JP7284141B2 - Polarizer - Google Patents

Polarizer Download PDF

Info

Publication number
JP7284141B2
JP7284141B2 JP2020205110A JP2020205110A JP7284141B2 JP 7284141 B2 JP7284141 B2 JP 7284141B2 JP 2020205110 A JP2020205110 A JP 2020205110A JP 2020205110 A JP2020205110 A JP 2020205110A JP 7284141 B2 JP7284141 B2 JP 7284141B2
Authority
JP
Japan
Prior art keywords
polarizing plate
resin film
polarizer layer
film
optical resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020205110A
Other languages
Japanese (ja)
Other versions
JP2021047453A (en
JP2021047453A5 (en
Inventor
清孝 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JP2021047453A publication Critical patent/JP2021047453A/en
Publication of JP2021047453A5 publication Critical patent/JP2021047453A5/ja
Application granted granted Critical
Publication of JP7284141B2 publication Critical patent/JP7284141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、偏光板に関する。 The present invention relates to a polarizing plate.

偏光板は、通常、色素を含む偏光子層と、偏光子層の両側に設けられた一対の光学樹脂フィルムとを含み、液晶セル又は有機EL素子等の表示パネルに貼合して用いられる。偏光板の外周は通常、表示パネルの表示部の外周縁に合せた形状となっている。 A polarizing plate usually includes a polarizer layer containing a dye and a pair of optical resin films provided on both sides of the polarizer layer, and is used by bonding to a display panel such as a liquid crystal cell or an organic EL element. The outer periphery of the polarizing plate is generally shaped to match the outer periphery of the display portion of the display panel.

表示パネルの表示部の外周縁が平面視において、矩形形状でなく、凹部、凸部、及び曲線部のうちの少なくとも一つを有する場合、この表示部に使用される偏光板の外周縁もこれに対応して、矩形形状でなく、凹部、凸部、及び曲線部のうちの少なくとも一つを有する(例えば、特許文献1参照。)。 When the outer peripheral edge of the display portion of the display panel is not rectangular in plan view and has at least one of concave portions, convex portions, and curved portions, the outer peripheral edge of the polarizing plate used in this display portion is also the same. , it does not have a rectangular shape, but has at least one of concave, convex, and curved portions (see, for example, Patent Document 1).

特開2018-92119号公報JP 2018-92119 A

本発明者らが検討したところ、外周縁が、矩形形状でなく、凹部、凸部、及び曲線部のうちの少なくとも一つを有する偏光板では、外周縁が矩形の偏光板に比べて、湿熱環境で偏光子層から色素抜けが起こりやすかったり、端面において光学樹脂フィルムが偏光子から剥がれやすかったりすることが判明した。このような現象は、直線部よりも、凹部、凸部および曲線部や、その近傍に現れ易い。 As a result of studies by the present inventors, it has been found that a polarizing plate having at least one of concave portions, convex portions, and curved portions, instead of a rectangular outer peripheral edge, has a wet heat effect compared to a polarizing plate having a rectangular outer peripheral edge. It has been found that the dye tends to come off from the polarizer layer in the environment, and the optical resin film tends to peel off from the polarizer at the end faces. Such a phenomenon is more likely to occur in recesses, protrusions, curved sections, and their vicinity than in straight sections.

本発明は、上記事情に鑑みてなされたものであり、外周縁が、凹部、凸部、及び曲線部のうちの少なくとも一つを有する偏光板において、湿熱環境での色素抜けが起こりにくく、かつ、端面において偏光子層からの光学樹脂フィルムの剥がれにくい偏光板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a polarizing plate having at least one of concave portions, convex portions, and curved portions on the outer peripheral edge, in which dye loss is unlikely to occur in a moist and hot environment, and An object of the present invention is to provide a polarizing plate in which an optical resin film is not easily peeled off from a polarizer layer at the end face.

本発明に係る偏光板は、偏光子層と、前記偏光子層の一方の表面に設けられた第一光学樹脂フィルムと、前記偏光子層の他方の表面に設けられた第二光学樹脂フィルムと、を備える。そして、前記偏光板を厚み方向から見て、前記偏光板の外周縁の形状は、凹部、凸部、及び曲線部のうちの少なくとも一つを有し、前記偏光子層の端面の算術平均高さSaが0.3~0.7μmである。 A polarizing plate according to the present invention comprises a polarizer layer, a first optical resin film provided on one surface of the polarizer layer, and a second optical resin film provided on the other surface of the polarizer layer. , provided. Then, when the polarizing plate is viewed from the thickness direction, the shape of the outer peripheral edge of the polarizing plate has at least one of a concave portion, a convex portion, and a curved portion, and the arithmetic mean height of the end face of the polarizer layer is The thickness Sa is 0.3 to 0.7 μm.

また、本発明に係る別の偏光板は、偏光子層と、前記偏光子層の一方の表面に設けられた第一光学樹脂フィルムと、前記偏光子層の他方の面に設けられた第二光学樹脂フィルムと、を備える。そして、前記偏光子層の端面の2乗平均平方根高さSqが0.4~0.8μmである。前記端面の算術平均高さSaは0.3~0.7μmであることができる。 Another polarizing plate according to the present invention includes a polarizer layer, a first optical resin film provided on one surface of the polarizer layer, and a second optical resin film provided on the other surface of the polarizer layer. and an optical resin film. The root-mean-square height Sq of the end surface of the polarizer layer is 0.4 to 0.8 μm. The arithmetic mean height Sa of the end face may be 0.3-0.7 μm.

本発明の偏光板は、前記偏光子層の端面の最大高さSzが5.0μm以下であることができる。 In the polarizing plate of the present invention, the maximum height Sz of the end surface of the polarizer layer may be 5.0 μm or less.

本発明によれば、外周縁が、凹部、凸部、及び曲線部のうちの少なくとも一つを有する偏光板において、湿熱環境での色素抜けが起こりにくく、かつ、端面において偏光子層からの光学樹脂フィルムの剥がれにくい偏光板が提供される。 According to the present invention, in a polarizing plate in which the outer peripheral edge has at least one of concave portions, convex portions, and curved portions, dye removal is unlikely to occur in a moist and hot environment, and optical separation from the polarizer layer at the end face A polarizing plate in which the resin film is difficult to peel is provided.

図1は、本発明の一実施形態に係る偏光板の模式的な断面図である。FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention. 図2の(a)~(c)は、本発明の一実施形態に係る偏光板の上面図である。2(a) to 2(c) are top views of a polarizing plate according to one embodiment of the present invention. 図3は、エンドミルの刃先近傍の軸に垂直な断面図である。FIG. 3 is a cross-sectional view perpendicular to the axis near the cutting edge of the end mill.

以下、図面を参照しながら、本発明の好適な実施形態について説明する。図面において、同等の構成要素には同等の符号を付す。本発明は下記実施形態に限定されるものではない。 Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, similar components are provided with similar reference numerals. The present invention is not limited to the following embodiments.

(偏光板)
本発明の実施形態の一例に係る偏光板100の端面図を図1に示す。本実施形態に係る偏光板100は、第一光学樹脂フィルム10、接着剤層20、偏光子層30、接着剤層40、第二光学樹脂フィルム50をこの順に備える。
(Polarizer)
FIG. 1 shows an end view of a polarizing plate 100 according to an example embodiment of the invention. The polarizing plate 100 according to this embodiment includes a first optical resin film 10, an adhesive layer 20, a polarizer layer 30, an adhesive layer 40, and a second optical resin film 50 in this order.

