JP7285251B2 - 高屈折率材料のh2補助傾斜エッチング - Google Patents

高屈折率材料のh2補助傾斜エッチング Download PDF

Info

Publication number
JP7285251B2
JP7285251B2 JP2020522669A JP2020522669A JP7285251B2 JP 7285251 B2 JP7285251 B2 JP 7285251B2 JP 2020522669 A JP2020522669 A JP 2020522669A JP 2020522669 A JP2020522669 A JP 2020522669A JP 7285251 B2 JP7285251 B2 JP 7285251B2
Authority
JP
Japan
Prior art keywords
layer
reactive
grating
gas
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020522669A
Other languages
English (en)
Other versions
JP2021503709A (ja
Inventor
ニハール ランジャン モハンティ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meta Platforms Technologies LLC
Original Assignee
Meta Platforms Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/001,694 external-priority patent/US10684407B2/en
Application filed by Meta Platforms Technologies LLC filed Critical Meta Platforms Technologies LLC
Publication of JP2021503709A publication Critical patent/JP2021503709A/ja
Application granted granted Critical
Publication of JP7285251B2 publication Critical patent/JP7285251B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/16Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • G02B2027/0109Head-up displays characterised by optical features comprising holographic elements comprising details concerning the making of holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Drying Of Semiconductors (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Plasma Technology (AREA)
  • Eyeglasses (AREA)
  • ing And Chemical Polishing (AREA)

