JP7283582B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP7283582B2
JP7283582B2 JP2021570592A JP2021570592A JP7283582B2 JP 7283582 B2 JP7283582 B2 JP 7283582B2 JP 2021570592 A JP2021570592 A JP 2021570592A JP 2021570592 A JP2021570592 A JP 2021570592A JP 7283582 B2 JP7283582 B2 JP 7283582B2
Authority
JP
Japan
Prior art keywords
layer
selective growth
growth mask
semiconductor layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021570592A
Other languages
English (en)
Other versions
JPWO2021144949A1 (ja
Inventor
拓郎 藤井
拓磨 鶴谷
具就 佐藤
慎治 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2021144949A1 publication Critical patent/JPWO2021144949A1/ja
Application granted granted Critical
Publication of JP7283582B2 publication Critical patent/JP7283582B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2272Buried mesa structure ; Striped active layer grown by a mask induced selective growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2223Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties hetero barrier blocking layers, e.g. P-P or N-N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、半導体レーザなどの半導体装置の製造方法に関する。
通信容量の爆発的増大に伴い、従来は比較的長距離の通信において用いられてきた波長多重(Wavelength division multiplexing,WDM)技術が、データセンタ内などの近距離通信においても求められている。近距離通信では、必要とされる光送受信機の数も膨大となるため、送受信機ひとつひとつのコストを下げなければならない。また、消費電力も極力小さく抑える必要がある。従って、小型・低消費電力な送受信機を安価に作製することが求められる。
小型・低消費電力という要求に応えるためには、個々のデバイスを集積するのではなく、各種の機能を有するデバイスの一括プロセスにより作製した光集積回路を用いることが望ましい。光集積回路の作製にあたっては、シリコン(Si)の微細加工により細線光導波路やパッシブデバイスを作製する、シリコンフォトニクス技術が広く用いられている。シリコンのフォトニクス応用には、材料そのものが安価であることや、エレクトロニクス技術分野で培われた微細加工技術を転用できることなどのメリットがある。一方で、シリコンは、間接遷移材料であるため、高効率な発光デバイスはこれまで実現されていない。従って、高効率な発光を実現できる直接遷移材料とシリコンとの異種材料集積は必須となる。
小型・低消費電力かつ低コストといった上記の要求に応える異種材料集積デバイスとして、複数の薄い半導体層を積層した積層構造内に埋め込みヘテロ構造を形成した光デバイスが開発されている(非特許文献1、非特許文献2、非特許文献3、非特許文献4、非特許文献5参照)。埋め込みヘテロ構造とは、屈折率が高くバンドギャップの小さい半導体(活性層)を、相対的に屈折率が低くバンドギャップの大きい半導体により上下左右方向に挟み込む構造である。この構造により、半導体デバイスの各種の性能に大きく寄与する活性層への光閉じ込め係数を向上させることが可能となる。
こうした薄膜構造内に埋め込みヘテロ構造を有するデバイスでは、典型的に厚さ250nm~500nm程度の半導体多層構造が用いられ、半導体活性層の体積を小さくすることで消費電力を低く抑える工夫が成されている点に特徴がある。また活性層には、キャリア結合効率に優れた多重量子井戸(MQW)構造が採用されている。
デバイスへの電界印加、電流注入を行うためには、活性層左右の半導体層をp型、n型とする横型pin構造が採用されている。この構造では、活性層下部に様々な材料を配置することが可能となり、シリコンフォトニクス技術により作製した光導波路、変調器、アレイ光導波路回折格子(AWG)、光スイッチ、受光器等との集積による、光集積回路の作製が可能となる。
S. Matsuo et al., "Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer", Optics Express, vol. 22, no. 10, pp. 12139-12147, 2014. T. Okamoto et al., "Optically Pumped Membrane BH-DFB Lasers for Low-Threshold and Single-Mode Operation", IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, no. 5, pp. 1361-1366, 2003. S. Matsuo et al., "Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser", Optics Express, vol. 20, no. 4, pp. 3773-3780, 2012. S. Matsuo et al., "High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted", Nature Photonics, vol. 4, pp. 648-654, 2010. K. Hasebe et al., "High-Speed Modulation of Lateral p-i-n Diode Structure Electro-Absorption Modulator Integrated With DFB Laser", Journal of Lightwave Technology, vol. 33, no. 6, pp. 1235-1240, 2015. K. Kudo et al., "Densely Arrayed Eight-Wavelength Semiconductor Lasers Fabricated by Microarray Selective Epitaxy", IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no. 3, pp. 428-434, 1999. T. Sasaki et al., "Selective metalorganic vapor phase epitaxial growth of InGaAsP/InP layers with bandgap energy control in InGaAs/InGaAsP multiple-quantum well structures", Journal of Crystal Growth, vol. 132, pp. 435-443, 1993.
上述したような光集積回路によりWDM技術を実現するためには、各々が異なる波長で発光する複数のレーザ素子を、同一の基板上に作製する必要があり、各レーザ素子の間の波長の間隔、および各レーザ素子における発振波長を精密に制御することが求められる。例えば、「400GBASE-FR4」(CWDM)の通信規格に適合させる場合、短波側のレーザ素子と長波側のレーザ素子に求められる発振波長は60nm異なる。
