅はそれぞれ6μm、9μm、12μm)である。エッチング終了後に、ポリマー洗浄とSC1洗浄により、ダメージを除去しマスク酸化膜はそのまま残して次工程を進めた。
本方法では、トレンチ20をエピタキシャル成長で埋め込む工程ではシリコン低抵抗(鏡面)基板へのエピタキシャル成長による二つの準備工程を先ず実施する。高温の拡散律速条件でのエピタキシャル成長速度は時間当たりシリコン基板に供給されるシリコンソースの供給量である。その供給量が大きくなる反応ガス条件と具体的な供給量を把握する第一工程と、前記成長ガス条件下で成長温度をトレンチ埋め込みエピタキシャル成長に好適な温度に下げた時の基板単位表面へのシリコンソースの供給量を第一工程で求めた実測値から計算により求め、アスペクト比Aのトレンチ基板を前記好適な温度で選択エピタキシャル成長により埋め込む際に、基板単位表面に時間あたり供給されるシリコンソースの量をその領域の選択エピタキシャル成長で時間あたり消費されるシリコンソースの量が超えない成長速度に下げるために前記反応ガスに添加する塩化水素ガスの流量をシリコン基板へのエピタキシャル成長により求める第二工程をおこない、この二つの工程で求められた前記成長ガスと添加塩化水素ガス流量を用いた成長条件によりトレンチ20を選択エピタキシャル成長で埋め込むことを特徴としている。(図9参照)
図4と類似のアプライドマテリアルズ社製エピタキシャルリアクター(センチュラ)を用い、第一の準備工程を進めた。n+(100)鏡面ウエーハ上に1150℃でエピタキシャル成長速度Xμm/minが5.0μm/min以上となるようなエピタキシャル成長ガス条件を求めた。量産では成長速度5.0μm/min以上の高速成長は反応管へのポリシリコン付着が問題になりそのような条件は用いられないのが一般的であるが、トレンチ埋め込みエピタキシャル成長は1000℃で行うので反応生成物の反応管への付着問題は軽微である。シリコンソースは高濃度のソースの供給に有利なトリクロロシランを用いた。液体のトリクロロシラン(SiHCl)中に水素ガスをバブリングさせて水素ガスに濃度20%のトリクロロシランを含有する混合ガスをシリコンソースガスとして用いた。キャリア水素ガスを50slmに設定し、そこに前記シリコンソースガスを混合して、成長速度Xμm/minが5.0μm/minとなるシリコンソースガスの流量5Mslmを求めた。成長圧力条件は750torrの微減圧下でおこなった。水素ガスに希釈した微量のジボランも供給ガスに添加し、エピタキシャル層の抵抗率が1Ωcm前後となるようにした。、その混合ガスの流量を調整はマスフローコントローラを用いて行った。エピタキシャル層の面内膜厚分布は土2.5%以下、抵抗率の面内分布は土3,5%以下になっていることを確認した。高速成長条件は基板表面へのシリコンソース流速を大きくし反応律速的埋め込み成長を高速で行うことを可能にする。
次に第二の準備工程を進めた。新たなn+(100)シリコン基板をエピタキシャル装置に仕込み、温度を1100℃に上昇して3分間水素雰囲気でプレアニールを行った後、1000℃に温度を低下させて、前記1150℃でのエピタキシャル成長時と反応ガスの流量条件(キャリア水素ガス50slmと水素ガスに20%のトリクロロシランが含有されたシリコンソースガス5Mslm)を変えることなく、そこに塩化水素ガスを添加してシリコン基板に対する成長速度が0.15μm/min、0.30μm/min、0.45μm/min、0.60μm/minとなる各々の成長速度に対応する塩化水素ガス流量Hslmを求めた。
前記第一、第二の準備工程により求めたエピタキシャル成長条件により、トレンチ開口幅が3.0μm、4.5μm、6.0μmの3種類のトレンチ形成基板に、シリコン基板に対する成長速度が0.15μm/min、0.30μm/minn、0.45μm/min、0.60μm/minとなる前項で求めた各流量Hslmの塩化水素ガスを添加した反応ガス条件で、各条件につき4枚のトレンチ形成基板に選択エピタキシャル成長によりトレンチを埋め込んだ。その際、所定の量のジボランを添加することにより、埋め込みエピタキシャル領域をp型1Ωcm程度になるようにして、後に走査型電子顕微鏡で観察する際、僅かなエッチング量となる欠陥エッチングを行いp型、n型の境界と欠陥の位置関係が判るようにして観察をした。エピタキシャル層の抵抗率の厳密な制御は行っていない。また、途中の状態を確認するために、トレンチ開口幅が4.5μmの予備の基板について埋め込みエピタキシャル成長を途中で中断したものを準備した。