Description

背景技術
ヘッドマウントディスプレイ(HMD)またはヘッドアップディスプレイ(HUD)システムなどの人工現実システムは、一般的に、仮想環境において物体を描写する人工画像を提示するように構成されるディスプレイを含む。ディスプレイは、仮想現実(VR)、拡張現実(AR)、または複合現実(MR)アプリケーションにあるように、仮想物体を表示する、または現実物体の画像と仮想物体の画像を組み合わせることができる。例えば、ARシステムにおいて、ユーザは、例えば、透明ディスプレイガラスまたはレンズを通して見ること(光学シースルー方式と称されることが多い)、またはカメラによって取り込まれた周囲環境の表示画像を見ること(ビデオシースルー方式と称されることが多い)によって、仮想物体の画像(例えば、コンピュータ生成画像(CGI))と、周囲環境の画像との両方を見ることができる。
1つの例示の光学シースルー方式ARシステムは、導波管ベースの光ディスプレイを使用してよく、この場合、映像の光は導波管(例えば、基板)に結合され、導波管内で伝搬し、種々の場所で導波管から外へ結合され得る。いくつかの実装形態では、映像の光は、傾斜表面レリーフグレーティングなど、回析光学素子を使用して導波管にまたは導波管から外へ結合されてよい。多くの場合、望ましい速度で所望の外形で傾斜表面レリーフグレーティングを作製することは困難である場合がある。
本開示は一般的に、傾斜構造を作製するための技法に関し、より具体的には、二酸化ケイ素、窒化ケイ素、二酸化チタン、またはアルミナなどのさまざまな材料上で傾斜構造をエッチングするための技法に関する。化学補助反応性イオンビームエッチング(CARIBE)技法を使用して、高対称性傾斜構造、または特殊材料(例えば、窒化ケイ素、有機材料、または無機金属酸化物)における傾斜構造などの傾斜構造をエッチングする。CARIBEプロセス(例えば、化合物、ラジカル、またはイオン)は、傾斜構造の所望のエッチング選択性、エッチング速度、および外形を達成するためにより正確に制御可能である。
いくつかの実施形態では、材料層における傾斜表面レリーフ構造を作製する方法は、反応性イオン源発生装置に第1の反応性ガスを注入することと、反応性イオン源発生装置において、反応性イオンを含むプラズマを生成することと、材料層に向けて平行反応性イオンビームを形成するためにプラズマから反応性イオンの少なくとも一部を引き出すことと、第2の反応性ガスを材料層上に注入することと、を含む。平行反応性イオンビームおよび第2の反応性ガスは、傾斜表面レリーフ構造を形成するために材料層を物理的と化学的の両方でエッチングする。いくつかの実施形態では、方法は、傾斜表面レリーフ構造の所望の傾斜角度に基づいて材料層を回転させることも含む。
いくつかの実施形態では、材料層において傾斜表面レリーフ構造を作製するための化学補助反応性イオンビームエッチング(CARIBE)システムが開示される。CARIBEシステムは、第1の反応性ガスを使用してプラズマを生成するように構成される反応性イオン源発生装置を含み、ここで、プラズマは反応性イオンを含む。CARIBEシステムは材料層に向けて平行反応性イオンビームを形成するためにプラズマにおける反応性イオンの少なくとも一部を引き出しかつ加速させるように構成される1つまたは複数の配列コリメータグリッドも含む。CARIBEシステムは、材料層上に第2の反応性ガスを注入するように構成されるガスこんろをさらに含む。平行反応性イオンビームおよび第2の反応性ガスは、材料層において傾斜表面レリーフ構造を形成するために材料層を物理的と化学的の両方でエッチングする。いくつかの実施形態では、CARIBEシステムは、基板を保持しかつ回転させるように構成される回転ステージを含む。
いくつかの実施形態では、Hガスまたはヘリウムガスなどの低分子量ガスを、誘導結合プラズマ(ICP)チャンバなどのイオン源発生装置における(例えば、CF、CHF、CH2F2、CH3F、C4F8、C4F6、C2F6、C2F8、NF、SF、CLF、NO、N、O、SO、COSなどを含む)ガスに加えられてよい。Hイオンは、イオン源発生装置において生成されてよく、Siなど、エッチングされる基板に向けて加速させてよい。Si基板に進入するHイオンは基板においてSiHを形成することができ、これは、SiF、NF、HCNなど、揮発性材料を形成するために物理および化学エッチングによってはるかに容易に除去され得る。そのように、高対称性を有する深傾斜構造は、より高いエッチング速度およびエッチング残渣の蓄積の最小化により高屈折率材料上により効率的にかつより精確にエッチング可能である。
補助イオンビームエッチングが使用されるいくつかの実施形態では、半導体加工に使用されるイオン源発生装置のチャンバ(すなわち、内部空洞)の表面層は、酸化アルミニウムまたはYなどの酸化物材料と置き換えられることで、表面層に進入するおよび/または表面層と反応するチャンバにおいて生成されるHイオンによって引き起こされる表面層の物理的性質および/または化学的性質の変化を回避することができる。
この要約は、特許請求される主題の重要なまたは本質的な特徴を特定することを意図するものでもないし、特許請求される主題の範囲を判断するために分離して使用されることも意図されていない。主題は、本開示の明細書全体の適切な部分、全ての図面またはいずれかの図面、およびそれぞれの特許請求項を参照することにより理解されるものとする。前述の事項については、他の特徴および例と共に、以下の明細書、特許請求の範囲、および添付の図面においてより詳細に後述される。
本発明による実施形態は、とりわけ、添付の特許請求項に開示され、ここで、1つの特許請求項の分類に述べられる任意の特徴、例えば方法は、別の特許請求項の分類、例えば、システムにおいても特許請求可能である。添付の特許請求の範囲に対する従属関係または参照は、単に形式的な理由で選択されている。しかしながら、添付の特許請求の範囲で選択された従属関係にかかわらず、請求項およびその特徴の任意の組み合わせが、開示され、かつ特許請求できるように、任意の前の請求項(とりわけ、多数項従属)への意図的な参照から生じる任意の主題も特許請求可能である。特許請求可能である主題は、添付の特許請求の範囲に記載される特徴の組み合わせだけでなく、特許請求の範囲における特徴の任意の他の組み合わせも含み、特許請求の範囲に述べられるそれぞれの特徴は他の任意の特徴または特許請求の範囲における他の特徴の組み合わせと組み合わせ可能である。さらに、本明細書に説明されるまたは描写される実施形態および特徴のいずれかは、別々の請求項において、および/または本明細書に説明されるまたは描写される任意の実施形態もしくは特徴と、または添付の特許請求項の特徴のいずれかとの任意の組み合わせにおいて特許請求可能である。
一実施形態では、材料層における傾斜表面レリーフ構造を作製する方法は、反応性イオン源発生装置に第1の反応性ガスを注入することと、反応性イオン源発生装置において、反応性イオンを含むプラズマを生成することと、材料層に向けて平行反応性イオンビームを形成するためにプラズマから反応性イオンの少なくとも一部を引き出すことと、第2の反応性ガスを材料層上に注入することと、を含み、ここで、平行反応性イオンビームおよび第2の反応性ガスは、傾斜表面レリーフ構造を形成するために材料層を物理的と化学的の両方でエッチングする。
一実施形態では、方法は、傾斜表面レリーフ構造の所望の傾斜角度に基づいて材料層を回転させることをさらに含む。
一実施形態では、第1の反応性ガスは、CF、CHF、N、O、SF、Cl、BCl、HBr、H、Ar、He、またはNeのうちの少なくとも1つを含む。
一実施形態では、材料層は、半導体基板、SiO層、Si材料層、酸化チタン層、アルミナ層、SiC層、SiO層、非晶質シリコン層、スピンオンカーボン(SOC)層、非晶質炭素層(ACL)、ダイアモンド状炭素膜(DLC)層、TiO層、AlO層、TaO層、またはHFO層を含む。
一実施形態では、反応性イオン源発生装置においてプラズマを生成することは、反応性イオン源発生装置の誘導結合プラズマ発生装置にRF信号を印加することを含む。
一実施形態では、平行反応性イオンビームを形成するためにプラズマから反応性イオンの少なくとも一部を引き出すことは、反応性イオン源発生装置に隣接した引き出しグリッドに引き出し電圧を印加することと、反応性イオンの少なくとも一部を引き出しかつ加速させるために加速グリッドに加速電圧を印加することと、を含み、ここで、引き出しグリッドおよび加速グリッドは配列され、加速電圧は引き出し電圧より低い。
一実施形態では、第2の反応性ガスを注入することは、ガスこんろを使用して材料層上に第2の反応性ガスを注入することを含む。
一実施形態では、第2の反応性ガスは、CF、CHF、N、O、SF、Cl、BCl、またはHBrのうちの少なくとも1つを含む。
一実施形態では、方法は、平行反応性イオンビームおよび第2の反応性ガスを使用して材料層をエッチングする前に平行反応性イオンビームを中和することをさらに含む。
一実施形態では、平行反応性イオンビームを中和することは、平行反応性イオンビームに電子ビームを注入することを含む。
一実施形態では、傾斜表面レリーフ構造は傾斜表面レリーフ光学グレーティングを含む。
一実施形態では、傾斜表面レリーフ光学グレーティングは複数のリッジを含み、それぞれのリッジのリーディングエッジはリッジのトレーリングエッジに平行である。
一実施形態では、リーディングエッジの傾斜角度およびトレーリングエッジの傾斜角度は、材料層の面法線に対して30度を上回る。
一実施形態では、傾斜表面レリーフ光学グレーティングの深さは100nmを上回る。
一実施形態では、傾斜表面レリーフ光学グレーティングのデューティサイクルは60%を上回る。
一実施形態では、材料層において傾斜表面レリーフ構造を作製するための化学補助反応性イオンビームエッチング(CARIBE)システムは、第1の反応性ガスを使用してプラズマを生成するように構成される反応性イオン源発生装置であって、プラズマは反応性イオンを含む、反応性イオン源発生装置と、材料層に向けて平行反応性イオンビームを形成するためにプラズマにおける反応性イオンの少なくとも一部を引き出しかつ加速させるように構成される1つまたは複数の配列コリメータグリッドと、材料層上に第2の反応性ガスを注入するように構成されるガスこんろと、を含み、平行反応性イオンビームおよび第2の反応性ガスは、材料層において傾斜表面レリーフ構造を形成するために材料層を物理的と化学的の両方でエッチングする。
一実施形態では、CARIBEシステムは、平行反応性イオンビームを中和するために平行反応性イオンビームに電子ビームを注入するように構成される中和装置をさらに含む。
一実施形態では、CARIBEシステムは、基板を保持しかつ回転させるように構成される回転ステージをさらに含む。
一実施形態では、反応性イオン源発生装置は誘導結合プラズマ発生装置を含む。
一実施形態では、第1の反応性ガスは、CF、CHF、N、O、SF、H、Cl、BCl、HBr、Ar、He、またはNeのうちの少なくとも1つを含み、第2の反応性ガスは、CF、CHF、N、O、SF、Cl、BCl、またはHBrのうちの少なくとも1つを含む。
例示的な実施形態について、以下の図を参照して詳細に後述する。
ある特定の実施形態による例示のニアアイディスプレイの簡略図である。 ある特定の実施形態による例示のニアアイディスプレイの断面図である。 ある特定の実施形態による例示の導波管ディスプレイの等角図である。 ある特定の実施形態による例示の導波管ディスプレイの断面図である。 導波管ディスプレイを含む例示の人工現実システムの簡略ブロック図である。 ある特定の実施形態による導波管ディスプレイを使用する例示の光学シースルー拡張現実システムを示す図である。 例示の導波管ディスプレイにおける表示光および外部光の伝搬を示す図である。 ある特定の実施形態による例示の導波管ディスプレイにおける例示の傾斜グレーティング結合器を示す図である。 ある特定の実施形態による傾斜表面レリーフ構造を作製するための例示のプロセスを示す図である。 ある特定の実施形態による傾斜表面レリーフ構造を作製するための例示のプロセスを示す図である。 ある特定の実施形態による傾斜表面レリーフ構造を作製するための例示のプロセスを示す図である。 傾斜表面レリーフ構造を作製するための例示のイオンビームエッチングシステムを示す図である。 傾斜表面レリーフ構造を作製するための例示の化学補助イオンビームエッチング(CAIBE)システムを示す図である。 傾斜表面レリーフ構造を作製するための例示の反応性イオンビームエッチング(RIBE)システムを示す図である。 ある特定の実施形態による傾斜表面レリーフ構造を作製するための例示の化学補助反応性イオンビームエッチング(CARIBE)システムを示す図である。 RIBEプロセスを使用して作製される例示の傾斜グレーティングを示す図である。 CAIBEプロセスを使用して作製される例示の傾斜グレーティングを示す図である。 ある特定の実施形態によるCARIBEプロセスを使用して作製される例示の傾斜グレーティングを示す図である。 ある特定の実施形態によるCARIBEプロセスを使用して作製される例示の傾斜グレーティングを示す図である。 ある特定の実施形態による傾斜表面レリーフ構造を作製する例示の方法を示す簡略フローチャートである。 ある特定の実施形態による低屈折率基板上の傾斜グレーティングの例を示す図である。 ある特定の実施形態による低屈折率基板上の高屈折率材料で作製される傾斜グレーティングの例を示す図である。 ある特定の実施形態による高屈折率基板上の傾斜グレーティングの例を示す図である。 ある特定の実施形態による作製プロセスを使用して傾斜グレーティングをエッチングする例を示す図である。 ある特定の実施形態による図18Aに示される作製プロセスを使用してエッチングされる傾斜グレーティングの例を示す図である。 ある特定の実施形態による作製プロセスを使用してSiON層において作製される傾斜グレーティングの例を示す図である。 ある特定の実施形態による改良作製プロセスを使用してSiON層において作製される傾斜グレーティングの例を示す図である。 ある特定の実施形態による作製プロセスを使用してSi層において作製される傾斜グレーティングの例を示す図である。 ある特定の実施形態による改良作製プロセスを使用してSi層において作製される傾斜グレーティングの例を示す図である。 ある特定の実施形態による改良作製プロセスを使用してSi層において作製される傾斜グレーティングの例を示す図である。 ある特定の実施形態によるイオンビームエッチングシステムの例を示す図である。 本明細書に開示される例のいくつかを実装するための例示のニアアイディスプレイの例示の電子システムの簡略ブロック図である。
図は、単に例示の目的で本開示の実施形態を描写している。当業者は、以下の説明から、示される構造および方法の代替的な実施形態が、本開示の記載される原理または利益から逸脱することなく用いられてよいことを容易に認識するであろう。
添付の図において、同様の構成要素および/または特徴は同じ参照ラベルを有してよい。さらに、同じタイプのさまざまな構成要素は、参照ラベルの後に、ダッシュ、および同様の構成要素間で区別する第2のラベルが続くことによって区別され得る。第1の参照ラベルのみが本明細書において使用される場合、その説明は、第2の参照ラベルかどうかにかかわらず、同じ第1の参照ラベルを有する同様の構成要素のいずれか1つに適用可能である。
本明細書に開示される技法は一般的に、ミクロ構造またはナノ構造製造に関する。より具体的には、限定はされないが、本出願は、ミクロ傾斜構造またはナノ傾斜構造を作製するための技法に関する。傾斜構造は、光および/または電気の挙動を操作するための多くの光学デバイスまたは電子デバイスにおいて使用可能である。例えば、導波管ベースの人工現実ディスプレイデバイスにおいて傾斜グレーティングを使用することによって、視野の改善、輝度効率の増大、および表示アーチファクト(例えば、レインボーアーチファクト)の低減が可能である。大きな傾斜角度(例えば、>45度)および/または高深度はまた、傾斜グレーティングの性能の改善に所望される場合がある。傾斜グレーティングは、例えば、ナノインプリントリソグラフィ(NIL)またはエッチングによって作られ得る。しかしながら、NIL技法を使用して大きな傾斜角度を有する深傾斜構造を作ることは困難であるが、これは、例えば、モールドおよびモールドデバイスを分離することが困難である場合があり、モールドデバイスを損傷させる場合があるからである。半導体製造に使用されるエッチング技法を使用して、SiO2などの材料を面法線でエッチング可能であるが、例えば、低エッチング速度、残渣の蓄積などにより、とりわけ、特殊材料(例えば、窒化ケイ素、有機材料、または無機金属酸化物)または高屈折率材料(例えば、SiONまたはSi)において、リーディングエッジとトレーリングエッジとの間で高対称性を有する深傾斜構造を作るのに適していない場合がある。
ある特定の実施形態によると、傾斜表面レリーフグレーティングは、高屈折率変化および高回析効率をもたらすために人工現実システムにおける導波管ディスプレイなどのいくつかの光学デバイスにおいて使用されてよい。傾斜構造は、現在の既知のエッチングプロセスを使用して確実に作製されない恐れがあり、これは、一般的に、イオンビームエッチング(IBE)、反応性イオンビームエッチング(RIBE)、または化学補助イオンビームエッチング(CAIBE)プロセスなど、エッチングされている表面に垂直であるエッチング特徴に最適化可能である。ある特定の実施形態によると、化学補助反応性イオンビームエッチング(CARIBE)技法を使用して、傾斜構造を確実にエッチングすることができる。例えば、エッチングに使用される、化学成分、ラジカル、およびイオンを含むCARIBEプロセスパラメータは、傾斜構造の、所望のエッチング選択性、所望のエッチング速度、および所望の寸法を達成するようにより正確に制御可能である。
いくつかの実施形態では、Hガスまたはヘリウムガスなどの低分子量ガスは、誘導結合プラズマ(ICP)チャンバなどのイオン源発生装置における(例えば、CF、CHF、CH、CHF、C、C、C、C、NF、SF、CLF、NO、N、O、SO、COSなどを含む)ガスに加えられてよい。Hイオンは、イオン源発生装置において生成されてよく、Siなど、エッチングされる基板に向けて加速され得る。Si基板に進入するHイオンは基板においてSiHを形成することができ、これは、SiF、NF、HCNなど、揮発性材料を形成するために物理および化学エッチングによってはるかに容易に除去され得る。そのように、高対称性を有する深傾斜構造は、より高いエッチング速度およびエッチング残渣の蓄積の最小化により高屈折率材料上により効率的にかつより精確にエッチング可能である。
補助イオンビームエッチングが使用されるいくつかの実施形態では、半導体加工に使用されるイオン源発生装置のチャンバ(すなわち、内部空洞)の表面層は、酸化アルミニウムまたはYなどの酸化物材料と置き換えられることで、表面層に進入するおよび/または表面層と反応するチャンバにおいて生成されるHイオンによって引き起こされる表面層の物理的性質および/または化学的性質の変化を回避することができる。
いくつかの実施形態では、光および/または電気の挙動を操作するための傾斜構造を作製することは望ましいことが分かる。傾斜構造の利益のいくつかは、光伝送の高効率化および/または屈折率の大きなばらつきなどを含み得る。(表面がエッチングされている平面に対して)平行に傾斜した構造は、ある特定の応用に特有の問題を解決することも分かる。また、種々のタイプの材料(例えば、二酸化ケイ素、窒化ケイ素、二酸化チタン、アルミナなどのように)でこのタイプの傾斜構造を形成することは望ましい場合があることが分かっている。
以下の説明には、解説の目的で、本開示の例を十分理解してもらうために具体的詳細が示されている。しかしながら、さまざまな例がこれら具体的詳細なく実践可能であることは明らかであろう。例えば、デバイス、システム、構造、アセンブリ、方法、および他の構成要素は、不必要な詳細で例を不明瞭にしないためにブロック図の形態の構成要素として示される場合がある。他の事例では、周知のデバイス、プロセス、システム、構造、および技法は、例を不明瞭にすることを回避するために必要な詳細なく示される場合がある。図および説明は制限することを意図するものではない。本開示で用いられている用語および表現は、説明の条件として使用され、限定するものではなく、示されかつ説明される特徴またはこの一部のいずれの同義語も除外するような用語および表現の使用を意図するものではない。
図1は、ある特定の実施形態による例示のニアアイディスプレイ100の簡略図である。ニアアイディスプレイ100はユーザに媒体を提示してよい。ニアアイディスプレイ100によって提示される媒体の例は、1つまたは複数の画像、ビデオ、および/またはオーディオを含んでよい。いくつかの実施形態では、オーディオは、ニアアイディスプレイ100、コンソール、またはこの両方からオーディオ情報を受信し、かつオーディオ情報に基づくオーディオデータを提示する外部デバイス(例えば、スピーカおよび/またはヘッドホン)を介して提示されてよい。ニアアイディスプレイ100は一般的に、人工現実ディスプレイとして動作するように構成される。いくつかの実施形態では、ニアアイディスプレイ100は、拡張現実(AR)ディスプレイまたは複合現実(MR)ディスプレイとして動作してよい。
ニアアイディスプレイ100はフレーム105およびディスプレイ110を含んでよい。フレーム105は1つまたは複数の光学素子に結合されてよい。ディスプレイ110は、ユーザが、ニアアイディスプレイ100によって提示されるコンテンツを見るように構成され得る。いくつかの実施形態では、ディスプレイ110は、1つまたは複数の画像からユーザの目に光を配向するための導波管ディスプレイアセンブリを含んでよい。
図2は、図1に示されるニアアイディスプレイ100の断面図200である。ディスプレイ110は少なくとも1つの導波管ディスプレイアセンブリ210に含んでよい。射出瞳230は、ユーザがニアアイディスプレイ100を着用する時ユーザの目220が位置付けられる場所に位置し得る。例証の目的で、図2は、ユーザの目220および単一の導波管ディスプレイアセンブリ210と関連している断面図200を示すが、いくつかの実施形態では、第2の導波管ディスプレイがユーザの第2の目に使用されてもよい。
