WO2018016520A1 - Method for manufacturing polarizing plate and apparatus for manufacturing same - Google Patents

Method for manufacturing polarizing plate and apparatus for manufacturing same Download PDF

Info

Publication number
WO2018016520A1
WO2018016520A1 PCT/JP2017/026078 JP2017026078W WO2018016520A1 WO 2018016520 A1 WO2018016520 A1 WO 2018016520A1 JP 2017026078 W JP2017026078 W JP 2017026078W WO 2018016520 A1 WO2018016520 A1 WO 2018016520A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
deformed
manufacturing
cutting
producing
Prior art date
Application number
PCT/JP2017/026078
Other languages
French (fr)
Japanese (ja)
Inventor
宏太 仲井
直孝 樋口
岩本 正樹
勝則 高田
雄基 大瀬
亮 吉橋
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017134354A external-priority patent/JP6899721B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020187005423A priority Critical patent/KR102527432B1/en
Priority to CN201780002930.2A priority patent/CN107924019B/en
Publication of WO2018016520A1 publication Critical patent/WO2018016520A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/12Trimming or finishing edges, e.g. deburring welded corners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method of manufacturing a deformed polarizing plate and a manufacturing apparatus thereof. More specifically, the present invention relates to a method for manufacturing a deformed polarizing plate having a concave R portion and / or a hole and a manufacturing apparatus therefor. The present invention also relates to an optical film using the deformed polarizing plate. Further, the present invention relates to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the deformed polarizing plate and the optical film.
  • a punching process in which an irregular shaped blade shape is formed and the polarizing plate is punched, or a cutting process using laser irradiation is included.
  • the former punching process it has been found that the polarizing plate is cracked or broken due to the damage of the pressing plate.
  • laser processing it has been found that the polarizing plate is discolored by heat.
  • there is a tendency for cracks and breaks to occur in a recessed portion such as small diameter hole processing and small diameter concave R processing.
  • the present invention is a method for producing a deformed polarizing plate having a small-diameter concave R portion and / or a hole, in particular, and the occurrence or discoloration of cracks or breaks generated in the deformed polarizing plate during processing.
  • An object of the present invention is to provide a method for producing an irregularly shaped polarizing plate and an apparatus for producing the same.
  • the present inventors have found that the above object can be achieved by the following production method and the like, and have completed the present invention.
  • the method for producing the deformed polarizing plate of the present invention is as follows: A method for producing a deformed polarizing plate having a concave R portion, The method includes a step of forming the concave R portion by using a cutting means in which the blade comes into contact with the cutting surface from the lateral direction to perform cutting.
  • the method for producing a deformed polarizing plate according to the present invention is produced at the time of processing of a polarizing plate, which has been difficult to suppress so far, particularly by using a means in which the blade comes into contact with the cutting surface of the polarizing plate from the lateral direction. Generation of cracks and breaks and discoloration can be suppressed, and in particular, it is possible to produce a deformed polarizing plate having a concave R portion with a small diameter.
  • the concave R portion refers to a portion having a concave portion and a curved portion, and includes a corner portion of the concave portion having a curved shape such as a circle, an ellipse, or a substantially circular shape.
  • the convex R portion refers to a portion having a convex portion and a curved portion, and includes a convex portion having a curved portion such as a circle, an ellipse, or a substantially circular shape.
  • the concave R part and the convex R part shown in FIG. 1 can be mentioned.
  • the radius of the concave R portion is 5 mm or less.
  • the radius of the concave R portion is the radius of the circle when the R portion is circular, and the radius of curvature when the R portion is not circular such as an ellipse or a substantially circular shape.
  • the cutting means is preferably an end mill.
  • the cutting angle formed by the processing direction and the blade surface of the blade is 60 ° or more.
  • the manufacturing apparatus of the deformed polarizing plate of the present invention is An apparatus for producing a deformed polarizing plate having a concave R portion, It is characterized by comprising cutting means for cutting with the blade coming into contact with the cutting surface from the lateral direction.
  • the radius of the concave R portion is preferably 5 mm or less.
  • the cutting means is preferably an end mill.
  • the cutting angle formed by the processing direction by the cutting means and the blade surface of the blade is 60 ° or more.
  • the manufacturing method of the deformed polarizing plate of the present invention is as follows: A method for producing a deformed polarizing plate having a hole, It includes the step of forming the hole using an end mill.
  • the hole portion refers to a portion having a hole such as a circle, an ellipse, a substantially circle, or a square, for example, that penetrates the polarizing plate.
  • a hole such as a circle, an ellipse, a substantially circle, or a square, for example, that penetrates the polarizing plate.
  • the radius of the hole is preferably 5 mm or less.
  • the radius of the hole means the radius of the circle when the hole is circular, and the radius of curvature when the hole is not circular such as an ellipse or a substantially circular shape.
  • a cutting angle formed by a processing direction and a blade surface of the end mill is 60 ° or more.
  • the manufacturing apparatus of the deformed polarizing plate of the present invention is An apparatus for manufacturing a deformed polarizing plate having a hole, An end mill is provided.
  • the radius of the hole is preferably 5 mm or less.
  • the cutting angle formed by the processing direction and the end mill blade surface is 60 ° or more.
  • An example of the deformed polarizing plate obtained by the method for producing a deformed polarizing plate of the present invention is shown.
  • An example of embodiment of the manufacturing method of the deformed polarizing plate of this invention is shown.
  • An example of embodiment of the manufacturing method of the deformed polarizing plate of this invention is shown.
  • An example of the end mill in the manufacturing method of the shape polarizing plate of this invention is shown.
  • An example of the end mill in the manufacturing method of the shape polarizing plate of this invention is shown.
  • the processing shape implemented in the Example of this invention is shown.
  • the processing shape implemented in the Example of this invention is shown.
  • the method for producing the deformed polarizing plate of the present invention is as follows: A method for producing a deformed polarizing plate having a concave R portion, The method includes a step of forming the concave R portion by using a cutting means in which the blade comes into contact with the cutting surface from the lateral direction to perform cutting.
  • the manufacturing method of the deformed polarizing plate of the present invention is as follows: A method for producing a deformed polarizing plate having a hole, It includes the step of forming the hole using an end mill.
  • the method for producing a deformed polarizing plate according to the present invention includes a step of forming the concave R portion and / or the hole portion using a cutting means in which a blade comes into contact with the cutting surface in a lateral direction and cuts. .
  • a means that the blade comes into contact with the cutting surface of the polarizing plate from the lateral direction it has been difficult to suppress until now, suppressing the occurrence of cracks and breakage and discoloration that occur during processing of the polarizing plate,
  • the cutting means that the blade comes into contact with the cutting surface from the lateral direction and performs cutting is, for example, canna machining (processing in which the machining surface is cut in parallel with a projecting blade having a rotation axis parallel to the machining surface). And a method of using end milling or the like.
  • the cutting means is an end mill when small diameter concave R processing or small diameter hole processing is performed.
  • an end mill is used as the cutting means.
  • an end mill is a type of cutting tool that can be machined in a direction perpendicular to the rotation axis, unlike a drill that only works in the axial direction (only for drilling).
  • the rotation of the blade portion that performs cutting is, for example, as shown in FIG. 2, a rotation axis that is parallel to the cutting surface (for example, the rotation axis is perpendicular to the polarizing plate surface).
  • the polarizing plate can be cut by an end mill in the processing direction while performing the rotation continuously, stepwise, or intermittently.
  • cutting is performed in a state where the blade portion of the end mill is in contact with the cutting surface from the lateral direction.
  • the blade hits and is cut from the upper surface of the polarizing plate (in FIG. 2, the direction parallel to the cutting surface, the direction perpendicular to the polarizing plate surface). It becomes.
  • the radius of the concave R portion is 5 mm or less, it can be easily produced and processed.
  • the radius may be 1 mm or more and 5 mm or less, and may be 1 mm or more and 4 mm or less, or 2 mm or more and 3 mm or less.
  • the radius may be 1 mm or more and 5 mm or less, and may be 1 mm or more and 4 mm or less, or 2 mm or more and 3 mm or less.
  • the cutting angle formed by the processing direction and the blade surface of the blade is 60 ° or more.
  • the cutting angle is preferably 60 ° to 90 °, may be 65 ° to 90 °, may be 70 ° to 85 °, and may be 70 ° to 80 °.
  • the cutting angle refers to the cutting angle formed by the processing direction by the cutting means and the blade surface of the blade, and an example of processing by an end mill is shown in FIG.
  • the angle between the end mill's rotation axis and the blade is called the twist angle, but when the end mill's rotation axis is perpendicular to the machining direction as shown in Fig. 3, the twist angle of the end mill blade from 90 °.
  • the angle obtained by subtracting is the cutting angle.
  • the manufacturing apparatus of the deformed polarizing plate of the present invention is An apparatus for producing a deformed polarizing plate having a concave R portion, It is characterized by comprising cutting means for cutting with the blade coming into contact with the cutting surface from the lateral direction.
  • the cutting means that includes the end mill and that the blade comes into contact with and cuts from the above-described cutting surface from the lateral direction is appropriately provided in the apparatus by a known method. it can.
  • the radius of the concave R portion is 5 mm or less, it can be easily manufactured and processed.
  • the radius may be 1 mm or more and 5 mm or less, and may be 1 mm or more and 4 mm or less, or 2 mm or more and 3 mm or less.
  • the cutting angle formed by the processing direction by the cutting means and the blade surface of the blade is 60 ° or more.
  • the cutting angle is preferably 60 ° to 90 °, may be 65 ° to 90 °, may be 70 ° to 85 °, and may be 70 ° to 80 °.
  • the manufacturing apparatus of the deformed polarizing plate of the present invention is An apparatus for manufacturing a deformed polarizing plate having a hole, An end mill is provided.
  • the above-described end mill can be appropriately provided in the apparatus by a known technique.
  • the apparatus for manufacturing a deformed polarizing plate of the present invention for example, even if the hole has a radius of 5 mm or less, it can be easily manufactured and processed.
  • the radius may be 1 mm or more and 5 mm or less, and may be 1 mm or more and 4 mm or less, or 2 mm or more and 3 mm or less.
  • the cutting angle formed by the processing direction by the cutting means and the blade surface of the blade is 60 ° or more.
  • the cutting angle is preferably 60 ° to 90 °, may be 65 ° to 90 °, may be 70 ° to 85 °, and may be 70 ° to 80 °.
  • FIGS. 4 and 5 show an example in which the number of blades is 2, 3, 4, or 6.
  • the number of blades is preferably 1 to 6, and the number of blades may be 1 to 4.
  • the rake angle of the end mill blade is preferably 0 to less than 15 °, and may be 3 to 12 °. If the rake angle is 15 ° or more, the blade tends to be chipped.
  • the clearance angle of the end mill blade is preferably greater than 0 ° and less than 20 °, and may be 3 to 15 °.
  • the relief angle is 0 °, the film is rubbed with the film, and when the relief angle is 20 ° or more, the blade is easily chipped.
  • the twist angle of the end mill blade is preferably ⁇ 75 ° to 75 °, and may be ⁇ 65 ° to 65 °. When the twist angle exceeds the above range, it becomes easy to cause a scrap discharge failure.
