JP7283324B2 - 欠陥検査装置 - Google Patents

欠陥検査装置 Download PDF

Info

Publication number
JP7283324B2
JP7283324B2 JP2019169774A JP2019169774A JP7283324B2 JP 7283324 B2 JP7283324 B2 JP 7283324B2 JP 2019169774 A JP2019169774 A JP 2019169774A JP 2019169774 A JP2019169774 A JP 2019169774A JP 7283324 B2 JP7283324 B2 JP 7283324B2
Authority
JP
Japan
Prior art keywords
light
image
incoherent light
unit
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019169774A
Other languages
English (en)
Other versions
JP2021047090A (ja
Inventor
貴秀 畠堀
健二 田窪
康紀 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2019169774A priority Critical patent/JP7283324B2/ja
Priority to EP20182786.2A priority patent/EP3795941A1/en
Priority to US16/920,148 priority patent/US11226294B2/en
Priority to CN202010825129.1A priority patent/CN112525924A/zh
Publication of JP2021047090A publication Critical patent/JP2021047090A/ja
Application granted granted Critical
Publication of JP7283324B2 publication Critical patent/JP7283324B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02097Self-interferometers
    • G01B9/02098Shearing interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/161Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
    • G01B11/162Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means by speckle- or shearing interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、欠陥検査装置に関する。
従来、レーザ干渉法を用いた欠陥検査装置が知られている(たとえば、特許文献1参照)。
上記特許文献1には、熱を検査対象に付与し、レーザ干渉法によって、検査対象表面の変位を計測し、検査対象の欠陥を評価する表面・表層検査装置が開示されている。上記特許文献1に記載の表面・表層検査装置は、検査対象の表面を局所的に加熱し、検査対象表面に熱歪みを発生させる。この時、検査対象に亀裂や剥離などの不良部位が存在する場合、不良部位での熱歪みが大きくなるため、検査対象表面に変位が生じる。そして、上記特許文献1に記載の表面・表層検査装置は、生じた変位を、レーザ干渉法を用いて計測することによって、検査対象の欠陥を評価するように構成されている。
特開2007-024674号公報
ここで、レーザ干渉法によって表面の変位を計測することによって、検査対象の内部(表面・表層)に発生している亀裂や剥離などを検査する表層欠陥検査を行うことに加えて、検査対象によっては、検査対象の外表面に付着している汚れや付着物、微小な凹凸などを検査する外観検査を行う場合がある。そこで、上記特許文献1には明記されていないが、上記特許文献1に記載のレーザ干渉法を用いた表面・表層欠陥検査装置を使用して検査対象の外観検査を行うことが考えられる。しかしながら、上記の従来の表面・表層検査装置によって外観検査を行った場合、レーザ光を照射して撮像された検査対象の画像には、レーザ光同士が干渉して生じる明暗の斑点(スペックル)が含まれる。このスペックルは、外観検査を行う際に画質を大きく劣化させるものであるため、レーザ光を照射して撮像されたスペックルの生じた画像を用いて外観検査を行うことは困難である。このため、検査対象に対して、レーザ干渉法を用いた表層欠陥検査と外観検査との両方を1つの装置によって行うことが困難であるという問題点がある。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、レーザ干渉法を用いた表層欠陥検査と外観検査との両方を1つの装置によって行うことが可能な欠陥検査装置を提供することである。
上記目的を達成するために、この発明の一の局面における欠陥検査装置は、検査対象の測定領域を変位させる変位部と、測定領域にレーザ光を照射する第1照射部と、測定領域にインコヒーレントな光であるインコヒーレント光を照射する第2照射部と、第1照射部および第2照射部による照射を制御する制御部と、測定領域において反射されたレーザ光をレーザ干渉法により干渉させる干渉部と、干渉されたレーザ光と、測定領域において反射されたインコヒーレント光と、を撮像する撮像部と、を備え、第2照射部に前記インコヒーレント光を照射させずに第1照射部に前記レーザ光を照射させることによって、撮像部によって撮像された干渉されたレーザ光の強度パターンに基づいて、測定領域における検査対象の変位を示す画像である表層検査用画像を生成するとともに、撮像部によって撮像されたインコヒーレント光の強度パターンに基づいて、測定領域の外表面の画像である外観検査用画像を生成するように構成されている。なお、「インコヒーレントな光」とは、振幅と位相がそろっていない光のことであり、干渉を観測しにくい性質をもつ光を意味している。
上記一の局面における欠陥検査装置では、測定領域にレーザ光を照射する第1照射部と、測定領域にインコヒーレントな光であるインコヒーレント光を照射する第2照射部と、を設ける。また、撮像部によって撮像された干渉されたレーザ光の強度パターンに基づいて、測定領域における検査対象の変位を示す画像である表層検査用画像を生成するとともに、撮像部によって撮像されたインコヒーレント光の強度パターンに基づいて、測定領域の外表面の画像である外観検査用画像を生成するように構成されている。これにより、レーザ干渉法を用いて表層欠陥検査を行うとともに、インコヒーレント光を照射して撮像されたスペックルの生じない画像を用いて外観検査を行うことができる。その結果、レーザ干渉法を用いた表層欠陥検査と外観検査との両方を1つの装置によって行うことができる。