偏光子層30の例は、ヨウ素、二色性染料などの二色性色素によって染色された樹脂層であり、延伸されていてもよい。この樹脂層を構成する樹脂は疎水性樹脂であってもよいが、通常は親水性樹脂である。親水性樹脂の例は、ポリビニルアルコール系樹脂、ポリ酢酸ビニル樹脂およびエチレン・酢酸ビニル共重合樹脂(EVA)樹脂である。疎水性樹脂の例は、ポリアミド樹脂、及び、ポリエステル系樹脂である。偏光子層30は、染色後にホウ酸で処理されてよい。偏光子層30の典型例は、ポリビニルアルコールフィルムにヨウ素が吸着配向した樹脂層である。偏光子層である樹脂層がポリビニルアルコール系樹脂などの親水性樹脂で構成されている場合には、外部との水分の出入りが疎水性樹脂に比べて比較的多く、これが湿熱環境での色素抜けや、端面における偏光子層からの光学樹脂フィルムの剥がれの原因となると考えられるところ、本発明の構成によれば、このような色素抜けや剥がれを抑制することができる。 An example of the polarizer layer 30 is a resin layer dyed with a dichroic dye such as iodine or a dichroic dye, and may be stretched. The resin constituting this resin layer may be a hydrophobic resin, but is usually a hydrophilic resin. Examples of hydrophilic resins are polyvinyl alcohol resins, polyvinyl acetate resins and ethylene-vinyl acetate copolymer (EVA) resins. Examples of hydrophobic resins are polyamide resins and polyester resins. The polarizer layer 30 may be treated with boric acid after dyeing. A typical example of the polarizer layer 30 is a resin layer in which iodine is adsorbed and oriented on a polyvinyl alcohol film. When the resin layer, which is the polarizer layer, is composed of a hydrophilic resin such as a polyvinyl alcohol-based resin, the amount of water entering and leaving the outside is relatively large compared to a hydrophobic resin, and this is the reason why the dye is removed in a moist and hot environment. Also, the optical resin film is considered to be peeled off from the polarizer layer on the end surface.

偏光子層30の厚さは、例えば、2~30μm、2~15μm、又は2~10μmであってよい。 The thickness of the polarizer layer 30 can be, for example, 2-30 μm, 2-15 μm, or 2-10 μm.

第一光学樹脂フィルム10及び第二光学樹脂フィルム50は通常、無色で透明な樹脂フィルムである。このような樹脂フィルムの例は、保護フィルム、位相差フィルム、輝度向上(反射型偏光子)フィルム、防眩フィルム、表面反射防止フィルム、反射フィルム、半透過反射フィルム、視野角補償フィルム、光学補償フィルム、タッチセンサーフィルム、帯電防止フィルムおよび防汚フィルムである。 The first optical resin film 10 and the second optical resin film 50 are usually colorless and transparent resin films. Examples of such resin films include protective films, retardation films, brightness enhancement (reflective polarizer) films, antiglare films, surface antireflection films, reflective films, transflective films, viewing angle compensation films, and optical compensation films. film, touch sensor film, antistatic film and antifouling film.

各光学樹脂フィルムを構成する樹脂の例は、セルロース系樹脂(トリアセチルセルロース等)、ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状オレフィン系樹脂(ノルボルネン系樹脂等)、アクリル系樹脂(ポリメチルメタクリレート系樹脂等)、又は、ポリエステル系樹脂(ポリエチレンテレフタレート系樹脂等)であってよい。第一光学樹脂フィルム10及び第二光学樹脂フィルム50は多層膜であってもよい。 Examples of resins that make up each optical resin film include cellulose resins (such as triacetyl cellulose), polyolefin resins (such as polypropylene resins), cyclic olefin resins (such as norbornene resins), and acrylic resins (polymethyl methacrylate). resins, etc.) or polyester resins (polyethylene terephthalate resins, etc.). The first optical resin film 10 and the second optical resin film 50 may be multilayer films.

第一光学樹脂フィルム10及び第二光学樹脂フィルム50の厚みは、例えば、5~200μmであってよい。 The thickness of the first optical resin film 10 and the second optical resin film 50 may be, for example, 5-200 μm.

第一光学樹脂フィルム10及び第二光学樹脂フィルム50の材料及び厚みは互いに同一であってもよく、互いに異なってもよい。 The materials and thicknesses of the first optical resin film 10 and the second optical resin film 50 may be the same or different.

接着剤層20、40は、偏光子層30と第一光学樹脂フィルム10又は第二光学樹脂フィルム50とを接着できる透明材料であれば材料に特段の限定はない。接着剤の一つの例は、エポキシ樹脂である。エポキシ樹脂は、例えば、水素化エポキシ樹脂、脂環式エポキシ樹脂、又は脂肪族エポキシ樹脂であってよい。重合開始剤(光カチオン重合開始剤、熱カチオン重合開始剤、光ラジカル重合開始剤又は熱ラジカル重合開始剤等)、又は他の添加剤(増感剤等)をエポキシ樹脂に添加してもよい。 The materials of the adhesive layers 20 and 40 are not particularly limited as long as they are transparent materials capable of bonding the polarizer layer 30 and the first optical resin film 10 or the second optical resin film 50 . One example of an adhesive is an epoxy resin. The epoxy resin may be, for example, a hydrogenated epoxy resin, a cycloaliphatic epoxy resin, or an aliphatic epoxy resin. Polymerization initiators (photocationic polymerization initiators, thermal cationic polymerization initiators, photoradical polymerization initiators, thermal radical polymerization initiators, etc.) or other additives (sensitizers, etc.) may be added to the epoxy resin. .

接着剤の他の例は、アクリルアミド、アクリレート、ウレタンアクリレート、及びエポキシアクリレート等のアクリル系樹脂である。 Other examples of adhesives are acrylic resins such as acrylamides, acrylates, urethane acrylates, and epoxy acrylates.

接着剤の他の例は、ポリビニルアルコール系樹脂などの水系接着剤である。 Other examples of adhesives are water-based adhesives such as polyvinyl alcohol-based resins.

接着剤の他の例は、感圧性接着剤である。感圧性接着剤の例は、アクリル系樹脂、シリコーン系樹脂、ポリエステル、ポリウレタン、又はポリエーテル等を含む感圧型接着剤である。
偏光子層30と第一光学樹脂フィルム10とは接着剤層20のみを介して積層されていてもよいし、偏光子層30と接着剤層20との間や、接着剤層20と第一光学樹脂フィルム10との間に易接着層(図示せず)が設けられていてもよい。また、偏光子層30と第二光学樹脂フィルム50との間は接着剤層40のみを介して積層されていてもよいし、偏光子層30と接着剤層40との間や、接着剤層40と第二光学樹脂フィルム50との間に易接着層(図示せず)が設けられていてもよい。易接着層は、接着剤層20、40と、偏光子層30、第一光学樹脂フィルム10または第二光学樹脂フィルム50との間の接着力を向上させ得るものである。
Another example of an adhesive is a pressure sensitive adhesive. Examples of pressure-sensitive adhesives are pressure-sensitive adhesives containing acrylic resins, silicone-based resins, polyesters, polyurethanes, polyethers, or the like.
The polarizer layer 30 and the first optical resin film 10 may be laminated only with the adhesive layer 20 interposed therebetween. An easy adhesion layer (not shown) may be provided between the optical resin film 10 and the optical resin film 10 . Further, the polarizer layer 30 and the second optical resin film 50 may be laminated only with the adhesive layer 40 interposed therebetween. An easy adhesion layer (not shown) may be provided between 40 and the second optical resin film 50 . The easy-adhesion layer can improve the adhesion between the adhesive layers 20 and 40 and the polarizer layer 30, the first optical resin film 10, or the second optical resin film 50. FIG.