  • the blade diameter (outer diameter) ⁇ of the end mill blade is preferably 3 to 30 mm, and may be 5 to 25 mm. If the blade diameter ⁇ is smaller than 3 mm, it is easy to break, and if it is larger than 30 mm, it is difficult to perform fine profile processing.
  • the feed speed of the end mill blade is preferably 100 to 10,000 mm / min, and may be 200 to 8000 mm / min.
  • the rotation speed of the end mill blade is preferably 1000 to 120,000 rpm, and may be 2000 to 60000 rpm, or 3000 to 50000 rpm. If the rotational speed is slower than 1000 rpm, it may cause cracks, while if it is faster than 60000 rpm, it may generate heat and cause damage to the polarizing plate or the like.
  • the polarizing plate used in the present invention is not particularly limited, and a known polarizing plate can be used as appropriate.
  • Examples of the polarizing plate include a polarizing plate manufactured by stretch molding and a polarizing plate manufactured by coating molding.
  • the polarizer is not particularly limited, and various types can be used.
  • the polarizer include hydrophilic polymer films such as polyvinyl alcohol film, partially formalized polyvinyl alcohol film, and ethylene / vinyl acetate copolymer partially saponified film, and two colors such as iodine and dichroic dye.
  • polyene-based oriented films such as those obtained by adsorbing a functional material and uniaxially stretched, polyvinyl alcohol dehydrated products, and polyvinyl chloride dehydrochlorinated products.
  • a polarizer composed of a polyvinyl alcohol film and a dichroic material such as iodine is preferable.
  • Polyvinyl alcohol or a derivative thereof is used for the material of the polyvinyl alcohol film applied to the polarizer.
  • Derivatives of polyvinyl alcohol include polyvinyl formal, polyvinyl acetal and the like, olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, alkyl esters thereof, acrylamide and the like. can give.
  • Polyvinyl alcohol having a polymerization degree of about 1000 to 10,000 and a saponification degree of about 80 to 100 mol% is generally used.
  • the polyvinyl alcohol film (unstretched film) is at least subjected to uniaxial stretching treatment and iodine dyeing treatment according to a conventional method. Furthermore, boric acid treatment and iodine ion treatment can be performed. Moreover, the polyvinyl alcohol film (stretched film) subjected to the above treatment is dried according to a conventional method to become a polarizer.
  • the polarizing plate used in the present invention may be one in which a protective film is bonded to at least one side of a polarizer via an adhesive.
  • the protective film may be bonded to one side or both sides of the polarizer.
  • the protective film may have other optical functions at the same time, and may be formed by laminating other layers.
  • the protective film on one side and the protective film on the other side may be the same or different. Further, at least one protective film may be used per side, and a laminate of two or more layers may be used.
  • the thickness of the protective film can be appropriately determined, but is generally about 1 to 500 ⁇ m from the viewpoints of workability such as strength and handleability and thin layer properties. 1 to 300 ⁇ m is particularly preferable, and 5 to 200 ⁇ m is more preferable.
  • thermoplastic resins that are excellent in transparency, mechanical strength, thermal stability, and moisture barrier properties. Moreover, when optical isotropy is requested
  • thermoplastic resins include, for example, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, and (meth) acrylic resins. , Norbornene resins, polyarylate resins, and mixtures thereof.
  • thermosetting resins such as (meth) acrylic resins or ultraviolet curable resins can also be used. Among the above, in terms of moisture permeability and optical characteristics, it is preferable to use (meth) acrylic resin, polyimide resin, or norbornene resin.
  • the cell-side protective film may have a retardation function for viewing angle compensation, and the opposite side of the cell-side protective film may or may not have a phase difference.
  • the surface of the protective film that adheres to the polarizer can be subjected to easy adhesion treatment.
  • the easy adhesion treatment include dry treatment such as plasma treatment and corona treatment, chemical treatment such as alkali treatment (saponification treatment), and coating treatment for forming an easy adhesion layer.
  • a coating treatment or an alkali treatment for forming an adhesive layer is preferable.
  • Various easily adhesive materials such as polyol resin, polycarboxylic acid resin, and polyester resin can be used for forming the easily adhesive layer.
  • the thickness of the easy adhesion layer is usually about 0.001 to 10 ⁇ m, more preferably about 0.001 to 5 ⁇ m, and particularly preferably about 0.001 to 1 ⁇ m.
  • the surface of the protective film to which the polarizer is not adhered may be subjected to a treatment for the purpose of hard coat layer, antireflection treatment, sticking prevention, diffusion or antiglare.
  • the adhesive constituting the polarizing plate is not particularly limited as long as it is optically transparent, and water-based, solvent-based, hot-melt, and radical-curing types can be used.
  • a mold adhesive is preferred.
  • the water-based adhesive forming the adhesive layer is not particularly limited, and examples thereof include vinyl polymer-based, gelatin-based, vinyl-based latex-based, polyurethane-based, isocyanate-based, polyester-based, and epoxy-based materials.
  • radical curable adhesive examples include various active energy ray curable types such as an electron beam curable type and an ultraviolet ray curable type, and a thermosetting type, but there are active energy ray curable types that can be cured in a short time. preferable.
  • the method for producing a deformed polarizing plate of the present invention is a method for producing a deformed polarizing plate having a concave R portion and / or a hole, and a cutting means in which a blade comes into contact with a cutting surface such as an end mill and cuts from the lateral direction. And a step of forming the concave R portion by using the step.
  • the production of the polarizing plate itself before the formation of the concave R portion and / or the hole portion used in the present invention can be appropriately used with a known method.
  • the step of forming the concave R portion using a cutting means in which the blade abuts against the cutting surface such as an end mill from the lateral direction and cuts may be performed after manufacturing the polarizing plate itself. In some cases, it may be performed during the manufacturing process of the polarizing plate itself.
  • a known method may be appropriately used for the cutting or the like.
  • a rectangular shape or the like is made by a conventional method using a laser or the like, and in the stage of forming the fine concave R portion and / or hole portion, It can also be used appropriately as a manufacturing method.
  • the shape of the polarizing plate at the time of the cutting is not particularly limited, but it is generally a quadrangle, and may be cut in the absorption axis direction and the transmission axis direction in the polarizing plate.
  • laser cutting may be performed on at least one edge, but it is preferable to perform the cutting in the absorption axis direction, the transmission axis direction, or both.
  • the production of the polarizing plate itself can be performed, for example, in a process of producing the polarizer and the protective film by bonding them using the adhesive.
  • a protective film can be provided on one or both sides of the polarizer via an adhesive layer formed of the polarizing plate adhesive.
  • the polarizing plate can be used as an optical film laminated with another optical layer in practical use.
  • the deformed polarizing plate in the method for producing a deformed polarizing plate of the present invention includes a deformed polarizing film and a deformed optical film in which at least one polarizing plate is laminated. In the production method of the present invention, it may be an optical film after first undergoing a processing step for deforming the polarizing plate itself, or may be subjected to a processing step for deforming the optical film first, and both are used in combination as appropriate. May be.
  • the optical layer is not particularly limited.
  • a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including wavelength plates such as 1/2 and 1/4), and a viewing angle compensation film.
  • One or more optical layers that may be used can be used.
  • a reflective polarizing plate or a semi-transmissive polarizing plate in which a reflecting plate or a semi-transmissive reflecting plate is further stacked on the polarizing plate an elliptical polarizing plate or a circular polarizing plate in which a retardation plate is further stacked on the polarizing plate,
  • a wide viewing angle polarizing plate in which a viewing angle compensation film is further laminated on the polarizing plate, or a polarizing plate in which a brightness enhancement film is further laminated on the polarizing plate are preferable.
  • An adhesive layer for adhering to other members such as a liquid crystal cell may be provided on the polarizing plate described above or an optical film in which at least one polarizing plate is laminated.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited.
  • an acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based or rubber-based polymer is appropriately selected.
  • an acrylic adhesive that is excellent in optical transparency, exhibits appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and is excellent in weather resistance, heat resistance, and the like can be preferably used.
  • Attaching an adhesive layer to one or both sides of a polarizing plate or an optical film can be performed by an appropriate method.
  • a pressure-sensitive adhesive solution of about 10 to 40% by weight in which a base polymer or a composition thereof is dissolved or dispersed in a solvent composed of a suitable solvent alone or a mixture such as toluene and ethyl acetate is prepared.
  • the method of moving up is mentioned.
  • the adhesive layer can be provided on one side or both sides of a polarizing plate or an optical film as a superimposed layer of different compositions or types. Moreover, when providing in both surfaces, it can also be set as the adhesion layers of a different composition, a kind, thickness, etc. in the front and back of a polarizing plate or an optical film.
  • the thickness of the pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use and adhesive force, and is generally 1 to 500 ⁇ m, preferably 5 to 200 ⁇ m, and particularly preferably 10 to 100 ⁇ m.
  • the exposed surface of the adhesive layer is temporarily covered with a separator for the purpose of preventing contamination until it is put to practical use. Thereby, it can prevent contacting an adhesion layer in the usual handling state.
  • a separator for example, a suitable thin leaf body such as a plastic film, rubber sheet, paper, cloth, nonwoven fabric, net, foamed sheet or metal foil, and a laminate thereof, if necessary, a silicone type or Appropriate ones according to the prior art, such as those coated with an appropriate release agent such as long-chain alkyl, fluorine-based or molybdenum sulfide, can be used.
  • the polarizing plate or the optical film can be preferably used for forming various devices such as a liquid crystal display device.
  • Examples and comparative examples The processing in Examples 1-2 and Comparative Examples 1-3 was performed by processing into the conditions shown in Table 1 below and the processing shape shown in FIG. In addition, a laminate obtained by laminating a surface protecting film (PPF-100T) manufactured by Nitto Denko Corporation on a polarizing plate manufactured by Nitto Denko Corporation (NPF-CWQ1463VDUAG380-ACJ) was used as a workpiece.
  • the unit in FIG. 6 is mm.
  • each atypical polarizing plate processed and manufactured according to the examples and comparative examples were measured and evaluated as follows.
  • “ ⁇ ” indicates that cracks, breaks, or discoloration did not occur at each end after processing and manufacture, and “ ⁇ ” indicates that cracks, breaks, or discoloration occurred.
  • the size of those defects was measured using a microscope (OLIMPUS optical microscope BX51).
  • Example 1 in the concave R, the R minimum value was 3 mm. In Example 2, the minimum value of R in the concave R was 62.5 mm. On the other hand, in Comparative Examples 1 and 2, cracks of up to 100 ⁇ m occurred. Further, in Comparative Examples 1 and 2, a maximum fold of 1000 ⁇ m occurred. Further, in Comparative Example 3, the maximum color change of 50 ⁇ m occurred.
  • Examples 3 to 5 and Comparative Examples 4 to 5 was performed by processing into the conditions shown in Table 3 below and the processing shape shown in FIG. Moreover, the laminated body which laminated
  • the processing conditions for the Thomson mold in Comparative Example 5 are the same as in Comparative Example 1.
  • R of the recessed part in FIG. 7 is 3 mm.
  • the maximum value of the delamination amount was less than 0 ⁇ m in any of the corner, straight line, and recess.
  • the maximum value of the delamination amount was 60 ⁇ m or more in any of the corners, straight lines, and recesses.