第1実施形態による欠陥検査装置の構成を説明するための図である。 第1実施形態による表層検査用画像を説明するための図である。 第1実施形態による外観検査用画像を説明するための図である。 第1実施形態による抽出画像を説明するための図である。 第1実施形態による抽出画像が重畳された外観検査用画像を説明するための図である。 第1実施形態による表示部の表示について説明するための図である。 第1実施形態による制御部の制御を説明するためのフローチャートである。 第2実施形態による欠陥検査装置の構成を説明するための図である。 第3実施形態による欠陥検査装置の構成を説明するための図である。 第4実施形態による欠陥検査装置の構成を説明するための図である。 第4実施形態による第2反射鏡の動作を説明するための図である。 第5実施形態による欠陥検査装置の構成を説明するための図である。 第5実施形態による外観検査画像を説明するための図であって、(A)は画像処理を行う前を示す図であり、(B)は画像処理を行った後を示す図である。 第6実施形態による欠陥検査装置の構成を説明するための図である。 第7実施形態による欠陥検査装置の構成を説明するための図である。
以下、本発明を具体化した実施形態を図面に基づいて説明する。
[第1実施形態]
(欠陥検査装置の構成)
図1を参照して、本発明の第1実施形態による欠陥検査装置100の全体構成について説明する。
第1実施形態による欠陥検査装置100は、図1に示すように、振動子1と、第1照射部2と、第2照射部3と、スペックル・シェアリング干渉計4と、制御部5と、信号発生器6と、表示部7と、を備える。なお、振動子1は、特許請求の範囲の「変位部」の一例であり、スペックル・シェアリング干渉計4は、特許請求の範囲の「干渉部」の一例である。
振動子1および第1照射部2は、信号発生器6にケーブルを介して接続されている。
振動子1は、検査対象Pの測定領域Paを変位させる。具体的には、振動子1は、測定領域Paに弾性波を励起する。つまり、振動子1は、検査対象Pに接触するように配置され、信号発生器6からの交流信号を機械的振動に変換し、測定領域Paに弾性波を励起する。
第1照射部2は、測定領域Paにレーザ光L1を照射する。第1照射部2は、図示しないレーザ光源を含んでいる。レーザ光源から照射されたレーザ光L1は、第1照明光レンズ21によって検査対象Pの表面の測定領域Pa全体に拡げてられて照射される。また、第1照射部2は、信号発生器6からの電気信号に基づいて、所定のタイミングにおいてレーザ光L1を照射する。つまり、第1照射部2は、振動子1による弾性波に対応して、レーザ光L1を検査対象Pに照射する。レーザ光源は、たとえば、レーザダイオードであり、波長が785nmのレーザ光L1(近赤外光)を照射する。
第2照射部3は、測定領域Paにインコヒーレントな光であるインコヒーレント光L2を照射する。ここで、本実施形態では、第2照射部3は、第1照射部2によって照射されるレーザ光L1の波長と等しい波長(785nmの波長)を有する光を含むインコヒーレント光L2を照射する。すなわち、インコヒーレント光L2は、レーザ光L1と同じ波長帯の光を含む。また、第2照射部3から照射されたインコヒーレント光L2は、第2照明光レンズ31によって検査対象Pの表面の測定領域Pa全体に拡げてられて照射される。第2照射部3は、たとえば、LED(Light Emitting Diode)であり、中心波長が780nm以上800nm以下の範囲内の波長となるように構成されている。
スペックル・シェアリング干渉計4は、測定領域Paにおいて反射されたレーザ光L1をレーザ干渉法により干渉させるように構成されている。スペックル・シェアリング干渉計4は、振動子1により励振された測定領域Paの互いに異なる2点において反射されたレーザ光L1を干渉させる方法(シェアログラフィ法)を用いて、測定領域Paにおける検査対象Pの変位を測定するように構成されている。また、スペックル・シェアリング干渉計4は、レーザ光L1の光路上に配置された光学部材である、ビームスプリッタ41、位相シフタ42、第1反射鏡43a、第2反射鏡43b、集光レンズ44、および、バンドパスフィルタ45を含む。また、スペックル・シェアリング干渉計4は、イメージセンサ46およびシャッタ47を含む。なお、イメージセンサ46は、特許請求の範囲の「撮像部」の一例であり、バンドパスフィルタ45は、特許請求の範囲の「光学フィルタ」の一例である。また、シャッタ47は、特許請求の範囲の「遮断部」の一例である。
ビームスプリッタ41は、ハーフミラーを含む。ビームスプリッタ41は、検査対象Pの測定領域Paにおいて反射されたレーザ光L1およびインコヒーレント光L2が入射する位置に配置されている。また、ビームスプリッタ41は、入射したレーザ光L1およびインコヒーレント光L2を、図1中の実線S1で示す光路のように、位相シフタ42側に反射させるとともに、図1中の破線S2で示す光路のように、第2反射鏡43b側に透過させる。また、ビームスプリッタ41は、図1中の実線S1で示す光路のように、第1反射鏡43aにより反射されて入射するレーザ光L1およびインコヒーレント光L2を集光レンズ44側に透過させるとともに、図1中の破線S2で示すように、第2反射鏡43bによって反射されたレーザ光L1およびインコヒーレント光L2を集光レンズ44側に反射させる。
第1反射鏡43aは、ビームスプリッタ41によって反射されたレーザ光L1およびインコヒーレント光L2の光路上において、ビームスプリッタ41の反射面に対して、45度の角度となるように配置されている。第1反射鏡43aは、ビームスプリッタ41により反射されたレーザ光L1およびインコヒーレント光L2をビームスプリッタ41側に反射させる。
第2反射鏡43bは、ビームスプリッタ41を透過するレーザ光L1およびインコヒーレント光L2の光路上において、ビームスプリッタ41の反射面に対して、45度の角度からわずかに傾斜した角度になるように配置されている。第2反射鏡43bは、ビームスプリッタ41を透過して入射してくるレーザ光L1およびインコヒーレント光L2をビームスプリッタ41側に反射させる。
位相シフタ42は、ビームスプリッタ41と第1反射鏡43aとの間に配置され、制御部5の制御により、透過するレーザ光L1の位相を変化(シフト)させる。具体的には、位相シフタ42は、透過するレーザ光L1の光路長を変化させるように構成されている。
イメージセンサ46は、検出素子を多数有し、ビームスプリッタ41で反射された後に第1反射鏡43aで反射されてビームスプリッタ41を透過するレーザ光L1およびインコヒーレント光L2(図1中の直線S1)と、ビームスプリッタ41を透過した後に第2反射鏡43bで反射されてビームスプリッタ41で反射されるレーザ光L1およびインコヒーレント光L2(図1中の破線S2)と、の光路上に配置される。イメージセンサ46は、たとえば、CMOSイメージセンサ、または、CCDイメージセンサなどを含む。
集光レンズ44は、ビームスプリッタ41とイメージセンサ46との間に配置され、ビームスプリッタ41を透過したレーザ光L1およびインコヒーレント光L2(図1中の直線S1)とビームスプリッタ41で反射されたレーザ光L1およびインコヒーレント光L2(図1中の破線S2)とを集光させる。
バンドパスフィルタ45は、集光レンズ44とイメージセンサ46との間に配置される。また、バンドパスフィルタ45は、所定の波長を有する光を透過させる。そして、バンドパスフィルタ45は、所定の波長を有しない光については透過させない(減衰させる)ように構成されている。バンドパスフィルタ45は、たとえば、誘電体多層膜を含み、中心波長を785nmとして構成されている。すなわち、バンドパスフィルタ45は、レーザ光L1に含まれる光およびインコヒーレント光L2に含まれる光を透過させるように構成されている。