エピタキシャル成長工程では、トレンチ基板をサセプター23に載置した後、水素雰囲気中でウエーハの温度を1100℃に短時間昇温して自然酸化膜を除去した後に、1000℃に温度を下げ、既に求められている条件で各ガスをエピタキシャル成長中変えることなく供給し、選択エピタキシャル成長によりトレンチを埋め込んだ。成長時間はトレンチ開口幅、アスペクト比よって変わるので、酸化膜上にエピタキシャル膜が成長し始めた時点で、ウエーハ外周部と中心部のバラツキを見ながら適当な時点で各条件について埋め込みエピタキシャル成長の終点を決め、冷却し取り出した。埋め込みエピタキシャル成長の時間は、シリコン基板への成長速度を側壁の成長速度としてトレンチ幅から予想される時間の1.5~3倍の成長時間が必要であった。
前項で各種のトレンチ形状の基板をエピタキシャル成長で埋め込んだウエーハを各条件につき3枚ずつウエーハ中心と一直線上のR/2と外周10mmの計5点からチップを切り出し劈開して、トレンチの位置が分る様にするために欠陥エッチングを行った後、走査型電子顕微鏡を用いてボイドの発生状況を観察した。SEMではトレンチのピッチにより観察できるトレンチの数が異なるが、視野範囲のすべてのトレンチにボイドが観察されなかったものを良品とした。その結果を図14に示した。ここで、各ウエーハ5点の測定点について、〇はボイドの発生が全く見られなかったもの、△は一部の測定点でボイドが見られたもの、×は大半の測定点でボイドがみられたものである。カッコ内に示した分数の分子は5か所のうちボイドが見られなかった位置の数である。△のものでのボイドの発生は大半が外周10mmより外側でおきていた。参考のために、1.2X/(A+0.5)、この場合は6μm/minをアスペクト比に0.5を加えた値で割った成長速度の値を破線で図に示している。成長を途中で止めたトレンチ開口幅が4.5μmの基板を劈開してSEM観察を行った結果は図13に示した。
この結果から、1150℃で5.0μm/minの高速成長のガス条件に塩化水素ガスを添加して、1000℃での成長速度をトレンチのアスペクト比Aとしたとき1.2X/(A+0.5)以下の成長速度のエピタキシャルの成長条件でトレンチを埋め込むことでボイドの発生なしにエピタキシャル成長で埋め込むことができることが確認された。同時に、トレンチ幅が3μm、深さが50μmのトレンチを、ボイドが発生しないと考えられるシリコン基板への成長速度が0.30μm/minとなるエピタキシャル成長条件で埋め込むと、実際にボイドは殆ど発生しないことが確認できた。成長時間はオーバーデポを含めて20~30分であった。これ迄特許公報で報告された僅かなトレンチ埋め込みエピタキシャル成長時間と比較して、1/4から1/2以下の成長時間であると考えられる。
残りの1枚のウエーハについては、コロイダルシリカ系研磨剤を用いてオーバーデポ層を研磨により除去し、その後、酸化膜を湿式エッチングで除去した後、再研磨して鏡面状態とした。欠陥エッチングを行って、その基板の表面の結晶性を光学顕微鏡により調べた。ボイドは観察されず、酸化膜起因のスリップ転位が一部で僅かに観察されたが、積層欠陥密度は通常のエピウエーハと変わらないレベルであることを確認した。
1 エピタキシャル基板、2トレンチ基板、7 トレンチ底部、8 トレンチ開口部、9 マスク酸化膜、11n+型シリコン基板、 12 n型エピタキシャル層、13 p型埋め込みエピタキシャル層、14 pウエル、15 ソース, 16 ゲート電極、17 ゲート絶縁膜、18 ソース電極、19 ドレイン電極、20 トレンチ、21 ハロゲンランプ、22 天板、23 サセプター、24 ガス導入口、25,リフトピン、29 ガス排出口、31 シリコン基板、32 境界層、33、輻射温度計