また、それぞれのレーザ素子の発振波長の絶対値の要求精度は±6.5nmである。「400GBASE-FR8/LR8」(LAN-WDM)の場合、求められる発振波長範囲は36nmに緩和されるが、発振波長の要求精度は±1.0nmまで厳しくなる。また、幅広い波長領域の全てにおいて、高効率かつ高速に動作することも求められる。
精密な発振波長制御を行う場合、一般に分布帰還型(DFB)レーザが用いられる。DFBレーザにおいては、活性層の近傍に回折格子構造を形成し、この回折格子の格子間隔および等価屈折率によって決まる任意の単一モードでレーザが発振する。活性層が埋め込まれる半導体層を薄くした埋め込みヘテロ構造においては、等価屈折率が半導体層の厚みおよび層構造の形状によって大きく変化する。このため、精密な発振波長制御には、活性層が埋め込まれる半導体層の厚さを設計通りに制御すること、ならびに層構造を平坦に作製することが求められる。
他方、幅広い波長領域において高効率かつ高速な動作を得るためには、活性層の材料利得波長と発振波長の整合が求められる。
活性層として一般に用いられる量子井戸構造の室温におけるフォトルミネッセンススペクトルの半値全幅は、概ね30~40meV以下である。これを波長に換算すると、1310nm帯では半値全幅40~50nmに相当する。このため、単一活性層材料を用いて動作波長の異なる複数の直接変調光源を作製する場合、その動作波長範囲が40~50nmより十分狭くないと、発振波長において材料利得の小さい光源が含まれることとなり、全ての光源で一様に高効率・高速な直接変調動作が得られない。また、動作波長範囲が40~50nmより遥かに広い場合においては、そもそも発振を得ることができない。
上述した「400GBASE-FR4/FR8/LR8」を例に、36nm、あるいは60nm以上の範囲で、各々波長が異なる複数の活性層を得る方法としては、活性層の選択成長がある。選択成長の概要を図7に示す。半導体基板401の上に、III-V族化合物半導体をMOVPE法により堆積して半導体層402を成長する場合、ホスフィン(PH3)などのV族ガス雰囲気下において、高温の半導体基板401の表面に向けてトリメチルインジウム(TMIn)などのIII族有機金属を気相状態で与える。
この半導体層402の成長において、半導体基板401の上に、予め、SiO2やSiNなどから構成された選択成長マスク403を形成しておくと、選択成長マスク403が形成されていない半導体基板401の上に、選択的に半導体層402が形成される。よく知られているように、半導体基板401の表面に比べて選択成長マスク403の表面へは元素が付着し難い。このため、選択成長マスク403の表面近傍に供給されたIII族元素404の多くは、選択成長マスク403の表面を半導体基板401の平面に対して水平方向へ移動(表面マイグレーション)し、選択成長マスク403が形成されていない半導体基板401の表面に選択的に結晶が成長する。
選択成長マスク403の表面に対して半導体基板401の表面へ元素が付着する確率(選択比)は100~1000倍程度と極めて大きい。このため、選択成長マスク403の上へ供給されたIII族元素404の多くは、選択成長マスク403の表面には付着せず、半導体基板401の表面までマイグレーションして付着する。この表面マイグレーション長は、元素の種類によって異なる。これを利用して、選択マスクの幅および形状を変化させることで、同一のエピタキシャル成長の工程において、厚さおよび混晶組成の異なる複数の活性層を一括成長することが可能となる(非特許文献6、非特許文献7)。
例えば図8に示すように、半導体基板501の第1領域551に、第1選択成長マスク502aを形成し、第2領域552に、第2選択成長マスク502bを形成する。第1選択成長マスク502aと第2選択成長マスク502bは、各々マスク幅、またはマスク間の距離、またはその両方を変える。第2選択成長マスク502bのマスク幅を、第1選択成長マスク502aのマスク幅より大きくする。ことにより、マスク幅の広い第2選択成長マスク502bにおいて、半導体層がより厚く成長する。または、第2選択成長マスク502bのマスク間距離を、第1選択成長マスク502aのマスク間距離より小さくすることによっても、同様の効果を得ることができる。
この結果、同一の成長工程で、第1選択成長マスク502aの開口に形成される第1半導体層503aに対し、第2選択成長マスク502bの開口には、より厚い第2半導体層503bが形成される。また、第1半導体層503aに埋め込まれて形成される活性層、および第2半導体層503bに埋め込まれて形成される活性層も、各々異なる厚さを有するものとなる。言い換えると、各々において、発振波長を異なるものとするために、上述したように、各々異なる厚さに形成する。
このように形成される埋め込みヘテロ構造のレーザ素子の作製について、図9A~図9Cを参照して簡単に説明する。上述同様にすることで、図9Aに示すように、半導体基板501の上の第1領域551に第1半導体層503aを形成し、第2領域552に第2半導体層503bを形成する。
次に、第1半導体層503aおよび第2半導体層503bを、第1マスク504a、第2マスク504bを用いて埋め込まれている活性層の選択エッチングなどによりパターニング(加工)し、図9Bに示すように、第1メサストライプ505a、および第2メサストライプ505bを形成する。
この後、第1メサストライプ505aの側部、および第2メサストライプ505bの側部から、第1マスク504a、第2マスク504bを選択成長マスクとした再成長により、第1埋め込み層506a、第2埋め込み層506bを形成する。
ここで、第1メサストライプ505aと、第2メサストライプ505bとは、各々高さが異なるため、上述した埋め込み構造の全てにおいて、上面を平坦に形成することができない。例えば、第1メサストライプ505aの高さに合わせて再成長させると、第2メサストライプ505bに対しては、第2埋め込み層506bの厚さが十分ではないため、平坦に形成することができない。また、埋め込み層を形成する過程で得られる中間形状(断面形状)は、結晶成長の各種の条件に依存するため、中間形状を再現性良く制御することは極めて困難であり、従って平坦化されていない埋め込み構造の等価屈折率の制御も極めて困難である。
以上に説明したように、各々が異なる発振波長のレーザ素子を、同一の基板上に一括で作製する場合、全てのレーザ素子の上面を平坦に形成することが容易ではないという問題があった。このような状態では、各々のレーザ素子の発振波長の制御をすることが容易ではない。
本発明は、以上のような問題点を解消するためになされたものであり、各々が異なる発振波長のレーザ素子を、全てのレーザ素子の上面を平坦な状態で、同一の基板上に一括で作製することを目的とする。
本発明に係る半導体装置の製造方法は、基板の上に第1クラッド層を形成する第1工程と、第1クラッド層の上に第1半導体層を形成する第2工程と、第1半導体層の上の第1領域が開口する第1選択成長マスクを形成し、第1半導体層の上の第2領域が開口する第2選択成長マスクを形成する第3工程と、第1選択成長マスクを用いた選択成長により、第1領域に、第2半導体層、第1活性層、第3半導体層を積層し、第2選択成長マスクを用いた選択成長により、第2領域に、第4半導体層、第2活性層、第5半導体層を積層する第4工程と、第3半導体層の上に第3選択成長マスクを形成し、第5半導体層の上に第4選択成長マスクを形成する第5工程と、第3選択成長マスクを用いたエッチング処理により、第1活性層、第3半導体層を加工して、第1領域に、第1活性層、第2クラッド層が積層した第1リッジ構造を形成し、第4選択成長マスクを用いたエッチング処理により、第2活性層、第3半導体層を加工して、第2領域に、第2活性層、第3クラッド層が積層された第2リッジ構造を形成する第6工程と、第1選択成長マスクおよび第3選択成長マスクを用いた選択成長により、第1リッジ構造の側面を埋める第1埋め込み層を形成し、第2選択成長マスクおよび第4選択成長マスクを用いた選択成長により、第2リッジ構造の側面を埋める第2埋め込み層を形成する第7工程とを備え、第1選択成長マスクの開口方向の幅と、第2選択成長マスクの開口方向の幅とは、各々異なる寸法とされている、および、第1選択成長マスクの開口広さと、第2選択成長マスクの開口広さとは、各々異なる寸法とされているの少なくとも一方の状態とされている。