シャッタ47は、互いに異なる2点において反射されたレーザ光L1およびインコヒーレント光L2が通過する互いに異なる2つの光路のうち、いずれか一方の光路を遮断する。具体的には、シャッタ47は、後述する制御部5による制御によって、ビームスプリッタ41と第2反射鏡43bとの間の光路(図1中の破線S2)を遮断した状態(図1の実線)と開放した状態(図1の破線)とを切り換えるように構成されている。
シェアログラフィ法を用いたスペックル・シェアリング干渉計4では、たとえば、測定領域Paの表面上の位置Pa1および第1反射鏡43aで反射されるレーザ光L1(図1中の直線S1)と、測定領域Paの表面上の位置Pa2および第2反射鏡43bで反射されるレーザ光L1(図1中の破線S2)とが、互いに干渉し、イメージセンサ46の同一箇所に入射する。位置Pa1および位置Pa2は、微小距離分だけ互いに離間した位置である。測定領域Paの各々の領域における、互いに異なる位置から反射されたレーザ光L1は、スペックル・シェアリング干渉計4により導光されて、それぞれ、イメージセンサ46に入射する。
ここで、本実施形態では、レーザ光L1の光路の一部とインコヒーレント光L2の光路の一部とが共通となるように構成されており、共通の光学部材を用いてイメージセンサ46によって撮像される。すなわち、第2照射部3によって照射されたインコヒーレント光L2は、第1照射部2によって照射されたレーザ光L1の光路上に配置されている光学部材を通過して、イメージセンサ46によって撮像される。言い換えると、レーザ光L1およびインコヒーレント光L2の光路上には共通の光学部材が配置されている。
また、イメージセンサ46は、干渉されたレーザ光L1と、測定領域Paにおいて反射されたインコヒーレント光L2と、を撮像する。言い換えると、干渉されたレーザ光L1と、測定領域Paにおいて反射されたインコヒーレント光L2と、が共通のイメージセンサ46によって撮像される。また、干渉されたレーザ光L1と、測定領域Paにおいて反射されたインコヒーレント光L2とは、共通のバンドパスフィルタ45を通過することができる波長を有する光を含む。
制御部5は、第1照射部2および第2照射部3による照射を制御する。また、制御部5は、イメージセンサ46によって撮像された干渉されたレーザ光L1の強度パターンに基づいて、測定領域Paにおける検査対象Pの変位を示す画像である表層検査用画像D1(図2参照)を生成するとともに、イメージセンサ46によって撮像されたインコヒーレント光L2の強度パターンに基づいて、測定領域Paの外表面の画像である外観検査用画像D2(図3参照)を生成するように構成されている。なお、制御部5による表層検査用画像D1および外観検査用画像D2の生成に関する制御については後述する。
また、制御部5は、第1照射部2にレーザ光L1を照射させることにより、イメージセンサ46にレーザ光L1を撮像させるタイミングと、第2照射部3にインコヒーレント光L2を照射させることにより、イメージセンサ46にインコヒーレント光L2を撮像させるタイミングと、を互いに異ならせるように構成されている。さらに、制御部5は、振動子1の動作を停止させた状態で、第2照射部3にインコヒーレント光L2を照射させることにより、イメージセンサ46にインコヒーレント光L2を撮像させるように構成されている。そして、制御部5は、互いに異なる2つの光路(図1中の直線S1および破線S2)のうち、一方の光路(図1中の破線S2)をシャッタ47に遮断させた状態で、他方の光路(図1中の直線S1)を用いて第2照射部3にインコヒーレント光L2を照射させることにより、イメージセンサ46にインコヒーレント光L2を撮像させるように構成されている。
信号発生器6は、制御部5によって振動子1の振動と、第1照射部2のレーザ光L1の照射のタイミングとを制御するための信号を発する。
表示部7は、制御部5によって生成された表層検査用画像D1と外観検査用画像D2とを表示する。表示部7は、液晶ディスプレイまたは有機ELディスプレイなどを含む。
検査対象Pは、鋼板に塗膜が塗装された塗装鋼板である。不良部位Qは、測定領域Paのうち内部(表層・表面)に発生している不良部位であり、亀裂や剥離などを含む。また、不良部位Rは、測定領域Paのうち外表面に発生している不良部位であり、外表面に付着している汚れや付着物、微小な凹凸などである。
(表層検査用画像を生成する制御について)
図2に示すように、表層検査用画像D1は、測定領域Paのうち内部に発生している不良部位Qの位置であると判別された位置(図2の位置Pb1および位置Pb2)を視覚的に認識可能なように構成されている。すなわち、表層検査用画像D1は、振動子1によって励起された検査対象Pの振動状態を視覚的に表したものであり、振動状態が不連続となっている領域を内部に発生している不良部位Qの位置であるとして視覚的に認識可能となるように構成されたものである。
制御部5は、スペックル・シェアリング干渉計4内に配置された位相シフタ42を図示しないアクチュエータで稼働させ、透過するレーザ光L1の位相を変化させる。これにより、位置Pa1で反射されたレーザ光L1(図1中の実線S1)と位置Pa2で反射されたレーザ光L1(図1中の破線S2)の位相差が変化する。これら2つのレーザ光L1が干渉した干渉光の強度をイメージセンサ46の各検出素子は検出する。
制御部5は、信号発生器6を介して、振動子1の振動と第1照射部2のレーザ光L1の照射のタイミングとを制御し、位相シフト量を変化させながら、図示しない複数の干渉画像D0を撮影する。位相シフト量はλ/4ずつ変化させ、各位相シフト量(0、λ/4、λ/2、3λ/4)において、レーザ照射のタイミングj(j=0~7)分の32枚の干渉画像D0と各位相シフト量(0、λ/4、λ/2、3λ/4)前後の5枚の消灯時の干渉画像D0との合計37枚の干渉画像D0を撮影する。なお、λは、レーザ光L1の波長である。
制御部5は、イメージセンサ46により撮像された干渉されたレーザ光L1の強度パターンに基づいて検出された検出信号を、下記の手順で処理し、振動の状態を表す表層検査用画像D1を取得する。
制御部5は、レーザ光L1を照射するタイミングj(j=0~7)が同じで位相シフト量がλ/4ずつ異なる干渉画像D0(4枚ずつ)の輝度値Ij0~Ij3から、式(1)により、光位相(位相シフト量ゼロの時の、2光路間の位相差)Φjを求める。
Φj=-arctan{(Ij3-Ij1)/(Ij2-Ij0)}・・・(1)
また、制御部5は、光位相Φjに対して、最小二乗法により正弦波近似を行い、式(2)における近似係数A、θ、Cを求める。
Φ=Acos(θ+jπ/4)+C=Bexp(jπ/4)+C・・・(2)
ただし、Bは、複素振幅であり、式(3)のように、表される。
B=Aexp(iθ):複素振幅・・・(3)
また、制御部5は、式(2)から定数項Cを除いた近似式より、振動の各位相時刻 ξ(0≦ξ<2π)における光位相変化を表示する動画像(30~60フレーム)を構成し出力する。なお、上記過程において、ノイズ除去のため複素振幅Bについて適宜空間フィルタが適用される。また、位相シフト量やレーザ光L1を照射するタイミングのステップはこれに限らない。この場合、計算式は上記式(1)~式(3)と異なる式になる。