導波管ディスプレイアセンブリ210は、画像光(すなわち、表示光)を、射出瞳230に位置するアイボックスに、およびユーザの目220に配向するように構成されてよい。導波管ディスプレイアセンブリ210は、1つまたは複数の屈折率を有する1つまたは複数の材料(例えば、プラスチック、ガラスなど)を含んでよい。いくつかの実施形態では、ニアアイディスプレイ100は、導波管ディスプレイアセンブリ210とユーザの目220との間に1つまたは複数の光学素子を含み得る。
いくつかの実施形態では、導波管ディスプレイアセンブリ210は、積層導波管ディスプレイ、可変焦点導波管ディスプレイなどを含むがこれらに制限されない、積み重ねられた1つまたは複数の導波管ディスプレイを含んでよい。積層導波管ディスプレイは、各単色源が種々の色のものである導波管ディスプレイを積み重ねることによってもたらされた多色ディスプレイ(例えば、赤/緑/青(RGB)ディスプレイ)である。積層導波管ディスプレイは、複数の平面上に投影可能である多色ディスプレイ(例えば、複数面有色ディスプレイ)であってもよい。いくつかの構成では、積層導波管ディスプレイは、複数の平面上に投影可能である単色ディスプレイ(例えば、複数面単色ディスプレイ)であってよい。可変焦点導波管ディスプレイは、導波管ディスプレイから放出した画像光の焦点位置を調節可能であるディスプレイである。代替的な実施形態では、導波管ディスプレイアセンブリ210は、積層導波管ディスプレイおよび可変焦点導波管ディスプレイを含んでよい。
図3は、導波管ディスプレイ300の一実施形態の等角図である。いくつかの実施形態では、導波管ディスプレイ300は、ニアアイディスプレイ100の構成要素(例えば、導波管ディスプレイアセンブリ210)であってよい。いくつかの実施形態では、導波管ディスプレイ300は、画像光を特定の場所に配向することができるいくつかの他のニアアイディスプレイまたは他のシステムの一部であってよい。
導波管ディスプレイ300は、光源アセンブリ310、出力導波管320、およびコントローラ330を含んでよい。例証の目的で、図3は、ユーザの目390と関連している導波管ディスプレイ300を示すが、いくつかの実施形態では、導波管ディスプレイ300と別個のまたは部分的に別個の別の導波管ディスプレイは、画像光をユーザの別の目に与えてよい。
光源アセンブリ310は、ユーザに表示するための画像光355を生成することができる。光源アセンブリ310は、出力導波管320の第1の側面370-1上に位置する結合要素350に画像光355を生成しかつ出力してよい。いくつかの実施形態では、結合要素350は、画像光355を光源アセンブリ310から出力導波管320に結合してよい。結合要素350は、例えば、回析グレーティング、ホログラフィックグレーティング、1つまたは複数の縦続反射器、1つまたは複数のプリズム面要素、および/または一連のホログラフィック反射器を含み得る。出力導波管320は、拡張した画像光340をユーザの目390に出力できる光導波管であってよい。出力導波管320は、第1の側面370-1に位置する1つまたは複数の結合要素350において画像光355を受信し、かつ受信した画像光355を配向要素360にガイドすることができる。
配向要素360は、受信した入力画像光355を減結合要素365に再配向することで、受信した入力画像光355は、減結合要素365を介して出力導波管320から外へ結合可能である。配向要素360は、出力導波管320の第1の側面370-1の一部であってよい、またはこれに取り付けられてよい。減結合要素365は、配向要素360が減結合要素365に対向するように、出力導波管320の第2の側面370-2の一部であってよい、またはこれに取り付けられてよい。配向要素360および/または減結合要素365は、例えば、回析グレーティング、ホログラフィックグレーティング、表面レリーフグレーティング、1つまたは複数の縦続反射器、1つまたは複数のプリズム面要素、および/または一連のホログラフィック反射器を含んでよい。
出力導波管320の第2の側面370-2は、x寸法およびy寸法に沿った平面を表すことができる。出力導波管320は、画像光355の全内部反射を促進することができる1つまたは複数の材料を含んでよい。出力導波管320は、例えば、シリコン、プラスチック、ガラス、および/またはポリマーを含んでよい。出力導波管320は、比較的小さい形状因子を有することができる。例えば、出力導波管320は、x寸法に沿っておよそ50mmの幅、y寸法に沿って約30mmの長さ、およびz寸法に沿って約0.5~1mmの厚さであってよい。
コントローラ330は、光源アセンブリ310の走査動作を制御することができる。コントローラ330は、光源アセンブリ310に対する走査命令を判断してよい。いくつかの実施形態では、出力導波管320は、広い視野(FOV)を有するユーザの目390に拡張した画像光340を出力することができる。例えば、ユーザの目390に与えられる拡張した画像光340は、約60度以上および/または約150度以下の(xおよびyにおける)対角線のFOVを有してよい。出力導波管320は、約20mm以上および/または約50mm以下の長さ、および/または約10mm以上および/または約50mm以下の幅を有するアイボックスを提供するように構成されてよい。
図4は、導波管ディスプレイ300の断面図400である。導波管ディスプレイ300は光源アセンブリ310および出力導波管320を含んでよい。光源アセンブリ310はコントローラ330からの走査命令に従って画像光355(すなわち、表示光)を生成してよい。光源アセンブリ310は、光源410および光学系415を含んでよい。光源410は、コヒーレントなまたは部分的にコヒーレントな光を生成する光源を含んでよい。光源410は、例えば、レーザダイオード、垂直キャビティ面発光レーザ、および/または発光ダイオードを含んでよい。
光学系415は、光源410からの光を調整することができる1つまたは複数の光学要素を含んでよい。光源410からの光を調整することは、例えば、コントローラ330からの命令に従って、向きを、拡張する、平行にする、および/または調節することを含んでよい。1つまたは複数の光学要素は、1つまたは複数のレンズ、液体レンズ、鏡、アパーチャ、および/またはグレーティングを含んでよい。光学系415(およびまた光源アセンブリ310)から放出した光は、画像光355または表示光と称される場合がある。
出力導波管320は光源アセンブリ310から画像光355を受信してよい。結合要素350は、光源アセンブリ310からの画像光355を出力導波管320に結合してよい。結合要素350が回析グレーティングを含む実施形態では、回析グレーティングは、全内部反射が出力導波管320内で生じ得るように構成されてよいため、よって、出力導波管320に結合される画像光355は減結合要素365に向けて(例えば、全内部反射によって)出力導波管320内部に伝搬し得る。
配向要素360は、出力導波管320から外に画像光の少なくとも一部分を結合するために減結合要素365に向けて画像光355を再配向してよい。配向要素360が回析グレーティングである実施形態では、回析グレーティングは、入射画像光355が、減結合要素365の表面に対する傾斜角度で出力導波管320を抜けるように構成されてよい。いくつかの実施形態では、配向要素360および/または減結合要素365は構造的に同様であってよい。
出力導波管320を抜ける拡張画像光340は、1つまたは複数の寸法に沿って拡張(例えば、x寸法に沿って伸長)可能である。いくつかの実施形態では、導波管ディスプレイ300は、複数の光源アセンブリ310および複数の出力導波管320を含んでよい。光源アセンブリ310のそれぞれは、原色(例えば、赤、緑、または青)に対応する単色像光を放出してよい。出力導波管320のそれぞれは、多色であってよい拡張画像光340を出力するために共に積層されてよい。
図5は、導波管ディスプレイアセンブリ210を含む例示の人工現実システム500の簡略ブロック図である。システム500は、それぞれがコンソール510に結合される、ニアアイディスプレイ100、画像デバイス535、および入力/出力インターフェース540を含んでよい。
上述されるように、ニアアイディスプレイ100は、媒体をユーザに提示するディスプレイであってよい。ニアアイディスプレイ100によって提示される媒体の例は、1つまたは複数の画像、ビデオ、および/またはオーディオを含んでよい。いくつかの実施形態では、オーディオは、ニアアイディスプレイ100および/またはコンソール510からオーディオ情報を受信し、かつオーディオ情報に基づくオーディオデータをユーザに提示し得る外部デバイス(例えば、スピーカおよび/またはヘッドホン)を介して提示されてよい。いくつかの実施形態では、ニアアイディスプレイ100は人工現実眼鏡の機能を果たし得る。例えば、いくつかの実施形態では、ニアアイディスプレイ100は、コンピュータ生成要素(例えば、画像、ビデオ、音声など)によって物理的な現実世界環境の見える状態を拡張可能である。
ニアアイディスプレイ100は、導波管ディスプレイアセンブリ210、1つまたは複数の位置センサ525、および/または慣性計測装置(IMU)530を含んでよい。導波管ディスプレイアセンブリ210は、上述されるように、光源アセンブリ310、出力導波管320、およびコントローラ330を含む導波管ディスプレイ300などの導波管ディスプレイを含んでよい。
IMU530は、1つまたは複数の位置センサ525から受信される測定信号に基づいてニアアイディスプレイ100の初期位置に対してニアアイディスプレイ100の推定位置を指示する高速較正データを生成できる電子デバイスを含み得る。
画像デバイス535は、コンソール510から受信される較正パラメータに従って低速較正データを生成し得る。画像デバイス535は、1つまたは複数のカメラおよび/または1つまたは複数のビデオカメラを含んでよい。
入力/出力インターフェース540は、ユーザがアクション要求をコンソール510に送ることを可能にするデバイスであってよい。アクション要求は特定のアクションを行う要求であってよい。例えば、アクション要求は、アプリケーションを開始もしくは終了する、またはアプリケーション内の特定のアクションを行うためのものであってよい。
コンソール510は、画像デバイス535、ニアアイディスプレイ100、および入力/出力インターフェース540の1つまたは複数から受信される情報に従ってユーザへの提示のためにニアアイディスプレイ100に媒体を提供してよい。図5に示される例において、コンソール510は、アプリケーションストア545、追跡モジュール550、およびエンジン555を含んでよい。
アプリケーションストア545は、コンソール510による実行のための1つまたは複数のアプリケーションを記憶してよい。アプリケーションは、プロセッサによって実行される時、ユーザへの提示のためのコンテンツを生成してよい命令群を含んでよい。アプリケーションの例は、ゲームアプリケーション、会議アプリケーション、ビデオ再生アプリケーション、または他の適したアプリケーションを含んでよい。
追跡モジュール550は、1つまたは複数の較正パラメータを使用してシステム500を較正してよく、ニアアイディスプレイ100の位置の判断時の誤差を低減するために1つまたは複数の較正パラメータを調節してよい。追跡モジュール550は、画像デバイス535からの低速較正情報を使用してニアアイディスプレイ100の移動を追跡してよい。追跡モジュール550は、高速較正情報からの位置情報を使用してニアアイディスプレイ100の基準点の位置を判断してもよい。
エンジン555は、システム500内のアプリケーションを実行してよく、追跡モジュール550からニアアイディスプレイ100の、位置情報、加速情報、速度情報、および/または予測される今後の位置を受信する。いくつかの実施形態では、エンジン555によって受信される情報は、導波管ディスプレイアセンブリ210に対する信号(例えば、表示命令)を生じさせるために使用されてよい。信号は、ユーザに提示するためのコンテンツのタイプを判断してよい。
導波管ディスプレイを実装するための多くの種々のやり方があり得る。例えば、いくつかの実装形態では、出力導波管320は、画像光355を出力導波管320に結合するために第1の側面370-1と第2の側面370-2との間に傾斜表面を含んでよい。いくつかの実装形態では、傾斜表面は、配向要素360に向けて光を反射させるために反射コーティングでコーティングされてよい。いくつかの実装形態では、傾斜表面の角度は、画像光355が全内部反射により傾斜表面によって反射可能であるように構成されてよい。いくつかの実装形態では、配向要素360は使用されない場合があり、光は全内部反射によって出力導波管320内にガイドされ得る。いくつかの実装形態では、減結合要素365は第1の側面370-1の近くに位置してよい。
いくつかの実装形態では、出力導波管320および減結合要素365(ならびに使用される場合、配向要素360)は、環境から光を透過させてよく、画像光355と、ニアアイディスプレイ100の正面の物理的な現実世界環境からの光とを組み合わせるための光コンバイナの機能を果たし得る。そのように、ユーザは、光源アセンブリ310からの人工物の人工画像と、物理的な現実世界環境における実物体の現実画像との両方を見ることができ、これは光学シースルー方式と称される場合がある。
図6は、ある特定の実施形態による導波管ディスプレイを使用する例示の光学シースルー拡張現実システム600を示す。拡張現実システム600はプロジェクタ610およびコンバイナ615を含んでよい。プロジェクタ610は、光源または画像源612、およびプロジェクタ光学部品614を含んでよい。いくつかの実施形態では、画像源612は、LCDディスプレイパネルまたはLEDディスプレイパネルなど、仮想物体を表示する複数の画素を含んでよい。いくつかの実施形態では、画像源612は、コヒーラントなまたは部分的にコヒーラントな光を生成する光源を含んでよい。例えば、画像源612はレーザダイオード、垂直キャビティ面発光レーザ、および/または発光ダイオードを含んでよい。いくつかの実施形態では、画像源612は、それぞれが、原色(例えば、赤、緑、または青)に対応する単色像光を放出する複数の光源を含んでよい。いくつかの実施形態では、画像源612は、空間光変調器などの光学式パターン発生装置を含んでよい。プロジェクタ光学部品614は、画像源612からの光をコンバイナ615に、拡張する、平行にする、走査する、または投影することなど、画像源612からの光を調整することができる1つまたは複数の光学要素を含んでよい。1つまたは複数の光学要素は、例えば、1つまたは複数のレンズ、液体レンズ、鏡、アパーチャ、および/またはグレーティングを含んでよい。いくつかの実施形態では、プロジェクタ光学部品614は、画像源612からの光の走査を可能にする複数の電極を有する液体レンズ(例えば、液晶レンズ)を含んでよい。
コンバイナ615は、プロジェクタ610からの光をコンバイナ615の基板620に結合するための入力結合器630を含んでよい。入力結合器630は、体積ホログラフィックグレーティング、回析光学要素(DOE)(例えば、表面レリーフグレーティング)、または屈折結合器(例えば、ウェッジまたはプリズム)を含んでよい。入力結合器630は、可視光に対して、30%、50%、75%、90%を上回る、またはそれ以上の結合効率を有し得る。本明細書で使用されるように、可視光は約380nm~約750nmの波長を有する光を指すことができる。基板620に結合される光は、例えば、全内部反射(TIR)によって基板620内で伝搬してよい。基板620は、一式の眼鏡のレンズの形態であってよい。基板620は、平面または曲面を有することができ、ガラス、石英、プラスチック、ポリマー、ポリ(メチルメタクリレート)(PMMA)、水晶、またはセラミックなどの1つまたは複数のタイプの誘電材料を含んでよい。基板の厚さは、例えば、約1mm未満~約10mm以上であってよい。基板620は可視光を透過させてよい。材料は、光ビームが、例えば、50%、60%、75%、80%、90%、95%より大きい、またはそれ以上の高透過速度で材料を通過できる場合、光ビームを「透過」させることができ、この場合、(例えば、50%、40%、25%、20%、10%、5%未満、またはそれ以下の)光ビームのほんの一部分は、材料によって、散乱、反射、または吸収され得る。透過速度(すなわち、透過率)は、波長範囲にわたって明所視で重み付けされたまたは重み付けされない平均透過率、または、可視波長範囲などの波長の範囲にわたる最低透過率のどちらかによって表されてよい。
基板620は、基板620から基板620によってガイドされるおよび基板620内で伝搬する光の少なくとも一部分を引き出し、かつ引き出された光660を拡張現実システム600のユーザの目690に配向するように構成される複数の出力結合器640を含んでよい、またはこれらに結合されてよい。入力結合器630のように、出力結合器640は、グレーティング結合器(例えば、体積ホログラフィックグレーティングまたは表面レリーフグレーティング)、他のDOE、プリズムなどを含んでよい。出力結合器640は、種々の場所で種々の結合(例えば、回析)効率を有することができる。基板620はまた、コンバイナ615の正面の環境からの光650がほとんどまたは全く損なうことなく通過可能にしてよい。出力結合器640はまた、光650がほとんど損なうことなく通過可能にし得る。例えば、いくつかの実装形態では、出力結合器640は、光650がほとんど損なうことなく出力結合器640を屈折あるいは通過可能であるように、光650に対する低回析効率を有してよい。いくつかの実装形態では、出力結合器640は光650に対する高回析効率を有してよく、ほとんど損なうことなくある特定の所望の方向(すなわち回析角度)に光650を回析させてよい。その結果、ユーザは、コンバイナ615の正面の環境、およびプロジェクタ610によって投影される仮想物体の画像を組み合わせて見ることが可能になり得る。
図7は、導波管710およびグレーティング結合器720を含む例示の導波管ディスプレイ700における入射表示光740および外部光730の伝搬を示す。導波管710は、自由空間の屈折率n(すなわち1.0)を上回る屈折率nを有する平坦なまたは湾曲した透明基板であってよい。グレーティング結合器720は、例えば、ブラッググレーティングまたは表面レリーフグレーティングを含んでよい。
入射表示光740は、例えば、図6の入力結合器630または上述される他の結合器(例えば、プリズム面または傾斜表面)によって導波管710に結合されてよい。入射表示光740は、例えば、全内部反射によって導波管710内で伝搬してよい。入射表示光740がグレーティング結合器720に達する時、入射表示光740は、グレーティング結合器720によって、例えば、0次回析(すなわち、反射)光742および1次回析光744に回析されてよい。0次回析は、導波管710内で伝搬し続ける場合があり、種々の場所でグレーティング結合器720に向けて導波管710の底面によって反射され得る。1次回析光744はユーザの目に向けて導波管710から外へ結合(例えば、屈折)されてよいが、これは、全内部反射条件が、1次回析光744の回析角度により導波管710の底面では満たされない場合があるからである。
外部光730はまた、グレーティング結合器720によって、例えば、0次回析光732または1次回析光734に回析されてよい。0次回析光732または1次回析光734は、ユーザの目に向けて導波管710から外へ屈折されてよい。よって、グレーティング結合器720は外部光730を導波管710に結合するための入力結合器の機能を果たし得、また、導波管710の外に入射表示光740を結合するための出力結合器の機能を果たし得る。そのように、グレーティング結合器720は、外部光730および入射表示光740を組み合わせるためのコンバイナの機能を果たし、かつ組み合わせた光をユーザの目に送ることができる。
ユーザの目に向けた所望の方向で光を回析し、かつある特定の回析次に対して所望の回析効率を達成するために、グレーティング結合器720は、傾斜ブラッググレーティングまたは表面レリーフグレーティングなどのブレーズドグレーティングまたは傾斜グレーティングを含んでよく、この場合、グレーティングリッジおよび溝は、グレーティング結合器720または導波管710の面法線に対して傾けられてよい。
図8は、ある特定の実施形態による例示の導波管ディスプレイ800における例示の傾斜グレーティング820を示す。導波管ディスプレイ800は、基板620など、導波管810上の傾斜グレーティング820を含んでよい。傾斜グレーティング820は、導波管810にまたはこの外に光を結合するためのグレーティング結合器820の機能を果たし得る。いくつかの実施形態では、傾斜グレーティング820は周期pによる周期構造を含んでよい。例えば、傾斜グレーティング820は、複数のリッジ822、およびリッジ822間の溝824を含んでよい。傾斜グレーティング820のそれぞれの周期は、リッジ822および溝824を含んでよく、これらは、屈折率ng2によって材料が充填される空隙または領域となり得る。リッジ822の幅とグレーティング周期pとの間の比率は、デューティサイクルと称される場合がある。傾斜グレーティング820は、例えば、約10%~約90%以上のデューティサイクルを有し得る。いくつかの実施形態では、デューティサイクルは周期によって異なる場合がある。いくつかの実施形態では、傾斜グレーティングの周期pは、傾斜グレーティング820上で1エリアから別エリアまでさまざまであり得る、または、傾斜グレーティング820上で1周期から別周期までさまざまで(すなわち、チャープされ)得る。
リッジ822は、材料(例えば、SiO、Si、SiC、SiO、または非晶質シリコン)、有機材料(例えば、スピンオンカーボン(SOC)、非晶質炭素層(ACL)、またはダイアモンド状炭素膜(DLC))、または、無機金属酸化物層(例えば、TiO、AlO、TaO、HfOなど)を含有するシリコンなど、ng1の屈折率を有する材料から作られてよい。それぞれのリッジ822は、傾斜角度αを有するリーディングエッジ830、および傾斜角度βを有するトレーリングエッジ840を含んでよい。いくつかの実施形態では、それぞれのリッジ822のリーディングエッジ830およびトレーリングエッジ840は、互いに平行であってよい。換言すれば、傾斜角度αは傾斜角度βにほぼ等しい。いくつかの実施形態では、傾斜角度αは傾斜角度βと異なってよい。いくつかの実施形態では、傾斜角度αは傾斜角度βとほぼ等しくてよい。例えば、傾斜角度αと傾斜角度βとの間の差異は、20%、10%、5%、1%未満、またはそれ以下であってよい。いくつかの実施形態では、傾斜角度αおよび傾斜角度βは、例えば、約30度以下~約70%以上に及んでよい。