以上説明したように、本発明によれば、第1選択成長マスクの開口方向の幅と、第2選択成長マスクの開口方向の幅とを、各々異なる寸法としたので、各々が異なる発振波長のレーザ素子を、全てのレーザ素子の上面を平坦な状態で、同一の基板上に一括で作製することができる。
図1Aは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図1Bは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図1Cは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図1Dは、MQW活性層における井戸層への光閉じ込め係数の変化を計算した結果を示す特性図である。 図1Eは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図1Fは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図1Gは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図1Hは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図2Aは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図2Bは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図2Cは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図2Dは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図2Eは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図2Fは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図2Gは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図3Aは、本発明の実施の形態2に係る他の半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図3Bは、本発明の実施の形態2に係る他の半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図3Cは、本発明の実施の形態2に係る他の半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図3Dは、本発明の実施の形態2に係る他の半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図3Eは、本発明の実施の形態2に係る他の半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図3Fは、本発明の実施の形態2に係る他の半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図3Gは、本発明の実施の形態2に係る他の半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図3Hは、本発明の実施の形態2に係る他の半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図4は、本発明の実施の形態に係る半導体装置の製造方法で作製される半導体装置の構成を示す断面図である。 図5は、本発明の実施の形態に係る半導体装置の製造方法で作製される半導体装置の構成を示す斜視図である。 図6は、活性層近傍のみが凸型状に厚くなったリブ構造により近似した形状について、基底モードのneqを計算した結果を示す特性図である。 図7は、選択成長の概要を説明するための説明図である。 図8は、従来の半導体装置の構成を示す構成図である。 図9Aは、従来の半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図9Bは、従来の半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。 図9Cは、従来の半導体装置の製造方法を説明するための途中工程の半導体装置の構成を示す断面図である。
以下、本発明の実施の形態に係る半導体装置の製造方法について説明する。
[実施の形態1]
はじめに、本発明の実施の形態1に係る半導体装置の製造方法について、図1A~図1Hを参照して説明する。
まず、図1Aに示すように、基板101の上に第1クラッド層102を形成する(第1工程)。基板101は、例えば、Si、SiO2、Al23、InP、GaAsなどから構成することができる。第1クラッド層102は、この上に形成される半導体層に比べて屈折率が低く、かつ後述することにより作製するレーザの発振波長(例えば300nm~1650nm)に対して透明な材料から構成する。この条件を満たす材料として、例えばSiO2、SiN、SiC、またはこれらを組み合わせた構成がある。
次いで、第1クラッド層102の上に第1半導体層103を形成する(第2工程)。第1半導体層103は、例えば、よく知られたウエハ接合技術を用い、他基板(不図示)に形成した第1半導体層103を第1クラッド層102に貼り合わせ、この後で、他基板を除去することで形成できる。また、第1半導体層103は、有機金属化学気相成長(MOVPE)や分子線エピタキシー(MBE)などの結晶成長により形成することもできる。
次に、図1Bに示すように、第1半導体層103の上の第1領域151が開口する第1選択成長マスク104aを形成し、第1半導体層103の上の第2領域152が開口する第2選択成長マスク104bを形成する(第3工程)。
ここで、第1選択成長マスク104aの開口方向の幅(マスク幅)と、第2選択成長マスク104bの開口方向の幅(マスク幅)とは、各々異なる寸法とされている。また、第1選択成長マスク104aの開口広さと、第2選択成長マスク104bの開口広さとは、各々異なる寸法とされている。なお、マスク幅、および開口広さの両方が、各々異なる状態とすることもできる。図1Bに示す例では、第1選択成長マスク104aの開口方向の幅が、第2選択成長マスク104bの開口方向の幅より小さい寸法とされている。
第1選択成長マスク104a、第2選択成長マスク104bは、SiO2またはSiNなどの無機絶縁材料から構成することができる。例えば、まず、スパッタ法などにより、第1半導体層103の上にSiO2を堆積して絶縁層を形成する。次いで、形成した絶縁層を、公知のリソグラフィー技術およびエッチング技術によりパターニングすることで、第1選択成長マスク104a、第2選択成長マスク104bが形成できる。
次に、図1Cに示すように、第1選択成長マスク104aを用いた選択成長により、第1領域151に、第2半導体層105a、第1活性層106a、第3半導体層107aを、これらの順に積層する。また、同時に、第2選択成長マスク104bを用いた選択成長により、第2領域152に、第4半導体層105b、第2活性層106b、第5半導体層107bをこれらの順に積層する(第4工程)。
選択成長においては、例えば、MOVPE、またはMBEを用いてエピタキシャル成長させることで、上述した各層を形成する。選択成長においては、各選択成長マスクの上面近傍に供給されたIII族元素などの原料が、選択成長マスクの上面を基板101の平面に対して水平方向へ移動し、選択成長マスクの開口に露出している第1半導体層103の表面に選択的に付着する。従って、選択成長マスクの材料は、半導体表面に比べて元素が付着し難ければ良い。
また、選択成長マスクの開口方向の幅が広いほど、また開口が狭いほど、選択成長に起因した結晶組成変化および成長レートの加速が顕著に生じる。従って、選択成長マスクの幅、または開口の広さ、またはこれらの双方を変化させることにより、同じ成長工程において、選択成長した後の半導体層の厚さを、両者で異なる状態とすることができる。この例では、第2半導体層105aより第4半導体層105bの方が厚く形成される。また、第1活性層106aより第2活性層106bの方が厚く形成される。また、第3半導体層107aより第5半導体層107bの方が厚く形成される。