制御部5は、空間フィルタを適用し、上記の動画像から、振動状態の不連続領域を検査対象Pの内部に発生している不良部位Qとして、検出する。そして、検出した領域を抽出した画像である抽出画像D1aおよび抽出画像D1bを含む表層検査用画像D1を表示する。ここで、検査対象P自体の形状が凹凸などを含む場合、平面部と凹凸部の境界でも、振動状態の不連続が発生する場合がある。そのため、制御部5を、それらを欠陥として検出しないように検査対象Pの形状情報に基づいて、内部に発生している不良部位Qを検出するように構成してもよい。
(外観検査用画像を生成する制御について)
図3に示すように、外観検査用画像D2は、測定領域Paのうち外表面に発生している不良部位Rの位置であると判別された位置(図3の位置Pb3)を視覚的に認識可能なように構成されている。すなわち、外観検査用画像D2は、測定領域Paの外表面をインコヒーレント光L2を照射して撮像した画像について、画像処理を行うことにより外表面に発生している不良部位Rの位置を判別するとともに、判別された位置(図3の位置Pb3)を視覚的に認識可能なように構成されている。また、表層検査用画像D1における測定領域Paと外観検査用画像D2における測定領域Paとは、略同一の領域である。
制御部5は、イメージセンサ46により撮像されたインコヒーレント光L2の強度パターンに基づいて検出された検出信号を画像として生成するとともに、生成された画像について画像処理を行う。たとえば、画素同士の輝度値の差分値に基づいて、外表面に発生している不良部位Rの位置を判別するように構成されている。そして、制御部5は、不良部位Rであると判別された位置を強調した画像D2aを含む外観検査用画像D2を表示する。
(表示部における表示に関する制御)
制御部5は、表層検査用画像D1と、外観検査用画像D2とを表示部7に表示させる制御を行う。また、図4および図5に示すように、制御部5は、測定領域Paのうち内部に発生している不良部位Qの位置であると判別された位置を強調して示す画像を外観検査用画像D2に重畳させて、表示部7に表示させる。すなわち、内部に発生している不良部位Qの位置について、輪郭を抽出した画像である抽出画像D1aおよびD1bを外観検査用画像D2に重畳させて、表示部7に表示させる。
また、図6に示すように、制御部5は、表層検査用画像D1と外観検査用画像D2とを、表示部7に並べて表示させる制御を行う。
制御部5は、測定領域Paのうち、内部に発生している不良部位Qの位置であると判別された位置と、外表面に発生している不良部位Rの位置であると判別された位置と、の各々についての位置情報Eを生成するように構成されている。具体的には、制御部5は、図6に示すように、表層検査用画像D1と、外観検査用画像D2と、位置情報Eとを、合わせて表示部7に表示させる。また、内部に発生している不良部位Qと外部に発生している不良部位Rとの各々を判別可能なように、たとえば、各々に対応した色を用いて表示させる。すなわち、制御部5は、内部に発生している不良部位Qと外表面に発生している不良部位Rとに関するレポートを出力するように構成されている。
(第1実施形態の欠陥検査装置100による制御処理)
次に、図7を参照して、第1実施形態による欠陥検査装置100による表層欠陥検査および外観検査に関する制御処理フローについて説明する。この欠陥検査装置100による表層欠陥検査および外観検査に関する制御は、制御部5により実行される。
まず、ステップ101において、振動子1から検査対象Pへの振動付与が開始される。これにより、検査対象Pの測定領域Paに弾性波が励起される。
次に、ステップ102において、第1照射部2から測定領域Paに対してレーザ光L1が照射される。
次に、ステップ103において、位相シフタ42のシフト量を変化させつつ干渉データが取得される。つまり、位相を異ならせて干渉させた複数の干渉画像D0が取得される。これにより、レーザ光L1の位相がλ/4ずつ変化するように、スペックル・シェアリング干渉計4の位相シフタ42が稼働させられ、各位相でのレーザ光L1の干渉光の強度がイメージセンサ46で検出(撮像)される。
次に、ステップ104において、振動子1から検査対象Pへの振動付与が終了される。また、第1照射部2によるレーザ光L1の照射が停止される。そして、シャッタ47を動作させることによって、レーザ光L1の光路の一部(図1中の実線S1)が遮断される。
次に、ステップ105において、第2照射部3から測定領域Paに対してインコヒーレント光L2が照射される。
次に、ステップ106において、インコヒーレント光L2がイメージセンサ46で検出(撮像)される。すなわち、第1照射部2からレーザ光L1が照射されることによりイメージセンサ46によりレーザ光L1が撮像されるタイミングと、第2照射部3からインコヒーレント光L2が照射されることによりイメージセンサ46によりインコヒーレント光L2が撮像されるタイミングと、が互いに異なる。また、振動子1の動作が停止された状態で、第2照射部3からインコヒーレント光L2が照射されることにより、イメージセンサ46によりインコヒーレント光L2が撮像される。そして、互いに異なる2つの光路(図1中の直線S1および破線S2)のうち、一方の光路(図1中の破線S2)がシャッタ47により遮断された状態で、他方の光路(図1中の直線S1)を用いて第2照射部3によりインコヒーレント光L2が照射されることにより、イメージセンサ46によりインコヒーレント光L2が撮像される。
次に、ステップ107において、図示しない複数の干渉画像D0に基づいて測定領域Paにおける検査対象Pの振動の不連続部分が抽出され、検査対象Pの振動状態を視覚的に表した表層検査用画像D1が生成される。
次に、ステップ108において、撮像されたインコヒーレント光L2の強度パターンに基づいて、外観検査用画像D2(図3参照)が生成される。
次に、ステップ109において、振動の不連続部分の輪郭を抽出した画像である抽出画像D1aおよびD1bが生成される。
次に、ステップ110において、表層検査用画像D1と、外観検査用画像D2と、位置情報Eとが、表示部7に表示される。その後、作業者からの終了指示入力などにより表層欠陥検査および外観検査の処理が終了される。
なお、ステップ104~106、および、ステップ108における、インコヒーレント光L2が撮像され、外観検査用画像D2を生成する処理と、ステップ107および109における、表層検査用画像D1を生成する処理および抽出画像D1a(およびD1b)を生成する処理とは、どちらの処理を先に行ってもよい。
(第1実施形態の効果)
第1実施形態では、以下のような効果を得ることができる。
第1実施形態の欠陥検査装置100は、上記のように、検査対象Pの測定領域Paを変位させる振動子1(変位部)と、測定領域Paにレーザ光L1を照射する第1照射部2と、測定領域Paにインコヒーレントな光であるインコヒーレント光L2を照射する第2照射部3と、第1照射部2および第2照射部3による照射を制御する制御部5と、測定領域Paにおいて反射されたレーザ光L1をレーザ干渉法により干渉させるスペックル・シェアリング干渉計4(干渉部)と、干渉されたレーザ光L1と、測定領域Paにおいて反射されたインコヒーレント光L2と、を撮像するイメージセンサ46(撮像部)と、を備え、イメージセンサ46によって撮像された干渉されたレーザ光L1の強度パターンに基づいて、測定領域Paにおける検査対象Pの変位を示す画像である表層検査用画像D1を生成するとともに、イメージセンサ46によって撮像されたインコヒーレント光L2の強度パターンに基づいて、測定領域Paの外表面の画像である外観検査用画像D2を生成するように構成されている。また、第1実施形態の欠陥検査装置100では、上記の構成によって、測定領域Paにレーザ光L1を照射する第1照射部2と、測定領域Paにインコヒーレントな光であるインコヒーレント光L2を照射する第2照射部3と、を設ける。また、イメージセンサ46によって撮像された干渉されたレーザ光L1の強度パターンに基づいて、測定領域Paにおける検査対象Pの変位を示す画像である表層検査用画像D1を生成するとともに、イメージセンサ46によって撮像されたインコヒーレント光L2の強度パターンに基づいて、測定領域Paの外表面の画像である外観検査用画像D2を生成するように構成されている。これにより、レーザ干渉法を用いて表層欠陥検査を行うとともに、インコヒーレント光L2を照射して撮像されたスペックルの生じない画像を用いて外観検査を行うことができる。その結果、レーザ干渉法を用いた表層欠陥検査と外観検査との両方を1つの装置によって行うことができる。