いくつかの実装形態では、リッジ822間の溝824は、リッジ822の材料の屈折率より高いまたは低い屈折率ng2を有する材料がオーバーコートまたは充填されてよい。例えば、いくつかの実施形態では、ハフニア、チタニア、酸化タンタル、酸化タングステン、酸化ジリコニウム、硫化ガリウム、窒化ガリウム、ガリウムリン、シリコン、および高屈折率ポリマーなどの高屈折率材料を使用して溝824を充填してよい。いくつかの実施形態では、酸化ケイ素、アルミナ、多孔質シリカ、またはフッ素化低屈折率モノマー(またはポリマー)などの低屈折率材料を使用して、溝824を充填してよい。その結果、リッジの屈折率と溝の屈折率との間の差異は、0.1、0.2、0.3、0.5、1.0を上回る、またはそれ以上である場合がある。
傾斜グレーティングは、多くの種々のナノ加工技法を使用して作製されてよい。ナノ加工技法は一般的に、パターン形成プロセスおよびポストパターン(例えば、オーバーコーティング)プロセスを含む。パターン形成プロセスを使用して傾斜グレーティングの傾斜リッジを形成してよい。傾斜リッジを形成するための多くの種々のナノ加工技法があり得る。例えば、いくつかの実装形態では、傾斜グレーティングは、傾斜エッチングを含むリソグラフィ技法を使用して作製されてよい。いくつかの実装形態では、傾斜グレーティングは、ナノインプリントリソグラフィ(NIL)成形法を使用して作製可能である。ポストパターンプロセスを使用して、傾斜リッジと異なる屈折率を有する材料による傾斜リッジをオーバーコートする、および/または傾斜リッジ間の間隙を充填することができる。ポストパターンプロセスはパターン形成プロセスと無関係であってよい。よって、同じポストパターンプロセスは、任意のパターン形成技法を使用して作製される傾斜グレーティング上で使用されてよい。
後述される傾斜グレーティングを作製するための技法およびプロセスは、単に例示の目的のものであり、限定を意図するものではない。さまざまな改良が後述される技法になされ得ることを当業者は理解するであろう。例えば、いくつかの実装形態では、後述されるいくつかの動作は省略される場合がある。いくつかの実装形態では、追加の動作は、傾斜グレーティングを作製するために行われてよい。本明細書に開示される技法を使用して、さまざまな材料上に他の傾斜構造を作製してもよい。
図9A~図9Cは、ある特定の実施形態による傾斜エッチングによって傾斜表面レリーフグレーティングを作製するための例示の簡略プロセスを示す。図9Aは、フォトリソグラフィプロセスなどのリソグラフィプロセス後の構造990を示す。構造900は、ガラスまたは石英基板など、上述される導波管ディスプレイの導波管として使用されてよい基板910を含んでよい。構造900は、SiまたはSiOなどのグレーティング材料の層920を含んでもよい。基板910は屈折率nwgを有することができ、グレーティング材料の層920は屈折率ng1を有することができる。いくつかの実施形態では、グレーティング材料の層920は基板910の一部であってよい。所望のパターンを有するマスク層930は、グレーティング材料の層920上に形成されてよい。マスク層930は、例えば、フォトレジスト材料、金属(例えば、銅、クロム、チタン、アルミニウム、またはモリブデン)、金属間化合物(例えば、MoSiON)、またはポリマーを含むことができる。マスク層930は、例えば、光学投影もしくは電子ビームリソグラフィプロセス、NILプロセス、またはマルチビーム干渉プロセスによって形成されてよい。
図9Bは、ドライエッチングプロセス(例えば、反応性イオンエッチング(RIE)、誘導結合プラズマ(ICP)、ディープシリコンエッチング(DSE)、イオンビームエッチング(IBE)、またはIBEの変形)などの傾斜エッチングプロセス後の構造940を示す。傾斜エッチングプロセスは、1つまたは複数のサブステップを含んでよい。傾斜エッチングは、例えば、回転構造900、および所望の傾斜角度に基づくエッチングビームによるグレーティング材料の層920のエッチングによって行われてよい。エッチング後、傾斜グレーティング950は、グレーティング材料の層920において形成されてよい。
図9Cは、マスク層930が除去された後の構造970を示す。構造970は、基板910、グレーティング材料の層920、および傾斜グレーティング950を含んでよい。傾斜グレーティング950は、複数のリッジ952および溝954を含んでよい。プラズマまたはウェットエッチングなどの技法を使用して、適切な化学反応によってマスク層930を剥離することができる。いくつかの実装形態では、マスク層930は、除去されなくてよく、傾斜グレーティングの一部として使用されてよい。
その後、いくつかの実装形態では、ポストパターン(例えば、オーバーコーティング)プロセスは、リッジ952の材料より高いまたは低い屈折率を有する材料によって傾斜グレーティング950をオーバーコートするために行われてよい。例えば、上述されるように、いくつかの実施形態では、ハフニア、チタニア、酸化タングステン、酸化ジリコニウム、硫化ガリウム、窒化ガリウム、ガリウムリン、シリコン、および高屈折率ポリマーなどの高屈折率材料は、オーバーコーティングのために使用されてよい。いくつかの実施形態では、酸化ケイ素、アルミナ、多孔質シリカ、またはフッ素化低屈折率モノマー(またはポリマー)などの低屈折率材料はオーバーコーティングのために使用されてよい。その結果、リッジの屈折率と溝の屈折率との間の差異は、0.1、0.2、0.3、0.5、1.0を上回る、またはそれ以上である場合がある。
図10は、傾斜表面レリーフ構造を作製するための例示のイオンビームエッチング(IBE)システム1000を示す。イオンビームエッチングは、表面レリーフグレーティング作製における1つのプロセスイネーブラである。イオンビームエッチングは一般的に、調節可能な回転角度による回転ステージに装着される基板から材料を物理的に粉砕するために、高度に平行にされ高指向性のイオンビームを使用する。
IBEシステム1000はイオン源発生装置1010を含んでよい。イオン源発生装置1010は、アルゴンガスなどの不活性ガスをイオン源発生装置1010のチャンバ内に受けるための不活性ガス入口1020を含んでよい。プラズマは、RF誘導結合プラズマ(ICP)発生装置1030を介してイオン源発生装置1010において生成可能であり、ここで、高エネルギー電子は、中性物質との衝突によって注入された不活性ガス(例えば、Ar)の中性物質をイオン化してよい。高密度プラズマ1022は、衝撃イオン化によってイオン源発生装置1010内で生成されてよい。高密度プラズマ1022は、電荷平衡での正のイオン1024および負の電子による多数の中性物質とみなされる場合がある。
IBEシステム1000はまた、イオン源発生装置1010内で形成される高密度プラズマ1022から平行イオンビーム1062を引き出すための1つまたは複数の配列コリメータグリッドを含んでよい。配列コリメータグリッドはさまざまなやり方で実装されてよい。例えば、図10に示されるように、配列コリメータグリッドは、高密度プラズマ1022に接触しかつこの電位を制御することができる引き出しグリッド1040と、引き出されたイオンを加速させるために調節可能な負の高電圧供給によって駆動されてよい加速グリッド1050とを含んでよい。ビーム中和装置1060は、配列コリメータグリッドの近くに配設されてよく、エッチングされる構造上の正電荷の堆積を防止するために、平行イオンビーム1062と関連している正味の中性電荷束を達成するように平行イオンビーム1062に電子ビームを放出することができる。
高指向性平行イオンビーム1062は、例えば、半導体ウエハー、ガラス基板、Si材料層、酸化チタン層、アルミナ層など、エッチングされる材料層1080から材料を物理的に粉砕することができる。材料層1080は、例えば、フォトリソグラフィプロセスによって材料層1080上で形成され得るマスク1082によって部分的に被覆されてよい。マスク1082は、例えば、フォトレジスト材料、金属(例えば、銅、クロム、アルミニウム、またはモリブデン)、金属間化合物(例えば、MoSi)、またはポリマーを含むことができる。いくつかの実施形態では、シャッター1090(またはブレード)を使用して、エッチング時間および/またはエッチング領域を制御してよい。材料層1080は、高指向性平行イオンビーム1062に対して材料層1080の角度を改良するために回転させることができる回転ステージ1070に装着されてよい。材料層1080の角度を改良する能力によって、マスク1082上の最小スパッタ再付着による適合させた側壁外形の作成が可能になり得る。IBE機構が純粋に物理的であるため、エッチング速度は所望される速さではない場合がある。さらに、エネルギーイオンは、材料層に対する化学量論的損傷を引き起こし、かつ、欠陥をもたらす場合があるため、エッチング傾斜構造の性能を劣化させる場合がある。
図11は、傾斜表面レリーフ構造を作製するための例示の化学補助イオンビームエッチング(CAIBE)システム1100を示す。化学補助イオンビームエッチングにおいて、反応性ガス(例えば、CF、CHF、N、O、SF、Cl、BCl、HBrなど)などの反応種は、イオンビームと無関係のプロセス内に取り入れられてよい。よって、エッチングされる材料層は物理的と化学的の両方でエッチングされ得る。
IBEシステム1000のように、CAIBEシステム1100はイオン源発生装置1110を含んでよい。イオン源発生装置1110は、図10に対して上述されるイオン源発生装置1010と同様であってよい。イオン源発生装置1110は、アルゴンガスなどの不活性ガスをイオン源発生装置1110のチャンバ内に受けるための不活性ガス入口1120を含んでよい。プラズマは、RF誘導結合プラズマ(ICP)発生装置1130を介してイオン源発生装置1110において生成可能である。高密度プラズマ1122は、衝撃イオン化によってイオン源発生装置1110内で生成されてよい。1つまたは複数の配列コリメータグリッドを使用して、高密度プラズマ1122から平行イオンビーム1162を引き出してよい。例えば、図11に示されるように、配列コリメータグリッドは、高密度プラズマ1122に接触しかつこの電位を制御することができる引き出しグリッド1140と、引き出されたイオンを加速させるために調節可能な負の高電圧供給によって駆動されてよい加速グリッド1150とを含んでよい。ビーム中和装置1160は、配列コリメータグリッドの近くに配設されてよく、エッチングされる構造上の正電荷の堆積を防止するために、平行イオンビーム1162と関連している正味の中性電荷束を達成するように平行イオンビーム1162に電子ビームを放出することができる。
さらに、反応性ガス1166(例えば、CF、CHF、N、O、SF、Cl、またはBCl、またはHBrなど)は、ガスこんろ1164を使用してエッチングされる材料層1180上に注入されてよい。一般に、反応性ガス1166は、材料層1180に近い場所で注入され得る。反応性ガスおよび平行イオンビーム1162は、マスク1182によって被覆されない材料層1180のエリアに達することができ、かつ、非被覆エリアを(IBEでのように)物理的と化学的の両方でエッチングしてよい。例えば、ガラス基板は、
SiO+CF→SiF+CO
に従って、反応性ガスCFによって化学的にエッチングされてよい。SiFおよびCOは、容易に除去され得る揮発性材料である。IBEシステム1000のように、CAIBEシステム1100は、エッチング時間および/またはエッチング領域を制御するためのシャッター1190(またはブレード)を含んでよい。材料層1180は、高指向性平行イオンビーム1162に対して材料層1180の角度を改良するために回転させることができる回転ステージ1170に装着されてよい。ある特定の材料に対して、CAIBEシステムは、IBEシステムに対して、エッチング異方性、スパッタ再付着、およびエッチング速度のさらなる制御を与えることができる。
図12は、傾斜表面レリーフ構造を作製するための例示の反応性イオンビームエッチング(RIBE)システム1200を示す。反応性イオンビームエッチングシステム1200は、反応性ガス(例えば、CF、CHF、N、O、SFなど)が、エッチングされる材料層を物理的と化学的の両方でエッチングすることができる反応性イオンビームを形成するためのイオン源発生装置に注入可能であってもよいことを除いて、IBEシステム1000と同様であってよい。
RIBEシステム1200は、IBEシステム1000と同様であってよく、高密度プラズマ1222を生成するためのイオン源発生装置1210を含んでよい。イオン源発生装置1210は、反応性ガス(例えば、CF、CHF、N、O、SF、Cl、BCl、またはHBrなど)、および場合によっては、不活性ガス(例えば、アルゴンガス、ヘリウムガス、またはネオンガス)を、イオン源発生装置1210のチャンバ内に受けるためのガス入口1220を含んでよい。高密度プラズマ1222は、RF誘導結合プラズマ(ICP)発生装置1230を介してイオン源発生装置1210における衝撃イオン化によって生成されてよい。1つまたは複数の配列コリメータグリッドを使用して、高密度プラズマ1222から平行反応性イオンビーム1262を引き出してよい。例えば、図12に示されるように、配列コリメータグリッドは、高密度プラズマ1222に接触しかつこの電位を制御することができる引き出しグリッド1240と、引き出された反応性イオンを加速させるために調節可能な負の高電圧供給によって駆動されてよい加速グリッド1250とを含んでよい。ビーム中和装置1260は、配列コリメータグリッドの近くに配設されてよく、エッチングされる構造上の正電荷の堆積を防止するために、平行反応性イオンビーム1262と関連している正味の中性電荷束を達成するように平行反応性イオンビーム1262に電子ビームを放出することができる。
平行反応性イオンビーム1262は、マスク1282によって被覆されない材料層1280のエリアに達することができ、かつ、非被覆エリアを物理的と化学的の両方でエッチングしてよい。IBEシステム1000およびCAIBEシステム1100のように、RIBEシステム1200は、エッチング時間および/またはエッチング領域を制御するためのシャッター1290(またはブレード)を含んでもよい。材料層1280は、高指向性平行反応性イオンビーム1262に対して材料層1280の角度を改良するために回転させることができる回転ステージ1270に装着されてよい。ある特定の材料に対して、RIBEシステムは、IBEシステムに対して、エッチング異方性、スパッタ再付着、およびエッチング速度のさらなる制御を与えることができる。
多くの材料(例えば、窒化ケイ素、有機材料、または無機金属酸化物)および/またはある特定の所望の傾斜特徴(例えば、実質的に等しいリーディングエッジおよびトレーリングエッジを有するグレーティングリッジ)について、IBEプロセス、RIBEプロセス、およびCAIBEプロセスなどのこれらの既知のエッチングプロセスは、傾斜構造を確実に作製するために使用されない場合がある。1つの理由は、これらのプロセスが所望の材料上で所望の傾斜構造をエッチングするための反応物および/またはプロセスパラメータの適切な組み合わせを提供しない場合があることである。ある特定の実施形態によると、化学補助反応性イオンビームエッチング(CARIBE)プロセスを使用して、さまざまな材料上に傾斜表面レリーフ構造を作製することができる。本明細書に開示されるCARIBEプロセスは、イオン源およびガスこんろにおいて適切な化学成分を提供することによってラジカルおよびイオンのより効率的な制御を提供することができるため、外形の改善、およびエッチングのための化学成分のより多くの量を必要とする材料に対するマスク選択性を可能にすることができ、また、エッチング停止マージンを大きくするのに役立つ場合がある。CARIBEプロセスを使用して、傾斜構造の特徴は、化学成分のより多くの量を必要とする場合がある材料を含むさまざまな材料上でより精確に作製可能である。いくつかの実施形態では、本明細書で説明されるプロセスを使用して、グレーティングとの相互作用、および/またはグレーティングと相互作用する光の間の干渉による、光反射、屈折、および/または回析のような光の挙動を制御する物体上のグレーティングを作製することができる。いくつかの実施形態では、グレーティングは傾斜させてよく、物体は、導波管ディスプレイのための導波管といった光学要素であってよい。
図13は、ある特定の実施形態による傾斜表面レリーフ構造を作製するための例示の化学補助反応性イオンビームエッチング(CARIBE)システム1300を示す。CARIBEシステム1300は反応性イオン源発生装置1310を含んでよい。反応性イオン源発生装置1310は、反応性ガス(例えば、CF、CHF、N、O、SF、Hなど)、および場合によっては、不活性ガス(例えば、アルゴンガス)を、反応性イオン源発生装置1310のチャンバ内に受けるためのガス入口1320を含んでよい。高密度プラズマ1322は、RF誘導結合プラズマ(ICP)発生装置1330を介して反応性イオン源発生装置1310における衝撃イオン化によって生成されてよい。1つまたは複数の配列コリメータグリッドを使用して、高密度プラズマ1322から平行反応性イオンビーム1362を引き出してよい。例えば、図13に示されるように、配列コリメータグリッドは、高密度プラズマ1322に接触しかつこの電位を制御することができる引き出しグリッド1340と、引き出された反応性イオンを加速させるために調節可能な負の高電圧供給によって駆動されてよい加速グリッド1350とを含んでよい。ビーム中和装置1360は、配列コリメータグリッドの近くに配設されてよく、エッチングされる構造上の正電荷の堆積を防止するために、平行反応性イオンビーム1362と関連している正味の中性電荷束を達成するように平行反応性イオンビーム1362に電子ビームを放出することができる。
さらに、CARIBEシステム1300は、反応性ガス1366(例えば、CF、CHF、N、O、SFなど)を材料層に近い場所でエッチングされる材料層上に注入するためのガスこんろ1364を含んでよい。平行反応性イオンビーム1362(または、中和後の中性物質1368)および反応性ガス1366は、マスク1382によって被覆されない材料層1380のエリアに達することができ、物理的な粉砕および化学反応により非被覆エリアを物理的かつ化学的にエッチングしてよい。例えば、Si層は、
Si+4CF+F→NF+FCN+3SiF
に従って反応性ガスCFによって化学的にエッチングされてよく、ここで、NF、FCN、およびSiFは、揮発性材料であってよく、Si層において傾斜構造を形成するために比較的容易に除去可能である。CARIBEプロセスにおいて材料層1380に達するビームにおける中性物質対イオン比は、RIBEまたはCAIBEプロセスにおけるものより高い場合がある。
CAIBEシステム1300は、エッチング時間および/またはエッチング領域を制御するためのシャッター1390(またはブレード)を含んでよい。材料層1380は、高指向性平行反応性イオンビーム1362に対して材料層1380の角度を改良するために回転させることができる回転ステージ1370に装着されてよい。その結果、複数の溝1384および複数のリッジ1386を含む傾斜構造は、材料層1380において形成可能である。リッジ1386の幅および傾斜角度は、IBE、RIBE、またはCAIBEプロセスと比較してより正確に制御可能である。
図14Aは、RIBEプロセスを使用して作製される例示の傾斜グレーティング1400を示す。傾斜グレーティング1400はクロムマスクを使用してSi層上に作製されてよい。上述されるように、ある特定の実施形態による多くの応用では、傾斜グレーティングのリッジのリーディングエッジおよびトレーリングエッジがある特定の所望の性能を達成するために実質的に互いに平行であることが望ましいことが多い。図14Aに示されるように、傾斜グレーティング1400のリッジ1410のリーディングエッジ1412の傾斜角度は、傾斜グレーティング1400のリッジ1410のトレーリングエッジ1414の傾斜角度と非常に異なっている場合がある。これは、エッチングプロセス中に生成されるある特定の材料(例えば、炭素)の蓄積によって引き起こされ得る。よって、RIBEプロセスを使用して作製される傾斜グレーティング1400はある特定の応用に対して傾斜グレーティングの所望の特徴を有さない場合がある。
図14Bは、CAIBEプロセスを使用して作製される例示の傾斜グレーティング1450を示す。傾斜グレーティング1400と同様に、傾斜グレーティング1450は、クロムマスクを使用してSi層上に作製されてよい。図14Bに示されるように、傾斜グレーティング1450のリッジ1460のリーディングエッジ1462の傾斜角度は、傾斜グレーティング1450のリッジ1460のトレーリングエッジ1464の傾斜角度と非常に異なっている場合がある。これは、エッチングプロセス中に生成されるある特定の材料(例えば、炭素)の蓄積によって引き起こされ得る。よって、CAIBEプロセスを使用して作製される傾斜グレーティング1450もまた、ある特定の応用に対して傾斜グレーティングの所望の特徴を有さない場合がある。
図15Aは、ある特定の実施形態によるCARIBEプロセスを使用して作製される例示の傾斜グレーティング1500を示す。傾斜グレーティング1500は、クロムマスクを使用してSi層上に作製されてよい。図15Aに示されるように、傾斜グレーティング1500のリッジ1510のリーディングエッジ1512の傾斜角度は傾斜グレーティング1500のリッジ1510のトレーリングエッジ1514の傾斜角度と同様であってよい。より具体的には、図15Aに示される例において、リーディングエッジ1512の傾斜角度は約44度と測定され得、トレーリングエッジ1514の傾斜角度は約43度であり得、傾斜グレーティング1500のデューティサイクルは約50%であってよく、リッジ1510の深さは約200nmであり得る。
図15Bは、ある特定の実施形態によるCARIBEプロセスを使用して作製される別の例示の傾斜グレーティング1550を示す。傾斜グレーティング1550はまた、クロムマスクを使用してSi層上に作製されてよい。図15Bに示されるように、傾斜グレーティング1550のリッジ1560のリーディングエッジ1562の傾斜角度は、傾斜グレーティング1550のリッジ1560のトレーリングエッジ1564の傾斜角度と同様であってよい。図15Bに示される例では、リッジ1510の深さは約200nmであってよく、傾斜グレーティング1550のデューティサイクルは80%を上回ってよい。換言すれば、リーディングエッジがトレーリングエッジに平行である狭く深い傾斜溝は、本明細書に開示されるCARIBEプロセスを使用して作製されてよい。