Claims (6)

  1. シリコン基板に形成したストライプ状のトレンチを、該シリコン基板と異なる導電型のエピタキシャル層で埋め込むスーパージャンクション構造の製造において、枚葉型反応器による選択エピタキシャル成長法を用いる方法であって、
    第一の準備工程で、トレンチを形成する前記シリコン基板と同じ結晶方位のシリコン低抵抗基板1へのエピタキシャル成長が安定的な高速拡散律速成長となる条件を設定し、その時の反応ガスのシリコンソースガス流量とキャリア水素ガス流量条件とその温度での成長速度から前記シリコン基板単位表面へ単位時間に供給されるシリコンソースのモル量を求め、更に成長温度のみを変化させた時の各温度でのシリコンソースの供給量を計算で求め、
    第二の準備工程で、前記反応ガスの各流量条件を変えず、前記シリコン基板に形成されたアスペクト比Aのトレンチを埋め込む選択エピタキシャル成長の温度を1000土50℃の好適な温度に下げ、該温度で、第一の準備工程で求めた前記シリコン基板単位表面へ時間当たり供給されるソースのモル量を、その単位表面領域でのアスペクト比Aのトレンチを埋め込むエピタキシャル成長で時間当たり消費されるソースのモル量が超えないエピタキシャル成長速度を計算から求め,トレンチが形成される前記シリコン基板と同じ結晶方位のシリコン低抵抗基板への前記反応ガス条件に塩化水素ガスを添加した前記好適な成長温度での選択エピタキシャル成長の速度が計算から求めた速度となる反応ガスに添加する塩化水素ガス流量を把握し、
    前記第一及び第二の準備工程により設定された反応ガス条件と好適な成長温度と把握された塩化水素ガスの添加流量条件を用いた選択エピタキシャル成長方法で前記シリコン基板に形成されたトレンチを埋め込むことにより、トレンチ部の単位表面でシリコンソースの消費量をソースの供給量が上回る反応律速的エピタキシャル成長を進行させることで、ボイドが生じない範囲で高速な成長速度でトレンチを埋め込むことを特徴とするスーパージャンクション構造を有する半導体素子の製造方法。
  2. 第一の準備工程で、前記シリコン基板と同じ結晶方位のシリコン低抵抗基板1へのエピタキシャル成長が拡散律速反応となる1100~1150℃の範囲の成長温度T1で、成長速度Xμm/minが3.0μm/min以上、5.0μm/min以下となるように反応ガスのシリコンソースガス流量と水素キャリアガスの流量条件G1を設定し、第二の準備工程で該反応ガス流量条件G1を変更することなくアスペクト比Aのトレンチを埋め込むエピタキシャル成長温度T2℃を1000土50℃範囲に設定して、反応ガスに塩化水素ガスを添加してトレンチ形成する前記シリコン基板と同じ結晶面のシリコン低抵抗基板に選択エピタキシャル成長した時の成長速度が[(T1+273)/(T2+273)]-3/2 /(A+1)μm/min以下となる塩化水素ガスの添加流量を求めて、
    前記第一及び第二の準備工程により設定された反応ガスの流量条件、成長温度、塩化水素ガスの添加流量による選択エピタキシャル成長により前記シリコン基板に形成されたトレンチを埋め込むことにより、トレンチ全部位で、シリコンソースの供給量が消費量を上回る反応律速的エピタキシャル成長を進行させることにより、ボイドが生じない選択エピタキシャル成長工程でトレンチを埋め込むことを特徴とする請求項1に記載のスーパージャンクション構造を有する半導体素子の製造方法。