また、第1実施形態では、以下のように構成したことによって、更なる効果が得られる。
すなわち、第1実施形態では、スペックル・シェアリング干渉計4(干渉部)は、レーザ光L1およびインコヒーレント光L2の光路上に配置された共通の光学部材を含む。このように構成すれば、レーザ光L1のための光学部材とインコヒーレント光L2のための光学部材とを、別個にスペックル・シェアリング干渉計4に備える必要がなくなる。その結果、表層欠陥検査と外観検査とを合わせて1つの装置で行う場合でも、部品の点数の増大を抑制することができる。
また、第1実施形態では、第2照射部3は、第1照射部2によって照射されるレーザ光L1の波長と等しい波長を有する光を含むインコヒーレント光L2を照射するように構成されている。このように構成すれば、レーザ光L1の波長に基づいて、レーザ干渉が精度よく行われるようにスペックル・シェアリング干渉計4を構成した場合でも、インコヒーレント光L2がレーザ光L1の波長と等しい波長を含んでいるので、共通の光学部材(バンドパスフィルタなど)を用いてインコヒーレント光L2を撮像することができる。その結果、表層欠陥検査と外観検査とを合わせて1つの装置で行う場合でも、レーザ干渉の精度を低下させることなく、部品の点数の増大を抑制することができる。
また、第1実施形態では、レーザ干渉法は、測定領域Paの互いに異なる2点において反射されたレーザ光L1を干渉させる方法(シェアログラフィ法)であり、レーザ光L1の一部の光路とインコヒーレント光L2の一部の光路とが共通となるように構成されている。このように構成すれば、光路が共通となる部分では、容易に共通の光学部材を用いることができる。その結果、表層欠陥検査と外観検査とを合わせて1つの装置で行う場合でも、より容易に部品の点数の増大を抑制することができる。
また、第1実施形態では、互いに異なる2点において反射されたレーザ光L1が通過する互いに異なる2つの光路うち、いずれか一方の光路を遮断するシャッタ47(遮断部)をさらに備え、制御部5は、2つの光路のうち、いずれか一方の光路をシャッタ47に遮断させた状態で、他方の光路を用いて第2照射部3にインコヒーレント光L2を照射させることにより、イメージセンサ46(撮像部)にインコヒーレント光L2を撮像させるように構成されている。ここで、互いに異なる2点において反射されたレーザ光L1が通過する光路の両方を用いて第2照射部3にインコヒーレント光L2を照射させる場合を考える。その場合、互いに異なる2点において反射されたインコヒーレント光L2を結像させてイメージセンサ46に撮像させるため、撮像された外観検査用画像D2が2重にぶれたようになり劣化した画像となると考えられる。この点を考慮して、上記第1実施形態のように、いずれか一方の光路をシャッタ47によって遮断させるように構成する。これにより、測定領域Paの1点において反射されたインコヒーレント光L2を結像させるため、外観検査用画像D2は2重にぶれたようにはならず、鮮明な画像とすることができる。その結果、測定領域Paの互いに異なる2点において反射されたレーザ光L1を干渉させる方法(シェアログラフィ法)を用いてレーザ干渉を行う場合でも、外観検査用画像D2の画質が劣化することを抑制することができる。
また、第1実施形態では、制御部5は、第1照射部2にレーザ光L1を照射させることにより、イメージセンサ46(撮像部)にレーザ光L1を撮像させるタイミングと、第2照射部3にインコヒーレント光L2を照射させることにより、イメージセンサ46にインコヒーレント光L2を撮像させるタイミングと、を互いに異ならせるように構成されている。ここで、第1照射部2にレーザ光L1を照射させることにより、イメージセンサ46にレーザ光L1を撮像させるタイミングと、第2照射部3にインコヒーレント光L2を照射させることにより、イメージセンサ46にインコヒーレント光L2を撮像させるタイミングと、を同時に行った場合、レーザ光L1を干渉させる際にインコヒーレント光L2が外乱光として影響を及ぼすこととなり、表層検査用画像D1が不鮮明なものとなると考えられる。また、イメージセンサ46にインコヒーレント光L2を撮像させることによって生成する外観検査用画像D2に、レーザ光L1によるスペックルが生じるため、外観検査用画像D2もまた、不鮮明なものとなると考えられる。この点を考慮して、上記第1実施形態のように構成すれば、表層欠陥検査と外観検査とを合わせて1つの装置で行う場合でも、表層検査用画像D1と外観検査用画像D2との両方が不鮮明になることを抑制することができる。その結果、レーザ干渉による表層欠陥検査と、インコヒーレント光L2による外観検査と、の両方を精度良く行うことができる。
また、第1実施形態では、制御部5は、振動子1(変位部)の動作を停止させた状態で、第2照射部3にインコヒーレント光L2を照射させることにより、イメージセンサ46(撮像部)にインコヒーレント光L2を撮像させるように構成されている。このように構成すれば、振動子1が検査対象Pを振動させることに起因して外観検査用画像D2が不鮮明になることを抑制することができる。
また、第1実施形態では、画像を表示させる表示部7をさらに備え、制御部5は、測定領域Paのうち内部に発生している不良部位Qの位置であると判別された位置を視覚的に認識可能なように構成された表層検査用画像D1を、表示部7に表示させる制御を行うとともに、測定領域Paのうち外表面に発生している不良部位Rの位置であると判別された位置を視覚的に認識可能なように構成された外観検査用画像D2を、表示部7に表示させる制御を行うように構成されている。このように構成すれば、作業者は、検査対象Pの測定領域Paのうち内部に発生している不良部位Qの位置であると判別された位置と、外表面に発生している不良部位Rの位置であると判別された位置と、を視覚的に認識することができる。その結果、作業者は、表層欠陥検査と外観検査との両方の結果をより容易に合わせて視覚的に認識することができる。
また、第1実施形態では、制御部5は、測定領域Paのうち内部に発生している不良部位Qの位置であると判別された位置を強調して示す画像である抽出画像D1aおよびD1bを、外観検査用画像D2に重畳させて、表示部7に表示させる制御を行うように構成されている。このように構成すれば、作業者は、検査対象Pの測定領域Paのうち内部に発生している不良部位Qの位置であると判別された位置を、検査対象Pの外観を示す画像とあわせて視認することができる。その結果、作業者は、表示部7の表示に基づいて、検査対象Pの外観を視認しただけでは判別しにくい内部に発生している不良部位Qの位置を、外観の画像上において認識することができるので、不良とされる位置を容易に判別することができる。