なお、選択成長マスクの開口方向の幅、および開口の広さに制限はないが、例えば、III族元素の表面マイグレーション長と同程度以上とすることで顕著な効果が得られ、例えば500nm~500μm程度とすることができる。
ここで、第1活性層106a、第2活性層106bは、例えばInP系の場合、InGaAs、InP、InGaAsPまたはInGaAlAsからなる混晶を用いた多重量子井戸構造とすることができる。量子井戸構造とする場合、混晶組成変化による波長変化に加えて、量子井戸層の厚さの変化に起因する活性層の発光波長変化を用いることができる。この例では、第1活性層106aと第2活性層106bとは、厚さが異なっており、両者の発光波長が異なるものとなる。
また、第1活性層106a、第2活性層106bを量子井戸構造とすることで、結晶欠陥を生じることなく井戸層に非常に大きな歪(1.5%程度)を印加することが可能となる。これにより、利得係数を大きくすることができるため、直接変調レーザの高効率化・高速動作に好適である。なお、多重量子井戸構造に限らず、第1活性層106a、第2活性層106bは、バルク構造とすることもできる。この場合においても、厚さの差に加え、バルク構造の第1活性層106a、第2活性層106bにおける混晶組成の変化により、異なる波長の発光を得ることができる。
また、第2半導体層105a、第1活性層106a、第3半導体層107aの積層構造の総合厚さ、第4半導体層105b、第2活性層106b、第5半導体層107bの積層構造の総合厚さを、数百nm程度とすることで、第1活性層106a、第2活性層106bへの光閉じ込めを高めることができる。
例えば、厚さ約100nmの多重量子井戸構造(MQW)活性層と、InPからなる下層、上層を含むInP系積層構造が、低屈折材料(SiO2)による層で上下から挟まれた構成を考える。MQW活性層の上下のInP層の厚さを変えて総合厚さを変化させ、MQW活性層における井戸層への光閉じ込め係数の変化を計算すると、図1Dに示すものとなる。MQW活性層における井戸層への光閉じ込め係数は、InP系積層構造の総合厚さが150nm程度で最大となり、厚さ3000~4000nmの一般的なレーザの光閉じ込め構造と比べて3倍程度高い。また、総合厚さが大きくなるにつれて光閉じ込め係数の厚さ依存性は小さくなり、光閉じ込め係数の観点からは、積層構造の総合厚さは、概ね500nm程度以下に抑えることが効果的であることがわかる。
次に、図1Eに示すように、第3半導体層107aの上に第3選択成長マスク108aを形成し、第5半導体層107bの上に第4選択成長マスク108bを形成する(第5工程)。第3選択成長マスク108a、第4選択成長マスク108bは、SiO2またはSiNなどの無機絶縁材料から構成することができる。
例えば、まず、スパッタ法などにより、第3半導体層107a、第5半導体層107b、第1選択成長マスク104a、第2選択成長マスク104bが形成されている第1半導体層103の上に、SiNを堆積して絶縁層を形成する。次いで、形成した絶縁層を、公知のリソグラフィー技術およびエッチング技術によりパターニングすることで、第3選択成長マスク108a、第4選択成長マスク108bが形成できる。
ここで、既に形成されている第1選択成長マスク104a、第2選択成長マスク104bと第3選択成長マスク108a、第4選択成長マスク108bとを、異なる材料から構成する場合、上述したパターニングにおけるエッチング処理では、第1選択成長マスク104a、第2選択成長マスク104bはほとんどエッチングされない条件を用いる。
また、既に形成されている第1選択成長マスク104a、第2選択成長マスク104bと、第3選択成長マスク108a、第4選択成長マスク108bとを、同じ材料から構成する場合、上述したパターニングにおけるエッチング処理の時間を制御し、第1選択成長マスク104a、第2選択成長マスク104bが残るようにする。
また、第2半導体層105a、第1活性層106a、第3半導体層107a、および第4半導体層105b、第2活性層106b、第5半導体層107bを形成した後、第1選択成長マスク104a、第2選択成長マスク104bを一度除去する。
この後、第3半導体層107a、第5半導体層107b、第1選択成長マスク104a、第2選択成長マスク104bが形成されている第1半導体層103の上に、絶縁材料を堆積して絶縁層を形成する。次いで、形成した絶縁層を、公知のリソグラフィー技術およびエッチング技術によりパターニングすることで、第3選択成長マスク108a、第4選択成長マスク108bを形成するとともに、再度、第1選択成長マスク104a、第2選択成長マスク104bを形成することもできる。
次に、図1Fに示すように、第3選択成長マスク108aを用いたエッチング処理により、第1活性層106a、第3半導体層107aを加工して、第1領域151に、第1活性層106a、第2クラッド層107cが、これらの順に積層した第1リッジ構造を形成する(第6工程)。このとき、第1リッジ構造の側方の第2半導体層105aが露出する状態とする。
また、同時に、第4選択成長マスク108bを用いたエッチング処理により、第2活性層106b、第3半導体層107aを加工して、第2領域152に、第2活性層106b、第3クラッド層107dが、これらの順に積層された第2リッジ構造を形成する(第6工程)。このとき、第2リッジ構造の側方の第4半導体層105bが露出する状態とする。
上述した工程におけるエッチング処理は、ドライエッチング、またはウエットエッチング、またはこれらの組み合わせにより実施することができる。
次に、図1Gに示すように、第1選択成長マスク104aおよび第3選択成長マスク108aを用いた選択成長により、上述した第1リッジ構造の側面を埋める第1埋め込み層109aを形成する(第7工程)。第1リッジ構造の側方の第2半導体層105aの表面より再成長することで、第1埋め込み層109aを形成する。
また、同時に、第2選択成長マスク104bおよび第4選択成長マスク108bを用いた選択成長により、上述した第2リッジ構造の側面を埋める第2埋め込み層109bを形成する(第7工程)。第2リッジ構造の側方の第4半導体層105bの表面より再成長することで、第2埋め込み層109bを形成する。
上述した第1埋め込み層109a、第2埋め込み層109bの形成(再成長)では、第1選択成長マスク104a、第2選択成長マスク104bが存在している。前述したように、第1選択成長マスク104aの開口方向の幅が、第2選択成長マスク104bの開口方向の幅より小さい寸法とされている。このため、同じ成長工程により、第1埋め込み層109aより第2埋め込み層109bの方が、厚く形成される。
言い換えると、第1埋め込み層109aは、第1活性層106a、第2クラッド層107cによる第1リッジ構造と同じ高さに形成するとともに、第2埋め込み層109bは、第2活性層106b、第3クラッド層107dによる第2リッジ構造と同じ高さにすることができる。
これらの結果、第1埋め込み層109aの上面と、第2クラッド層107cの上面とが、同一の平面を形成するような平坦な状態が得られる。また、第2埋め込み層109bの上面と、第3クラッド層107dの上面とが、同一の平面を形成するような平坦な状態が得られる。
この後、第1選択成長マスク104a、第2選択成長マスク104b、第3選択成長マスク108a、第4選択成長マスク108bを除去する(図1H)。
なお、選択成長マスクを用いた成長では、成長層の選択成長マスクの際が、他の領域に比べてわずかに厚くなる。このため、第3選択成長マスク108a、第4選択成長マスク108bを用いた第1埋め込み層109a、第2埋め込み層109bも、上面がわずかに平坦でない場合が発生する。このような場合、第3選択成長マスク108a、第4選択成長マスク108bを除去した後に、わずかに半導体を再成長することで、第1埋め込み層109a、第2埋め込み層109bの表面を更に平坦化することができる。
以上のように各選択マスクを除去した後、第1埋め込み層109aおよび第2埋め込み層109bの各々において、p型領域およびn型領域を形成する(第8工程)。また、第1埋め込み層109aおよび第2埋め込み層109bの各々において、p型領域およびn型領域の各々に接続する電極を形成する(第9工程)。これらのことにより、第1領域151、第2領域152の各々に、各々発振波長が異なるレーザ素子が形成される。