Abstract

The present invention pertains to providing: a method for manufacturing an irregular-shape polarizing plate which particularly has a hole part and/or a recessed round part having a small diameter and in which discoloration and a crack or breakage generated during machining are suppressed; and an apparatus for manufacturing the irregular-shape polarizing plate. The method for manufacturing an irregular-shape polarizing plate having a recessed round part, includes a step for forming the recessed round part by using a cutting means for cutting a surface to be cut with a blade transversely in contact with the surface.

Description

偏光板の製造方法およびその製造装置Manufacturing method of polarizing plate and manufacturing apparatus thereof
  本発明は、異形偏光板の製造方法およびその製造装置に関する。より詳細には、凹R部および/または穴部を有する異形偏光板の製造方法およびその製造装置に関する。また本発明は、当該異形偏光板を用いた光学フィルムに関する。さらには当該異形偏光板、光学フィルムを用いた液晶表示装置、有機EL表示装置、PDP等の画像表示装置に関する。 The present invention relates to a method of manufacturing a deformed polarizing plate and a manufacturing apparatus thereof. More specifically, the present invention relates to a method for manufacturing a deformed polarizing plate having a concave R portion and / or a hole and a manufacturing apparatus therefor. The present invention also relates to an optical film using the deformed polarizing plate. Further, the present invention relates to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the deformed polarizing plate and the optical film.
  近年、自動車のメーター表示部やスマートウォッチ等においても偏光板の使用が望まれてきている。また、スマートフォンのデザイン性等から、偏光板の形状を矩形以外にして用いることや、偏光板に貫通穴を形成すること等も望まれてきている。さらには、これらのような異形加工においては、従来には見られなかったような、より繊細で精緻な加工処理や、より複雑な加工処理が求められることが増加しており、小径凹R加工や小径穴加工が施される場合がある。 In recent years, it has been desired to use a polarizing plate in a meter display part of a car, a smart watch, and the like. In addition, from the viewpoint of the design of a smartphone or the like, it has been desired to use a polarizing plate with a shape other than rectangular, or to form a through hole in the polarizing plate. Furthermore, in the profile processing such as these, there is an increasing demand for more delicate and precise processing and more complicated processing that has not been seen in the past. Or small-diameter hole machining.
  偏光板を異形に加工するためには、たとえば、異形の刃型を形成して偏光板を打ち抜く打抜き加工や、レーザー照射を用いた切断加工があげられる。しかしながら、前者の打抜き加工では、偏光板に対する押切のダメージにより、偏光板にクラックや折れが発生してしまう問題点がわかってきた。また、後者のレーザー加工では、偏光板が熱により変色してしまう問題点がわかってきた。なかでも特に、出願人らの検討において、小径穴加工や小径凹R加工等の凹加工部においてクラックや折れが発生してしまう傾向があることが判明した。 In order to process the polarizing plate into an irregular shape, for example, a punching process in which an irregular shaped blade shape is formed and the polarizing plate is punched, or a cutting process using laser irradiation is included. However, in the former punching process, it has been found that the polarizing plate is cracked or broken due to the damage of the pressing plate. In the latter laser processing, it has been found that the polarizing plate is discolored by heat. In particular, in the examination by the applicants, it has been found that there is a tendency for cracks and breaks to occur in a recessed portion such as small diameter hole processing and small diameter concave R processing.
  また、これまでに、偏光板の端面の仕上げ処理加工に関する提案がなされている(たとえば、特許文献1、2参照)。しかしながら、上記提案はいずれも、あくまで偏光板を矩形に切断した後の、切断加工口の端部の仕上げ処理に関するものであって、偏光板自身を凹加工等するための技術ではなかった。また、上記提案では、偏光板を微小な凹加工をする際にクラックや折れが発生してしまう問題点についての開示はなかった。 In addition, so far, proposals have been made regarding finishing processing of the end face of the polarizing plate (for example, see Patent Documents 1 and 2). However, all of the above proposals relate to the finishing processing of the end portion of the cutting port after the polarizing plate is cut into a rectangle, and are not techniques for concave processing of the polarizing plate itself. Moreover, in the said proposal, there was no indication about the problem which a crack and a crease | fold generate | occur | produce when carrying out a minute concave process of a polarizing plate.
特開2004-148461号公報JP 2004-148461 A 特開2004-148419号公報JP 2004-148419 A
  本発明は、このような事情に照らし、特に小径の凹R部および/または穴部を有する異形偏光板の製造方法であって、加工の際に異形偏光板に生じるクラックや折れの発生や変色を抑制した異形偏光板の製造方法およびその製造装置を提供することを目的とする。 In light of such circumstances, the present invention is a method for producing a deformed polarizing plate having a small-diameter concave R portion and / or a hole, in particular, and the occurrence or discoloration of cracks or breaks generated in the deformed polarizing plate during processing. An object of the present invention is to provide a method for producing an irregularly shaped polarizing plate and an apparatus for producing the same.
  本発明者らは、上記課題を解決するため鋭意検討した結果、以下に示す製造方法等により上記目的を達成できることを見出して、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above object can be achieved by the following production method and the like, and have completed the present invention.
  本発明の異形偏光板の製造方法は、
  凹R部を有する異形偏光板の製造方法であって、
  切削面に対して横方向から刃が当接し切削する切削手段を用いて上記凹R部を形成する工程を含むことを特徴とする。
The method for producing the deformed polarizing plate of the present invention is as follows:
A method for producing a deformed polarizing plate having a concave R portion,
The method includes a step of forming the concave R portion by using a cutting means in which the blade comes into contact with the cutting surface from the lateral direction to perform cutting.
  本発明の異形偏光板の製造方法は、特に偏光板の切削面に対して横方向から刃が当接する手段を用いることで、これまでは抑制困難であった、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、特に小径の凹R部を有する異形偏光板の製造が可能となる。 The method for producing a deformed polarizing plate according to the present invention is produced at the time of processing of a polarizing plate, which has been difficult to suppress so far, particularly by using a means in which the blade comes into contact with the cutting surface of the polarizing plate from the lateral direction. Generation of cracks and breaks and discoloration can be suppressed, and in particular, it is possible to produce a deformed polarizing plate having a concave R portion with a small diameter.
  また、本発明において、凹R部とは、凹部と曲線部を有する部分をいい、凹部の角部分が円形や楕円形、略円形状などの曲線状であるものを含む。また、凸R部とは、凸部と曲線部を有する部分をいい、凸部の角部分が円形や楕円形、略円形状などの曲線状であるものを含む。たとえば、図1に示す凹R部や凸R部などをあげることができる。 Further, in the present invention, the concave R portion refers to a portion having a concave portion and a curved portion, and includes a corner portion of the concave portion having a curved shape such as a circle, an ellipse, or a substantially circular shape. Moreover, the convex R portion refers to a portion having a convex portion and a curved portion, and includes a convex portion having a curved portion such as a circle, an ellipse, or a substantially circular shape. For example, the concave R part and the convex R part shown in FIG. 1 can be mentioned.
  また、本発明の異形偏光板の製造方法において、上記凹R部の半径が5mm以下であることが好ましい。上記製造方法を用いることにより、凹R部の半径が5mm以下である場合でも、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、凹R部の半径が5mm以下のような微小径な凹R部を有する異形偏光板の製造が可能となる。なお、上記凹R部の半径とは、R部が円状の場合は当該円の半径、R部が楕円状や略円形状等の円状でない場合はその曲率半径をいうものとする。 Further, in the method for producing a deformed polarizing plate of the present invention, it is preferable that the radius of the concave R portion is 5 mm or less. By using the above manufacturing method, even when the radius of the concave R portion is 5 mm or less, generation of cracks and breaks and discoloration that occur during processing of the polarizing plate is suppressed, and the radius of the concave R portion is 5 mm or less. It is possible to manufacture a deformed polarizing plate having a concave portion having a very small diameter. The radius of the concave R portion is the radius of the circle when the R portion is circular, and the radius of curvature when the R portion is not circular such as an ellipse or a substantially circular shape.
  また、本発明の異形偏光板の製造方法において、上記切削手段がエンドミルであることが好ましい。上記製造方法を用いることにより、特に小径凹R加工する場合に好適となる。 Further, in the method for producing a deformed polarizing plate of the present invention, the cutting means is preferably an end mill. By using the above manufacturing method, it is particularly suitable for small-diameter concave R machining.
  また、本発明の異形偏光板の製造方法において、加工方向と上記刃の刃面とがなす切削角度が60°以上であることが好ましい。上記製造方法を用いることにより、異形偏光板のデラミネーションの発生を抑制することが可能となる。 Further, in the method for producing a deformed polarizing plate of the present invention, it is preferable that the cutting angle formed by the processing direction and the blade surface of the blade is 60 ° or more. By using the above manufacturing method, it is possible to suppress the occurrence of delamination of the deformed polarizing plate.
  また、本発明の異形偏光板の製造装置は、
  凹R部を有する異形偏光板の製造装置であって、
  切削面に対して横方向から刃が当接し切削する切削手段を備えることを特徴とする。
Moreover, the manufacturing apparatus of the deformed polarizing plate of the present invention is
An apparatus for producing a deformed polarizing plate having a concave R portion,
It is characterized by comprising cutting means for cutting with the blade coming into contact with the cutting surface from the lateral direction.
  上記製造装置を用いることにより、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、特に小径の凹R部を有する異形偏光板の製造を容易に行うことができうる。 By using the above manufacturing apparatus, it is possible to suppress the occurrence of cracks and breaks and discoloration that occur during the processing of the polarizing plate, and in particular, it is possible to easily manufacture a deformed polarizing plate having a small-diameter concave R portion.
  また、本発明の異形偏光板の製造装置は、上記凹R部の半径が5mm以下であることが好ましい。上記製造装置を用いることにより、凹R部の半径が5mm以下である場合でも、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、凹R部の半径が5mm以下のような微小径な凹R部を有する異形偏光板の製造を容易に行うことができうる。 Moreover, in the apparatus for manufacturing a deformed polarizing plate of the present invention, the radius of the concave R portion is preferably 5 mm or less. By using the above manufacturing apparatus, even when the radius of the concave R portion is 5 mm or less, the generation of cracks and breaks and discoloration that occur during processing of the polarizing plate is suppressed, and the radius of the concave R portion is 5 mm or less. It is possible to easily manufacture a deformed polarizing plate having a concave portion having a very small diameter.
  また、本発明の異形偏光板の製造装置において、上記切削手段がエンドミルであることが好ましい。上記製造装置を用いることにより、特に小径凹R加工する場合に好適となる。 Further, in the apparatus for manufacturing a deformed polarizing plate of the present invention, the cutting means is preferably an end mill. By using the above manufacturing apparatus, it is particularly suitable for small-diameter concave R machining.
  また、本発明の異形偏光板の製造装置において、上記切削手段による加工方向と上記刃の刃面とがなす切削角度が60°以上であることが好ましい。上記製造装置を用いることにより、異形偏光板のデラミネーションの発生を抑制することが可能となる。 Further, in the apparatus for producing a deformed polarizing plate of the present invention, it is preferable that the cutting angle formed by the processing direction by the cutting means and the blade surface of the blade is 60 ° or more. By using the manufacturing apparatus, it is possible to suppress the occurrence of delamination of the deformed polarizing plate.
  また、本発明の異形偏光板の製造方法は、
  穴部を有する異形偏光板の製造方法であって、
  エンドミルを用いて上記穴部を形成する工程を含むことを特徴とする。
Moreover, the manufacturing method of the deformed polarizing plate of the present invention is as follows:
A method for producing a deformed polarizing plate having a hole,
It includes the step of forming the hole using an end mill.
  上記製造方法では、特に偏光板の切削面に対して横方向から刃が当接する手段を用いることで、これまでは抑制困難であった、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、特に小径の穴部を有する異形偏光板の製造が可能となる。 In the above manufacturing method, in particular, by using a means in which the blade comes into contact with the cutting surface of the polarizing plate from the lateral direction, it has been difficult to suppress until now, and the occurrence of cracks and breaks that occur during processing of the polarizing plate, Discoloration can be suppressed, and in particular, it is possible to produce a deformed polarizing plate having a small-diameter hole.
  また、本発明において、穴部とは、たとえば、円形や楕円形、略円形状、角状等の穴を有する部分をいい、偏光板を貫通しているものをいう。たとえば、図1に示す穴部などをあげることができる。 In addition, in the present invention, the hole portion refers to a portion having a hole such as a circle, an ellipse, a substantially circle, or a square, for example, that penetrates the polarizing plate. For example, the hole shown in FIG.