また、第1実施形態では、制御部5は、表層検査用画像D1と外観検査用画像D2とを、表示部7に並べて表示させる制御を行うように構成されている。このように構成すれば、作業者は、表層検査用画像D1と外観検査用画像D2とを容易に見比べながら視認することができる。
また、第1実施形態では、制御部5は、干渉されたレーザ光L1と、測定領域Paにおいて反射されたインコヒーレント光L2とを、共通のイメージセンサ46(撮像部)によって撮像させるように構成されている。ここで、干渉されたレーザ光L1と測定領域Paにおいて反射されたインコヒーレント光L2とを、別個のイメージセンサ46によって撮像した場合、別個のイメージセンサ46の各々について、調整が必要であると考えられる。上記実施形態のように共通のイメージセンサ46によって撮像するように構成すれば、1つのイメージセンサ46について調整すればよいので、作業者による調整作業の作業負担が増大することを抑制することができる。また、別個のイメージセンサ46を設ける場合と比べて、部品点数の増大を抑制することができる。また、共通のイメージセンサ46によって撮像するため、表層検査用画像D1と外観検査用画像D2とが、同一の視野における画像となるように容易に構成することができる。その結果、内部に発生している不良部位Qの位置であると判別された位置と、外表面に発生している不良部位Rの位置であると判別された位置と、を作業者が照らし合わせる作業が不要となるため、作業者の作業負担を軽減することができる。
また、第1実施形態では、スペックル・シェアリング干渉計4(干渉部)は、レーザ光L1およびインコヒーレント光L2の光路上に配置された共通の光学部材を含み、光学部材は、所定の波長を有する光を透過させるバンドパスフィルタ45(光学フィルタ)を有し、干渉されたレーザ光L1と、測定領域Paにおいて反射されたインコヒーレント光L2とが、共通のバンドパスフィルタ45を通過可能な波長を有するとともに、共通のイメージセンサ46によって撮像されるように構成されている。このように構成すれば、共通の光学フィルタを用いて、レーザ光L1の撮像とインコヒーレント光L2の撮像を行うことができる。その結果、表層欠陥検査と外観検査とを合わせて1つの装置で行う場合でも、部品の点数の増大を抑制することができる。
[第2実施形態]
図8を参照して、第2実施形態による欠陥検査装置200の構成について説明する。この第2実施形態は、レーザ光L1とインコヒーレント光L2とが、共通の光学部材を用いて撮像されるために、インコヒーレント光L2の中心波長をレーザ光L1の波長と近い値である780~800nmとなるように構成した第1実施形態とは異なり、インコヒーレント光L202が三原色(赤色、緑色、青色)の波長を含む光となるように構成されている。なお、図中において、上記第1実施形態と同様の構成の部分には、同一の符号を付して図示するとともに説明を省略する。
(第2実施形態による欠陥検査装置の構成)
図8に示すように、本発明の第2実施形態による欠陥検査装置200は、第2照射部203と、スペックル・シェアリング干渉計204と、制御部205とを、備える。そして、スペックル・シェアリング干渉計204は、バンドパスフィルタ245と、イメージセンサ246とを含む。
第2照射部203は、測定領域Paにインコヒーレントな光であるインコヒーレント光L202を照射する。インコヒーレント光L202は、赤色の波長を有する光と、緑色の波長を有する光と、青色の波長を有する光とを含むように構成されている。具体的には、第2照射部203は、インコヒーレント光L202rと、インコヒーレント光L202gと、インコヒーレント光L202bと、の3種類のインコヒーレントな光をそれぞれ照射するように構成されている。インコヒーレント光L202rは、赤色の波長を有する光を含む。また、インコヒーレント光L202gは、緑色の波長を有する光を含む。また、インコヒーレント光L202bは、青色の波長を有する光を含む。ここで、第2照射部203は、3種類の波長を含む光のそれぞれを照射する1つの光源を備えるように構成されていてもよいし、3種類の波長を含む光のそれぞれを照射するように、3つの光源を備えるように構成されていてもよい。
バンドパスフィルタ245は、集光レンズ44とイメージセンサ246との間に配置される。また、バンドパスフィルタ245は、複数の特定の波長を有する光を透過させる。そして、バンドパスフィルタ245は、所定の波長を有しない光については透過させない(減衰させる)ように構成されている。バンドパスフィルタ245は、たとえば、誘電体多層膜を含む。すなわち、バンドパスフィルタ245は、レーザ光L1に含まれる光の波長と、赤色の波長と、緑色の波長と、青色の波長と、の4つの特定の波長を有する光を透過させるように構成されている。
イメージセンサ246は、レーザ光L1およびインコヒーレント光L202を検出するように構成されている。すなわち、785nmの波長を有する光と、赤色の波長を有する光と、緑色の波長を有する光と、青色の波長を有する光とを、それぞれ検出するように構成されている。
制御部205は、第1照射部2および第2照射部203による照射を制御する。すなわち、制御部205は、第1照射部2にレーザ光L1を照射させる制御を行う。また、制御部205は、第2照射部203に、インコヒーレント光L202rと、インコヒーレント光L202gと、インコヒーレント光L202bとを、それぞれ、切り替えて照射させる制御を行う。
制御部205は、イメージセンサ246によって検出された、レーザ光L1の強度パターンに基づいて、表層検査用画像D1を生成する。また、制御部205は、インコヒーレント光L202rに含まれる赤色の波長の光と、インコヒーレント光L202gに含まれる緑色の波長の光と、インコヒーレント光L202bに含まれる青色の波長の光とのそれぞれの光の強度パターンに基づいて、3種類の外観検査用モノクロ画像を生成する。そして、制御部205は、生成された3種類の外観検査用モノクロ画像に基づいて、カラー画像の外観検査用画像D202を生成するように構成されている。
なお、第2実施形態のその他の構成については、第1実施形態と同様である。
(第2実施形態の効果)
第2実施形態では、以下のような効果を得ることができる。
第2実施形態では、上記のように、インコヒーレント光L202は、赤色の波長を有する光と、緑色の波長を有する光と、青色の波長を有する光とを含むように構成されている。このように構成すれば、外観検査用画像D202をカラー画像として取得することができる。その結果、明度の情報に加えて色相情報を用いて外観検査を行うことができるため、外観検査の精度をより向上させることができる。
なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
[第3実施形態]
図9を参照して、第3実施形態による欠陥検査装置300の構成について説明する。この第3実施形態は、共通のイメージセンサ46および246によって、レーザ光L1とインコヒーレント光L2およびL202を撮像するように構成した第1および第2実施形態とは異なり、第1イメージセンサ346aおよび第2イメージセンサ346bの互いに異なる2つのイメージセンサ(撮像部)を備え、レーザ光L1とインコヒーレント光L202とを、各々別個のイメージセンサ(第1イメージセンサ346aおよび第2イメージセンサ346b)によって撮像するように構成されている。なお、図中において、上記第1および第2実施形態と同様の構成の部分には、同一の符号を付して図示するとともに説明を省略する。