上述した実施の形態1によれば、基板101上に一括で作製した、第1埋め込み層109a、第2クラッド層107cの上面、および第2埋め込み層109b、第3クラッド層107dの上面を、各々平坦に形成できる。
[実施の形態2]
次に、本発明の実施の形態2に係る半導体装置の製造方法について、図1A,図1B,図2A~図2Gを参照して説明する。
まず、図1Aを用いて説明したように、基板101の上に第1クラッド層102を形成する(第1工程)。次いで、第1クラッド層102の上に第1半導体層103を形成する(第2工程)。なお、実施の形態2では、第1半導体層103の第1領域151の一部に、第1n型層131aを形成し、第1半導体層103の第2領域152の一部に、第2n型層131bを形成する。ここで、第1n型層131aは、第1半導体層103の第1領域151の一端側から、後述するリッジ構造とした第1活性層106aの下部の領域にかかるまで形成する。同様に、第2n型層131bは、第1半導体層103の第2領域152の一端側から、後述するリッジ構造とした第2活性層106bの下部の領域にかかるまで形成する。
次に、図1Bを用いた説明と同様に、第1半導体層103の上の第1領域151が開口する第1選択成長マスク104aを形成し、第1半導体層103の上の第2領域152が開口する第2選択成長マスク104bを形成する(第3工程)。これらは、前述した実施の形態1と同様である。
次に、図2Aに示すように、第1選択成長マスク104aを用いた選択成長により、第1領域151に、第2半導体層105aを形成し、また、同時に、第2選択成長マスク104bを用いた選択成長により、第2領域152に、第4半導体層105bを形成する。
次に、例えば、レジストマスクおよびイオン注入法を用いた不純物の選択注入により、図2Bに示すように、第2半導体層105aに、第1n型領域115aを形成し、第4半導体層105bに、第2n型領域115bを形成する。ここで、第1n型領域115aは、第2半導体層105aの一端側から、後述するリッジ構造とした第1活性層106aの下部の領域にかかるまで形成する。同様に、第2n型領域115bは、第4半導体層105bの一端側から、後述するリッジ構造とした第2活性層106bの下部の領域にかかるまで形成する。第1n型領域115aの下層には、第1n型層131aが接して形成され、第2n型領域115bの下層には、第2n型層131bが接して形成されている。
引き続き、第1選択成長マスク104aを用いた選択成長により、第1領域151に、第1活性層106a、第3半導体層107aを、これらの順に積層する。また、第2選択成長マスク104bを用いた選択成長により、第2活性層106b、第5半導体層107bをこれらの順に積層する(図2C)。第1領域151には、第2半導体層105a、第1活性層106a、第3半導体層107aが、これらの順に積層される。また第2領域152には、第4半導体層105b、第2活性層106b、第5半導体層107bがこれらの順に積層される。各半導体層の材料や成長条件は、前述した実施の形態1と同様である。
次に、図2Dに示すように、第3半導体層107aの上に第3選択成長マスク108aを形成し、第5半導体層107bの上に第4選択成長マスク108bを形成する。第3選択成長マスク108a、第4選択成長マスク108bは、前述した実施の形態1と同様である。
次に、図2Eに示すように、第3選択成長マスク108aを用いたエッチング処理により、第1活性層106a、第3半導体層107aを加工して、第1領域151に、第1活性層106a、第2クラッド層107cが、これらの順に積層した第1リッジ構造を形成する。このとき、第1リッジ構造の側方の第2半導体層105aが露出する状態とする。第1活性層106aの下部、および露出した第2半導体層105a一方の側は、第1n型領域115aとなる。
また、同時に、第4選択成長マスク108bを用いたエッチング処理により、第2活性層106b、第3半導体層107aを加工して、第2領域152に、第2活性層106b、第3クラッド層107dが、これらの順に積層された第2リッジ構造を形成する。このとき、第2リッジ構造の側方の第4半導体層105bが露出する状態とする。第2活性層106bの下部、および露出した第4半導体層105b一方の側は、第2n型領域115bとなる。
次に、図2Fに示すように、第1選択成長マスク104aおよび第3選択成長マスク108aを用いた選択成長により、上述した第1リッジ構造の側面を埋める第1埋め込み層109aを形成する。第1リッジ構造の側方の第2半導体層105aの表面より再成長することで、絶縁構造の第1埋め込み層109aを形成する。例えば、第1埋め込み層109aは、FeをドープしたInPから構成することができきる。また、第1埋め込み層109aは、p型の半導体層とn型の半導体層とを交互に積層したサイリスタ構造とすることもできる。
また、同時に、第2選択成長マスク104bおよび第4選択成長マスク108bを用いた選択成長により、上述した第2リッジ構造の側面を埋める第2埋め込み層109bを形成する。第2リッジ構造の側方の第4半導体層105bの表面より再成長することで、絶縁構造の第2埋め込み層109bを形成する。例えば、第2埋め込み層109bも、FeをドープしたInPから構成することができきる。また、第2埋め込み層109bも、p型の半導体層とn型の半導体層とを交互に積層したサイリスタ構造とすることもできる。
上述した埋め込み層の形成は、前述した実施の形態1と同様であり、第1埋め込み層109aの上面と、第2クラッド層107cの上面とが、同一の平面を形成するような平坦な状態が得られる。また、第2埋め込み層109bの上面と、第3クラッド層107dの上面とが、同一の平面を形成するような平坦な状態が得られる。
この後、第1選択成長マスク104a、第2選択成長マスク104b、第3選択成長マスク108a、第4選択成長マスク108bを除去する。
次に、例えば、レジストマスクおよびイオン注入法を用いた不純物の選択注入により、第2クラッド層107c、一部の第1埋め込み層109a、第3クラッド層107d、および一部の第2埋め込み層109bに、p型不純物を導入する。これらの不純物導入処理により、図2Gに示すように、第1活性層106aの上に、第1p型領域117aを形成し、第2活性層106bの上に、第2p型領域117bを形成する。
また、第1半導体層103を、第1領域151の第1半導体層103aと、第2領域152の第1半導体層103bとに分離して素子分離を実現する。また、第1p型領域117aに接続する第1p電極111aを形成し、第2p型領域117bに接続する第2p電極111bを形成する。また、第1n型領域115aに電気的に接続する第1n型電極112aを、第1n型層131aの第1リッジ構造より延長している領域に形成する。同様に、第2n型領域115bに電気的に接続する第2n型電極112bを、第2n型層131bの第2リッジ構造より延長している領域に形成する。また、第1埋め込み層109aの上に、SiO2やSiNなどの絶縁材料からなる第1上部クラッド110a、第2上部クラッド110bを形成する。
これらのことにより、第1領域151、第2領域152の各々に、各々発振波長が異なるレーザ素子が形成される。また、各レーザ素子は、活性層の上下をp型領域およびn型領域で挾む、いわゆる縦型の電流注入構造(縦型pin構造)となる。
上述した実施の形態2においても、基板101上に一括で作製した、各レーザ素子の上面を、各々平坦に形成できる。
なお、上述した半導体装置は、以下に示すように製造することもできる。この製造奉納について、図1A,図3A~図3Gを参照して説明する。
まず、図1Aに示すように、基板101の上に第1クラッド層102を形成する(第1工程)。次いで、第1クラッド層102の上に第1半導体層103を形成する(第2工程)。これらは、前述した実施の形態1と同様である。
次に、例えば、レジストマスクおよびイオン注入法を用いた不純物(例えばSi)の選択注入により、図3Aに示すように、第1半導体層103の第1領域151の一部に、第1n型層131aを形成し、第1半導体層103の第2領域152の一部に、第2n型層131bを形成する。ここで、第1n型層131aは、第1半導体層103の第1領域151の一端側から、後述するリッジ構造とした第1活性層106aの下部の領域にかかるまで形成する。同様に、第2n型層131bは、第1半導体層103の第2領域152の一端側から、後述するリッジ構造とした第2活性層106bの下部の領域にかかるまで形成する。