  また、上記異形偏光板の製造方法において、上記穴部の半径が5mm以下であることが好ましい。上記製造方法を用いることにより、穴部の半径が5mm以下である場合でも、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、穴部の半径が5mm以下のような微小径な穴部を有する異形偏光板の製造が可能となる。なお、上記穴部の半径とは、穴部が円状の場合は当該円の半径、穴部が楕円状や略円形状等の円状でない場合はその曲率半径をいうものとする。 Further, in the method for manufacturing the deformed polarizing plate, the radius of the hole is preferably 5 mm or less. By using the above manufacturing method, even when the radius of the hole is 5 mm or less, generation of cracks and breaks and discoloration occurring during the processing of the polarizing plate is suppressed, and the radius of the hole is as small as 5 mm or less. A deformed polarizing plate having a small-diameter hole can be manufactured. The radius of the hole means the radius of the circle when the hole is circular, and the radius of curvature when the hole is not circular such as an ellipse or a substantially circular shape.
  また、上記異形偏光板の製造方法において、加工方向と前記エンドミルの刃面とがなす切削角度が60°以上であることが好ましい。上記製造方法を用いることにより、異形偏光板のデラミネーションの発生を抑制することが可能となる。 Further, in the method for manufacturing the deformed polarizing plate, it is preferable that a cutting angle formed by a processing direction and a blade surface of the end mill is 60 ° or more. By using the above manufacturing method, it is possible to suppress the occurrence of delamination of the deformed polarizing plate.
  また、本発明の異形偏光板の製造装置は、
  穴部を有する異形偏光板の製造装置であって、
  エンドミルを備えることを特徴とする。
Moreover, the manufacturing apparatus of the deformed polarizing plate of the present invention is
An apparatus for manufacturing a deformed polarizing plate having a hole,
An end mill is provided.
  上記製造装置を用いることにより、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、特に小径の穴部を有する異形偏光板の製造を容易に行うことができうる。 By using the above manufacturing apparatus, it is possible to suppress the occurrence of cracks and breaks and discoloration that occur during the processing of the polarizing plate, and in particular, it is possible to easily manufacture a deformed polarizing plate having a small-diameter hole.
  また、本発明の異形偏光板の製造装置は、上記穴部の半径が5mm以下であることが好ましい。上記製造装置を用いることにより、穴部の半径が5mm以下である場合でも、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、穴部の半径が5mm以下のような微小径な穴部を有する異形偏光板の製造を容易に行うことができうる。 In addition, in the apparatus for manufacturing a deformed polarizing plate of the present invention, the radius of the hole is preferably 5 mm or less. By using the above manufacturing apparatus, even when the radius of the hole is 5 mm or less, generation of cracks and breaks and discoloration that occur during the processing of the polarizing plate is suppressed, and the radius of the hole is as small as 5 mm or less. It is possible to easily manufacture a deformed polarizing plate having a small-diameter hole.
  また、本発明の異形偏光板の製造装置は、加工方向と前記エンドミルの刃面とがなす切削角度が60°以上であることが好ましい。上記製造装置を用いることにより、異形偏光板のデラミネーションの発生を抑制することが可能となる。 Further, in the apparatus for producing a deformed polarizing plate of the present invention, it is preferable that the cutting angle formed by the processing direction and the end mill blade surface is 60 ° or more. By using the manufacturing apparatus, it is possible to suppress the occurrence of delamination of the deformed polarizing plate.
本発明の異形偏光板の製造方法で得られた異形偏光板の一例を示す。An example of the deformed polarizing plate obtained by the method for producing a deformed polarizing plate of the present invention is shown. 本発明の異形偏光板の製造方法の実施形態の一例を示す。An example of embodiment of the manufacturing method of the deformed polarizing plate of this invention is shown. 本発明の異形偏光板の製造方法の実施形態の一例を示す。An example of embodiment of the manufacturing method of the deformed polarizing plate of this invention is shown. 本発明の形偏光板の製造方法におけるエンドミルの一例を示す。An example of the end mill in the manufacturing method of the shape polarizing plate of this invention is shown. 本発明の形偏光板の製造方法におけるエンドミルの一例を示す。An example of the end mill in the manufacturing method of the shape polarizing plate of this invention is shown. 本発明の実施例において実施した加工形状を示す。The processing shape implemented in the Example of this invention is shown. 本発明の実施例において実施した加工形状を示す。The processing shape implemented in the Example of this invention is shown.
  以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.
  本発明の異形偏光板の製造方法は、
  凹R部を有する異形偏光板の製造方法であって、
  切削面に対して横方向から刃が当接し切削する切削手段を用いて上記凹R部を形成する工程を含むことを特徴とする。
The method for producing the deformed polarizing plate of the present invention is as follows:
A method for producing a deformed polarizing plate having a concave R portion,
The method includes a step of forming the concave R portion by using a cutting means in which the blade comes into contact with the cutting surface from the lateral direction to perform cutting.
  また、本発明の異形偏光板の製造方法は、
  穴部を有する異形偏光板の製造方法であって、
  エンドミルを用いて上記穴部を形成する工程を含むことを特徴とする。
Moreover, the manufacturing method of the deformed polarizing plate of the present invention is as follows:
A method for producing a deformed polarizing plate having a hole,
It includes the step of forming the hole using an end mill.
  本発明の異形偏光板の製造方法は、切削面に対して横方向から刃が当接し切削する切削手段を用いて上記凹R部および/または穴部を形成する工程を含むことを特徴とする。特に偏光板の切削面に対して横方向から刃が当接する手段を用いることで、これまでは抑制困難であった、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、特に小径の凹R部および/または穴部を有する異形偏光板の製造が可能となる。また、切削面に対して横方向から刃が当接し切削する切削手段とは、たとえば、カンナ加工(加工面に対して平行な回転軸を有する突設した刃物によって加工面を平行に削り取る加工)、エンドミル加工等を用いて行う方法があげられる。本発明の異形偏光板の製造方法において、上記切削手段がエンドミルであることが、小径凹R加工や小径穴加工をする場合に特に好ましい。また、特に穴部を有する異形偏光板の製造方法においては、上記切削手段としてエンドミルを用いる。 The method for producing a deformed polarizing plate according to the present invention includes a step of forming the concave R portion and / or the hole portion using a cutting means in which a blade comes into contact with the cutting surface in a lateral direction and cuts. . In particular, by using a means that the blade comes into contact with the cutting surface of the polarizing plate from the lateral direction, it has been difficult to suppress until now, suppressing the occurrence of cracks and breakage and discoloration that occur during processing of the polarizing plate, In particular, it is possible to manufacture a deformed polarizing plate having a small-diameter concave R portion and / or a hole portion. The cutting means that the blade comes into contact with the cutting surface from the lateral direction and performs cutting is, for example, canna machining (processing in which the machining surface is cut in parallel with a projecting blade having a rotation axis parallel to the machining surface). And a method of using end milling or the like. In the method for producing a deformed polarizing plate of the present invention, it is particularly preferable that the cutting means is an end mill when small diameter concave R processing or small diameter hole processing is performed. In particular, in a method for producing a deformed polarizing plate having a hole, an end mill is used as the cutting means.
  なお、エンドミルとは、切削工具の一種で、軸方向に加工するだけ(穴あけのみ専用)のドリルとは異なり、回転軸と直交した方向にも加工が可能である。 Note that an end mill is a type of cutting tool that can be machined in a direction perpendicular to the rotation axis, unlike a drill that only works in the axial direction (only for drilling).
  以下、図2を用いてエンドミル加工を用いた実施形態を例として説明する。凹R部および/または穴部を形成しようとする対象の偏光板に対し、この場合における刃にあたるエンドミルの刃部を回転させながら、偏光板の切削面に対して横方向から刃が当接し切削する。そしてエンドミルの刃部の回転を行うと共に加工方向に移動させながら、偏光板の切削加工を続け、所定の異形偏光板に加工する。 Hereinafter, an embodiment using end mill processing will be described as an example with reference to FIG. In this case, while rotating the blade part of the end mill corresponding to the blade against the polarizing plate to be formed with the concave R portion and / or the hole portion, the blade comes into contact with the cutting surface of the polarizing plate and cuts from the lateral direction. To do. And while rotating the blade part of an end mill and moving to a process direction, the cutting process of a polarizing plate is continued and it processes into a predetermined irregularly-shaped polarizing plate.
  上記エンドミルの場合、切削を行う刃部の回転は、たとえば、図2のように、切削面に対して平行となる回転軸(たとえば、さらに、回転軸が偏光板表面に対して垂直方向である)で回転させ、当該回転を連続的、段階的、または断続的に行いながら、加工方向にエンドミルによる偏光板の切削を行うことができる。この場合、エンドミルの刃部は、切削面に対して横方向から当接した状態で切削が行われる。なお、従来の刃型で打抜く打抜き加工等では、偏光板の面上部(図2における、切削面と並行となる方向、偏光板表面に対して垂直方向)から刃が当たり切断加工されることとなる。 In the case of the above-described end mill, the rotation of the blade portion that performs cutting is, for example, as shown in FIG. 2, a rotation axis that is parallel to the cutting surface (for example, the rotation axis is perpendicular to the polarizing plate surface). ), And the polarizing plate can be cut by an end mill in the processing direction while performing the rotation continuously, stepwise, or intermittently. In this case, cutting is performed in a state where the blade portion of the end mill is in contact with the cutting surface from the lateral direction. In the punching process, etc., with a conventional blade type, the blade hits and is cut from the upper surface of the polarizing plate (in FIG. 2, the direction parallel to the cutting surface, the direction perpendicular to the polarizing plate surface). It becomes.
  また、たとえば、上記切削手段として、カンナ加工を用いる場合、図2におけるエンドミルの刃部に替えて、カンナ加工の刃部を切削面に横方向から当接させて切削することができる。 Also, for example, in the case of using the canna machining as the cutting means, it is possible to perform cutting by bringing the cannading blade portion into contact with the cutting surface from the lateral direction instead of the end mill blade portion in FIG.
  また、たとえば、穴加工する場合において、直接エンドミル等を用いて穴をあけるだけではなく、先に他の打ち抜き等で開けた穴に対して、副次的、追加的にエンドミル等で端面切削を行い穴を拡げる等により、所望の形状の穴としてもよい。 Also, for example, when drilling holes, not only directly drilling holes using an end mill or the like, but also performing secondary and additional end milling on the holes previously drilled by other punching or the like. It is good also as a hole of desired shape, for example by expanding a hole.
  また、本発明の異形偏光板の製造方法を用いることで、特に上記凹R部が小径の場合や微細な場合でも、加工の際に生じるクラックや折れの発生や変色を抑制しつつ、好適に製造加工することができうる。 In addition, by using the method for producing a deformed polarizing plate of the present invention, it is possible to suppress the occurrence of cracks and breaks and discoloration that occur during processing, particularly when the concave R portion has a small diameter or is fine. It can be manufactured and processed.
  このため、本発明の異形偏光板の製造方法において、たとえば、上記凹R部の半径が5mm以下であっても容易に製造加工することが可能となる。また、たとえば、上記半径が1mm以上5mm以下とすることができ、1mm以上4mm以下、または2mm以上3mm以下等とすることも可能である。上記製造方法を用いることにより、凹R部の半径が5mm以下である場合でも、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、凹R部の半径が5mm以下のような微小径な凹R部を有する異形偏光板の製造が可能となる。 For this reason, in the method for producing a deformed polarizing plate of the present invention, for example, even if the radius of the concave R portion is 5 mm or less, it can be easily produced and processed. For example, the radius may be 1 mm or more and 5 mm or less, and may be 1 mm or more and 4 mm or less, or 2 mm or more and 3 mm or less. By using the above manufacturing method, even when the radius of the concave R portion is 5 mm or less, generation of cracks and breaks and discoloration that occur during processing of the polarizing plate is suppressed, and the radius of the concave R portion is 5 mm or less. It is possible to manufacture a deformed polarizing plate having a concave portion having a very small diameter.
  このため、本発明の異形偏光板の製造方法において、たとえば、上記穴部の半径が5mm以下であっても容易に製造加工することが可能となる。また、たとえば、上記半径が1mm以上5mm以下とすることができ、1mm以上4mm以下、または2mm以上3mm以下等とすることも可能である。上記製造方法を用いることにより、穴部の半径が5mm以下である場合でも、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、穴部の半径が5mm以下のような微小径な穴部を有する異形偏光板の製造が可能となる。 For this reason, in the method for manufacturing a deformed polarizing plate of the present invention, for example, even if the hole has a radius of 5 mm or less, it can be easily manufactured and processed. For example, the radius may be 1 mm or more and 5 mm or less, and may be 1 mm or more and 4 mm or less, or 2 mm or more and 3 mm or less. By using the above manufacturing method, even when the radius of the hole is 5 mm or less, generation of cracks and breaks and discoloration occurring during the processing of the polarizing plate is suppressed, and the radius of the hole is as small as 5 mm or less. A deformed polarizing plate having a small-diameter hole can be manufactured.
  また、本発明の異形偏光板の製造方法において、加工方向と上記刃の刃面とがなす切削角度が60°以上であることが好ましい。上記切削角度は60°~90°であることが好ましく、65°~90°であってもよく、70°~85°であってもよく、70°~80°であってもよい。上記製造方法を用いることにより、異形偏光板のデラミネーションの発生を抑制することが可能となる。 Further, in the method for producing a deformed polarizing plate of the present invention, it is preferable that the cutting angle formed by the processing direction and the blade surface of the blade is 60 ° or more. The cutting angle is preferably 60 ° to 90 °, may be 65 ° to 90 °, may be 70 ° to 85 °, and may be 70 ° to 80 °. By using the above manufacturing method, it is possible to suppress the occurrence of delamination of the deformed polarizing plate.