(第3実施形態による欠陥検査装置の構成)
図9に示すように、本発明の第3実施形態による欠陥検査装置300は、スペックル・シェアリング干渉計304と、制御部305とを、備える。そして、スペックル・シェアリング干渉計304は、第1バンドパスフィルタ345aと、第2バンドパスフィルタ345bと、第1イメージセンサ346aと第2イメージセンサ346bと、第1ビームスプリッタ341と、第2ビームスプリッタ348とを含む。
第1バンドパスフィルタ345aは、第1イメージセンサ346aと第2ビームスプリッタ348との間に配置される。また、第1バンドパスフィルタ345aは、特定の波長を有する光を透過させる。そして、第1バンドパスフィルタ345aは、所定の波長を有しない光については透過させない(減衰させる)ように構成されている。第1バンドパスフィルタ345aは、たとえば、誘電体多層膜を含み、中心波長を785nmとして構成されている。すなわち、第1バンドパスフィルタ345aは、レーザ光L1の波長を有する光を透過するように構成されている。
第2バンドパスフィルタ345bは、第2イメージセンサ346bと第2ビームスプリッタ348との間に配置される。また、第2バンドパスフィルタ345bは、複数の特定の波長を有する光を透過させる。そして、第2バンドパスフィルタ345bは、所定の波長を有しない光については透過させない(減衰させる)ように構成されている。第2バンドパスフィルタ345bは、たとえば、誘電体多層膜を含む。すなわち、赤色の波長と、緑色の波長と、青色の波長と、の3つの特定の波長を有する光を透過させるように構成されている。
第1イメージセンサ346aは、レーザ光L1を検出するように構成されている。すなわち、785nmの波長を有する光を検出するように構成されている。
第2イメージセンサ346bは、インコヒーレント光L202を検出するように構成されている。すなわち、赤色の波長を有する光と、緑色の波長を有する光と、青色の波長を有する光とを、それぞれ検出するように構成されている。
第1ビームスプリッタ341は、第1および第2実施形態におけるビームスプリッタ41と同様に構成されている。
第2ビームスプリッタ348は、ハーフミラーを含む。第2ビームスプリッタ348は、集光レンズ44を通過したレーザ光L1およびインコヒーレント光L202が入射する位置に配置されている。また、第2ビームスプリッタ348は、入射したレーザ光L1およびインコヒーレント光L202を、第1イメージセンサ346a側に透過させるとともに、第2イメージセンサ346b側に反射させる。
制御部305は、第1イメージセンサ346aによって検出されたレーザ光L1の強度パターンに基づいて、表層検査用画像D1を生成する。また、制御部305は、第2イメージセンサ346bによって検出されたインコヒーレント光L202に含まれる赤色の波長の光と、緑色の波長の光と、青色の波長の光とのそれぞれの光の強度パターンに基づいて、3種類の外観検査用モノクロ画像を生成する。そして、制御部305は、生成された3種類の外観検査用モノクロ画像に基づいて、カラー画像の外観検査用画像D302を生成するように構成されている。
なお、第3実施形態のその他の構成については、第1および第2実施形態と同様である。
(第3実施形態の効果)
第3実施形態では、以下のような効果を得ることができる。
第3実施形態では、上記のように、撮像部は、レーザ光L1を撮像する第1イメージセンサ346a(第1撮像部)と、第1イメージセンサ346aとは別個に設けられ、インコヒーレント光L2を撮像する第2イメージセンサ346b(第2撮像部)と、を含むように構成されている。このように構成すれば、第1イメージセンサ346aの構成をレーザ光L1の撮像に適した構成にするとともに、第2イメージセンサ346bの構成をインコヒーレント光L202の撮像に適した構成にすることができる。すなわち、第1イメージセンサ346aをレーザ干渉法に適した波長の光を撮像するように構成するとともに、第2イメージセンサ346bを外観検査に適した波長の光を撮像するように構成することができる。これにより、表層検査用画像D1に基づいて、より精度の高い表層欠陥検査を行うことができるとともに、外観検査用画像D302に基づいて、より精度の高い外観検査を行うことができる。
なお、第3実施形態のその他の効果は、上記第1および第2実施形態と同様である。
[第4実施形態]
図10および図11を参照して、第4実施形態による欠陥検査装置400の構成について説明する。この第4実施形態では、互いに異なる2つの光路のうち、いずれか一方の光路をシャッタ47に遮断させた状態で、他方の光路を用いて第2照射部3にインコヒーレント光L2を照射させることにより、イメージセンサ46(撮像部)にインコヒーレント光L2を撮像させるように構成した第1実施形態とは異なり、シャッタ47を用いずに、第2反射鏡443bの角度を調整して、ビームスプリッタ41の反射面に対して45度の角度となるように配置した状態で、インコヒーレント光L2を撮像するように構成されている。なお、図中において、上記第1実施形態と同様の構成の部分には、同一の符号を付して図示するとともに説明を省略する。
(第4実施形態による欠陥検査装置の構成)
図10に示すように、本発明の第4実施形態による欠陥検査装置400は、スペックル・シェアリング干渉計404と制御部405とを備える。そして、スペックル・シェアリング干渉計404は、レーザ光L1が通過する光路上に配置されている第2反射鏡443bを含む。
第2反射鏡443bは、ビームスプリッタ41を透過するレーザ光L1およびインコヒーレント光L2の光路上において、ビームスプリッタ41の反射面に対して、45度の角度からわずかに傾斜した角度になるように配置されている。第2反射鏡43bは、ビームスプリッタ41を透過して入射してくるレーザ光L1をビームスプリッタ41側に反射させる。また、第2反射鏡443bは、ビームスプリッタ41に対して位置(角度)を変更させるように構成されている。第2反射鏡443bは、ビームスプリッタ41の反射面に対して、45度の角度になるように位置(角度)を変更させるように構成されている。
制御部405は、第2反射鏡443bの位置(角度)を変更させるように構成されている。すなわち、制御部405は、第2反射鏡443bの位置(角度)を変更させることによって、互いに異なる2点において反射されたレーザ光L1が通過する互いに異なる2つの光路のうち、いずれか一方の光路を変更させた状態で、インコヒーレント光L2を照射させることにより、イメージセンサ46にインコヒーレント光L2を撮像させるように構成されている。
制御部405は、第2反射鏡443bが、ビームスプリッタ41の反射面に対して、45度の角度からわずかに傾斜した角度になるように配置されている状態で、第1照射部2に、レーザ光L1を照射させる。そして、制御部405は、イメージセンサ46によって撮像された干渉されたレーザ光L1の強度パターンに基づいて、表層検査用画像D1を生成する。すなわち、制御部405は、測定領域Paの表面上の互いに異なる2点(たとえば、図10の位置Pa1および位置Pa2)において反射されたレーザ光L1を干渉させてイメージセンサ46に撮影させる制御を行い、表層検査用画像Dを生成する。