次に、図3Bに示すように、第1半導体層103の上の第1領域151が開口する第1選択成長マスク104aを形成し、第1半導体層103の上の第2領域152が開口する第2選択成長マスク104bを形成する(第3工程)。各選択成長マスクの形成は、前述した実施の形態1,2と同様である。
次に、図3Cに示すように、第1選択成長マスク104aを用いた選択成長により、n型の半導体からなる第1領域151に、n型の半導体からなる第2半導体層132aを形成する。また、同時に、第2選択成長マスク104bを用いた選択成長により、第2領域152に、n型の半導体からなる第4半導体層132bを形成する。
引き続き、第1選択成長マスク104aを用いた選択成長により、第1領域151に、第1活性層106a、p型の半導体からなる第3半導体層133aを、これらの順に積層する。また、第2選択成長マスク104bを用いた選択成長により、第2活性層106b、p型の半導体からなる第5半導体層133bをこれらの順に積層する(図3C)。第1領域151には、第2半導体層132a、第1活性層106a、第3半導体層133aが、これらの順に積層される。また第2領域152には、第4半導体層132b、第2活性層106b、第5半導体層133bがこれらの順に積層される。各半導体層の材料や成長条件は、前述した実施の形態1,2と同様である。
次に、図3Dに示すように、第3半導体層133aの上に第3選択成長マスク108aを形成し、第5半導体層133bの上に第4選択成長マスク108bを形成する。第3選択成長マスク108a、第4選択成長マスク108bは、前述した実施の形態1,2と同様である。
次に、図3Eに示すように、第3選択成長マスク108aを用いたエッチング処理により、第1活性層106a、第3半導体層133aを加工して、第1領域151に、第1活性層106a、p型の半導体からなる第2クラッド層133cが、これらの順に積層した第1リッジ構造を形成する。このとき、第1リッジ構造の側方の第2半導体層132aが露出する状態とする。
また、同時に、第4選択成長マスク108bを用いたエッチング処理により、第2活性層106b、第3半導体層133aを加工して、第2領域152に、第2活性層106b、p型の半導体からなる第3クラッド層133dが、これらの順に積層された第2リッジ構造を形成する。このとき、第2リッジ構造の側方の第4半導体層132bが露出する状態とする。
次に、図3Fに示すように、第1選択成長マスク104aおよび第3選択成長マスク108aを用いた選択成長により、上述した第1リッジ構造の側面を埋める第1埋め込み層109aを形成する。第1リッジ構造の側方の第2半導体層132aの表面より再成長することで、第1埋め込み層109aを形成する。
また、同時に、第2選択成長マスク104bおよび第4選択成長マスク108bを用いた選択成長により、上述した第2リッジ構造の側面を埋める第2埋め込み層109bを形成する。第2リッジ構造の側方の第4半導体層132bの表面より再成長することで、第2埋め込み層109bを形成する。
上述した埋め込み層の形成は、前述した実施の形態1と同様であり、第1埋め込み層109aの上面と、第2クラッド層133cの上面とが、同一の平面を形成するような平坦な状態が得られる。また、第2埋め込み層109bの上面と、第3クラッド層133dの上面とが、同一の平面を形成するような平坦な状態が得られる。なお、第1埋め込み層109a、第2埋め込み層109bは、前述した実施の形態2と同様に、絶縁構造とする。
この後、第1選択成長マスク104a、第2選択成長マスク104b、第3選択成長マスク108a、第4選択成長マスク108bを除去する。
次に、図3Gに示すように、第1活性層106a(第1埋め込み層109a)の上に、p型の半導体からなる第1p型半導体層134aを形成し、p型の半導体からなる第1コンタクト層135aを順次に形成する。また、第2活性層106b(第2埋め込み層109b)の上に、p型の半導体からなる第2p型半導体層134bを形成し、p型の半導体からなる第2コンタクト層135bを順次に形成する。第1p型半導体層134a、第2p型半導体層134bは、例えば、p型のInGaAsから構成することができる。第1コンタクト層135a、第2コンタクト層135bは、より高濃度にp型としたInGaAsPから構成することができる。
次に、第1半導体層103を、図3Hに示すように、第1領域151の第1半導体層103aと、第2領域152の第1半導体層103bとに分離して素子分離を実現する。また、第1コンタクト層135aに接続する第1p電極111aを形成し、第2コンタクト層135bに接続する第2p電極111bを形成する。また、第1n型領域115aに電気的に接続する第1n型電極112aを、第1n型層131aの第1リッジ構造より延長している領域に形成する。同様に、第2n型領域115bに電気的に接続する第2n型電極112bを、第2n型層131bの第2リッジ構造より延長している領域に形成する。
これらのことによっても、第1領域151、第2領域152の各々に、各々発振波長が異なるレーザ素子が形成される。また、各レーザ素子は、活性層の上下をp型領域(p型層)およびn型領域で挾む、いわゆる縦型の電流注入構造(縦型pin構造)となる。
ところで、実施の形態に係る半導体装置の製造方法において、第1リッジ構造の下部および第2リッジ構造の下部の各々の位置において、第1クラッド層に埋め込まれたコアを形成することもできる(第10工程)。例えば、図4に示すように、第1領域151において、第1活性層106aの下の領域の第1クラッド層102に、例えば、シリコン、SiN、SiOx、SiOnなどからなる第1コア121aを形成する。また、第2領域152において、第2活性層106bの下の領域の第1クラッド層102に、例えば、シリコン、SiN、SiOx、SiOnなどからなる第2コア121bを形成する。
なお、第1活性層106aは、p型とされた第1埋め込み層119aと、n型とされた第1埋め込み層129aに挾まれるように埋め込まれている。また、第2活性層106bは、p型とされた第2埋め込み層119bと、n型とされた第2埋め込み層129bに挾まれるように埋め込まれている。また、第1埋め込み層119aには、第1p電極113aが接続し、第1埋め込み層129aには、第1n電極114aが接続している。また、第2埋め込み層119bには、第2p電極113bが接続し、第2埋め込み層129b比較して、抵抗は、第2n電極114bが接続している。この場合、各レーザ素子は、活性層の左右をp型領域およびn型領域で挾む、いわゆる横型の電流注入構造(横型pin構造)となる。
ここで、第1コア121a、第2コア121bは、これらによる光導波路が、第1活性層106a、第2活性層106bによる導波モードに、光学的に結合可能な位置に配置する。このようにすることで、第1活性層106a、第2活性層106bによる導波モードが、第1コア121a、第2コア121bによる光導波路に結合し、この光導波路により発振光を取り出すことができる。なお、上述したようなコアによる光導波路構造は、活性層の上側に配置することも可能である。
ところで、上述したレーザ素子は、活性層の上部に回折格子が形成され、所定の波長の分布ブラッグ反射構造が共振器として設けられている、いわゆるDFB(Distributed Feedback)レーザとすることができる。例えば図5に示すように、基板201の上に、第1クラッド層202が形成され、第1領域251に、第1埋め込み層203a、第1活性層204aが形成され、第2領域252に、第2埋め込み層203b、第2活性層204bが形成されている。第1活性層204aおよび第2活性層204bの各々は、同一の方向に、互いに平行に延在し、光導波路構造を構成している。
また、第1活性層204aの上の第1埋め込み層203aに、第1活性層204aと同一の方向に延在する第1回折格子205aが形成されている。また、第2活性層204bの上の第2埋め込み層203bに、第2活性層204bと同一の方向に延在する第2回折格子205bが形成されている。また、第1埋め込み層203aの上には、第1回折格子205aを挟んで、第1電極206aが形成され、第2埋め込み層203bの上には、第2回折格子205bを挟んで、第2電極206bが形成されている。