  なお、本発明において、切削角度とは、切削手段による加工方向と上記刃の刃面とがなす切削角度をいい、エンドミルで加工する場合の例を図3に示す。エンドミルの回転軸方向と刃とのなす角をねじれ角というが、図3のようにエンドミルの回転軸方向が加工方向と垂直方向になるように加工する場合、90°からエンドミルの刃のねじれ角を差し引いた角度が切削角度となる。 In the present invention, the cutting angle refers to the cutting angle formed by the processing direction by the cutting means and the blade surface of the blade, and an example of processing by an end mill is shown in FIG. The angle between the end mill's rotation axis and the blade is called the twist angle, but when the end mill's rotation axis is perpendicular to the machining direction as shown in Fig. 3, the twist angle of the end mill blade from 90 °. The angle obtained by subtracting is the cutting angle.
  また、本発明の異形偏光板の製造装置は、
  凹R部を有する異形偏光板の製造装置であって、
  切削面に対して横方向から刃が当接し切削する切削手段を備えることを特徴とする。
Moreover, the manufacturing apparatus of the deformed polarizing plate of the present invention is
An apparatus for producing a deformed polarizing plate having a concave R portion,
It is characterized by comprising cutting means for cutting with the blade coming into contact with the cutting surface from the lateral direction.
  本発明の凹R部を有する異形偏光板の製造装置において、エンドミルを含む、上述の切削面に対して横方向から刃が当接し切削する切削手段は、公知の手法により適宜装置に備えることができる。 In the manufacturing apparatus for the deformed polarizing plate having the concave R portion according to the present invention, the cutting means that includes the end mill and that the blade comes into contact with and cuts from the above-described cutting surface from the lateral direction is appropriately provided in the apparatus by a known method. it can.
  また、本発明の異形偏光板の製造装置において、たとえば、上記凹R部の半径が5mm以下であっても容易に製造加工することが可能となる。また、たとえば、上記半径が1mm以上5mm以下とすることができ、1mm以上4mm以下、または2mm以上3mm以下等とすることも可能である。上記製造方法を用いることにより、凹R部の半径が5mm以下である場合でも、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、凹R部の半径が5mm以下のような微小径な凹R部を有する異形偏光板の製造が可能となる。 Further, in the apparatus for manufacturing a deformed polarizing plate of the present invention, for example, even if the radius of the concave R portion is 5 mm or less, it can be easily manufactured and processed. For example, the radius may be 1 mm or more and 5 mm or less, and may be 1 mm or more and 4 mm or less, or 2 mm or more and 3 mm or less. By using the above manufacturing method, even when the radius of the concave R portion is 5 mm or less, generation of cracks and breaks and discoloration that occur during processing of the polarizing plate is suppressed, and the radius of the concave R portion is 5 mm or less. It is possible to manufacture a deformed polarizing plate having a concave portion having a very small diameter.
  また、本発明の異形偏光板の製造装置において、前記切削手段による加工方向と前記刃の刃面とがなす切削角度が60°以上であることが好ましい。上記切削角度は60°~90°であることが好ましく、65°~90°であってもよく、70°~85°であってもよく、70°~80°であってもよい。上記製造装置を用いることにより、異形偏光板のデラミネーションの発生を抑制することが可能となる。 Further, in the apparatus for manufacturing a deformed polarizing plate of the present invention, it is preferable that the cutting angle formed by the processing direction by the cutting means and the blade surface of the blade is 60 ° or more. The cutting angle is preferably 60 ° to 90 °, may be 65 ° to 90 °, may be 70 ° to 85 °, and may be 70 ° to 80 °. By using the manufacturing apparatus, it is possible to suppress the occurrence of delamination of the deformed polarizing plate.
  また、本発明の異形偏光板の製造装置は、
  穴部を有する異形偏光板の製造装置であって、
  エンドミルを備えることを特徴とする。
Moreover, the manufacturing apparatus of the deformed polarizing plate of the present invention is
An apparatus for manufacturing a deformed polarizing plate having a hole,
An end mill is provided.
  また、本発明の穴部を有する異形偏光板の製造装置において、上述のエンドミルは公知の手法により適宜装置に備えることができる。 Further, in the production apparatus for a deformed polarizing plate having a hole of the present invention, the above-described end mill can be appropriately provided in the apparatus by a known technique.
  また、本発明の異形偏光板の製造装置において、たとえば、上記穴部の半径が5mm以下であっても容易に製造加工することが可能となる。また、たとえば、上記半径が1mm以上5mm以下とすることができ、1mm以上4mm以下、または2mm以上3mm以下等とすることも可能である。上記製造方法を用いることにより、穴部の半径が5mm以下である場合でも、偏光板の加工の際に生じるクラックや折れの発生や変色を抑制し、穴部の半径が5mm以下のような微小径な穴部を有する異形偏光板の製造が可能となる。 Further, in the apparatus for manufacturing a deformed polarizing plate of the present invention, for example, even if the hole has a radius of 5 mm or less, it can be easily manufactured and processed. For example, the radius may be 1 mm or more and 5 mm or less, and may be 1 mm or more and 4 mm or less, or 2 mm or more and 3 mm or less. By using the above manufacturing method, even when the radius of the hole is 5 mm or less, generation of cracks and breaks and discoloration occurring during the processing of the polarizing plate is suppressed, and the radius of the hole is as small as 5 mm or less. A deformed polarizing plate having a small-diameter hole can be manufactured.
  また、本発明の異形偏光板の製造装置において、前記切削手段による加工方向と前記刃の刃面とがなす切削角度が60°以上であることが好ましい。上記切削角度は60°~90°であることが好ましく、65°~90°であってもよく、70°~85°であってもよく、70°~80°であってもよい。上記製造装置を用いることにより、異形偏光板のデラミネーションの発生を抑制することが可能となる。 Further, in the apparatus for manufacturing a deformed polarizing plate of the present invention, it is preferable that the cutting angle formed by the processing direction by the cutting means and the blade surface of the blade is 60 ° or more. The cutting angle is preferably 60 ° to 90 °, may be 65 ° to 90 °, may be 70 ° to 85 °, and may be 70 ° to 80 °. By using the manufacturing apparatus, it is possible to suppress the occurrence of delamination of the deformed polarizing plate.
  また、上述のエンドミルとして、たとえば、図4、5に記載のものを適宜用いることができる。なお、図5では、刃の数が2枚、3枚、4枚、6枚の例を示している。 Also, as the above-mentioned end mill, for example, the ones shown in FIGS. 4 and 5 can be used as appropriate. FIG. 5 shows an example in which the number of blades is 2, 3, 4, or 6.
  エンドミルの形状としては、刃の数が1~6枚とすることが好ましく、刃の数が1~4枚としてもよい。 As the shape of the end mill, the number of blades is preferably 1 to 6, and the number of blades may be 1 to 4.
  また、エンドミルの刃部のすくい角として、0~15°未満であることが好ましく、3~12°としてもよい。上記すくい角が15°以上となると刃が欠けやすくなってしまう。 Also, the rake angle of the end mill blade is preferably 0 to less than 15 °, and may be 3 to 12 °. If the rake angle is 15 ° or more, the blade tends to be chipped.
  また、エンドミルの刃部の逃角が0°より大きく20°未満であることが好ましく、3~15°としてもよい。上記逃角が0°であるとフィルムと擦れてしまい、20°以上であると刃が欠けやすくなってしまう。 Also, the clearance angle of the end mill blade is preferably greater than 0 ° and less than 20 °, and may be 3 to 15 °. When the relief angle is 0 °, the film is rubbed with the film, and when the relief angle is 20 ° or more, the blade is easily chipped.
  また、エンドミルの刃部のねじれ角が-75°~75°であることが好ましく、-65°~65°としてもよい。上記ねじれ角が上記範囲を超えてしまう場合、削りカスの排出不良になり易くなってしまう。 Further, the twist angle of the end mill blade is preferably −75 ° to 75 °, and may be −65 ° to 65 °. When the twist angle exceeds the above range, it becomes easy to cause a scrap discharge failure.
  また、エンドミルの刃部の刃物径(外径)φが3~30mmであることが好ましく、5~25mmとしてもよい。上記刃物径φが3mmより小さくなると折れ易くなり、30mmより大きくなると細かな異形加工が難しくなってしまう。 Also, the blade diameter (outer diameter) φ of the end mill blade is preferably 3 to 30 mm, and may be 5 to 25 mm. If the blade diameter φ is smaller than 3 mm, it is easy to break, and if it is larger than 30 mm, it is difficult to perform fine profile processing.
  また、エンドミルを用いて製造する際の製造条件として、エンドミルの刃部の送り速度を100~10000mm/minとすることが好ましく、200~8000mm/minとしてもよい。 Further, as a manufacturing condition when manufacturing using an end mill, the feed speed of the end mill blade is preferably 100 to 10,000 mm / min, and may be 200 to 8000 mm / min.
  また、エンドミルの刃部の回転速度が1000~120000rpmであることが好ましく、2000~60000rpmとしてもよく、3000~50000rpmとしてもよい。上記回転速度が1000rpmより遅くなるとクラックの原因となりえ、一方、60000rpmより速くなると発熱して偏光板等にダメージを与えてしまう原因となりうる。 Further, the rotation speed of the end mill blade is preferably 1000 to 120,000 rpm, and may be 2000 to 60000 rpm, or 3000 to 50000 rpm. If the rotational speed is slower than 1000 rpm, it may cause cracks, while if it is faster than 60000 rpm, it may generate heat and cause damage to the polarizing plate or the like.
  本発明において用いられる偏光板は、特に限定されず、公知の偏光板を適宜用いることができる。上記偏光板としては、たとえば、延伸成形で製造された偏光板や、塗布成形で製造された偏光板などをあげることができる。 The polarizing plate used in the present invention is not particularly limited, and a known polarizing plate can be used as appropriate. Examples of the polarizing plate include a polarizing plate manufactured by stretch molding and a polarizing plate manufactured by coating molding.
  偏光子としては、特に制限されず、各種のものを使用できる。偏光子としては、たとえば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性材料を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等があげられる。これらのなかでもポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。 The polarizer is not particularly limited, and various types can be used. Examples of the polarizer include hydrophilic polymer films such as polyvinyl alcohol film, partially formalized polyvinyl alcohol film, and ethylene / vinyl acetate copolymer partially saponified film, and two colors such as iodine and dichroic dye. And polyene-based oriented films such as those obtained by adsorbing a functional material and uniaxially stretched, polyvinyl alcohol dehydrated products, and polyvinyl chloride dehydrochlorinated products. Among these, a polarizer composed of a polyvinyl alcohol film and a dichroic material such as iodine is preferable.
  偏光子に適用されるポリビニルアルコール系フィルムの材料には、ポリビニルアルコールまたはその誘導体が用いられる。ポリビニルアルコールの誘導体としては、ポリビニルホルマール、ポリビニルアセタール等があげられる他、エチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸そのアルキルエステル、アクリルアミド等で変性したものがあげられる。ポリビニルアルコールの重合度は、1000~10000程度、ケン化度は80~100モル%程度のものが一般に用いられる。 材料 Polyvinyl alcohol or a derivative thereof is used for the material of the polyvinyl alcohol film applied to the polarizer. Derivatives of polyvinyl alcohol include polyvinyl formal, polyvinyl acetal and the like, olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, alkyl esters thereof, acrylamide and the like. can give. Polyvinyl alcohol having a polymerization degree of about 1000 to 10,000 and a saponification degree of about 80 to 100 mol% is generally used.
  上記ポリビニルアルコール系フィルム(未延伸フィルム)は、常法に従って、一軸延伸処理、ヨウ素染色処理が少なくとも施される。さらには、ホウ酸処理、ヨウ素イオン処理を施すことができる。また上記処理の施されたポリビニルアルコール系フィルム(延伸フィルム)は、常法に従って乾燥されて偏光子となる。 The polyvinyl alcohol film (unstretched film) is at least subjected to uniaxial stretching treatment and iodine dyeing treatment according to a conventional method. Furthermore, boric acid treatment and iodine ion treatment can be performed. Moreover, the polyvinyl alcohol film (stretched film) subjected to the above treatment is dried according to a conventional method to become a polarizer.
  本発明において用いられる偏光板は、偏光子の少なくとも片面側に接着剤を介して保護フィルムが貼り合わされたものであってもよい。保護フィルムは偏光子の片面側又は両面側に貼り合わされていてもよい。保護フィルムは、同時に他の光学的機能を有していてもよく、更に他の層が積層して形成されていてもよい。 The polarizing plate used in the present invention may be one in which a protective film is bonded to at least one side of a polarizer via an adhesive. The protective film may be bonded to one side or both sides of the polarizer. The protective film may have other optical functions at the same time, and may be formed by laminating other layers.
  上記偏光板が、偏光子の両面に保護フィルムを有する場合、片方の面の保護フィルムと他方の面の保護フィルムは同一のものであっても、異なるものであってもよい。また、片面当たり少なくとも1層の保護フィルムを用いてもよく、2層以上の積層物を用いることもできる。 When the polarizing plate has protective films on both sides of the polarizer, the protective film on one side and the protective film on the other side may be the same or different. Further, at least one protective film may be used per side, and a laminate of two or more layers may be used.
  保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄層性などの点より1~500μm程度である。特に1~300μmが好ましく、5~200μmがより好ましい。 The thickness of the protective film can be appropriately determined, but is generally about 1 to 500 μm from the viewpoints of workability such as strength and handleability and thin layer properties. 1 to 300 μm is particularly preferable, and 5 to 200 μm is more preferable.