接着剤層20の厚さは、例えば、0.01μm~5μm、0.05~3μm、又は0.1~1μmであってよい。感圧性接着剤を用いる場合、接着剤層20の厚さは、例えば、2~500μm、2~200μm、又は2~50μmであってよい。 The thickness of the adhesive layer 20 may be, for example, 0.01 μm to 5 μm, 0.05 to 3 μm, or 0.1 to 1 μm. When using a pressure sensitive adhesive, the thickness of the adhesive layer 20 may be, for example, 2-500 μm, 2-200 μm, or 2-50 μm.

偏光板100の全体の厚さは、例えば、10~500μm、10~300μm、又は10~200μmであってよい。 The overall thickness of the polarizer 100 may be, for example, 10-500 μm, 10-300 μm, or 10-200 μm.

第一光学樹脂フィルム10の下、又は、第二光学樹脂フィルム50の上にさらに、感圧性接着剤層(粘着層)及びセパレータフィルムを設けてもよい。また、第一光学樹脂フィルム10の下、又は、第二光学樹脂フィルム50の上にさらに、プロテクトフィルムを設けてもよい。 Under the first optical resin film 10 or on the second optical resin film 50, a pressure-sensitive adhesive layer (sticky layer) and a separator film may be further provided. Further, a protective film may be further provided under the first optical resin film 10 or on the second optical resin film 50 .

セパレータフィルムは、感圧性接着剤層から剥離可能なフィルムであり、感圧性接着剤層への異物の付着を防止するものである。例えば、偏光板100を画像表示素子に貼着する場合、セパレータフィルムが剥がされて感圧式接着剤層が露出される。セパレータフィルムを構成する樹脂は、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、又はポリエステル系樹(ポリエチレンテレフタレート等)であってよい。
プロテクトフィルムは、第一光学樹脂フィルム10または第二光学樹脂フィルム50の傷付きを防止するためのフィルムであり、例えば自己粘着性の樹脂フィルム単独であってもよいし、樹脂フィルムと、この樹脂フィルムに積層された感圧性接着剤とで構成される多層フィルムであってもよい。プロテクトフィルムは、これが設けられる第一光学樹脂フィルム10や第二光学樹脂フィルム50から剥離可能である。プロテクトフィルムが樹脂フィルムに感圧性接着剤を積層した多層フィルムである場合に、プロテクトフィルムは、その感圧性接着剤ごと、第一光学樹脂フィルム10または第二光学樹脂フィルム50から剥離される。プロテクトフィルムの樹脂も、セパレータフィルムと同様とすることができる。
The separator film is a film that can be peeled off from the pressure-sensitive adhesive layer and prevents foreign substances from adhering to the pressure-sensitive adhesive layer. For example, when the polarizing plate 100 is attached to an image display element, the separator film is peeled off to expose the pressure-sensitive adhesive layer. The resin constituting the separator film may be, for example, polyethylene-based resin, polypropylene-based resin, or polyester-based resin (polyethylene terephthalate, etc.).
The protective film is a film for preventing the first optical resin film 10 or the second optical resin film 50 from being damaged. It may also be a multilayer film composed of a pressure sensitive adhesive laminated to the film. The protection film can be peeled off from the first optical resin film 10 or the second optical resin film 50 on which it is provided. When the protective film is a multilayer film in which a pressure-sensitive adhesive is laminated on a resin film, the protective film is separated from the first optical resin film 10 or the second optical resin film 50 together with the pressure-sensitive adhesive. The resin of the protective film can also be the same as that of the separator film.

セパレータフィルム及びプロテクトフィルムの厚さは、例えば、2~500μm、2~200μm、又は2~100μmであってよい。 The thickness of the separator film and the protective film may be, for example, 2-500 μm, 2-200 μm, or 2-100 μm.

本実施形態に係る偏光板100は、その厚み方向から見て、偏光板100の外周縁Pが直線のみから形成される(例えば矩形)のではなく、凹部、凸部、及び、曲線部からなる群から選択される少なくとも一つを有する。 In the polarizing plate 100 according to the present embodiment, when viewed from the thickness direction, the outer peripheral edge P of the polarizing plate 100 is not formed only by straight lines (for example, a rectangle), but is formed by concave portions, convex portions, and curved portions. have at least one selected from the group;

例えば、図2の(a)に示す偏光板100のように、外周縁Pは、隣同士で直交する4つの直線部PLと、2つの直線部PL間にそれぞれ設けられた面取り曲線部PRを有することができる。言い換えると、この偏光板100の外周縁Pは、矩形の4つの角部にそれぞれ面取り曲線部PRが設けられている。 For example, like the polarizing plate 100 shown in (a) of FIG. 2, the outer peripheral edge P has four linear portions PL that are perpendicular to each other and chamfered curved portions PR that are provided between the two linear portions PL. can have In other words, the outer peripheral edge P of the polarizing plate 100 is provided with chamfered curved portions PR at four corners of a rectangle.

また、図2の(b)で示す偏光板100のように、図2の(a)の偏光板100の外周縁Pの一つの直線部PLに対して、さらに凹部PDを設けてもよい。凹部PDの形状に限定はないが、例えば、図2の(b)に示すように、隣同士で直交する3つの直線部PDLを有する略矩形形状で有り、直線部PDL間にそれぞれ面取り曲線部PDRを有し、直線部PDLと直線部PLとの間にそれぞれ面取り曲線部PDRを有する形状であることができる。2つの直線部PDL間に有する上記曲線部PDRは、偏光板100の面内に向けて凹形状である。直線部PDLと直線部PLとの間に有する面取り曲線部PDRは、偏光板100の面外に向けて凸形状となっている。 Further, like the polarizing plate 100 shown in FIG. 2(b), a concave portion PD may be further provided for one linear portion PL of the outer peripheral edge P of the polarizing plate 100 shown in FIG. 2(a). Although the shape of the recess PD is not limited, for example, as shown in FIG. The shape may have a PDR and a chamfered curved portion PDR between the straight portion PDL and the straight portion PL. The curved portion PDR between the two straight portions PDL is concave toward the plane of the polarizing plate 100 . A chamfered curved portion PDR between the straight portion PDL and the straight portion PL has a convex shape facing out of the plane of the polarizing plate 100 .

また、図2の(c)で示す偏光板100のように、図2の(a)の偏光板100の外周縁Pの一つの直線部PLに対して、凸部PPが設けられていてもよい。凸部PPの形状に限定はないが、例えば、図2の(c)に示すように、隣同士で直交する3つの直線部PPLを有する略矩形形状で有り、直線部PPL間にそれぞれ面取り曲線部PPRを有し、直線部PPLと直線部PLとの間にそれぞれ面取り曲線部PPRを有する形状であることができる。2つの直線部PPL間に有する面取り曲線部PPRは、偏光板100の面内に向けて凹形状となっている。直線部PPLと直線部PLとの間に有する面取り曲線部PPRは、偏光板100の面外に向けて凸形状となっている。 Further, as in the polarizing plate 100 shown in (c) of FIG. 2, even if a convex portion PP is provided for one linear portion PL of the outer peripheral edge P of the polarizing plate 100 of (a) in FIG. good. Although the shape of the convex portion PP is not limited, for example, as shown in FIG. It may have a shape having a portion PPR and having a chamfered curved portion PPR between the straight portion PPL and the straight portion PL. A chamfered curved portion PPR between the two straight portions PPL is concave toward the plane of the polarizing plate 100 . A chamfered curved portion PPR between the straight portions PPL and PL has a convex shape facing out of the plane of the polarizing plate 100 .