上述したDFBレーザでは、活性層に電流を注入すると、回折格子の格子間隔および埋め込みヘテロ構造の等価屈折率により決まる波長で発振が得られる。上述したように、それぞれの埋め込みヘテロ構造の上部は平坦な構造を有しているから、それぞれの等価屈折率を精度良く見積もることが可能となる。このため、適切な格子間隔の回折格子を形成することで、精度良く発振波長を制御することが可能となる。
回折格子は、半導体層(埋め込み層)のエッチングにより形成することができる。また、埋め込み層の上に、SiO2、SiNなどの材料の層を形成し、この層に形成することもできる。また、回折格子は、図5に示すように、外部に露出する構成とすることもできる。この場合、周囲の空気がクラッドとして機能する。また、回折格子の上に、SiO2などから構成されたクラッドを配置することもできる。
なお、回折格子を用いるDFB構造は、図2Gを用いて説明した縦型pin構造にも適用できることは、いうまでもなく、この場合であっても、上述道世に、精度良く発振波長を制御する効果を得ることができる。なお、回折格子による共振器構造の長さに制限はないが、一般的な半導体レーザの場合、概ね10μm~2mm程度である。
以下、本発明を用いることによって得られる波長制御性について述べる。DFBレーザの発振波長は、「λ=2neqd」の式であらわされる。この式において、λは発振波長、neqは等価屈折率、dは回折格子周期である。上記式より、発振波長は、等価屈折率に比例することがわかる。各々発振波長が異なる複数のDFBレーザ素子を、前述した選択成長によって一括で作製する際、本発明を用いない場合の断面構造は、図9Cを用いて説明したように、上面が平坦とならない箇所が発生する。この状態を、活性層近傍のみが凸型状に厚くなったリブ構造により近似し、基底モードのneqを計算した結果を図6に示す。
なお、図6に結果を示す計算では、活性層の厚さを0.15μm、活性層の断面視の幅を0.6μmとしている。また、活性層が埋め込まれている埋め込み層の全体の厚さを0.25μmとしている。また、埋め込み層における、活性層の上部の厚さを、0.05μmとしている。また、活性層の屈折率を3.40とし、埋め込み層(InP)の屈折率を3.17とし、埋め込み層の上下を挟んで形成しているクラッド層(SiO2)の屈折率を1.47としている。
また、図6の横軸は、埋め込み層の活性層上部の領域の凸型状の端部と、活性層の端部との横方向の距離x(μm)としている。また、図6の各グラフに付している数字は、凸型状の部分の厚さを示している。この例では、凸型状の部分の厚さを、5nm、10nm、15nm、20nm、25nm、30nmとした、6例について計算している。
波長多重レーザに対して許容される波長ゆらぎは、例えば上述した400GBASE-FR4の場合で±6nm、400GBASE-LR8/SR8の場合で±1nmとなる。発振波長は規格によって異なるが、1310nm前後である。例えば、埋め込み活性層の端部において、凸状部分に厚さ変化が生じた場合(x=0)に着目すると、発振波長の精度は、±6nm、±1nmを達成するために許容される、下部クラッド層と半導体層との界面を基準面とした際の表面平坦性は、それぞれ25nm、5nm程度以下であることがわかる。活性層の端部から200nm(x=0.2)まで範囲を拡大しても、発振波長精度±1nmを達成するためには、凸状部分の表面には、15~20nm程度以下の表面平坦性が求められることがわかる。
なお、発振波長は、その他のプロセス上の誤差要因(活性層を構成する混晶の組成、半導体層の厚さ、活性層の幅など)によっても変化し、これらの分のマージンも確保する必要があるため、実際に要求される平坦性は、更に高いものとなる。各々発振波長が異なる複数のDFBレーザ素子を、選択成長によって一括で作製する場合、活性層、活性層の下部の半導体層、活性層の上部の半導体層の全ての厚さが、選択成長に起因して異なる。このため、本発明を用いない場合、要求される発振波長制御性を達成することは困難である。
一方、本発明を用いる場合に得られる各素子の平坦性は、単一の活性層に対して適切な厚さの埋め込み成長を行う場合と同程度であると考えられ、非特許文献4では±5nm程度の平坦性が得られている。従って、400GBASE-FR4や400GBASE-LR8/SR8で要求されるような±6nmないしは1nmの絶対発振波長制御が、本発明により実現可能となる。
以上に説明したように、本発明によれば、第1選択成長マスクの開口方向の幅と、第2選択成長マスクの開口方向の幅とを、各々異なる寸法としたので、各々が異なる発振波長のレーザ素子を、全てのレーザ素子の上面を平坦な状態で、同一の基板上に一括で作製することができる。
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
101…基板、102…第1クラッド層、103…第1半導体層、104a…第1選択成長マスク、104b…第2選択成長マスク、105a…第2半導体層、105b…第4半導体層、106a…第1活性層、106b…第2活性層、107a…第3半導体層、107b…第5半導体層、107c…第2クラッド層、107d…第3クラッド層、108a…第3選択成長マスク、108b…第4選択成長マスク、109a…第1埋め込み層、109b…第2埋め込み層、151…第1領域、152…第2領域。

Claims (4)

  1. 基板の上に第1クラッド層を形成する第1工程と、
    前記第1クラッド層の上に第1半導体層を形成する第2工程と、
    前記第1半導体層の上の第1領域が開口する第1選択成長マスクを形成し、前記第1半導体層の上の第2領域が開口する第2選択成長マスクを形成する第3工程と、
    前記第1選択成長マスクを用いた選択成長により、前記第1領域に、第2半導体層、第1活性層、第3半導体層を積層し、前記第2選択成長マスクを用いた選択成長により、前記第2領域に、第4半導体層、第2活性層、第5半導体層を積層する第4工程と、
    前記第3半導体層の上に第3選択成長マスクを形成し、前記第5半導体層の上に第4選択成長マスクを形成する第5工程と、
    前記第3選択成長マスクを用いたエッチング処理により、前記第1活性層、前記第3半導体層を加工して、前記第1領域に、前記第1活性層、第2クラッド層が積層した第1リッジ構造を形成し、前記第4選択成長マスクを用いたエッチング処理により、前記第2活性層、前記第3半導体層を加工して、前記第2領域に、前記第2活性層、第3クラッド層が積層された第2リッジ構造を形成する第6工程と、
    前記第1選択成長マスクおよび前記第3選択成長マスクを用いた選択成長により、前記第1リッジ構造の側面を埋める第1埋め込み層を形成し、前記第2選択成長マスクおよび前記第4選択成長マスクを用いた選択成長により、前記第2リッジ構造の側面を埋める第2埋め込み層を形成する第7工程と
    を備え、
    前記第1選択成長マスクの開口方向の幅と、前記第2選択成長マスクの開口方向の幅とは、各々異なる寸法とされている、
    および、
    前記第1選択成長マスクの開口広さと、前記第2選択成長マスクの開口広さとは、各々異なる寸法とされている
    の少なくとも一方の状態とされていることを特徴とする半導体装置の製造方法。
  2. 請求項1記載の半導体装置の製造方法において、
    前記第6工程は、前記第1リッジ構造の側方の前記第2半導体層、および前記第2リッジ構造の側方の前記第4半導体層が露出する状態とし、
    前記第7工程は、前記第1リッジ構造の側方の前記第2半導体層の表面、および前記第2リッジ構造の側方の前記第4半導体層の表面より再成長することで、前記第1埋め込み層および前記第2埋め込み層を形成する
    ことを特徴とする半導体装置の製造方法。
  3. 請求項1または2記載の半導体装置の製造方法において、
    前記第1埋め込み層および前記第2埋め込み層の各々において、p型領域およびn型領域を形成する第8工程と、
    前記第1埋め込み層および前記第2埋め込み層の各々において、前記p型領域およびn型領域の各々に接続する電極を形成する第9工程と
    をさらに備えることを特徴とする半導体装置の製造方法。