図15Aおよび図15Bは、本明細書に開示されるCARIBEプロセスがSiなどの材料の対称形状および対象の深さを達成可能であることを示す。CARIBEプロセスを使用して、(例えば、約1、2、3、5、または10度未満の傾斜角度差で)互いに平行または実質的に平行であるリーディングエッジおよびトレーリングエッジを有する傾斜構造を確実に作製可能である。いくつかの実施形態では、対称形状は、拡張現実システムにおいて使用される導波管ディスプレイの出力結合器の性能の改善(例えば、IBE、RIBE、またはCAIBEプロセスを使用して形成されるグレーティングと比較して)をもたらし得る。さらに、CARIBEプロセスを使用して、リーディングエッジとトレーリングエッジとの間の平行関係を維持しながら深く精確な表面レリーフ構造を作製することができる。
図16は、ある特定の実施形態による傾斜表面レリーフ構造を作製する例示の方法を示す簡略フローチャート1600である。フローチャート1600に説明される動作は、単に例示の目的のためのものであり、限定を意図するものではない。さまざまな実装形態では、さらなる動作を追加するまたはいくつかの動作を省略するためにフローチャート1600に改良がなされてよい。フローチャート1600に説明される動作は、例えば、上述されるCARIBEシステム1300を使用して行われてよい。
ブロック1610において、第1の反応性ガスは、図13に示される反応性イオン源発生装置1310などの反応性イオン源発生装置のチャンバ内に注入されてよい。第1の反応性ガスは、例えば、CF、CHF、N、O、SF、H、Cl、BCl、HBrなどを含んでよい。いくつかの実施形態では、アルゴン、He、またはNeなどの不活性ガスも、反応性イオン源発生装置に注入されてよい。
ブロック1620において、反応性イオン源発生装置は、反応性イオン源発生装置のチャンバにおいて高密度プラズマを生成してよい。例えば、時間的に変化する電流(例えば、RF電流信号)は、その電流の周りで時間的に変化する磁界を生じさせてよいコイルを通過可能であり、次に、反応性イオン源発生装置のチャンバにおいて電場を誘導し、かつ電子の放電をもたらしてよい。放電した電子は、反応性イオン源発生装置のチャンバにおいてガスに衝撃を与えて反応性イオン(例えば、CF およびAr)を生成してよい。よって、反応性イオン源発生装置のチャンバは、中性物質、イオン、および電子を含んでよい。
ブロック1630では、反応性イオンは、高密度プラズマから引き出されてよく、エッチングされる材料層に向けて平行反応性イオンビームを形成するために加速させてよい。例えば、上述されるように、1つまたは複数の配列コリメータグリッドを使用して、高指向性、高エネルギーの平行反応性イオンビームを形成するために反応性イオンを引き出しかつ加速させてよい。いくつかの実施形態では、1つまたは複数の配列コリメータグリッドは、高密度プラズマに接触しかつこの電位を制御することができる引き出しグリッドと、イオンを加速させるために調節可能な負の高電圧供給によって駆動されてよい加速グリッドとを含んでよい。
オプションとして、ブロック1640では、配列コリメータグリッドによって反応性イオン源発生装置から引き出された平行反応性イオンビームは、ほぼ電荷平衡である、中性物質ならびに/またはイオンおよび電子を含んでよい平行ビームを形成するために電子ビームによって中和されてよい。従って、平行ビームは電子的に中性であり得るため、エッチングされる材料層上の正電荷の堆積を防止することが可能である。
ブロック1650において、第2の反応性ガスは、上述されるようなガスこんろを使用してエッチングされる材料層上に注入されてよい。第2の反応性ガスは、例えば、CF、CHF、N、O、SF、Cl、BCl、HBrなどを含んでよい。第2の反応性ガスは、エッチングされる材料層に近い場所で注入されてよい。
ブロック1660では、平行ビームおよび第2の反応性ガスは両方共、上述されるように材料層を物理的に粉砕しかつ化学的にエッチングしてよい。さらに上述されるように、シリコンウエハー、ガラス基板、酸化チタン層、アルミナ層、またはSi材料層などの、エッチングされる材料層は、材料層上でエッチングされる傾斜構造の所望の傾斜角度に基づいて平行ビームの方向に対して回転することができる回転ステージに装着されてよい。材料層は、傾斜構造の断面の所望のパターンと同様のパターンを含むパターンマスクによって部分的に被覆されてよい。いくつかの実施形態では、シャッターまたはブレードを使用して、材料層上のエッチング時間および/またはエッチング領域を制御してよい。
いくつかの実施形態では、フローチャート1600において説明される方法を使用して作製される傾斜グレーティングは、グレーティング材料層と異なる屈折率を有する材料でオーバーコートされてよい。例えば、いくつかの実施形態では、ハフニア、チタニア、酸化タングステン、酸化ジリコニウム、硫化ガリウム、窒化ガリウム、ガリウムリン、シリコン、または高屈折率ポリマーなどの高屈折率材料を使用して、傾斜グレーティングをオーバーコートする、および/または傾斜グレーティングのリッジ間の間隙を充填することができる。いくつかの実施形態では、酸化ケイ素、アルミナ、多孔質シリカ、またはフッ素化低屈折率モノマー(またはポリマー)などの低屈折率材料を使用して、傾斜グレーティングをオーバーコートする、および/または傾斜グレーティングのリッジ間の間隙を充填することができる。その結果、リッジの屈折率と傾斜グレーティングの溝の屈折率との間の差異は、0.1、0.2、0.3、0.5、1.0を上回る、またはそれ以上である場合がある。
本発明の実施形態は、人工現実システムを含んでよい、またはこれと併せて実装されてよい。人工現実は、例えば、仮想現実(VR)、拡張現実(AR)、複合現実(MR)、混成現実、または、これらの何らかの組み合わせおよび/もしくは派生形を含んでよい、ユーザへの提示前に何らかのやり方で調節されている現実の形態である。人工現実コンテンツは、完全に生成されたコンテンツ、または取り込まれた(例えば、実世界の)コンテンツと組み合わせて生成されたコンテンツを含んでよい。人工現実コンテンツは、ビデオ、オーディオ、触覚フィードバック、もしくはこれらの何らかの組み合わせ、および(見る人に対して3次元効果を生じさせるステレオビデオなど)単一のチャネルまたは複数のチャネルにおいて提示されてよいもののいずれかを含んでよい。さらに、いくつかの実施形態では、人工現実はまた、例えば、人工現実においてコンテンツを作成するために使用される、および/または、その他の場合、人工現実において使用される(例えば、人工現実においてアクティビティを行う)、アプリケーション、製品、アクセサリ、サービス、またはこれらの何らかの組み合わせと関連していてよい。人工現実コンテンツを提供する人工現実システムは、ホストコンピュータシステムに接続されるヘッドマウントディスプレイ(HMD)、スタンドアロンHMD、モバイル機器もしくはコンピューティングシステム、または、一人または複数人の見る人に人工現実コンテンツを提供することが可能な任意の他のハードウェアプラットフォームを含む、さまざまなプラットフォーム上で実装されてよい。
上述されるように、導波管ベースのARディスプレイデバイスにおいて傾斜グレーティングを使用することによって、視野の改善、輝度効率の増大、および表示アーチファクト(例えば、レインボーアーチファクト)の低減が可能である。大きな傾斜角度(例えば、>45度)、リーディングエッジとトレーリングエッジとの間の高対称性、および/または高深度はまた、傾斜グレーティングの性能の改善に所望される場合がある。傾斜グレーティングは、例えば、ナノインプリントリソグラフィ(NIL)またはエッチングによって作られ得る。しかしながら、NIL技法を使用して大きな傾斜角度を有する深傾斜構造を作ることは困難であるが、これは、例えば、モールドおよびモールドデバイスを分離することが困難である場合があり、モールドデバイスを損傷させる場合があるからである。半導体製造に使用されるエッチング技法を使用して、SiOなどの材料を面法線でエッチング可能であるが、例えば、低エッチング速度、残渣の蓄積などにより、とりわけ、SiまたはSiONなどの高屈折率を有する材料において、リーディングエッジとトレーリングエッジとの間で高対称性を有する深傾斜構造を作るのに適していない場合がある。
ある特定の実施形態によると、Hガスは、誘導結合プラズマ(ICP)チャンバなど、イオン源発生装置において(例えば、CF、CHF、CH2F2、CH3F、C4F8、C4F6、C2F6、C2F8、NF、SF、CLF、NO、N、O、SO、COSなどを含む)ガスに加えられてよい。Hイオンは、イオン源発生装置において生成されてよく、Siなど、エッチングされる基板に向けて加速され得る。Si基板に進入するHイオンは基板においてSiHを形成することができ、これは、SiF、NF、HCNなど、揮発性材料を形成するために物理および化学エッチングによってはるかに容易に除去され得る。そのように、高対称性を有する深傾斜構造は、より高いエッチング速度およびエッチング残渣の蓄積の最小化により高屈折率材料上により効率的にかつより精確にエッチング可能である。
図17Aは、ある特定の実施形態による低屈折率基板1710上の傾斜グレーティング1712の例を示す。低屈折率基板1710は、例えば、約1.46~約1.5の屈折率を有してよい石英基板であってよい。よって、低屈折率基板1710上で形成されるグレーティング1712は、低屈折率を有してよい。上述されるように、より良い性能(例えば、高効率)を達成するために、グレーティングリッジとグレーティング溝との間に高屈折率コントラストが達成可能であるような、高屈折率を有するグレーティングが必要とされる場合がある。
図17Bは、ある特定の実施形態による低屈折率基板1720上の高屈折率材料で作製される傾斜グレーティング1722の例を示す。低屈折率基板1720は、例えば、約1.46~約1.5の屈折率を有してよい石英基板を含んでよい。高屈折率材料の層は、低屈折率基板1720上で形成(例えば、付着)可能であり、傾斜グレーティング1722は高屈折率材料の層においてエッチングされてよい。高屈折率材料は、例えば、(約1.7の屈折率を有し得る)SiON、または、(約2.1の屈折率を有し得る)Siを含んでよい。そのように、グレーティングリッジとグレーティング溝との間に高屈折率コントラストが達成可能である。
図17Cは、ある特定の実施形態による高屈折率基板1730上の傾斜グレーティング1732の例を示す。傾斜グレーティング1732および基板1730は、SiONまたはSiなどの同じ材料のものであってよく、同じ高屈折率を有してよい。そのように、グレーティングリッジとグレーティング溝との間に高屈折率コントラストが達成可能である。
しかしながら、高屈折率材料上のグレーティングリッジのリーディングエッジとトレーリングエッジとの間に、大きな深度、大きな傾斜角度、および高対称性を有する傾斜グレーティングをより効率的にかつより精確に製造することは、困難である場合がある。例えば、いくつかの既存の技法を使用すると、エッチング速度は低い場合があり、大きな傾斜角度は達成されない場合があり、グレーティングリッジの、リーディングエッジの傾斜角度およびトレーリングエッジの傾斜角度は非常に異なる場合があり、または、グレーティングリッジの、リーディングエッジの長さ(または深さ)およびトレーリングエッジの長さ(または深さ)は非常に異なる場合がある。
図18Aは、ある特定の実施形態による作製プロセスを使用して傾斜グレーティング1820をエッチングする例を示す。図18Aに示される作製プロセスは、物理エッチングプロセスであってよく、この場合、イオンまたは他の粒子は、高屈折率材料の基板1810または層に衝撃を与えるために使用されてよい。マスク1840を使用して、傾斜グレーティング1820のリッジを形成可能である、エッチングされない領域における粒子を阻止してよい。
図18Aに示されるように、傾斜1820のリッジの片側(例えば、トレーリングエッジ)において、線1830によって示されるように、入ってくる粒子がトレーリングエッジにぶつかる場合があり、グレーティングリッジの表面における分子または原子1822は、入ってくる粒子による衝撃により、グレーティングリッジからはずれる場合がある。グレーティング材料の分子または原子1822は、図18Aに示されるように、グレーティングリッジ領域から容易に除去可能であるような方向に移動し得る。よって、はずれた分子または原子は、傾斜グレーティングの溝の底部に蓄積されることはない。しかしながら、傾斜グレーティングのリッジの反対側(例えば、リーディングエッジ)において、線1832によって示されるように、入ってくる粒子がリーディングエッジにぶつかる場合があり、グレーティングリッジの表面における分子または原子1824は、入ってくる粒子による衝撃により、グレーティングリッジからはずれる場合がある。しかしながら、入ってくる粒子の方向により、グレーティング材料の分子または原子1824は、分子または原子1824が傾斜グレーティングの溝の底部に蓄積し得るような方向で、さらにグレーティングリッジへと押し込まれ得る、またはグレーティングリッジから除去され得る。そのように、グレーティングリッジのリーディングエッジにおけるエッチング速度はより低くなる場合がある、および/または、グレーティングリッジのリーディングエッジからエッチングされる材料は傾斜グレーティングの溝の底部に蓄積する場合があり、これは、リーディングエッジの傾斜角度または深さは、トレーリングエッジの傾斜角度または深さと異なる場合がある。
図18Bは、ある特定の実施形態による図18Aに示される作製プロセスを使用してエッチングされる傾斜グレーティング1860の例を示す。傾斜グレーティング1860は、SiONなどの高屈折率材料であってよい基板1850上で作製されてよい。傾斜グレーティング1860は、複数のグレーティングリッジ1862と複数のグレーティング溝1864とを含んでよい。グレーティングリッジ1862はリーディングエッジ1866およびトレーリングエッジ1868を含んでよい。図18Bにおける領域1870に示されかつ破線によって示されるように、グレーティングリッジ1862の上部から隣接するグレーティング溝1864の底部までのリーディングエッジ1866の長さは、グレーティングリッジ1862の上部から隣接するグレーティング溝1864の底部までのトレーリングエッジ1866の長さより短い場合がある。換言すれば、グレーティング溝1864の底部は平坦でなくてよい。このような効果は所望されないものである。
いくつかの実施形態では、Hガスは、誘導結合プラズマ(ICP)チャンバなど、上述されるイオン源発生装置において(例えば、CF、CHF、CH2F2、CH3F、C4F8、C4F6、C2F6、C2F8、NF、SF、CLF、NO、N、O、SO、COSなどを含む)ガスに加えられてよい。Hイオンは、イオン源発生装置において生成されてよく、SiまたはSiONなど、エッチングされる基板に向けて加速され得る。Si基板に進入するHイオンは、基板材料と反応して、
Si+H+→SiH、または
SiON+H+→SiH
に従って、基板において、例えば、SiHを形成することができる。プラズマにおけるさらなるイオン、またはCF、CF 、CHF などの反応性ガスにおけるさらなるガスは、例えば、
SiH+C/F/N/H→SiF+NH+HCN
に従って、物理および化学エッチング中にSiHと反応し得る。SiF、NH、HCNは、ガスなどの揮発性材料であってよいため、これらが移動する方向に関係なくグレーティング領域から容易に除去可能である。そのように、リーディングエッジとトレーリングエッジの両方におけるエッチング速度は改善可能であり、グレーティング溝の底部に蓄積される残りの材料はないまたは少ない場合がある。よって、結果として生じる傾斜グレーティングは深くなり得、リーディングエッジおよびトレーリングエッジにおいて同様の長さおよび傾斜角度(すなわち、対称的)を有することができる。
いくつかの実施形態では、ヘリウムガスなどの他の低分子量ガスは上述されるイオン源発生装置におけるガスに加えられてよく、この場合、ヘリウムイオンは生成可能であり、かつグレーティング材料と反応するようにグレーティング基板に向けて加速させてよい。
図19Aは、ある特定の実施形態による作製プロセスを使用してSiON層において作製される傾斜グレーティング1900の例を示す。作製プロセスでは、イオン源発生装置において使用されるHまたはヘリウムガスはなくてよい。示されるように、グレーティング溝の底部は、グレーティングリッジの上部から隣接するグレーティング溝の底部までのリーディングエッジの長さがグレーティングリッジの上部から隣接するグレーティング溝の底部までのトレーリングエッジの長さより短くなり得るように、平坦でなくてもよい。
図19Bは、ある特定の実施形態による改良作製プロセスを使用してSiON層において作製される傾斜グレーティング1950の例を示す。改良作製プロセスにおいて、Hガスは、高速で高エネルギーのHイオンを生成するためにイオン源発生装置において使用されてよい。示されるように、グレーティング溝の底部は比較的平坦であり得、グレーティングリッジの上部から隣接するグレーティング溝の底部までのリーディングエッジの長さは、グレーティングリッジの上部から隣接するグレーティング溝の底部までトレーリングエッジの長さと同様であってよい。そのように、傾斜グレーティングのリーディングエッジおよびトレーリングエッジはより対称的であってよい。
図20Aは、ある特定の実施形態による作製プロセスを使用してSi層において作製される傾斜グレーティング2000の例を示す。作製プロセスでは、イオン源発生装置において使用されるHまたはヘリウムガスはなくてよい。示されるように、グレーティング溝の底部は、グレーティングリッジの上部から隣接するグレーティング溝の底部までのリーディングエッジの長さがグレーティングリッジの上部から隣接するグレーティング溝の底部までのトレーリングエッジの長さより短くなり得るように、平坦でなくてもよい。
図20Bは、ある特定の実施形態による改良作製プロセスを使用してSi層において作製される傾斜グレーティング2010の例を示す。図20Cは、ある特定の実施形態による改良作製プロセスを使用してSi層において作製される傾斜グレーティング2020の例を示す。改良作製プロセスにおいて、Hガスは、高速で高エネルギーのHイオンを生成するためにイオン源発生装置において使用されてよい。示されるように、グレーティング溝の底部は比較的平坦であり得、グレーティングリッジの上部から隣接するグレーティング溝の底部までのリーディングエッジの長さは、グレーティングリッジの上部から隣接するグレーティング溝の底部までトレーリングエッジの長さと同様であってよい。そのように、傾斜グレーティングのリーディングエッジおよびトレーリングエッジはより対称的であってよい。
いくつかの実施形態では、本明細書に開示される技法を使用して作製される傾斜グレーティングにおいて、グレーティングリッジのリーディングエッジの長さとグレーティングリッジのトレーリングエッジの長さとの間の差異は、グレーティングリッジのトレーリングエッジの長さの、25%、20%、10%、5%未満、またはそれ以下であってよい。
いくつかの実施形態では、エッチングプロセスは複数の動作を含んでよい。例えば、いくつかの実施形態では、Hまたはヘリウムイオンは、例えば、SiHを形成するようにグレーティング材料を物理的かつ化学的にエッチングするために最初に生成されかつ使用されてよい。別個の動作では、他の反応性ガスは、SiH材料を物理的かつ化学的にエッチングするために使用されてよい。いくつかの実施形態では、Hイオンを使用してエッチングする動作および他の反応性ガスを使用してエッチングする動作は、傾斜グレーティングをエッチングするための複数のサイクルのそれぞれのサイクルにおいて行われてよい。
いくつかの実施形態では、H2またはヘリウムガスは、例えば、上述されるガスこんろ1364を通して注入されてよい。H2またはヘリウムガスは、イオン源発生装置からのイオンと衝突してHまたはヘリウムイオンを生成してよい。多くの場合、イオンとの衝突によって生成されるHまたはヘリウムイオンの速度またはエネルギーは、それほど高くなくてよいため、イオン源発生装置において生成されるHまたはヘリウムイオンと同じくらい効果的なグレーティング材料をエッチングしなくてよい。
一般に、半導体エッチングにおいて使用される誘導結合プラズマ(ICP)チャンバなどのイオン源発生装置は、石英で作られる内部空洞層を含んでよい。Hガスがイオン源発生装置において加えられる時、チャンバにおいて生成されるHイオンは、石英層に進入および/または石英層と反応する場合があり、石英層の物理的性質および/または化学的性質を変える場合があり、これは石英層に対する損傷が生じる場合がある。ある特定の実施形態によると、イオン源発生装置における石英層は、上述されるH2補助イオンビームエッチングを使用するために酸化アルミニウム(Al)またはYなどの酸化物材料が置き換えられてよい。
図21は、ある特定の実施形態によるイオンビームエッチングシステム2100の例を示す。イオン源発生装置2100は、イオン源発生装置1010、1110、1210、または1310と同様であってよいイオン源発生装置2110を含んでよい。イオン源発生装置2110は、CF、CHF、CH2F2、CH3F、C4F8、C4F6、C2F6、C2F8、NF、SF、CLF、NO、N、O、SO、COS、H2、およびHeなどのガスを、イオン源発生装置2110のチャンバ内に受けるための不活性ガス入口2120を含んでよい。プラズマは、RF誘導結合プラズマ(ICP)発生装置2130を介してイオン源発生装置2110において生成されてよく、ここで、高エネルギー電子は、中性物質との衝突によって注入された不活性ガス(例えば、H)の中性物質をイオン化してよい。高密度プラズマ2122は衝撃イオン化によってイオン源発生装置2110内に生成されてよい。高密度プラズマ2122は、電荷平衡において正のイオン2124および負の電子を含んでよい。