凹部PDの直線部PLからの深さ、及び、凸部PPの直線部PLからの高さに特段の限定はないが、典型的には1.0mm以上であることができる。また、凹部PDの幅、及び、凸部PPの幅にも特段の限定はないが、典型的には、3.0mm以上であることができる。 Although there is no particular limitation on the depth of the concave portion PD from the straight portion PL and the height of the convex portion PP from the straight portion PL, they can typically be 1.0 mm or more. Also, the width of the concave portion PD and the width of the convex portion PP are not particularly limited, but can be typically 3.0 mm or more.

凹部PD及び凸部PPの形状は、図2の(b)及び(c)のように、4つ角が面取り曲線部により丸くされた矩形に限定されず、単なる矩形、半円、多角形等でもよい。 The shape of the concave portion PD and the convex portion PP is not limited to a rectangle with four corners rounded by chamfered curved portions as shown in (b) and (c) of FIG. It's okay.

各面取り曲線部の曲線は、円弧、楕円弧、スプライン曲線であってもよい。各面取り曲線部の曲率半径は1.0~40mmとすることができる。 The curve of each chamfer curve portion may be a circular arc, an elliptical arc, or a spline curve. The radius of curvature of each chamfered curved portion can be 1.0 to 40 mm.

また、図2の(a)の外周縁Pにおいて、4つの面取り曲線部PRのうちの1~3つは、面取り曲線でない単なる角部でもよい。図2の(b)及び(c)の外周縁Pにおいて、4つの面取り曲線部PRのうちの1~4つは、面取り曲線でない単なる角部でもよい。さらに、外周縁Pは、図2の(a)~(c)に示すような矩形をベースとした形態でなくてもよく、三角形、六角形など、多角形をベースとした形態でもよい。 Further, one to three of the four chamfered curved portions PR on the outer peripheral edge P of FIG. 2(a) may be simple corners that are not chamfered curves. At the outer peripheral edge P of FIGS. 2(b) and 2(c), one to four of the four chamfered curved portions PR may be simple corners that are not chamfered curves. Furthermore, the outer peripheral edge P does not have to be based on a rectangle as shown in FIGS.

また、偏光子層30の吸収軸は、使用される画像表示装置等に応じて、偏光板100の任意の方向を向くことができる。 Also, the absorption axis of the polarizer layer 30 can be oriented in any direction of the polarizing plate 100 according to the image display device or the like used.

(算術平均高さSa)
図1に戻って、本発明の実施形態に係る偏光板100において、偏光板100の偏光子層30の端面の算術平均高さSaは、0.3~0.7μmである。Saは0.4μm以上でもよく、0.6μm以下でもよい。
(Arithmetic mean height Sa)
Returning to FIG. 1, in the polarizing plate 100 according to the embodiment of the present invention, the arithmetic mean height Sa of the end face of the polarizer layer 30 of the polarizing plate 100 is 0.3 to 0.7 μm. Sa may be 0.4 μm or more and may be 0.6 μm or less.

偏光子層30の端面の算術平均高さSaは、端面上の任意の2次元測定領域30Aにおいて以下のように定義される。偏光子層30の端面に平行な面をXY面とし、端面から垂直な高さ方向をZ方向とし、端面の2次元測定領域30Aにおける平均高さの位置をZ=0としたXYZ座標系を定義し、2次元測定領域30Aの各x座標及び各y座標における高さをZ(x,y)としたときに、算術平均高さSaは下式で表される。ここで、Aは、2次元測定領域30Aの面積である。 The arithmetic mean height Sa of the end surface of the polarizer layer 30 is defined as follows in an arbitrary two-dimensional measurement area 30A on the end surface. An XYZ coordinate system in which a plane parallel to the end face of the polarizer layer 30 is the XY plane, the height direction perpendicular to the end face is the Z direction, and the position of the average height in the two-dimensional measurement area 30A of the end face is Z=0. defined, and the height at each x-coordinate and each y-coordinate of the two-dimensional measurement area 30A is Z(x, y), the arithmetic mean height Sa is expressed by the following formula. Here, A is the area of the two-dimensional measurement area 30A.

Figure 0007284141000001
Figure 0007284141000001

2次元測定領域30Aにおけるx、y毎の高さZ(x,y)は、走査型干渉顕微鏡、原子間力顕微鏡などにより取得できる。2次元測定領域30Aの大きさは、例えば、一辺5~1000μmの矩形領域とすることができる。 A height Z(x, y) for each x, y in the two-dimensional measurement area 30A can be obtained by a scanning interference microscope, an atomic force microscope, or the like. The size of the two-dimensional measurement area 30A can be, for example, a rectangular area with a side of 5 to 1000 μm.

(2乗平均平方根高さSq)
また、偏光子層30の端面の2乗平均平方根高さSqは0.4~0.8μmであることができる。Sqは0.5μm以上であってもよく、0.7μm以下であってもよい。
(root mean square height Sq)
Also, the root-mean-square height Sq of the end faces of the polarizer layer 30 can be 0.4 to 0.8 μm. Sq may be 0.5 μm or more and may be 0.7 μm or less.

任意の2次元測定領域30Aにおける2乗平均平方根高さSqは、下式により定義される。

Figure 0007284141000002
A root-mean-square height Sq in an arbitrary two-dimensional measurement area 30A is defined by the following equation.
Figure 0007284141000002

(最大高さSz)
また、偏光子層30の端面の最大高さSzは5.0μm以下であることができる。Szは4.0μm以下でもよい。
(maximum height Sz)
Also, the maximum height Sz of the end face of the polarizer layer 30 can be 5.0 μm or less. Sz may be 4.0 μm or less.

最大高さSzは、2次元測定領域30Aにおける最大山高さと最大谷深さの絶対値との和である。 The maximum height Sz is the sum of the absolute values of the maximum peak height and the maximum valley depth in the two-dimensional measurement area 30A.

2次元測定領域30Aにおける3次元表面粗さの測定はISO25178に準拠することが出来る。 Measurement of the three-dimensional surface roughness in the two-dimensional measurement area 30A can comply with ISO25178.

ここで、2次元測定領域30Aは、外周縁Pにおけるいずれかの直線部、すなわち、端面における平面部であることが好ましく、凹部PD、及び、凸部PP内の平面部であってもよいし、凹部PD及び凸部PP以外の平面部、例えば隣同士で直交する4つの直線部PL上の平面部であってもよい。 Here, the two-dimensional measurement area 30A is preferably any straight portion on the outer peripheral edge P, that is, a flat portion on the end face, and may be a flat portion in the concave portion PD and the convex portion PP. , flat portions other than the concave portion PD and the convex portion PP, for example, flat portions on four straight line portions PL that are perpendicular to each other.

後述するように、外周縁Pが直線部のみから形成される偏光板と異なり、凹部、凸部、又は、曲線部を有する偏光板の端面を平面研削装置で切削して寸法調整することはできない。したがって、このような偏光板の端面は、通常、外周の全体にわたってエンドミルで切削処理される。そのため、端面のいずれの場所であってもおおむね同様の表面粗さを有する。
外周縁Pにおける直線部、すなわち、端面における平面部は、平均高さが0となる面が平面となり、Z=0の面を決めやすいので2次元測定領域30Aとして好ましい。
As will be described later, unlike a polarizing plate in which the outer peripheral edge P is formed only from linear portions, the end face of a polarizing plate having concave portions, convex portions, or curved portions cannot be cut by a surface grinder to adjust dimensions. . Therefore, the end face of such a polarizing plate is usually cut with an end mill over the entire circumference. Therefore, it has roughly the same surface roughness anywhere on the end face.
The linear portion of the outer peripheral edge P, that is, the flat portion of the end face, is preferable as the two-dimensional measurement area 30A because the surface where the average height is 0 is flat and the Z=0 surface can be easily determined.