  3. 選択エピタキシャル成長により埋め込む前記シリコン基板に形成されたストライプ状のトレンチのピッチが10.0μm以下、且つ、アスペクト比10以上である場合、トレンチを埋め込む選択エピタキシャル成長において、トレンチが形成される前記シリコン基板と同じ結晶面のシリコン低抵抗基板に選択エピタキシャル成長した時の成長速度が1.2X/(A+1)μm/min以下となる、反応ガスに添加する塩化水素ガスの流量を求めて、その添加流量による選択エピタキシャル成長により前記シリコン基板に形成されたトレンチを埋め込むことを特徴とする請求項2に記載のスーパージャンクション構造を有する半導体素子の製造方法。
  4. トレンチが形成された前記シリコン基板表面のエピタキシャル成長速度がトレンチの長手方向側壁の結晶面でのエピタキシャル成長速度よりも高速又は同等となるような結晶面の組み合わせのうち、前記シリコン基板表面が(100)面、トレンチ側壁が(100)面、又は、前記シリコン基板表面が(110)面、トレンチ側壁が(111)面となるようにトレンチを加工した前記シリコン基板を用いることを特徴とする請求項1に記載のスーパージャンクション構造を有する半導体素子の製造方法。
  5. トレンチを形成する反応性イオンエッチングにおいて、生産性に優れた貫通電極用深堀エッチングに用いられるボッシュ法を用い、ボッシュ法に伴うエッチング面に生ずるスキャロップと呼ばれる微小な凹凸を、選択エピタキシャル成長の温度条件を1000土50℃として塩化水素ガスの添加流量により反応律速的条件を満たし、シリコンソースのサーフェスマイグレーションが大きいエピタキシャル条件として成長初期に成長面を平滑化することにより、マイクロボイドやミスフィット転位の発生がない良好な結晶品質のエピタキシャル層でトレンチを埋め込むことを特徴とする請求項1に記載のスーパージャンクション構造を有する半導体素子の製造方法。
  6. 請求項1において、トレンチがエピタキシャル成長により埋め込まれていくとトレンチ部の成長面積が減少し、シリコンソースの時間当たりの消費量が低下するので、その変化に対応して、反応律速的条件を保持できる範囲で塩化水素ガスの添加量を少なくし、或いは、成長温度を上昇させ埋め込みエピタキシャル成長速度を高速にして成長時間を短縮し生産性を向上させることを特徴とする請求項1に記載のスーパージャンクション構造を有する半導体素子の製造方法。
JP2022170586A 2022-10-25 2022-10-25 スーパージャンクション構造を有する半導体素子の製造方法 Active JP7303971B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022170586A JP7303971B1 (ja) 2022-10-25 2022-10-25 スーパージャンクション構造を有する半導体素子の製造方法
PCT/JP2023/027740 WO2024089963A1 (ja) 2022-10-25 2023-07-28 スーパージャンクション構造を有する半導体素子の製造方法
TW112129371A TWI851374B (zh) 2022-10-25 2023-08-04 具有超接面構造之半導體元件之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022170586A JP7303971B1 (ja) 2022-10-25 2022-10-25 スーパージャンクション構造を有する半導体素子の製造方法