イオン源発生装置2110の内部空洞の表面層2112は、チャンバにおいて生成されるHイオンが、表面層2112に進入または表面層2112と反応しなくてよいように、および、表面層2112の物理的性質および/または化学的性質を変えなくてよいように、酸化アルミニウム(Al)または酸化イットリウム(Y)などの酸化物材料の層を含んでよい。よって、表面層2112は空洞内で生成されるイオンによって損傷され得ない。
IBEシステム2100はまた、イオン源発生装置2110内で形成される高密度プラズマ2122から平行イオンビーム2162を引き出すための1つまたは複数の配列コリメータグリッドを含んでよい。配列コリメータグリッドはさまざまなやり方で実装されてよい。例えば、図21に示されるように、配列コリメータグリッドは、高密度プラズマ2122に接触しかつこの電位を制御することができる引き出しグリッド2140と、引き出されたイオンを加速させるために調節可能な負の高電圧供給によって駆動されてよい加速グリッド2150とを含んでよい。ビーム中和装置2160は、配列コリメータグリッドの近くに配設されてよく、エッチングされる構造上の正電荷の堆積を防止するために、平行イオンビーム2162と関連している正味の中性電荷束を達成するように平行イオンビーム2162に電子ビームを放出することができる。
図22は、本明細書に開示される例のいくつかを実装するための例示のニアアイディスプレイ(例えば、HMDデバイス)の例示の電子システム2200の簡略ブロック図である。電子システム2200は、HMDデバイスの電子システムとしてまたは上述される他のニアアイディスプレイとして使用されてよい。この例では、電子システム2200は、1つまたは複数のプロセッサ2210およびメモリ2220を含んでよい。プロセッサ2210は、いくつかの構成要素において動作を行うための命令を実行するように構成されてよく、例えば、ポータブル電子デバイス内の実装に適した汎用プロセッサまたはマイクロプロセッサとすることができる。プロセッサ2210は、電子システム2200内の複数の構成要素と通信可能に結合されてよい。この通信結合を実現するために、プロセッサ2210はバス2240にわたって他の例証される構成要素と通信してよい。バス2240は電子システム2200内のデータを転送するように適応される任意のサブシステムであってよい。バス2240は、データを転送するために、複数のコンピュータバスと、追加の回路構成とを含んでよい。
メモリ2220はプロセッサ2210に結合されてよい。いくつかの実施形態では、メモリ2220は、短期記憶と長期記憶の両方を与えてよく、いくつかのユニットに分割されてよい。メモリ2220は、スタティックランダムアクセスメモリ(SRAM)および/またはダイナミックランダムアクセスメモリ(DRAM)といった揮発性、および/または、読み出し専用メモリ(ROM)およびフラッシュメモリなどといった不揮発性であってよい。さらに、メモリ2220は、セキュアデジタル(SD)カードなどの取り外し可能記憶デバイスを含んでよい。メモリ2220は、コンピュータ可読命令、データ構造、プログラムモジュール、および電子システム2200に対する他のデータの記憶を提供してよい。いくつかの実施形態では、メモリ2220は種々のハードウェアモジュール内に分散されてよい。命令セットおよび/またはコードはメモリ2220上に記憶され得る。命令は、電子システム2200によって実行可能であってよい実行可能コードの形を成す場合がある、および/または(例えば、さまざまな一般に入手可能なコンパイラ、インストールプログラム、圧縮/展開ユーティリティなどのいずれかを使用して)電子システム2200上にコンパイルおよび/またはインストールされると、実行可能コードの形を成してよい、ソースコードおよび/またはインストール可能コードの形を成す場合がある。
いくつかの実施形態では、メモリ2220は、任意の数のアプリケーションを含んでよい、複数のアプリケーションモジュール2222~2224を記憶してよい。アプリケーションの例は、ゲームアプリケーション、会議アプリケーション、ビデオ再生アプリケーション、または他の適したアプリケーションを含んでよい。アプリケーションは、深さ検知機能または視標追跡機能を含んでよい。アプリケーションモジュール2222~2224は、プロセッサ2210によって実行される特定の命令を含んでよい。いくつかの実施形態では、ある特定のアプリケーションまたはアプリケーションモジュール2222~2224の一部は、他のハードウェアモジュール2280によって実行可能であってよい。ある特定の実施形態では、メモリ2220は、セキュア情報に対する複写または他の不正アクセスを防止するための追加のセキュリティ制御を含んでよいセキュアメモリをさらに含んでよい。
いくつかの実施形態では、メモリ2220は、ロードされるオペレーティングシステム2225を含んでよい。オペレーティングシステム2225は、アプリケーションモジュール2222~2224によって提供される命令の実行を開始する、および/または他のハードウェアモジュール2280のみならず、1つまたは複数の無線トランシーバを含んでよい無線通信サブシステム2230とのインターフェースを管理するように動作可能であってよい。オペレーティングシステム2225は、スレッディング、リソース管理、データ記憶制御、および他の同様の機能性を含む電子システム2200の構成要素にわたって他の動作を行うように適応されてよい。
無線通信サブシステム2230は、例えば、赤外線通信デバイス、無線通信デバイスおよび/もしくはチップセット(Bluetooth(登録商標)デバイス、IEEE802.11デバイス、Wi-Fiデバイス、WiMaxデバイス、セルラー通信設備など)、ならびに/または同様の通信インターフェースを含んでよい。電子システム2200は、無線通信サブシステム2230の一部として、または該システムの任意の部分に結合される別個の構成要素としての無線通信のための1つまたは複数のアンテナ2234を含んでよい。所望の機能性に応じて、無線通信サブシステム2230は、無線広域ネットワーク(WWAN)、無線ローカルエリアネットワーク(WLAN)、または無線パーソナルエリアネットワーク(WPAN)などの種々のデータネットワークおよび/またはネットワークタイプと通信することを含んでよい、無線基地局装置、および他の無線デバイス、およびアクセスポイントと通信するための別個のトランシーバを含んでよい。WWANは、例えば、WiMax(IEEE802.16)ネットワークであってよい。WLANは、例えば、IEEE802.11xネットワークであってよい。WPANは、例えば、Bluetoothネットワーク、IEEE802.15x、または何らかの他のタイプのネットワークであってよい。本明細書に説明される技法は、WWAN、WLAN、および/またはWPANの任意の組み合わせに使用されてもよい。無線通信サブシステム2230は、データが、ネットワーク、他のコンピュータシステム、および/または本明細書に説明される任意の他のデバイスと交換されることを可能にしてよい。無線通信サブシステム2230は、アンテナ2234および無線リンク2232を使用して、HMDデバイスの識別子、位置データ、地図、ヒートマップ、写真、またはビデオなどのデータを送信または受信するための手段を含んでよい。無線通信サブシステム2230、プロセッサ2210、およびメモリ2220は共に、本明細書に開示されるいくつかの機能を行うための手段の1つまたは複数の少なくとも一部を含んでよい。
電子システム2200の実施形態はまた、1つまたは複数のセンサ2290を含んでよい。センサ2290は、例えば、画像センサ、加速度計、圧力センサ、温度センサ、近接センサ、磁力計、ジャイロスコープ、慣性センサ(例えば、加速度計およびジャイロスコープを組み合わせるモジュール)、環境光センサ、または深さセンサまたは位置センサなど、感覚出力を提供するおよび/または感覚入力を受信するように動作可能な任意の他の同様のモジュールを含んでよい。例えば、いくつかの実装形態では、センサ2290は、1つまたは複数の慣性計測装置(IMU)および/または1つまたは複数の位置センサを含んでよい。IMUは、位置センサの1つまたは複数から受信される測定信号に基づいて、HMDデバイスの初期位置に対するHMDデバイスの推定位置を指示する較正データを生成してよい。位置センサは、HMDデバイスの動きに応答して1つまたは複数の測定信号を生成してよい。位置センサの例には、1つまたは複数の加速度計、1つまたは複数のジャイロスコープ、1つまたは複数の磁力計、動きを検出する別の適したタイプのセンサ、IMUのエラー訂正に使用されるあるタイプのセンサ、またはこれらの何らかの組み合わせが挙げられ得るが、これらに限定されない。位置センサは、IMUの外部に、IMUの内部に、またはこれらの何らかの組み合わせで位置してよい。少なくともいくつかのセンサは検知するための構造化された光パターンを使用してよい。
電子システム2200は、ディスプレイモジュール2260を含んでよい。ディスプレイモジュール2260は、ニアアイディスプレイであってよく、電子システム2200からの画像、ビデオ、およびさまざまな命令などの情報を、ユーザに図で提示してよい。このような情報は、1つまたは複数のアプリケーションモジュール2222~2224、仮想現実エンジン2226、1つまたは複数の他のハードウェアモジュール2280、これらの組み合わせ、または、(例えば、オペレーティングシステム2225によって)ユーザに対してグラフィックコンテンツを解釈するための任意の他の適した手段から導出されてよい。ディスプレイモジュール2260は、液晶ディスプレイ(LCD)技術、(例えば、OLED、ILED、mLED、AMOLED、TOLEDなどを含む)発光ダイオード(LED)技術、発光ポリマーディスプレイ(LPD)技術、または何らかの他のディスプレイ技術を使用することができる。
電子システム2200はユーザ入力/出力モジュール2270を含んでよい。ユーザ入力/出力モジュール2270は、ユーザが、電子システム2200にアクション要求を送ることを可能にしてよい。アクション要求は、特定のアクションを行うための要求であってよい。例えば、アクション要求は、アプリケーションを開始または終了すること、またはアプリケーション内の特定のアクションを行うことであってよい。ユーザ入力/出力モジュール2270は、1つまたは複数の入力デバイスを含んでよい。例示の入力デバイスは、タッチスクリーン、タッチパッド、マイクロホン、ボタン、ダイアル、スイッチ、キーボード、マウス、ゲームコントローラ、または、アクション要求を受信し、かつ受信したアクション要求を電子システム2200に通信するための任意の他の適したデバイスを含み得る。いくつかの実施形態では、ユーザ入力/出力モジュール2270は、電子システム2200から受信された命令に従ってユーザに触覚フィードバックを提供することができる。例えば、触覚フィードバックは、アクション要求が受信されるまたは実行された時に提供されてよい。
電子システム2200は、例えば、ユーザの目の位置を追跡するために、ユーザの写真またはビデオを撮るために使用可能であるカメラ2250を含んでよい。カメラ2250はまた、例えば、VR、AR、またはMRアプリケーションに対して、環境の写真またはビデオを撮るために使用されてよい。カメラ2250は、例えば、数百万または数千万の画素を有する相補的金属酸化物半導体(CMOS)画像センサを含んでよい。いくつかの実装形態では、カメラ2250は3-D画像を取り込むために使用されてよい2つ以上のカメラを含んでよい。
いくつかの実施形態では、電子システム2200は、複数の他のハードウェアモジュール2280を含んでよい。他のハードウェアモジュール2280のそれぞれは、電子システム2200内の物理モジュールであってよい。他のハードウェアモジュール2280のそれぞれは構造として恒久的に構成可能であるが、他のハードウェアモジュール2280のいくつかは、具体的な機能を行うように一時的に構成されてよいまたは一時的にアクティブ化されてよい。他のハードウェアモジュール2280の例には、例えば、オーディオ出力および/または入力モジュール(例えば、マイクロホンまたはスピーカ)、近距離無線通信(NFC)モジュール、再充電バッテリ、バッテリ管理システム、有線/無線バッテリ充電システムなどが挙げられ得る。いくつかの実施形態では、他のハードウェアモジュール2280の1つまたは複数の機能はソフトウェアで実装されてよい。
いくつかの実施形態では、電子システム2200のメモリ2220はまた、仮想現実エンジン2226を記憶してよい。仮想現実エンジン2226は、電子システム2200内のアプリケーションを実行し、かつ、さまざまなセンサからのHMDデバイスの、位置情報、加速情報、速度情報、予測される今後の位置、または、これらの何らかの組み合わせを受信してよい。いくつかの実施形態では、仮想現実エンジン2226によって受信される情報は、ディスプレイモジュール2260に対して信号(例えば、表示命令)を生じさせるために使用されてよい。例えば、受信した情報が、ユーザが左を見ていることを指示する場合、仮想現実エンジン2226は、HMDデバイスが、仮想環境におけるユーザの移動をミラーリングするようにコンテンツを生成してよい。さらに、仮想現実エンジン2226は、ユーザ入力/出力モジュール2270から受信されたアクション要求に応答してアプリケーション内のアクションを行い、かつフィードバックをユーザに提供してよい。提供されたフィードバックは、可視、可聴、または触覚フィードバックであってよい。いくつかの実装形態では、プロセッサ2210は、仮想現実エンジン2226を実行することができる1つまたは複数のGPUを含んでよい。
さまざまな実装形態では、上述されるハードウェアおよびモジュールは、有線接続または無線接続を使用して互いに通信可能である単一のデバイス上でまたは複数のデバイス上で実装されてよい。例えば、いくつかの実装形態では、GPU、仮想現実エンジン2226、およびアプリケーション(例えば、追跡アプリケーション)などのいくつかの構成要素またはモジュールは、ヘッドマウントディスプレイデバイスと別個のコンソール上に実装されてよい。いくつかの実装形態では、1つのコンソールは複数のHMDに接続されてよいまたはこれをサポートしてよい。
代替的な構成では、種々のおよび/または追加の構成要素は電子システム2200に含まれてよい。同様に、構成要素の1つまたは複数の機能性は、上述されるやり方と異なるやり方で構成要素の間で分散可能である。例えば、いくつかの実施形態では、電子システム2200は、ARシステム環境および/またはMR環境などの他のシステム環境を含むように改良されてよい。
上に開示される方法、システム、およびデバイスは例である。さまざまな実施形態は、必要に応じてさまざまな手順または構成要素を、省略、代用、または追加可能である。例えば、代替的な構成では、説明した方法は、説明したものと異なる順序で行われてよい、および/またはさまざまな段階は、追加、省略、および/または組み合わせ可能である。また、ある特定の実施形態に関して説明される特徴は、さまざまな他の実施形態で組み合わせられてよい。実施形態の種々の態様および要素は同様のやり方で組み合わせられてよい。また、技術は発展しているため、要素の多くは、本開示の範囲をこれらの具体的な例に限定しない例である。
実施形態を十分に理解してもらうために本明細書に具体的詳細を挙げている。しかしながら、実施形態はこれら具体的詳細なく実践可能である。例えば、周知の回路、プロセス、システム、構造、および技法は、実施形態を不明瞭にすることを回避するために不必要な詳細なしで示されている。本明細書は例示の実施形態のみを提供しており、本発明の範囲、応用性、または構成を限定することを意図するものではない。もっと正確に言えば、実施形態の前述の説明は、当業者に、さまざまな実施形態を実施するための実施可能な説明を提供するであろう。本開示の趣旨および範囲から逸脱することなく、要素の機能および配置においてさまざまな変更がなされてよい。
また、いくつかの実施形態はフロー図またはブロック図として描写されるプロセスとして説明された。それぞれは、動作を逐次プロセスとして説明するものであり得るが、動作の多くは並列にまたは同時に行われてよい。さらに、動作の順序は再編成されてよい。プロセスは図に含まれない追加のステップを有する場合がある。また、方法の実施形態は、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、またはこれらの任意の組み合わせによって実装されてよい。ソフトウェア、ファームウェア、ミドルウェア、またはマイクロコードで実装される時、関連しているタスクを行うためのプログラムコードまたはコードセグメントは、記憶媒体などのコンピュータ可読媒体に記憶されてよい。プロセッサは関連しているタスクを行ってよい。
具体的な要件に従って大きく変化させてもよいことは、当業者には明らかであろう。例えば、カスタマイズされたまたは専用のハードウェアも使用されてよい、および/または特定の要素は、ハードウェア、(アプレットなどのポータブルソフトウェアを含む)ソフトウェア、またはこの両方で実装される場合がある。さらに、ネットワーク入力/出力デバイスなどの他のコンピューティングデバイスへの接続が用いられてよい。
添付の図を参照すると、メモリを含むことができる構成要素は、非一時的な機械可読媒体を含むことができる。「機械可読媒体」および「コンピュータ可読媒体」という用語は、機械を具体的なやり方で動作させるデータを提供する際に関与する任意の記憶媒体を指す場合がある。以上に提供される実施形態において、さまざまな機械可読媒体は、命令/コードを処理ユニットおよび/または実行するための他のデバイスに提供する際に関与し得る。さらにまたは代替的に、機械可読媒体は、このような命令/コードを記憶するおよび/または伝えるために使用され得る。多くの実装形態では、コンピュータ可読媒体は物理記憶媒体および/または有形記憶媒体である。このような媒体は、不揮発性媒体、揮発性媒体、および伝送媒体を含むがこれらに限定されない多くの形を成してよい。コンピュータ可読媒体の一般的な形態は、例えば、コンパクトディスク(CD)もしくはデジタル多用途ディスク(DVD)などの磁気媒体および/または光媒体、パンチカード、紙テープ、穴のパターンを有する任意の他の物理媒体、RAM、プログラム可能読み出し専用メモリ(PROM)、消去可能プログラム可能読み出し専用メモリ(EPROM)、フラッシュEPROM、任意の他のメモリチップもしくはカートリッジ、以降で説明されるような搬送波、または、コンピュータが命令および/またはコードを読み出すことができる任意の他の媒体を含む。コンピュータプログラム製品は、手順、関数、サブプログラム、プログラム、ルーチン、アプリケーション(アプリ)、サブルーチン、モジュール、ソフトウェアパッケージ、クラス、または、命令、データ構造、またはプログラム文の任意の組み合わせを表すことができるコードおよび/または機械実行可能命令を含んでよい。
本明細書に説明されるメッセージを通信するために使用される情報および信号がさまざまな種々の技術および技法のいずれかを使用して表され得ることを、当業者は理解するであろう。例えば、上記の説明全体を通して言及され得る、データ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁場もしくは磁性粒子、光場もしくは光学粒子、またはこれらの任意の組み合わせによって表され得る。
本明細書で使用されるような用語、「および(and)」および「または(or)」は、このような用語が使用される文脈に少なくとも部分的に左右されることも予想されるさまざまな意味を含み得る。典型的には、A、B、また、Cのようなリストを関連付けるために使用される場合の「または(or)」は、本明細書において排他的な意味で使用されるA、B、またはCと共に、本明細書において包含的な意味で使用されるA、B、およびCを意味することが意図されている。さらに、本明細書で使用されるような「1つまたは複数の」という用語は、単数形の任意の特徴、構造、または特性を説明するために使用され得る、または、特徴、構造、または特性の何らかの組み合わせを説明するために使用され得る。しかしながら、これは単に例示的な例であり、特許請求される主題はこの例に限定されないことは留意されるべきである。さらに、A、B、または、Cのようなリストを関連付けるために使用される場合の「少なくとも1つの」という用語は、A、AB、AC、BC、AA、ABC、AAB、AABBCCCなどのようなA、B、および/またはCの任意の組み合わせを意味するように解釈可能である。
さらに、ある特定の実施形態がハードウェアおよびソフトウェアの特定の組み合わせを使用して説明されているが、ハードウェアおよびソフトウェアの他の組み合わせも可能であることは認識されるべきである。ある特定の実施形態は、ハードウェアのみで、またはソフトウェアのみで、またはこれらの組み合わせを使用して実装されてよい。1つの例では、ソフトウェアは、本開示に説明されるステップ、動作、またはプロセスのいずれかまたは全てを行うために1つまたは複数のプロセッサによって実行可能なコンピュータプログラムコードまたは命令を含有するコンピュータプログラム製品で実装されてよく、ここで、コンピュータプログラムは非一時的なコンピュータ可読媒体上に記憶されてよい。本明細書に説明されるさまざまなプロセスは、同じプロセッサ上に、または種々のプロセッサの任意の組み合わせで実装可能である。
デバイス、システム、構成要素、またはモジュールがある特定の動作または機能を行うように構成されるとして説明される場合、このような構成は、例えば、動作を行うように電子回路を設計することによって、コンピュータ命令またはコードを実行するなどによって動作を行うための(マイクロプロセッサなどの)プログラム可能電子回路、または非一時的なメモリ媒体上に記憶されるコードまたは命令を実行するようにプログラミングされるプロセッサもしくはコアをプログラミングすることによって、またはこれらの任意の組み合わせによって、成し遂げられ得る。プロセスは、プロセス間通信のための従来の技法を含むがこれに限定されないさまざまな技法を使用して通信でき、異なるプロセス対が異なる技法を使用してよい、または、同じプロセス対がその時々で異なる技術を使用してよい。
本明細書および図面は、それに応じて、限定的意味ではなく例示的意味でみなされるべきである。しかしながら、特許請求の範囲に示されるようなより広範な趣旨および範囲から逸脱することなく、追加、代用、削除、ならびに他の改良および変更がなされてよいことは明らかであろう。よって、具体的な実施形態が説明されているが、これらは限定することを意図するものではない。さまざまな改良および等価物は以下の特許請求の範囲内にあるとする。