2次元測定領域30Aは、偏光子層30の吸収軸(延伸方向)方向の端部にあることも好ましい。なお、2次元測定領域30Aが吸収軸方向の端部にあると、この領域30Aは偏光子層30の吸収軸と交わることとなる。 It is also preferable that the two-dimensional measurement area 30A is located at the end of the polarizer layer 30 in the absorption axis (stretching direction) direction. If the two-dimensional measurement area 30A is located at the end of the absorption axis direction, this area 30A intersects the absorption axis of the polarizer layer 30. FIG.

偏光子層30の端面における算術平均高さSaが大きいと、端面の表面積が大きくなるため、湿熱環境における色素抜けが大きくなる傾向がある。一方、偏光子層30の端面における算術平均高さSaが小さいと、偏光子層30からの第一光学樹脂フィルム10及び/又は第二光学樹脂フィルム50の剥離量が大きくなりやすくなる傾向がある。なお、Saが小さい状況は、トムソン刃で打ち抜いたまま、端面の研磨をしていない状態に対応するが、打ち抜きの衝撃に起因する光学樹脂フィルムの剥がれに起因すると推察される。 When the arithmetic mean height Sa of the end face of the polarizer layer 30 is large, the surface area of the end face becomes large, and thus the loss of dye tends to increase in a moist and hot environment. On the other hand, when the arithmetic mean height Sa at the end surface of the polarizer layer 30 is small, the peeling amount of the first optical resin film 10 and/or the second optical resin film 50 from the polarizer layer 30 tends to increase. . The state where Sa is small corresponds to the state in which the end face is not polished while being punched with a Thomson blade, and it is presumed that this is due to the peeling of the optical resin film due to the impact of punching.

偏光子層30の端面における2乗平均平方根高さSqが大きいと、端面の表面積が大きくなるため、湿熱環境における色素素抜けが大きくなる傾向がある。一方、偏光子層30の端面における2乗平均平方根高さSqが小さいと、偏光子層30からの第一光学樹脂フィルム10及び/又は第二光学樹脂フィルム50の剥離量が大きくなりやすくなる傾向がある。 If the root-mean-square height Sq of the end surface of the polarizer layer 30 is large, the surface area of the end surface becomes large, and thus the dye element loss tends to increase in a moist and heat environment. On the other hand, when the root-mean-square height Sq of the end faces of the polarizer layer 30 is small, the amount of peeling of the first optical resin film 10 and/or the second optical resin film 50 from the polarizer layer 30 tends to increase. There is

偏光子層30の端面における最大高さSzが大きいと、端面の表面積が大きくなるため、湿熱環境における色素素抜けが大きくなる傾向がある。 When the maximum height Sz of the end surface of the polarizer layer 30 is large, the surface area of the end surface becomes large, so that there is a tendency that the loss of dye element in a moist and heat environment becomes large.

このような偏光板は、例えば、液晶セルや有機EL素子などの表示パネルに貼合して、液晶表示装置又は有機EL表示装置等の画像表示装置に用いることができる。液晶表示装置は、例えば、液晶セルと、液晶セルの一方の表面又は両表面に貼着された上述の偏光板とを含んでよい。有機EL表示装置は、例えば、有機EL素子と、有機EL素子の表面に貼着された上述の偏光板、とを含んでよい。液晶セルには、通常2枚の偏光板が配置される。 Such a polarizing plate can be used in an image display device such as a liquid crystal display device or an organic EL display device, for example, by bonding it to a display panel such as a liquid crystal cell or an organic EL element. A liquid crystal display device may include, for example, a liquid crystal cell and the above-described polarizing plate attached to one surface or both surfaces of the liquid crystal cell. An organic EL display device may include, for example, an organic EL element and the above-described polarizing plate attached to the surface of the organic EL element. Two polarizing plates are usually arranged in the liquid crystal cell.

(偏光板の製造方法)
続いて、上記の偏光板100の製造方法を説明する。
まず、公知の方法により、上述の層構成を有する偏光板100の原反を製造する。続いて、原反フィルムをトムソン刃などの刃物で打ち抜いて、外周縁Pが凹部、凸部、又は、曲線部を有する偏光板を得る。ここで、トムソン刃による切断だけでは、外周縁Pにおいて十分な寸法精度を確保することは困難であるため、端面の研削工程を行う。
(Manufacturing method of polarizing plate)
Next, a method for manufacturing the polarizing plate 100 will be described.
First, a raw sheet of the polarizing plate 100 having the layer structure described above is manufactured by a known method. Subsequently, the original film is punched out with a cutting tool such as a Thomson blade to obtain a polarizing plate having an outer peripheral edge P with concave portions, convex portions, or curved portions. Here, since it is difficult to ensure sufficient dimensional accuracy at the outer peripheral edge P only by cutting with a Thomson blade, the end surface is ground.

外周縁Pが凹部、凸部、又は、曲線部を有する場合、矩形の偏光板の端面研削に用いられるような平面研削装置、すなわち、複数のバイトを一方の主面に周方向に並べて設けた回転円板を、その主面と偏光板の端面とが平行になるように偏光板の端面に接触させて切削する装置を使用して端面全体を研削することが出来ないため、エンドミルを用いて偏光板の端面全体を切削加工する。より具体的には、エンドミルの軸方向を偏光板の厚み方向と平行にし、偏光板の端面に沿ってエンドミルと偏光板とを相対移動させることにより、偏光板の端面を切削し、所望の寸法に合わせる。 When the outer peripheral edge P has a concave portion, a convex portion, or a curved portion, a surface grinding device such as that used for grinding the end face of a rectangular polarizing plate, that is, a plurality of tools are arranged in the circumferential direction on one main surface. Since it is not possible to grind the entire end face using a machine that cuts the rotating disk by contacting the end face of the polarizing plate so that the main surface and the end face of the polarizing plate are parallel, an end mill is used. The entire end surface of the polarizing plate is cut. More specifically, by making the axial direction of the end mill parallel to the thickness direction of the polarizing plate and relatively moving the end mill and the polarizing plate along the end face of the polarizing plate, the end face of the polarizing plate is cut to obtain a desired dimension. match the

ここで、らせん形状の刃を有するエンドミルを用いることが好適であり、特に、刃の断面形状において、図3におけるdZ及びdZ/dXが小さいエンドミルを用いることが好ましい。 Here, it is preferable to use an end mill having a helical blade, and in particular, it is preferable to use an end mill in which dZ and dZ/dX in FIG. 3 are small in the cross-sectional shape of the blade.