  保護フィルムを構成する材料としては、たとえば、透明性、機械強度、熱安定性、水分遮断性、に優れる熱可塑性樹脂が挙げられる。また、保護フィルムに光学等方性が要求される場合は、固有複屈折の小さい樹脂を選択することが好ましい。このような熱可塑性樹脂の具体例としては、たとえば、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ノルボルネン系樹脂、ポリアリレート系樹脂、およびこれらの混合物が挙げられる。また、また、(メタ)アクリル系、等の熱硬化性樹脂または紫外線硬化型樹脂も用い得る。上記のうち、透湿度および光学特性の観点においては、(メタ)アクリル系樹脂、ポリイミド系樹脂、ノルボルネン系樹脂を用いることが好ましい。 Examples of the material constituting the protective film include thermoplastic resins that are excellent in transparency, mechanical strength, thermal stability, and moisture barrier properties. Moreover, when optical isotropy is requested | required of a protective film, it is preferable to select resin with small intrinsic birefringence. Specific examples of such thermoplastic resins include, for example, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, and (meth) acrylic resins. , Norbornene resins, polyarylate resins, and mixtures thereof. In addition, thermosetting resins such as (meth) acrylic resins or ultraviolet curable resins can also be used. Among the above, in terms of moisture permeability and optical characteristics, it is preferable to use (meth) acrylic resin, polyimide resin, or norbornene resin.
  保護フィルムとしては、セル側の保護フィルムは、視野角補償のための位相差機能を備えていても良く、セル側の保護フィルムの反対側は、位相差があっても無くてもよい。 As the protective film, the cell-side protective film may have a retardation function for viewing angle compensation, and the opposite side of the cell-side protective film may or may not have a phase difference.
  保護フィルムの偏光子と接着する面には、易接着処理を施すことができる。易接着処理としては、プラズマ処理、コロナ処理等のドライ処理、アルカリ処理(ケン化処理)等の化学処理、易接着層を形成するコーティング処理等があげられる。これらのなかでも、接着剤層を形成するコーティング処理やアルカリ処理が好適である。易接着層の形成には、ポリオール樹脂、ポリカルボン酸樹脂、ポリエステル樹脂等の各種の易接着材料を使用することができる。なお、易接着層の厚みは、通常、0.001~10μm程度、さらには0.001~5μm程度、特に0.001~1μm程度とするのが好ましい。 The surface of the protective film that adheres to the polarizer can be subjected to easy adhesion treatment. Examples of the easy adhesion treatment include dry treatment such as plasma treatment and corona treatment, chemical treatment such as alkali treatment (saponification treatment), and coating treatment for forming an easy adhesion layer. Among these, a coating treatment or an alkali treatment for forming an adhesive layer is preferable. Various easily adhesive materials such as polyol resin, polycarboxylic acid resin, and polyester resin can be used for forming the easily adhesive layer. The thickness of the easy adhesion layer is usually about 0.001 to 10 μm, more preferably about 0.001 to 5 μm, and particularly preferably about 0.001 to 1 μm.
  上記保護フィルムの偏光子を接着させない面には、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであってもよい。 The surface of the protective film to which the polarizer is not adhered may be subjected to a treatment for the purpose of hard coat layer, antireflection treatment, sticking prevention, diffusion or antiglare.
  上記偏光板を構成する接着剤は、光学的に透明であれば、特に制限されず水系、溶剤系、ホットメルト系、ラジカル硬化型の各種形態のものが用いられるが、水系接着剤またはラジカル硬化型接着剤が好適である。 The adhesive constituting the polarizing plate is not particularly limited as long as it is optically transparent, and water-based, solvent-based, hot-melt, and radical-curing types can be used. A mold adhesive is preferred.
  接着剤層を形成する水系接着剤としては特に限定されるものではないが、たとえば、ビニルポリマー系、ゼラチン系、ビニル系ラテックス系、ポリウレタン系、イソシアネート系、ポリエステル系、エポキシ系等を例示できる。 The water-based adhesive forming the adhesive layer is not particularly limited, and examples thereof include vinyl polymer-based, gelatin-based, vinyl-based latex-based, polyurethane-based, isocyanate-based, polyester-based, and epoxy-based materials.
  ラジカル硬化型接着剤としては、電子線硬化型、紫外線硬化型等の活性エネルギー線硬化型、熱硬化型等の各種のものを例示できるが、短時間で硬化可能な、活性エネルギー線硬化型が好ましい。 Examples of the radical curable adhesive include various active energy ray curable types such as an electron beam curable type and an ultraviolet ray curable type, and a thermosetting type, but there are active energy ray curable types that can be cured in a short time. preferable.
  本発明の異形偏光板の製造方法は、凹R部および/または穴部を有する異形偏光板の製造方法であって、エンドミルなどの切削面に対して横方向から刃が当接し切削する切削手段を用いて上記凹R部を形成する工程を含むことを特徴とするものである。 The method for producing a deformed polarizing plate of the present invention is a method for producing a deformed polarizing plate having a concave R portion and / or a hole, and a cutting means in which a blade comes into contact with a cutting surface such as an end mill and cuts from the lateral direction. And a step of forming the concave R portion by using the step.
  本発明で用いられる、凹R部および/または穴部を形成する前段階の偏光板自身の製造は、公知の手法と適宜用いることが出来る。また、本願発明の製造方法において、エンドミルなどの切削面に対して横方向から刃が当接し切削する切削手段を用いて上記凹R部を形成する工程は、偏光板自身の製造後に行ってもよく、場合によっては偏光板自身の製造工程中におこなってもよい。 The production of the polarizing plate itself before the formation of the concave R portion and / or the hole portion used in the present invention can be appropriately used with a known method. Further, in the manufacturing method of the present invention, the step of forming the concave R portion using a cutting means in which the blade abuts against the cutting surface such as an end mill from the lateral direction and cuts may be performed after manufacturing the polarizing plate itself. In some cases, it may be performed during the manufacturing process of the polarizing plate itself.
  凹R部および/または穴部を形成する前の偏光板自身の製造段階においては、その切断などは公知の手法も適宜用いてもよい。たとえば、微細加工前のある一定の大きさにする段階では、従来のレーザー等を用いた手法で矩形型などにしておき、微細な凹R部および/または穴部を形成する段階で本発明の製造方法等として適宜用いることもできうる。前者の段階では当該切断の際の偏光板の形状は特に制限されないが、一般に四角形であり、偏光板における吸収軸方向と透過軸方向とに切断を行えばよい。また、前者の段階では、たとえば、レーザによる切断を少なくとも1つの端辺に対して行ってもよいが、吸収軸方向もしくは透過軸方向、又はその両者に対して行うことが好ましい。 In the manufacturing stage of the polarizing plate itself before forming the concave R portion and / or the hole portion, a known method may be appropriately used for the cutting or the like. For example, in the stage of making a certain size before the microfabrication, a rectangular shape or the like is made by a conventional method using a laser or the like, and in the stage of forming the fine concave R portion and / or hole portion, It can also be used appropriately as a manufacturing method. In the former stage, the shape of the polarizing plate at the time of the cutting is not particularly limited, but it is generally a quadrangle, and may be cut in the absorption axis direction and the transmission axis direction in the polarizing plate. In the former stage, for example, laser cutting may be performed on at least one edge, but it is preferable to perform the cutting in the absorption axis direction, the transmission axis direction, or both.
  偏光板自身の製造は、たとえば、上記偏光子と上記保護フィルムとを、上記接着剤を用いて貼り合わせることにより製造する工程で行うことができる。得られた偏光板では、偏光子の片側又は両側に、上記偏光板接着剤により形成された接着剤層を介して、保護フィルムを設けることができる。 The production of the polarizing plate itself can be performed, for example, in a process of producing the polarizer and the protective film by bonding them using the adhesive. In the obtained polarizing plate, a protective film can be provided on one or both sides of the polarizer via an adhesive layer formed of the polarizing plate adhesive.
  さらに、上記偏光板は、実用に際して他の光学層と積層した光学フィルムとして用いることができる。本発明の異形偏光板の製造方法における異形偏光板とは、異形の偏光板とともに、偏光板を少なくとも1層積層している異形の光学フィルム等も含む。本発明の製造方法においては、先に偏光板自身を異形とする加工工程を経てから光学フィルムとしてもよく、先に光学フィルムとしたうえで異形にする加工工程を経てもよく、両者を適宜併用してもよい。 Furthermore, the polarizing plate can be used as an optical film laminated with another optical layer in practical use. The deformed polarizing plate in the method for producing a deformed polarizing plate of the present invention includes a deformed polarizing film and a deformed optical film in which at least one polarizing plate is laminated. In the production method of the present invention, it may be an optical film after first undergoing a processing step for deforming the polarizing plate itself, or may be subjected to a processing step for deforming the optical film first, and both are used in combination as appropriate. May be.
  上記光学層については特に限定はないが、たとえば反射板や半透過板、位相差板(1/2や1/4等の波長板を含む)、視角補償フィルムなどの液晶表示装置等の形成に用いられることのある光学層を1層または2層以上用いることができる。特に、上記偏光板に更に反射板または半透過反射板が積層されてなる反射型偏光板または半透過型偏光板、偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板、偏光板に更に視角補償フィルムが積層されてなる広視野角偏光板、あるいは偏光板に更に輝度向上フィルムが積層されてなる偏光板が好ましい。 The optical layer is not particularly limited. For example, for forming a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including wavelength plates such as 1/2 and 1/4), and a viewing angle compensation film. One or more optical layers that may be used can be used. In particular, a reflective polarizing plate or a semi-transmissive polarizing plate in which a reflecting plate or a semi-transmissive reflecting plate is further stacked on the polarizing plate, an elliptical polarizing plate or a circular polarizing plate in which a retardation plate is further stacked on the polarizing plate, A wide viewing angle polarizing plate in which a viewing angle compensation film is further laminated on the polarizing plate, or a polarizing plate in which a brightness enhancement film is further laminated on the polarizing plate are preferable.
  前述した偏光板や、偏光板を少なくとも1層積層されている光学フィルムには、液晶セル等の他部材と接着するための粘着層を設けることもできる。粘着層を形成する粘着剤は特に制限されないが、たとえばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤のように光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いることができうる。 An adhesive layer for adhering to other members such as a liquid crystal cell may be provided on the polarizing plate described above or an optical film in which at least one polarizing plate is laminated. The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited. For example, an acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based or rubber-based polymer is appropriately selected. Can be used. In particular, an acrylic adhesive that is excellent in optical transparency, exhibits appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and is excellent in weather resistance, heat resistance, and the like can be preferably used.
  偏光板や光学フィルムの片面又は両面への粘着層の付設は、適宜な方式で行いうる。その例としては、たとえばトルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶剤にベースポリマーまたはその組成物を溶解又は分散させた10~40重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で偏光板上または光学フィルム上に直接付設する方式、あるいは上記に準じセパレータ上に粘着層を形成してそれを偏光板上または光学フィルム上に移着する方式などがあげられる。 Attaching an adhesive layer to one or both sides of a polarizing plate or an optical film can be performed by an appropriate method. For example, a pressure-sensitive adhesive solution of about 10 to 40% by weight in which a base polymer or a composition thereof is dissolved or dispersed in a solvent composed of a suitable solvent alone or a mixture such as toluene and ethyl acetate is prepared. A method in which it is directly attached on a polarizing plate or an optical film by an appropriate development method such as a casting method or a coating method, or an adhesive layer is formed on a separator according to the above, and this is applied to a polarizing plate or an optical film. The method of moving up is mentioned.
  粘着層は、異なる組成又は種類等のものの重畳層として偏光板や光学フィルムの片面又は両面に設けることもできる。また両面に設ける場合に、偏光板や光学フィルムの表裏において異なる組成や種類や厚さ等の粘着層とすることもできる。粘着層の厚さは、使用目的や接着力などに応じて適宜に決定でき、一般には1~500μmであり、5~200μmが好ましく、特に10~100μmが好ましい。 The adhesive layer can be provided on one side or both sides of a polarizing plate or an optical film as a superimposed layer of different compositions or types. Moreover, when providing in both surfaces, it can also be set as the adhesion layers of a different composition, a kind, thickness, etc. in the front and back of a polarizing plate or an optical film. The thickness of the pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use and adhesive force, and is generally 1 to 500 μm, preferably 5 to 200 μm, and particularly preferably 10 to 100 μm.
  粘着層の露出面に対しては、実用に供するまでの間、その汚染防止等を目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚さ条件を除き、たとえばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いることができうる。 The exposed surface of the adhesive layer is temporarily covered with a separator for the purpose of preventing contamination until it is put to practical use. Thereby, it can prevent contacting an adhesion layer in the usual handling state. As the separator, except for the above thickness conditions, for example, a suitable thin leaf body such as a plastic film, rubber sheet, paper, cloth, nonwoven fabric, net, foamed sheet or metal foil, and a laminate thereof, if necessary, a silicone type or Appropriate ones according to the prior art, such as those coated with an appropriate release agent such as long-chain alkyl, fluorine-based or molybdenum sulfide, can be used.
  上記偏光板または光学フィルムは液晶表示装置等の各種装置の形成などに好ましく用いることができる。 The polarizing plate or the optical film can be preferably used for forming various devices such as a liquid crystal display device.
  以下、本発明の構成と効果を具体的に示す実施例等について説明する。 Hereinafter, examples and the like specifically showing the configuration and effects of the present invention will be described.
  〔実施例、比較例〕
  実施例1~2、比較例1~3における加工の実施は、下記表1に示す条件および図6に示す加工形状に加工することで行った。また、日東電工社製 偏光板(NPF-CWQ1463VDUAG380-ACJ)に、日東電工社製 表面保護用フィルム(PPF-100T)を積層した積層体を被加工体として用いた。なお、図6中の単位はmmである。
Figure JPOXMLDOC01-appb-T000001
  