Claims (20)

  1. 材料層における傾斜表面レリーフ構造を作製する方法であって、前記方法は、
    反応性イオン源発生装置に第1の反応性ガスを注入することと
    またはヘリウムを含む低分子量ガスを前記反応性イオン源発生装置に加えることと、
    前記反応性イオン源発生装置において、前記第1の反応性ガスおよび前記低分子量ガスを用いてプラズマを生成することであって、前記材料層と反応して揮発性材料を生成するように構成される前記低分子量ガスの反応性イオンを含む前記プラズマを生成することと、
    前記材料層に向けて平行反応性イオンビームを形成するために前記プラズマから前記反応性イオンの少なくとも一部を引き出すことと、
    前記材料層と反応するように構成される第2の反応性ガスを前記材料層上に注入することと、を含み、
    前記平行反応性イオンビームおよび前記第2の反応性ガスは、前記傾斜表面レリーフ構造を形成するために前記材料層を物理的と化学的の両方でエッチングする、方法。
  2. 前記傾斜表面レリーフ構造の所望の傾斜角度に基づいて前記材料層を回転させることをさらに含む、請求項1に記載の方法。
  3. 前記第1の反応性ガスは、CF、CHF、CH、CHF、C、C、C、C、NF、CLF、NO、N、O、SF、Cl、BCl、HBr、H、Ar、He、またはNeのうちの少なくとも1つを含む、請求項1に記載の方法。
  4. 前記材料層は、半導体基板、SiO層、Si材料層、酸化チタン層、アルミナ層、SiC層、SiO層、非晶質シリコン層、スピンオンカーボン(SOC)層、非晶質炭素層(ACL)、ダイアモンド状炭素膜(DLC)層、TiO層、AlO層、TaO層、またはHFO層を含む、請求項1に記載の方法。
  5. 前記平行反応性イオンビームを形成するために前記プラズマから前記反応性イオンの少なくとも一部を引き出すことは、
    前記反応性イオン源発生装置に隣接した引き出しグリッドに引き出し電圧を印加することと、
    前記反応性イオンの少なくとも一部を引き出しかつ加速させるために加速グリッドに加速電圧を印加することと、を含み、
    前記引き出しグリッドおよび前記加速グリッドは配列され、
    前記加速電圧は前記引き出し電圧より低い、請求項1に記載の方法。
  6. 前記第2の反応性ガスは、CF、CHF、N、O、SF、Cl、BCl、またはHBrのうちの少なくとも1つを含む、請求項1に記載の方法。
  7. 前記傾斜表面レリーフ構造は傾斜表面レリーフ光学グレーティングを含む、請求項1に記載の方法。
  8. 前記傾斜表面レリーフ光学グレーティングは複数のリッジを含み、
    それぞれのリッジのリーディングエッジは前記リッジのトレーリングエッジに平行である、請求項7に記載の方法。
  9. 前記リーディングエッジの傾斜角度および前記トレーリングエッジの傾斜角度は、前記材料層の面法線に対して30度を上回る、請求項8に記載の方法。
  10. 前記リーディングエッジの長さと前記トレーリングエッジの長さとの間の差異は、前記トレーリングエッジの長さの10%未満である、請求項8に記載の方法。
  11. 前記傾斜表面レリーフ光学グレーティングの深さは100nmを上回る、請求項7に記載の方法。
  12. 前記傾斜表面レリーフ光学グレーティングのデューティサイクルは60%を上回る、請求項7に記載の方法。
  13. 前記低分子量ガスはHを含み、
    前記反応性イオンはHイオンを含み、
    前記材料層はSiO層またはSi層を含み、
    前記Hイオンは前記SiO層または前記Si層と反応して、SiH層を形成する、請求項1に記載の方法。
  14. 前記平行反応性イオンビームおよび前記第2の反応性ガスは、前記SiH層と反応して、SiFガス、NHガス、およびHCNガスを生成する、請求項13に記載の方法。
  15. 材料層において傾斜表面レリーフ構造を作製するための化学補助反応性イオンビームエッチング(CARIBE)システムであって、前記CARIBEシステムは、
    第1の反応性ガスと、H またはヘリウムを含む低分子量ガスとを使用してプラズマを生成するように構成される反応性イオン源発生装置であって、前記プラズマは、前記材料層と反応して揮発性材料を生成するように構成される前記低分子量ガスの反応性イオンを含む、反応性イオン源発生装置と、
    前記材料層に向けて平行反応性イオンビームを形成するために前記プラズマにおける前記反応性イオンの少なくとも一部を引き出しかつ加速させるように構成される1つまたは複数の配列コリメータグリッドと、
    前記材料層と反応するように構成される第2の反応性ガスを、前記材料層上に注入するように構成されるガスこんろと、を含み、
    前記平行反応性イオンビームおよび前記第2の反応性ガスは、前記材料層において前記傾斜表面レリーフ構造を形成するために前記材料層を物理的と化学的の両方でエッチングする、CARIBEシステム。
  16. 前記反応性イオン源発生装置は前記プラズマを封入するように構成される内部空洞を含み、
    前記内部空洞の表面層は酸化物材料を含む、請求項15に記載のCARIBEシステム。
  17. 前記酸化物材料はYまたは酸化アルミニウムを含む、請求項16に記載のCARIBEシステム。
  18. 前記平行反応性イオンビームを中和するために前記平行反応性イオンビームに電子ビームを注入するように構成される中和装置をさらに含む、請求項15に記載のCARIBEシステム。
  19. 前記反応性イオン源発生装置は誘導結合プラズマ発生装置を含む、請求項15に記載のCARIBEシステム。
  20. 前記第1の反応性ガスは、CF、CHF、CH、CHF、C、C、C、C、NF、CLF、NO、N、O、SF、H、Cl、BCl、HBr、Ar、He、またはNeのうちの少なくとも1つを含み、
    前記第2の反応性ガスは、CF、CHF、N、O、SF、Cl、BCl、またはHBrのうちの少なくとも1つを含む、請求項15に記載のCARIBEシステム。
JP2020522669A 2017-10-30 2018-10-30 高屈折率材料のh2補助傾斜エッチング Active JP7285251B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201762579055P 2017-10-30 2017-10-30
US62/579,055 2017-10-30
US16/001,694 2018-06-06
US16/001,694 US10684407B2 (en) 2017-10-30 2018-06-06 Reactivity enhancement in ion beam etcher
US16/174,305 US10502958B2 (en) 2017-10-30 2018-10-30 H2-assisted slanted etching of high refractive index material
PCT/US2018/058272 WO2019089639A1 (en) 2017-10-30 2018-10-30 H2-assisted slanted etching of high refractive index material
US16/174,305 2018-10-30