ここで、図3はエンドミルの軸に垂直な断面における刃80の先端の断面図であり、エンドミルの回転方向がCである。この刃80は、刃先80tと、刃先80tよりも後ろ側の面80dとを有する。この面80dは、刃先80tによる切削直後に切削物Tと接触しうる。本実施形態では、刃先80tとエンドミルの回転軸AXを結ぶ直線Qを基準とし、刃先80tを開始点とし、直線Qと直交しかつ刃先80tを通る直線ABに沿って移動しながら、走査型干渉顕微鏡により、直線ABを基準とした面80dの高さのプロファイルを測定する。そして、このプロファイルから面80dの高さの最大値であるdZ[μm]と、dZを与えるAB方向の刃先80tからの距離dX[μm]を求める。 Here, FIG. 3 is a sectional view of the tip of the blade 80 in a section perpendicular to the axis of the end mill, and the direction of rotation of the end mill is C. As shown in FIG. The blade 80 has a cutting edge 80t and a surface 80d behind the cutting edge 80t. This surface 80d can come into contact with the cutting object T immediately after cutting by the cutting edge 80t. In this embodiment, the straight line Q connecting the cutting edge 80t and the rotation axis AX of the end mill is used as a reference, the cutting edge 80t is used as a starting point, and the scanning interference is moved along a straight line AB that is orthogonal to the straight line Q and passes through the cutting edge 80t. A microscope is used to measure the profile of the height of the surface 80d with respect to the straight line AB. Then, from this profile, dZ [μm], which is the maximum height of the surface 80d, and the distance dX [μm] from the cutting edge 80t in the AB direction that gives dZ are obtained.

このときに、dZ≦1.0μmとなり、dZ/dX≦4となる刃先を有するエンドミルを用いることが好適である。これにより、偏光子層30の端面20eにおける表面粗さを上述の範囲としやすい。らせん状の刃を有するエンドミルであっても、dZ>1.0μm又はdZ/dX>4となるエンドミルでは、表面粗さが大きくなりすぎる傾向がある。 At this time, it is preferable to use an end mill having a cutting edge satisfying dZ≦1.0 μm and dZ/dX≦4. As a result, the surface roughness of the end surface 20e of the polarizer layer 30 can easily be set within the range described above. Even end mills with helical blades, where dZ>1.0 μm or dZ/dX>4, tend to have too large a surface roughness.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments.

例えば、接着剤層20及び40の一方又は両方が無くても実施は可能である。 For example, one or both of adhesive layers 20 and 40 can be omitted.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 EXAMPLES The content of the present invention will be more specifically described below with reference to examples and comparative examples. In addition, the present invention is not limited to the following examples.

[実施例1]
厚み20μmのポリビニルアルコール系樹脂フィルムを延伸し、ヨウ素で染色することにより、ポリビニルアルコール系樹脂にヨウ素が吸着配向した偏光子(厚み8μm)を作製した。この偏光子の一方の面に、水系接着剤を介して、環状オレフィン系樹脂(COP)フィルム(日本ゼオン株式会社製、厚み13μm)を貼合した。さらに、COPフィルム上に、剥離フィルム上に形成されたアクリル系粘着剤層A(厚み20μm)を積層した。偏光子の他方の面に、剥離フィルム上に形成されたアクリル系粘着剤層B(厚み5μm)を積層した。剥離フィルムを剥離して露出したアクリル系粘着剤層B上に、プロテクトフィルムを上面に有する輝度向上フィルム(3M社製、APF-V3、厚み30μm、反射型偏光子)を貼合した。
このようにして、剥離フィルム/アクリル系粘着剤層A/COPフィルム/水系接着剤/偏光子/アクリル系粘着剤層B/輝度向上フィルム/プロテクトフィルムからなる偏光板の原反を作製した。
[Example 1]
A polarizer (thickness: 8 μm) in which iodine was adsorbed and oriented in the polyvinyl alcohol-based resin was produced by stretching a 20 μm-thick polyvinyl alcohol-based resin film and dyeing it with iodine. A cyclic olefin resin (COP) film (manufactured by Nippon Zeon Co., Ltd., thickness 13 μm) was bonded to one surface of this polarizer via a water-based adhesive. Further, the acrylic pressure-sensitive adhesive layer A (thickness: 20 μm) formed on the release film was laminated on the COP film. An acrylic pressure-sensitive adhesive layer B (thickness: 5 μm) formed on a release film was laminated on the other surface of the polarizer. A brightness enhancement film (APF-V3, thickness 30 μm, reflective polarizer manufactured by 3M) having a protective film on the upper surface was laminated on the acrylic pressure-sensitive adhesive layer B exposed by peeling the release film.
In this way, a raw polarizing plate consisting of release film/acrylic pressure-sensitive adhesive layer A/COP film/water-based adhesive/polarizer/acrylic pressure-sensitive adhesive layer B/brightness enhancement film/protection film was produced.

原反から、トムソン刃により、図2の(b)の形状の凹部PDを有する偏光板100を切り出した。矩形の長辺の長さは140mm、矩形の短辺の長さは70mm、凹みの深さは5mm、凹みの幅は30mm、面取り曲線部PRの曲率半径は概ね10~12mm、面取り曲線部PDRの曲率半径は概ね3mmとした。なお、この偏光板100は、1つの凹部PDを有する。この凹部PDは、略矩形である。この凹部PDは、隣同士で直交する3つの直線部PDLを有する。直線部PDL間にはそれぞれ面取り曲線部PDRを有する。直線部PDLと直線部PLとの間にはそれぞれ面取り曲線部PDRを有する。この偏光板100の吸収軸31は、凹部PDの深さ方向に直交しており、図2の(b)において左右方向であった。 A polarizing plate 100 having recesses PD having the shape shown in FIG. The length of the long side of the rectangle is 140 mm, the length of the short side of the rectangle is 70 mm, the depth of the recess is 5 mm, the width of the recess is 30 mm, the radius of curvature of the chamfered curved portion PR is approximately 10 to 12 mm, and the chamfered curved portion PDR. The radius of curvature of was set to approximately 3 mm. The polarizing plate 100 has one concave portion PD. This recess PD is substantially rectangular. This concave portion PD has three straight portions PDL that are adjacent to each other and orthogonal to each other. A chamfered curved portion PDR is provided between the straight portions PDL. A chamfered curved portion PDR is provided between the straight portion PDL and the straight portion PL. The absorption axis 31 of this polarizing plate 100 is orthogonal to the depth direction of the recess PD, and is the horizontal direction in FIG. 2(b).

dZが平均で0.6μm、dZ/dXが平均で2.2のらせん径形状の刃を有するエンドミルを用いて、端面の全周を研磨して寸法を調整し、実施例1の偏光板を得た。 Using an end mill having a helical blade with an average dZ of 0.6 μm and an average dZ/dX of 2.2, the entire circumference of the end face was polished to adjust the dimensions, and the polarizing plate of Example 1 was obtained. Obtained.

(比較例1)
dZが平均で1.4μm、dZ/dXが平均で14のらせん径形状の刃を有するエンドミルを用いて端面を研磨する以外は、実施例1と同様にして比較例1の偏光板を得た。
(Comparative example 1)
A polarizing plate of Comparative Example 1 was obtained in the same manner as in Example 1, except that the end face was polished using an end mill having a helical blade with an average dZ of 1.4 μm and an average dZ/dX of 14. .

(比較例2)
エンドミルで端面を研磨せず、トムソン刃で切り出したままとした以外は、比較例1と同様として、比較例2の偏光板を得た。
(Comparative example 2)
A polarizing plate of Comparative Example 2 was obtained in the same manner as in Comparative Example 1, except that the end face was not polished with an end mill and was cut out with a Thomson blade.