  4. 請求項1~3のいずれか1項に記載の半導体装置の製造方法において、
    前記第1リッジ構造の下部および前記第2リッジ構造の下部の各々の位置において、前記第1クラッド層に埋め込まれたコアを形成する第10工程をさらに備えることを特徴とする半導体装置の製造方法。
JP2021570592A 2020-01-17 2020-01-17 半導体装置の製造方法 Active JP7283582B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001469 WO2021144949A1 (ja) 2020-01-17 2020-01-17 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPWO2021144949A1 JPWO2021144949A1 (ja) 2021-07-22
JP7283582B2 true JP7283582B2 (ja) 2023-05-30

Family

ID=76864089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021570592A Active JP7283582B2 (ja) 2020-01-17 2020-01-17 半導体装置の製造方法

Country Status (3)

Country Link
US (1) US20230021415A1 (ja)
JP (1) JP7283582B2 (ja)
WO (1) WO2021144949A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023012925A1 (ja) * 2021-08-04 2023-02-09 日本電信電話株式会社 半導体光デバイスおよびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030095751A1 (en) 2001-11-17 2003-05-22 Rogers David Carnegie Semiconductor optical devices and methods of making them
JP2003324232A (ja) 2002-02-26 2003-11-14 Nec Kansai Ltd 光半導体装置
JP2005142182A (ja) 2003-11-04 2005-06-02 Nec Corp 光半導体素子およびその製造方法
JP2009224348A (ja) 2008-03-13 2009-10-01 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置およびその作製方法
JP2016171173A (ja) 2015-03-12 2016-09-23 日本電信電話株式会社 半導体光素子
JP7086689B2 (ja) 2018-04-16 2022-06-20 キヤノン株式会社 画像加熱装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786689A (ja) * 1993-09-13 1995-03-31 Hitachi Ltd 半導体レーザ
JP3347633B2 (ja) * 1997-02-21 2002-11-20 株式会社東芝 半導体素子およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030095751A1 (en) 2001-11-17 2003-05-22 Rogers David Carnegie Semiconductor optical devices and methods of making them
JP2003324232A (ja) 2002-02-26 2003-11-14 Nec Kansai Ltd 光半導体装置
JP2005142182A (ja) 2003-11-04 2005-06-02 Nec Corp 光半導体素子およびその製造方法
JP2009224348A (ja) 2008-03-13 2009-10-01 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置およびその作製方法
JP2016171173A (ja) 2015-03-12 2016-09-23 日本電信電話株式会社 半導体光素子
JP7086689B2 (ja) 2018-04-16 2022-06-20 キヤノン株式会社 画像加熱装置

Also Published As

Publication number Publication date
JPWO2021144949A1 (ja) 2021-07-22
US20230021415A1 (en) 2023-01-26
WO2021144949A1 (ja) 2021-07-22

Similar Documents

Publication Publication Date Title
US8290014B2 (en) Active photonic device
US7941024B2 (en) Buried heterostructure device having integrated waveguide grating fabricated by single step MOCVD
JP2018006440A (ja) 半導体レーザ
EP1719003B1 (en) Buried heterostructure device fabricated by single step mocvd
JPH07302952A (ja) 光半導体装置の製造方法
JP7283582B2 (ja) 半導体装置の製造方法
Shindo et al. Lateral-current-injection distributed feedback laser with surface grating structure
JP4006729B2 (ja) 自己形成量子ドットを用いた半導体発光素子
JP6588837B2 (ja) 半導体光デバイス
JP3863454B2 (ja) 半導体レーザ装置
Fujii et al. Wide-wavelength range membrane laser array using selectively grown InGaAlAs MQWs on InP-on-insulator
US6643315B2 (en) Distributed feedback semiconductor laser device and multi-wavelength laser array
JPH05110187A (ja) アレイ型半導体レーザ及びその製造方法
JP7410276B2 (ja) 半導体光デバイス
JP6156161B2 (ja) 光半導体素子及びその製造方法
US20210126430A1 (en) Semiconductor Laser
WO2023012925A1 (ja) 半導体光デバイスおよびその製造方法
EP3407122B1 (en) Method for manufacturing an electro-absorption modulator
JP2852663B2 (ja) 半導体レーザ装置およびその製造方法
JP2004063972A (ja) 半導体レーザおよびその製造方法
JP3275858B2 (ja) 化合物半導体素子の製造方法
JP2019091806A (ja) 半導体レーザ
JP2019012769A (ja) 半導体レーザ
JPS61220389A (ja) 集積型半導体レ−ザ
Fujii et al. Multiwavelength Membrane Laser Array on Si Using Selective-area Epitaxial Growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R150 Certificate of patent or registration of utility model

Ref document number: 7283582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150