Publications (2)

Publication Number Publication Date
JP2021503709A JP2021503709A (ja) 2021-02-12
JP7285251B2 true JP7285251B2 (ja) 2023-06-01

Family

ID=66242830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020522669A Active JP7285251B2 (ja) 2017-10-30 2018-10-30 高屈折率材料のh2補助傾斜エッチング

Country Status (5)

Country Link
US (1) US10502958B2 (ja)
JP (1) JP7285251B2 (ja)
KR (1) KR20200066733A (ja)
TW (2) TWI767081B (ja)
WO (1) WO2019089639A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9132352B1 (en) 2010-06-24 2015-09-15 Gregory S. Rabin Interactive system and method for rendering an object
CN113599079B (zh) 2016-08-12 2022-10-11 宝洁公司 弹性层合体及用于装配用于吸收制品的弹性层合体的方法
US10302826B1 (en) * 2018-05-30 2019-05-28 Applied Materials, Inc. Controlling etch angles by substrate rotation in angled etch tools
US11137536B2 (en) 2018-07-26 2021-10-05 Facebook Technologies, Llc Bragg-like gratings on high refractive index material
WO2020048129A1 (en) 2018-09-07 2020-03-12 Huawei Technologies Co., Ltd. High refractive index waveguide for augmented reality
US10598938B1 (en) * 2018-11-09 2020-03-24 Facebook Technologies, Llc Angular selective grating coupler for waveguide display
US11412207B2 (en) 2018-12-28 2022-08-09 Meta Platforms Technologies, Llc Planarization of overcoat layer on slanted surface-relief structures
US11307357B2 (en) * 2018-12-28 2022-04-19 Facebook Technologies, Llc Overcoating slanted surface-relief structures using atomic layer deposition
US11314092B2 (en) * 2019-01-11 2022-04-26 Google Llc Systems, devices, and methods for light guide based wearable heads-up displays
JP7341907B2 (ja) * 2020-01-10 2023-09-11 株式会社日立エルジーデータストレージ 画像表示素子および装置
US11226446B2 (en) 2020-05-06 2022-01-18 Facebook Technologies, Llc Hydrogen/nitrogen doping and chemically assisted etching of high refractive index gratings
US11456205B2 (en) * 2020-05-11 2022-09-27 Applied Materials, Inc. Methods for variable etch depths
EP4020024A1 (en) 2020-12-22 2022-06-29 Paul Scherrer Institut Method for producing high aspect ratio fan-shaped optics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243742A (ja) 1999-02-24 2000-09-08 Hitachi Chem Co Ltd プラズマ発生装置、そのチャンバー内壁保護部材及びその製造法、チャンバー内壁の保護方法並びにプラズマ処理方法
JP2002540548A (ja) 1999-03-30 2002-11-26 ビーコ・インストゥルーメンツ・インコーポレーション 反応性イオンビームエッチング方法及び当該方法を使用して製造された薄膜ヘッド
JP2008187062A (ja) 2007-01-31 2008-08-14 Hitachi High-Technologies Corp プラズマ処理装置
US20160231478A1 (en) 2015-02-09 2016-08-11 Pasi KOSTAMO Display System

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595484A (en) 1985-12-02 1986-06-17 International Business Machines Corporation Reactive ion etching apparatus
JPH02299231A (ja) * 1989-05-15 1990-12-11 Seiko Epson Corp 化合物半導体のエッチング方法
JPH0830764B2 (ja) * 1991-04-25 1996-03-27 株式会社島津製作所 回折格子の製造方法
EP0504912B1 (en) * 1991-03-22 1997-12-17 Shimadzu Corporation Dry etching method and its application
JP2705400B2 (ja) * 1991-09-30 1998-01-28 日本電気株式会社 半導体細線形成方法
JPH06201909A (ja) * 1992-12-28 1994-07-22 Canon Inc 回折格子の製造方法
US5770120A (en) 1994-12-09 1998-06-23 Olympus Optical Co., Ltd. Method of manufacturing die and optical element performed by using the die
JP3296392B2 (ja) * 1995-02-13 2002-06-24 日本電信電話株式会社 ドライエッチング方法
JP3665400B2 (ja) * 1995-12-20 2005-06-29 シャープ株式会社 ドライエッチング方法
JP3379390B2 (ja) * 1997-06-16 2003-02-24 日本ビクター株式会社 マスタホログラム,これを用いたカラーフィルタの製造方法
US7052575B1 (en) 2001-04-30 2006-05-30 Advanced Micro Devices, Inc. System and method for active control of etch process
US20050211547A1 (en) * 2004-03-26 2005-09-29 Applied Materials, Inc. Reactive sputter deposition plasma reactor and process using plural ion shower grids
EP1630849B1 (en) * 2004-08-27 2011-11-02 Fei Company Localized plasma processing
US20060127830A1 (en) 2004-12-15 2006-06-15 Xuegong Deng Structures for polarization and beam control
US7643709B2 (en) 2006-05-12 2010-01-05 Interuniversitair Microelektronica Centrum (Imec) Slanted segmented coupler
WO2008046058A2 (en) * 2006-10-12 2008-04-17 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
KR100978886B1 (ko) * 2007-02-13 2010-08-31 가부시키가이샤 히다치 하이테크놀로지즈 플라즈마처리방법 및 플라즈마처리장치
US8303833B2 (en) * 2007-06-21 2012-11-06 Fei Company High resolution plasma etch
US20150309316A1 (en) * 2011-04-06 2015-10-29 Microsoft Technology Licensing, Llc Ar glasses with predictive control of external device based on event input
US9341843B2 (en) * 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US9182596B2 (en) * 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
US20120177908A1 (en) * 2010-07-14 2012-07-12 Christopher Petorak Thermal spray coatings for semiconductor applications
US20120183790A1 (en) * 2010-07-14 2012-07-19 Christopher Petorak Thermal spray composite coatings for semiconductor applications
US20160187654A1 (en) * 2011-02-28 2016-06-30 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
GB2502818A (en) * 2012-06-08 2013-12-11 Nanogan Ltd Epitaxial growth of semiconductor material such as Gallium Nitride on oblique angled nano or micro-structures
JP5575198B2 (ja) * 2012-09-25 2014-08-20 株式会社東芝 磁気抵抗効果素子の製造方法及び磁気抵抗効果素子の製造装置
JP6230898B2 (ja) * 2013-12-13 2017-11-15 東京エレクトロン株式会社 エッチング方法
US20150279686A1 (en) * 2014-03-31 2015-10-01 Taiwan Semiconductor Manufacturing Company Limited Semiconductor processing methods
US20160035539A1 (en) * 2014-07-30 2016-02-04 Lauri SAINIEMI Microfabrication
US9478435B2 (en) * 2014-08-07 2016-10-25 Tokyo Electron Limited Method for directed self-assembly and pattern curing
WO2016186988A1 (en) 2015-05-15 2016-11-24 President And Fellows Of Harvard College System and method for wafer-scale fabrication of free standing mechanical and photonic structures by ion beam etching
US9706634B2 (en) * 2015-08-07 2017-07-11 Varian Semiconductor Equipment Associates, Inc Apparatus and techniques to treat substrates using directional plasma and reactive gas
US10073278B2 (en) * 2015-08-27 2018-09-11 Microsoft Technology Licensing, Llc Diffractive optical element using polarization rotation grating for in-coupling
US10388492B2 (en) * 2016-04-14 2019-08-20 Fm Industries, Inc. Coated semiconductor processing members having chlorine and fluorine plasma erosion resistance and complex oxide coatings therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243742A (ja) 1999-02-24 2000-09-08 Hitachi Chem Co Ltd プラズマ発生装置、そのチャンバー内壁保護部材及びその製造法、チャンバー内壁の保護方法並びにプラズマ処理方法
JP2002540548A (ja) 1999-03-30 2002-11-26 ビーコ・インストゥルーメンツ・インコーポレーション 反応性イオンビームエッチング方法及び当該方法を使用して製造された薄膜ヘッド
JP2008187062A (ja) 2007-01-31 2008-08-14 Hitachi High-Technologies Corp プラズマ処理装置
US20160231478A1 (en) 2015-02-09 2016-08-11 Pasi KOSTAMO Display System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ionfab 300 X Flexible Tools for Multiple Applications,米国,Oxford Instruments,2015年,https://plasma.oxinst.com/assets/uploads/Ionfab300_4.pdf

Also Published As

Publication number Publication date
TW202239270A (zh) 2022-10-01
TW201931954A (zh) 2019-08-01
KR20200066733A (ko) 2020-06-10
TWI767081B (zh) 2022-06-11
JP2021503709A (ja) 2021-02-12
US20190129180A1 (en) 2019-05-02
US10502958B2 (en) 2019-12-10
WO2019089639A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP7285251B2 (ja) 高屈折率材料のh2補助傾斜エッチング
CN111448485B (zh) 高折射率材料的h2辅助的倾斜蚀刻
US10976483B2 (en) Variable-etch-depth gratings
JP2023509270A (ja) 表示漏れ低減のための勾配屈折率格子
US11137536B2 (en) Bragg-like gratings on high refractive index material
EP3969948A1 (en) Techniques for manufacturing slanted structures
CN111886447A (zh) 用于减少波导显示器中的彩虹的倾斜表面浮雕光栅
TW202109133A (zh) 使用原子層沉積來覆蓋傾斜的表面浮雕結構
CN113348386B (zh) 增加波导组合器的占空比范围
EP3971634A1 (en) Planarization of overcoat layer on slanted surface- relief structures
EP3477347A1 (en) Reactivity enhancement in ion beam etcher
US11226446B2 (en) Hydrogen/nitrogen doping and chemically assisted etching of high refractive index gratings
US20220397708A1 (en) Method of etching surface-relief structures
WO2022261374A1 (en) Method of etching surface-relief structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7285251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150