  
Examples and comparative examples
The processing in Examples 1-2 and Comparative Examples 1-3 was performed by processing into the conditions shown in Table 1 below and the processing shape shown in FIG. In addition, a laminate obtained by laminating a surface protecting film (PPF-100T) manufactured by Nitto Denko Corporation on a polarizing plate manufactured by Nitto Denko Corporation (NPF-CWQ1463VDUAG380-ACJ) was used as a workpiece. The unit in FIG. 6 is mm.
Figure JPOXMLDOC01-appb-T000001

  (形状自由度の測定・評価)
  実施例および比較例により加工、製造された各異型偏光板の形状自由度について、以下のように測定・評価した。各実施例、比較例において、図1に示すような凸R部、凹R部、穴部の異形部分を偏光板に加工、製造を行い、その結果、当該加工部の形成が可能であった場合は「〇」、不可能であった場合は「×」として評価した。また、当該加工部の形成が可能であった場合において、形成可能であった最小値は、ミツトヨ社製 3次元寸法測定器 QV-Apex606を用いて測定した。
(Measurement and evaluation of shape flexibility)
The degree of freedom of shape of each atypical polarizing plate processed and manufactured according to Examples and Comparative Examples was measured and evaluated as follows. In each of the examples and comparative examples, the deformed portion of the convex R portion, concave R portion, and hole as shown in FIG. 1 was processed and manufactured into a polarizing plate, and as a result, the processed portion could be formed. The case was evaluated as “◯”, and when it was not possible, it was evaluated as “X”. In addition, when the processed portion could be formed, the minimum value that could be formed was measured using a three-dimensional dimension measuring device QV-Apex 606 manufactured by Mitutoyo Corporation.
  (寸法精度および直角度精度の測定)
  実施例および比較例により加工、製造された各異型偏光板の寸法精度および直角度精度について、以下のように測定した。各寸法精度は、OLIMPUS社製 光学顕微鏡 BX51ならびにミツトヨ社製 3次元寸法測定器 QV-Apex606で観測して算出した。なお、いずれでも同じ結果であった。
(Measurement of dimensional accuracy and squareness accuracy)
The dimensional accuracy and squareness accuracy of each atypical polarizing plate processed and manufactured according to the examples and comparative examples were measured as follows. Each dimensional accuracy was calculated by observing with an optical microscope BX51 manufactured by OLIMPUS and a three-dimensional dimensional measuring device QV-Apex 606 manufactured by Mitutoyo. In all cases, the same result was obtained.
  (端部品位の測定・評価)
  実施例および比較例により加工、製造された各異型偏光板の端部品位について、以下のように測定・評価した。各実施例、比較例において、加工、製造後の各端部において、クラック、折れ、または、変色が生じなかった場合は「〇」、クラック、折れ、または、変色が生じた場合は「×」として評価した。また、クラック、折れ、または、変色が生じた場合において、それらの不具合の大きさ等をマイクロスコープ(OLIMPUS社製 光学顕微鏡 BX51)を用いて測定した。
(Measurement and evaluation of end parts)
The end parts of each atypical polarizing plate processed and manufactured according to the examples and comparative examples were measured and evaluated as follows. In each example and comparative example, “◯” indicates that cracks, breaks, or discoloration did not occur at each end after processing and manufacture, and “×” indicates that cracks, breaks, or discoloration occurred. As evaluated. In addition, when cracks, breaks, or discoloration occurred, the size of those defects was measured using a microscope (OLIMPUS optical microscope BX51).
  得られた結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
  
The obtained results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
  実施例1では、凹Rにおいて、R最小値が3mmであった。また、実施例2では、凹Rにおいて、R最小値が62.5mmであった。一方、比較例1、2では、最大100μmのクラックが発生した。また、比較例1、2では、最大1000μmの折れが発生した。また、比較例3では、最大50μmの変色が発生した。 In Example 1, in the concave R, the R minimum value was 3 mm. In Example 2, the minimum value of R in the concave R was 62.5 mm. On the other hand, in Comparative Examples 1 and 2, cracks of up to 100 μm occurred. Further, in Comparative Examples 1 and 2, a maximum fold of 1000 μm occurred. Further, in Comparative Example 3, the maximum color change of 50 μm occurred.
  上記のように、本願実施例における製造方法を用いた場合、特に小径の凹R部および/または穴部を有する異形偏光板を、クラック、折れ、および、変色の発生を抑制するとともに、簡便に得ることができた。一方、比較例における製造方法を用いた場合、クラック、折れ、または、変色が生じてしまった。 As described above, when using the manufacturing method in the embodiment of the present application, it is possible to easily suppress the occurrence of cracks, breakage, and discoloration, and to easily deform the deformed polarizing plate having the small-diameter concave R portion and / or hole portion. I was able to get it. On the other hand, when the manufacturing method in the comparative example was used, cracks, breakage, or discoloration occurred.
  また、実施例3~5、比較例4~5における加工の実施は、下記表3に示す条件および図7に示す加工形状に加工することで行った。また、日東電工社製 偏光板(APCFU4MS)に、日東電工社製 表面保護用フィルム(RP296C)を積層した積層体を被加工体として用いた。また、比較例5におけるトムソン型による加工条件は、比較例1と同様である。なお、図7中の凹部のRは3mmである。 Further, the processing in Examples 3 to 5 and Comparative Examples 4 to 5 was performed by processing into the conditions shown in Table 3 below and the processing shape shown in FIG. Moreover, the laminated body which laminated | stacked the film for surface protection (RP296C) made from Nitto Denko Corporation on the polarizing plate (APCFU4MS) made from Nitto Denko Corporation was used as a to-be-processed body. The processing conditions for the Thomson mold in Comparative Example 5 are the same as in Comparative Example 1. In addition, R of the recessed part in FIG. 7 is 3 mm.
  (デラミネーション量の測定)
  実施例および比較例により加工、製造された各異型偏光板のデラミネーション量の測定について、以下のように測定した。得られた各異型偏光板の顕微鏡観察を行い、角部、直線部、凹部においてそれぞれ端部から最も深くデラミネーションが発生した距離を測定した。
(Measurement of delamination amount)
About the measurement of the amount of delamination of each atypical polarizing plate processed and manufactured by the Example and the comparative example, it measured as follows. Each of the obtained atypical polarizing plates was observed with a microscope, and the distance at which delamination occurred most deeply from the end portion at each of the corner portion, the straight portion, and the concave portion was measured.
  得られた結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
  
The obtained results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
  実施例3~5では、角部、直線部、凹部いずれにおいても、デラミネーション量の最大値が0μm未満となった。一方、比較例4~5では、角部、直線部、凹部いずれにおいても、デラミネーション量の最大値が60μm以上であった。 In Examples 3 to 5, the maximum value of the delamination amount was less than 0 μm in any of the corner, straight line, and recess. On the other hand, in Comparative Examples 4 to 5, the maximum value of the delamination amount was 60 μm or more in any of the corners, straight lines, and recesses.
  上記のように60°以上の切削角度で加工した場合、異形偏光板のデラミネーションの発生をより好適に抑制することができた。
 
When processing was performed at a cutting angle of 60 ° or more as described above, the occurrence of delamination of the deformed polarizing plate could be more suitably suppressed.