Publications (2)

Publication Number Publication Date
JP7303971B1 true JP7303971B1 (ja) 2023-07-06
JP2024062620A JP2024062620A (ja) 2024-05-10

Family

ID=86996489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022170586A Active JP7303971B1 (ja) 2022-10-25 2022-10-25 スーパージャンクション構造を有する半導体素子の製造方法

Country Status (2)

Country Link
JP (1) JP7303971B1 (ja)
WO (1) WO2024089963A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070072398A1 (en) 2005-09-29 2007-03-29 Denso Corporation Method for manufacturing semiconductor device and epitaxial growth equipment
JP2007096139A (ja) 2005-09-29 2007-04-12 Denso Corp 半導体基板の製造方法
JP2009224606A (ja) 2008-03-17 2009-10-01 Shin Etsu Handotai Co Ltd スーパージャンクション構造を有する半導体素子の製造方法
JP2009231308A (ja) 2008-03-19 2009-10-08 Shin Etsu Handotai Co Ltd スーパージャンクション構造を有する半導体素子の製造方法
JP2012169391A (ja) 2011-02-14 2012-09-06 Sumco Corp トレンチ埋め込みエピタキシャル成長条件の最適化方法
US20130105796A1 (en) 2011-10-31 2013-05-02 Shanghai Hua Hong Nec Electronics Company, Limited Semiconductor structures and fabrication method
JP2014112594A (ja) 2012-12-05 2014-06-19 Denso Corp スーパージャンクション構造を有する半導体装置の製造方法
JP2019140258A (ja) 2018-02-09 2019-08-22 富士電機株式会社 炭化珪素半導体装置の製造方法および炭化珪素基板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070072398A1 (en) 2005-09-29 2007-03-29 Denso Corporation Method for manufacturing semiconductor device and epitaxial growth equipment
JP2007096139A (ja) 2005-09-29 2007-04-12 Denso Corp 半導体基板の製造方法
JP2009224606A (ja) 2008-03-17 2009-10-01 Shin Etsu Handotai Co Ltd スーパージャンクション構造を有する半導体素子の製造方法
JP2009231308A (ja) 2008-03-19 2009-10-08 Shin Etsu Handotai Co Ltd スーパージャンクション構造を有する半導体素子の製造方法
JP2012169391A (ja) 2011-02-14 2012-09-06 Sumco Corp トレンチ埋め込みエピタキシャル成長条件の最適化方法
US20130105796A1 (en) 2011-10-31 2013-05-02 Shanghai Hua Hong Nec Electronics Company, Limited Semiconductor structures and fabrication method
JP2014112594A (ja) 2012-12-05 2014-06-19 Denso Corp スーパージャンクション構造を有する半導体装置の製造方法
JP2019140258A (ja) 2018-02-09 2019-08-22 富士電機株式会社 炭化珪素半導体装置の製造方法および炭化珪素基板の製造方法

Also Published As

Publication number Publication date
TW202418370A (zh) 2024-05-01
WO2024089963A1 (ja) 2024-05-02
JP2024062620A (ja) 2024-05-10

Similar Documents

Publication Publication Date Title
JP4695824B2 (ja) 半導体ウエハの製造方法
TWI420573B (zh) 積體電路結構的形成方法
CN101345196B (zh) 用于制造半导体器件的方法以及外延生长装置
US10950487B2 (en) Method for forming an alignment mark
US9905638B1 (en) Silicon epitaxy for high aspect ratio, substantially perpendicular deep silicon trench
TW201411700A (zh) 磊晶渠溝塡充中之摻雜劑分布控制之製程及結構
TW201916260A (zh) 半導體結構的形成方法
US20110287613A1 (en) Manufacturing method of superjunction structure
US20130149838A1 (en) Process for filling deep trenches in a semiconductor material body, and semiconductor device resulting from the same process
US20160126337A1 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
CN113964024B (zh) 半导体器件的制备方法
SE533083C2 (sv) Förfarande för framställning av halvledaranordning
TW201826529A (zh) 半導體裝置及半導體裝置之製造方法
JP7303971B1 (ja) スーパージャンクション構造を有する半導体素子の製造方法
TWI851374B (zh) 具有超接面構造之半導體元件之製造方法
US11610979B2 (en) Profile control in forming epitaxy regions for transistors
US7776679B2 (en) Method for forming silicon wells of different crystallographic orientations
CN113793802A (zh) 晶圆背封结构及制造方法
JP2004158835A (ja) 超接合半導体素子の製造方法
TW202145357A (zh) 半導體結構及其製造方法
JP5200604B2 (ja) スーパージャンクション構造を有する半導体素子の製造方法
CN117558762B (zh) 一种沟槽型mosfet及制备方法
JP7548137B2 (ja) 半導体装置の製造方法
TWI520335B (zh) 形成半導體結構的方法與設備
US10868146B2 (en) Method for producing a semiconductor device having a superjunction structure, first and second trenches and a trench structure in the second trench

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221025

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230605

R150 Certificate of patent or registration of utility model

Ref document number: 7303971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150