(3次元表面における粗さSa、Sq、Szの測定)
偏光子層の端面の高さ関数Z(x,y)を、以下の顕微鏡により取得した。
走査型白色干渉顕微鏡 VS1000シリーズ 株式会社日立ハイテクサイエンス
測定条件:対物レンズ:50×
2次元測定領域:偏光板の偏光子層(PVA層)の端面の直線部(吸収軸と直交する面)における、縦(厚み方向)5~8μm×横(厚み方向に垂直な方向)150~300μm
得られた関数Zに基づいて、上記の式に基づいて、Sa、SqおよびSzをそれぞれ求めた。Sa、SqおよびSzを測定した端面は、図2の(b)における左右の直線部PL上に位置し、吸収軸31に対して直交していた。なお、各偏光板100におけるSa、SqおよびSzは、全周に亘って同様の値を示す。
(Measurement of roughness Sa, Sq, Sz on three-dimensional surface)
A height function Z(x, y) of the end surface of the polarizer layer was obtained with the following microscope.
Scanning white interference microscope VS1000 series Hitachi High-Tech Science Co., Ltd. Measurement conditions: Objective lens: 50x
Two-dimensional measurement area: length (thickness direction) 5 to 8 μm × width (direction perpendicular to thickness direction) 150 to 150 μm in the straight part (plane perpendicular to the absorption axis) of the end surface of the polarizer layer (PVA layer) of the polarizing plate. 300 μm
Based on the obtained function Z, Sa, Sq and Sz were obtained based on the above formulas. The end faces where Sa, Sq and Sz were measured were positioned on the left and right linear portions PL in FIG. Note that Sa, Sq, and Sz in each polarizing plate 100 show similar values over the entire circumference.

(ヨウ素抜けの評価)
実施例又は比較例で得た偏光板を、65℃及び相対湿度90%の環境に500時間放置した。
その後、2枚の偏光板(一方は実施例又は比較例の偏光板、他方は市販の通常の偏光板)をクロスニコルに配置し、光学顕微鏡を用いて全周に亘って端部を観察し、クロスニコルに対応する減光が起こらない領域(光抜け)の端部からの幅を測定した。この光抜けは、偏光性能を発現する役割を担うヨウ素が抜けたことによっておこる。なお、光抜けは、図2における凹部PDの近傍で発生しており、その最大の幅をヨウ素抜けとして求めた。
(Evaluation of iodine removal)
The polarizing plates obtained in Examples or Comparative Examples were left in an environment of 65° C. and 90% relative humidity for 500 hours.
After that, two polarizing plates (one of which is a polarizing plate of an example or a comparative example, and the other of which is a commercially available normal polarizing plate) are placed in crossed Nicols, and the edges are observed over the entire circumference using an optical microscope. , the width from the edge of the region (light leakage) where light attenuation does not occur corresponding to crossed nicols was measured. This leakage of light occurs due to the absence of iodine, which plays a role in expressing the polarization performance. It should be noted that the light escape occurs in the vicinity of the recess PD in FIG. 2, and the maximum width was determined as the iodine escape.

(輝度向上フィルムの剥離量の評価)
反射型顕微鏡により評価した。
(Evaluation of peeling amount of brightness enhancement film)
Evaluated by reflection microscopy.

条件及び結果を表1に示す。

Figure 0007284141000003
Table 1 shows the conditions and results.
Figure 0007284141000003

実施例では、ヨウ素抜け量を低減しつつ輝度向上フィルムの剥離量も低減することができた。 In Examples, it was possible to reduce the peeling amount of the brightness enhancement film while reducing the amount of iodine escaped.

本発明に係る偏光板は、例えば、液晶セル又は有機EL素子等に貼着され、液晶テレビ、有機ELテレビ又はスマートフォン等の画像表示装置を構成する光学部品として適用される。 The polarizing plate according to the present invention is applied, for example, to a liquid crystal cell, an organic EL element, or the like, and used as an optical component constituting an image display device such as a liquid crystal television, an organic EL television, or a smartphone.

10…第一光学樹脂フィルム、30…偏光子層、50…第二光学樹脂フィルム、P…外周縁、PP…凸部、PD…凹部、PR、PDR、PPR…面取り曲線部、100…偏光板。

DESCRIPTION OF SYMBOLS 10... First optical resin film, 30... Polarizer layer, 50... Second optical resin film, P... Peripheral edge, PP... Convex part, PD... Concave part, PR, PDR, PPR... Chamfered curve part, 100... Polarizing plate .

Claims (3)

偏光子層と、前記偏光子層の一方の表面に設けられた第一光学樹脂フィルムと、前記偏光子層の他方の表面に設けられた第二光学樹脂フィルムと、前記第二光学樹脂フィルムの上にさらにプロテクトフィルムと、を備える偏光板であって、
前記偏光子層と前記第一光学樹脂フィルムとが、エポキシ樹脂を含む接着剤、アクリル系樹脂を含む接着剤、又は水系接着剤である接着剤層のみを介して積層されており、
前記偏光子層と前記第二光学樹脂フィルムとが、感圧性接着剤である接着剤層のみを介して積層されており、
前記偏光板を厚み方向から見て、前記偏光板の外周縁の形状は、凹部を有し、
前記偏光子層の端面が研磨されており、
前記偏光子層の端面の2乗平均平方根高さSqが0.4~0.8μmであり、
前記偏光子層の端面の算術平均高さSaが0.3~0.7μmであり、
前記プロテクトフィルムが、樹脂フィルムに感圧性接着剤を積層した多層フィルムであり、
前記プロテクトフィルムが、前記感圧性接着剤層ごと前記第二光学樹脂フィルムから剥離可能である偏光板。
A polarizer layer, a first optical resin film provided on one surface of the polarizer layer, a second optical resin film provided on the other surface of the polarizer layer, and the second optical resin film. A polarizing plate further comprising a protective film thereon,
The polarizer layer and the first optical resin film are laminated only through an adhesive layer that is an adhesive containing an epoxy resin, an adhesive containing an acrylic resin, or a water-based adhesive,
The polarizer layer and the second optical resin film are laminated via only an adhesive layer that is a pressure-sensitive adhesive,
When the polarizing plate is viewed from the thickness direction, the shape of the outer peripheral edge of the polarizing plate has a concave portion ,
The end face of the polarizer layer is polished,
The root-mean-square height Sq of the end face of the polarizer layer is 0.4 to 0.8 μm,
The arithmetic mean height Sa of the end surface of the polarizer layer is 0.3 to 0.7 μm,
The protective film is a multilayer film obtained by laminating a pressure-sensitive adhesive on a resin film,
The polarizing plate, wherein the protective film is peelable from the second optical resin film together with the pressure-sensitive adhesive layer.
前記偏光子層の端面の最大高さSzが5.0μm以下である、請求項1に記載の偏光板。 2. The polarizing plate according to claim 1, wherein the maximum height Sz of the end face of said polarizer layer is 5.0 [mu]m or less. 前記第二光学樹脂フィルムが輝度向上フィルムである、請求項1又は2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the second optical resin film is a brightness enhancement film.
JP2020205110A 2019-03-14 2020-12-10 Polarizer Active JP7284141B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019046826 2019-03-14
JP2019046826 2019-03-14
JP2019083239 2019-04-24
JP2019083239 2019-04-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020013914A Division JP2020181184A (en) 2019-03-14 2020-01-30 Polarizer

Publications (3)

Publication Number Publication Date
JP2021047453A JP2021047453A (en) 2021-03-25
JP2021047453A5 JP2021047453A5 (en) 2021-11-18
JP7284141B2 true JP7284141B2 (en) 2023-05-30

Family

ID=72426399

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020013914A Pending JP2020181184A (en) 2019-03-14 2020-01-30 Polarizer
JP2020205110A Active JP7284141B2 (en) 2019-03-14 2020-12-10 Polarizer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020013914A Pending JP2020181184A (en) 2019-03-14 2020-01-30 Polarizer

Country Status (5)