Claims (14)

  1.   凹R部を有する異形偏光板の製造方法であって、
      切削面に対して横方向から刃が当接し切削する切削手段を用いて前記凹R部を形成する工程を含む、異形偏光板の製造方法。
    A method for producing a deformed polarizing plate having a concave R portion,
    The manufacturing method of a deformed polarizing plate including the process of forming the said concave R part using the cutting means which a blade contact | abuts from a horizontal direction with respect to a cutting surface, and cuts.
  2.   前記凹R部の半径が5mm以下である、請求項1に記載の異形偏光板の製造方法。 The method for producing a deformed polarizing plate according to claim 1, wherein the radius of the concave R portion is 5 mm or less.
  3.   前記切削手段がエンドミルである、請求項1または2に記載の異形偏光板の製造方法。 The method for producing a deformed polarizing plate according to claim 1 or 2, wherein the cutting means is an end mill.
  4.   加工方向と前記刃の刃面とがなす切削角度が60°以上である、請求項1~3のいずれかに記載の異形偏光板の製造方法。 The method for producing a deformed polarizing plate according to any one of claims 1 to 3, wherein a cutting angle formed by a machining direction and a blade surface of the blade is 60 ° or more.
  5.   凹R部を有する異形偏光板の製造装置であって、
      切削面に対して横方向から刃が当接し切削する切削手段を備えることを特徴とする、異形偏光板の製造装置。
    An apparatus for producing a deformed polarizing plate having a concave R portion,
    An apparatus for manufacturing a deformed polarizing plate, comprising cutting means for cutting with a blade coming into contact with a cutting surface from a lateral direction.
  6.   前記凹R部の半径が5mm以下である、請求項5に記載の異形偏光板の製造装置。 The apparatus for producing a deformed polarizing plate according to claim 5, wherein the radius of the concave R portion is 5 mm or less.
  7.   前記切削手段がエンドミルである、請求項5または6に記載の異形偏光板の製造装置。 The apparatus for producing a deformed polarizing plate according to claim 5 or 6, wherein the cutting means is an end mill.
  8.   前記切削手段による加工方向と前記刃の刃面とがなす切削角度が60°以上である、請求項5~7のいずれかに記載の異形偏光板の製造装置。 The apparatus for producing a deformed polarizing plate according to any one of claims 5 to 7, wherein a cutting angle formed by a processing direction by the cutting means and a blade surface of the blade is 60 ° or more.
  9.   穴部を有する異形偏光板の製造方法であって、
      エンドミルを用いて前記穴部を形成する工程を含む、異形偏光板の製造方法。
    A method for producing a deformed polarizing plate having a hole,
    The manufacturing method of a deformed polarizing plate including the process of forming the said hole part using an end mill.
  10.   前記穴部の半径が5mm以下である、請求項9に記載の異形偏光板の製造方法。 The method for producing a deformed polarizing plate according to claim 9, wherein the hole has a radius of 5 mm or less.
  11.   加工方向と前記エンドミルの刃面とがなす切削角度が60°以上である、請求項9または10に記載の異形偏光板の製造方法。 The method for producing a deformed polarizing plate according to claim 9 or 10, wherein a cutting angle formed by a machining direction and a blade surface of the end mill is 60 ° or more.
  12.   穴部を有する異形偏光板の製造装置であって、
      エンドミルを備えることを特徴とする、異形偏光板の製造装置。
    An apparatus for manufacturing a deformed polarizing plate having a hole,
    An apparatus for producing a deformed polarizing plate, comprising an end mill.
  13.   前記穴部の半径が5mm以下である、請求項12に記載の異形偏光板の製造装置。 The apparatus for producing a deformed polarizing plate according to claim 12, wherein a radius of the hole is 5 mm or less.
  14.   加工方向と前記エンドミルの刃面とがなす切削角度が60°以上である、請求項12または13に記載の異形偏光板の製造装置。
     
    The manufacturing apparatus of the deformed polarizing plate of Claim 12 or 13 whose cutting angle which a process direction and the blade surface of the said end mill make is 60 degrees or more.
PCT/JP2017/026078 2016-07-22 2017-07-19 Method for manufacturing polarizing plate and apparatus for manufacturing same WO2018016520A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187005423A KR102527432B1 (en) 2016-07-22 2017-07-19 Polarizing plate manufacturing method and manufacturing apparatus therefor
CN201780002930.2A CN107924019B (en) 2016-07-22 2017-07-19 Method and apparatus for manufacturing polarizing plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-144577 2016-07-22
JP2016144577 2016-07-22
JP2017134354A JP6899721B2 (en) 2016-07-22 2017-07-10 Polarizing plate manufacturing method and its manufacturing equipment
JP2017-134354 2017-07-10

Publications (1)

Publication Number Publication Date
WO2018016520A1 true WO2018016520A1 (en) 2018-01-25

Family

ID=60992456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026078 WO2018016520A1 (en) 2016-07-22 2017-07-19 Method for manufacturing polarizing plate and apparatus for manufacturing same

Country Status (1)

Country Link
WO (1) WO2018016520A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181100A1 (en) * 2018-03-22 2019-09-26 日東電工株式会社 Method for manufacturing non-linearly machined resin sheet
JP2019191556A (en) * 2018-04-24 2019-10-31 住友化学株式会社 Laminate body
CN110398800A (en) * 2018-04-24 2019-11-01 住友化学株式会社 Laminated body
KR20200026742A (en) * 2018-09-03 2020-03-11 스미또모 가가꾸 가부시키가이샤 Optical film
WO2020095579A1 (en) * 2018-11-06 2020-05-14 住友化学株式会社 Polarizing plate
JP2020126275A (en) * 2020-05-15 2020-08-20 住友化学株式会社 Polarizing plate
JP2020170175A (en) * 2020-06-09 2020-10-15 住友化学株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate
JP2021018416A (en) * 2019-07-17 2021-02-15 住友化学株式会社 Polarizer having adhesive layer
JPWO2021117289A1 (en) * 2019-12-11 2021-06-17
JP2021516626A (en) * 2018-03-07 2021-07-08 エルジー・ケム・リミテッド Chamfering device and film laminate using this
JP2021128202A (en) * 2020-02-12 2021-09-02 住友化学株式会社 Display device
JP2023062003A (en) * 2019-02-20 2023-05-02 日東電工株式会社 Manufacturing method of a machined optical laminate with pressure-sensitive adhesive layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054845A (en) * 1999-08-11 2001-02-27 Sumitomo Chem Co Ltd Laminated film circumferential edge finishing method
JP2004283965A (en) * 2003-03-24 2004-10-14 Dijet Ind Co Ltd End mill
JP2006221133A (en) * 2005-01-17 2006-08-24 Noba Denko Kk Sun sensor sunglasses
JP2016182658A (en) * 2015-03-26 2016-10-20 ナカオテクニカ株式会社 Processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054845A (en) * 1999-08-11 2001-02-27 Sumitomo Chem Co Ltd Laminated film circumferential edge finishing method
JP2004283965A (en) * 2003-03-24 2004-10-14 Dijet Ind Co Ltd End mill
JP2006221133A (en) * 2005-01-17 2006-08-24 Noba Denko Kk Sun sensor sunglasses
JP2016182658A (en) * 2015-03-26 2016-10-20 ナカオテクニカ株式会社 Processing apparatus

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021516626A (en) * 2018-03-07 2021-07-08 エルジー・ケム・リミテッド Chamfering device and film laminate using this
WO2019181100A1 (en) * 2018-03-22 2019-09-26 日東電工株式会社 Method for manufacturing non-linearly machined resin sheet
JP2019166583A (en) * 2018-03-22 2019-10-03 日東電工株式会社 Manufacturing method of non-linearly processed resin sheet
TWI822647B (en) * 2018-03-22 2023-11-11 日商日東電工股份有限公司 Method for manufacturing non-linear processing resin sheets
CN111867765B (en) * 2018-03-22 2023-09-29 日东电工株式会社 Method for producing resin sheet by non-linear processing
JP7018339B2 (en) 2018-03-22 2022-02-10 日東電工株式会社 Manufacturing method of non-linearly processed resin sheet
CN111867765A (en) * 2018-03-22 2020-10-30 日东电工株式会社 Method for producing resin sheet processed in non-linear manner
JP2019191556A (en) * 2018-04-24 2019-10-31 住友化学株式会社 Laminate body
KR20190123688A (en) * 2018-04-24 2019-11-01 스미또모 가가꾸 가부시키가이샤 Laminate
CN110398800A (en) * 2018-04-24 2019-11-01 住友化学株式会社 Laminated body
KR102642673B1 (en) * 2018-04-24 2024-02-29 스미또모 가가꾸 가부시키가이샤 Laminate
TWI791107B (en) * 2018-04-24 2023-02-01 日商住友化學股份有限公司 Laminate
KR102257263B1 (en) 2018-09-03 2021-05-26 스미또모 가가꾸 가부시키가이샤 Optical film
KR20200026742A (en) * 2018-09-03 2020-03-11 스미또모 가가꾸 가부시키가이샤 Optical film
WO2020095579A1 (en) * 2018-11-06 2020-05-14 住友化学株式会社 Polarizing plate
JP2020076839A (en) * 2018-11-06 2020-05-21 住友化学株式会社 Polarizing plate, image display device and method for manufacturing polarizing plate
JP2023062003A (en) * 2019-02-20 2023-05-02 日東電工株式会社 Manufacturing method of a machined optical laminate with pressure-sensitive adhesive layer
JP7378653B2 (en) 2019-02-20 2023-11-13 日東電工株式会社 Manufacturing method of cut optical laminate with adhesive layer
JP2021018416A (en) * 2019-07-17 2021-02-15 住友化学株式会社 Polarizer having adhesive layer
WO2021117289A1 (en) * 2019-12-11 2021-06-17 日東電工株式会社 Polarizing plate, polarizing plate set, and image display device
JPWO2021117289A1 (en) * 2019-12-11 2021-06-17
JP2021128202A (en) * 2020-02-12 2021-09-02 住友化学株式会社 Display device
JP2022000693A (en) * 2020-02-12 2022-01-04 住友化学株式会社 Optical laminate with adhesive layer, and display device
JP2020126275A (en) * 2020-05-15 2020-08-20 住友化学株式会社 Polarizing plate
JP7256149B2 (en) 2020-06-09 2023-04-11 住友化学株式会社 Polarizing plate, image display device, and method for producing polarizing plate
JP2020170175A (en) * 2020-06-09 2020-10-15 住友化学株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate

Similar Documents

Publication Publication Date Title
JP6899721B2 (en) Polarizing plate manufacturing method and its manufacturing equipment
WO2018016285A1 (en) Method for manufacturing polarization plate and manufacturing device therefor
WO2018016520A1 (en) Method for manufacturing polarizing plate and apparatus for manufacturing same
JP5429777B2 (en) Polarizer
JP6202062B2 (en) Method for measuring strength of polarizing film and polarizing plate
KR20090045032A (en) A process for producing a polarizer
KR102510750B1 (en) Polarizing plate with protective film, and liquid crystal panel
JP6201025B1 (en) Polarizer, polarizing plate and image display device
TWI791058B (en) Laminate
JP6680347B2 (en) Laminate
JP2016099616A (en) Cutting method, method for manufacturing polarizing plate including cutting method, and polarizing plate
KR102267531B1 (en) Method for producing laminated film and method for producing polarizing plate
JP6420511B1 (en) Sheet-fed film manufacturing method
JP2017083820A (en) Polarizing plate and liquid crystal panel, and manufacturing method of polarizing plate
WO2021029172A1 (en) Polarizing plate
WO2020095579A1 (en) Polarizing plate
CN111562642A (en) Optical laminated film with adhesive layer and method for producing same
JP2023001208A (en) optical sheet
WO2020184030A1 (en) Polarizing plate
CN112526664A (en) Method for producing polarizing plate and polarizing plate
CN110398800B (en) Laminated body
WO2022202371A1 (en) Polarizing plate and image display device
TW202045654A (en) Optical laminated film with adhesive layer and method for producing the same
JP2018063420A (en) Polarizer, polarizing plate, and image display apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187005423

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831036

Country of ref document: EP

Kind code of ref document: A1