Country Link
JP (2) JP2020181184A (en)
KR (1) KR20210138567A (en)
CN (1) CN113574426B (en)
TW (1) TWI842838B (en)
WO (1) WO2020184030A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7203879B2 (en) * 2021-03-25 2023-01-13 日東電工株式会社 Method for manufacturing polarizing plate and polarizing plate

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223021A (en) 2006-01-27 2007-09-06 Nitto Denko Corp Cutting method and manufacturing method for sheet-like member, sheet-like member, optical element and image display device
JP2009037228A (en) 2007-07-06 2009-02-19 Nitto Denko Corp Polarization plate
JP2011020192A (en) 2009-07-14 2011-02-03 Sumitomo Electric Hardmetal Corp Spiral radius end mill
JP2013218318A (en) 2012-03-14 2013-10-24 Nitto Denko Corp Manufacturing method of liquid-crystal display panel
JP2016118776A (en) 2014-12-22 2016-06-30 住友化学株式会社 Polarizing plate with protection film and laminate including the same
WO2017047510A1 (en) 2015-09-16 2017-03-23 シャープ株式会社 Method for producing differently shaped polarizing plate
JP2017181597A (en) 2016-03-28 2017-10-05 住友化学株式会社 Optical film and polarizing plate
JP2018012182A (en) 2016-07-22 2018-01-25 日東電工株式会社 Method and apparatus for manufacturing polarization plate
JP2018022140A (en) 2016-07-22 2018-02-08 日東電工株式会社 Manufacturing method of polarizing plate and manufacturing apparatus thereof
JP2018063401A (en) 2016-10-14 2018-04-19 住友化学株式会社 Polarizer, polarizing plate, and image display apparatus
JP2019020648A (en) 2017-07-20 2019-02-07 住友化学株式会社 Method for manufacturing polarizing plate
JP2019018308A (en) 2017-07-20 2019-02-07 住友化学株式会社 Cutting device and polarizer manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026817A (en) * 1998-07-14 2000-01-25 Teijin Ltd Surface-protective film
WO2005109051A1 (en) * 2004-05-11 2005-11-17 Nitto Denko Corporation Polarizer protecting film, polarizing plate and image display
JP5525764B2 (en) * 2009-06-15 2014-06-18 日東電工株式会社 Release film, protective film for polarizing plate using the release film, and polarizing plate using protective film for the polarizing plate
JP6656799B2 (en) * 2013-11-29 2020-03-04 王子ホールディングス株式会社 Anti-Newton ring laminate and capacitive touch panel using the anti-Newton ring laminate
JP5979123B2 (en) * 2013-12-05 2016-08-24 住友化学株式会社 Polarizer with few bubble defects
JP6348291B2 (en) * 2014-02-04 2018-06-27 住友化学株式会社 Polarizing plate and display device
JP5886338B2 (en) * 2014-02-21 2016-03-16 住友化学株式会社 Polarizing plate, optical member set, and touch input type image display device
JP5976969B1 (en) * 2015-06-19 2016-08-24 住友化学株式会社 Manufacturing method of polarizing plate with protective film
JP6684630B2 (en) * 2016-03-31 2020-04-22 住友化学株式会社 Polarizing plate and method of manufacturing polarizing plate
JP6495374B2 (en) 2016-05-30 2019-04-03 住友化学株式会社 Polarizing plate for image display device, image display device, and method for producing polarizing plate for image display device
JP2018031954A (en) * 2016-08-26 2018-03-01 日東電工株式会社 Polarizing plate and method for manufacturing the same, and image display device using polarizing plate
JP6306675B1 (en) * 2016-11-28 2018-04-04 住友化学株式会社 Method for producing polarizing laminated film with protective film and method for producing polarizing plate
KR102510750B1 (en) * 2017-04-04 2023-03-15 스미또모 가가꾸 가부시키가이샤 Polarizing plate with protective film, and liquid crystal panel

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223021A (en) 2006-01-27 2007-09-06 Nitto Denko Corp Cutting method and manufacturing method for sheet-like member, sheet-like member, optical element and image display device
JP2009037228A (en) 2007-07-06 2009-02-19 Nitto Denko Corp Polarization plate
JP2011020192A (en) 2009-07-14 2011-02-03 Sumitomo Electric Hardmetal Corp Spiral radius end mill
JP2013218318A (en) 2012-03-14 2013-10-24 Nitto Denko Corp Manufacturing method of liquid-crystal display panel
JP2016118776A (en) 2014-12-22 2016-06-30 住友化学株式会社 Polarizing plate with protection film and laminate including the same
WO2017047510A1 (en) 2015-09-16 2017-03-23 シャープ株式会社 Method for producing differently shaped polarizing plate
JP2017181597A (en) 2016-03-28 2017-10-05 住友化学株式会社 Optical film and polarizing plate
JP2018012182A (en) 2016-07-22 2018-01-25 日東電工株式会社 Method and apparatus for manufacturing polarization plate
JP2018022140A (en) 2016-07-22 2018-02-08 日東電工株式会社 Manufacturing method of polarizing plate and manufacturing apparatus thereof
JP2018063401A (en) 2016-10-14 2018-04-19 住友化学株式会社 Polarizer, polarizing plate, and image display apparatus
JP2019020648A (en) 2017-07-20 2019-02-07 住友化学株式会社 Method for manufacturing polarizing plate
JP2019018308A (en) 2017-07-20 2019-02-07 住友化学株式会社 Cutting device and polarizer manufacturing method

Also Published As

Publication number Publication date
TW202041897A (en) 2020-11-16
JP2021047453A (en) 2021-03-25
CN113574426B (en) 2024-03-15
KR20210138567A (en) 2021-11-19
CN113574426A (en) 2021-10-29
WO2020184030A1 (en) 2020-09-17
TWI842838B (en) 2024-05-21
JP2020181184A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
JP6899721B2 (en) Polarizing plate manufacturing method and its manufacturing equipment
WO2018016285A1 (en) Method for manufacturing polarization plate and manufacturing device therefor
JP4954662B2 (en) Cutting method and manufacturing method of sheet-like member
WO2018016520A1 (en) Method for manufacturing polarizing plate and apparatus for manufacturing same
TWI255353B (en) Laminated optical film, method for producing the same film and liquid-crystal display device using the same film
JP6201025B1 (en) Polarizer, polarizing plate and image display device
KR101743884B1 (en) Polarizing plate with adhesive, and image display device
JP7284141B2 (en) Polarizer
JP2020104523A (en) Laminate body
JP2008058599A (en) Method of manufacturing composite polarizing plate product chip
JP7564170B2 (en) Optical Sheet
KR20210005860A (en) Optical laminated body, optical laminated body with cover glass, and manufacturing method thereof, and image display device with cover glass
JP7203879B2 (en) Method for manufacturing polarizing plate and polarizing plate
JP2021062448A (en) Method of manufacturing optical member
CN112666647A (en) Method for manufacturing optical member
KR102256908B1 (en) Method for manufacturing polarization plate sheet
JP7221256B2 (en) A polarizing plate, a polarizing plate with a retardation layer, and an image display device comprising the polarizing plate or the polarizing plate with the retardation layer
JP4495447B2 (en) Method for suppressing adhesion of adhesive to adhesive member, stacking table and tray
JP7573061B2 (en) Method for producing optical laminate with pressure-sensitive adhesive layer
JP6755223B2 (en) Polarizer, polarizing plate and image display device
KR20240000454A (en) Optical laminate, and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R150 Certificate of patent or registration of utility model

Ref document number: 7284141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150