また、制御部405は、図11に示すように、第2反射鏡443bの位置(角度)を変更させて、第2反射鏡443bがビームスプリッタ41の反射面に対して、45度の角度になるように配置されている状態で、第2照射部3に、インコヒーレント光L2を照射させる。そして、制御部405は、イメージセンサ46によって撮像されたインコヒーレント光L2の強度パターンに基づいて、外観検査用画像D2を生成する。すなわち、制御部405は、測定領域Paの1点(たとえば、位置Pa1)において反射されたインコヒーレント光L2をイメージセンサ46に撮影させる制御を行い、外観検査用画像D2を生成する。
なお、第4実施形態のその他の構成については、第1実施形態と同様である。
(第4実施形態の効果)
第4実施形態では、以下のような効果を得ることができる。
第4実施形態では、上記のように、レーザ光L1が通過する光路上に配置されている第2反射鏡443b(反射鏡部材)をさらに備え、制御部405は、第2反射鏡443bの位置(角度)を変更させることによって、互いに異なる2点(Pa1およびPa2)において反射されたレーザ光L1が通過する互いに異なる2つの光路のうち、いずれか一方の光路を変更させた状態で、インコヒーレント光L2を照射させることにより、イメージセンサ46(撮像部)にインコヒーレント光L2を撮像させるように構成されている。ここで、互いに異なる2点において反射されたレーザ光L1が通過する光路の両方を用いて第2照射部3にインコヒーレント光L2を照射させる場合を考える。その場合、互いに異なる2点において反射されたインコヒーレント光L2を結像させてイメージセンサ46に撮像させるため、撮像された外観検査用画像D2が2重にぶれたようになり劣化した画像となると考えられる。この点を考慮して、上記第4実施形態のように、第2反射鏡443bの位置(角度)を変更させて、光路を1つにするように構成する。これにより、測定領域Paの1点において反射されたインコヒーレント光L2を結像させるため、外観検査用画像D2がぶれたような画像にならず、鮮明な画像とすることができる。さらに、シャッタ等を用いて光路を塞ぐ場合に比べて、部品点数の増加を抑制することができる。その結果、測定領域Paの互いに異なる2点において反射されたレーザ光L1を干渉させる方法(シェアログラフィ法)を用いてレーザ干渉を行う場合でも、外観検査用画像D2の画質が劣化することをより容易に抑制することができる。
なお、第4実施形態のその他の効果は、上記第1実施形態と同様である。
[第5実施形態]
図12および図13を参照して、第5実施形態による欠陥検査装置500の構成について説明する。この第5実施形態は、互いに異なる2つの光路のうち、いずれか一方の光路をシャッタ47に遮断させた状態で、他方の光路を用いて第2照射部3にインコヒーレント光L2を照射させることにより、イメージセンサ46(撮像部)にインコヒーレント光L2を撮像させるように構成した第1実施形態とは異なり、測定領域Paの互いに異なる2点において反射されたインコヒーレント光L2を撮像するとともに、撮像されたインコヒーレント光L2の強度パターンに基づいて生成された外観検査用画像D502aに対して画像処理を行うように構成されている。なお、図中において、上記第1実施形態と同様の構成の部分には、同一の符号を付して図示するとともに説明を省略する。
(第5実施形態による欠陥検査装置の構成)
図12に示すように、本発明の第5実施形態による欠陥検査装置500は、スペックル・シェアリング干渉計504と、制御部505とを備える。
スペックル・シェアリング干渉計504は、測定領域Paの互いに異なる2点(たとえば、位置Pa1および位置Pa2)において反射されたレーザ光L1をレーザ干渉法により干渉させる。そして、スペックル・シェアリング干渉計504は、干渉されたレーザ光L1を、イメージセンサ46において結像させる。また、スペックル・シェアリング干渉計504は、測定領域Paの互いに異なる2点(たとえば、位置Pa1および位置Pa2)において反射されたインコヒーレント光L2をイメージセンサ46によって結像させる。
制御部505は、第1照射部2および第2照射部3による照射を制御する。また、制御部505は、イメージセンサ46によって撮像された干渉されたレーザ光L1の強度パターンに基づいて表層検査用画像D1を生成するように構成されている。
また、制御部505は、測定領域Paの互いに異なる2点において反射されたインコヒーレント光L2の強度パターンに基づいて、外観検査用画像D502aを生成するように構成されている。ここで、外観検査用画像D502aは、測定領域Paの異なる2点において反射されたインコヒーレント光L2の強度パターンに基づいて生成されるため、ブレのある画像となる。具体的には、測定領域Paの微小距離だけ互いに離間した2つの位置において反射されたインコヒーレント光L2をイメージセンサ46の1つの素子において結像するため、図13の(A)に示すように、生成された外観検査用画像D502aは2重写しのブレのある画像となる。なお、ここでいう「ブレ」とは、2点において反射されたインコヒーレント光L2を結像するために外観検査用画像D502aに生じる画像の不明瞭さを意味するものである。つまり、ここでいう「ブレ」とは、画像のブレ、ボケおよび2重写しなどの不鮮明さおよび不明瞭さなどを意味するものである。
制御部505は、生成されたブレのある外観検査用画像D502aに対してブレを減少させる画像処理を行うことによって、ブレの解消された外観検査用画像D502bを生成するように構成されている(図13(B)参照)。画像処理は、たとえば、デコンボリューション処理を行う。デコンボリューション処理は、画像において、ブレやボケを取り除くための処理である。具体的には、光学系の点像分布関数(PSF:Point spread function)を予め取得しておくとともに、生成されたブレのある外観検査用画像D502aに対して、デコンボリューション処理を行うことによって、ブレのある外観検査用画像D502aからPSFを除去することによってブレ(2重写し)を解消する。
なお、第5実施形態のその他の構成については、第1実施形態と同様である。
(第5実施形態の効果)
第5実施形態では、以下のような効果を得ることができる。
第5実施形態では、上記のように、制御部505は、異なる2点において反射されたインコヒーレント光L2の強度パターンに基づいて生成されたブレのある外観検査用画像D502aに対してブレを減少させる画像処理を行うように構成されている。これにより、制御部505によって、ブレを減少させる画像処理が行われた外観検査用画像D502bを取得することできる。また、外観検査用画像D502bにおけるブレを抑制するために、光路を変更させるための部品を新たに設けることが不要であるため、部品点数の増加を抑制することができる。
なお、第5実施形態のその他の効果は、上記第1実施形態と同様である。
[第6実施形態]
図14を参照して、第6実施形態による欠陥検査装置600の構成について説明する。この第6実施形態は、互いに異なる2つの光路のうち、いずれか一方の光路をシャッタ47に遮断させた状態で、他方の光路を用いて第2照射部3にインコヒーレント光L2を照射させることにより、イメージセンサ46(撮像部)にインコヒーレント光L2を撮像させるように構成した第1実施形態とは異なり、互いに異なる2つの光路のそれぞれに、特定の波長を透過するバンドパスフィルタ(第1バンドパスフィルタ645aおよび第2バンドパスフィルタ645b)を備えるように構成されている。なお、図中において、上記第1実施形態と同様の構成の部分には、同一の符号を付して図示するとともに説明を省略する。
(第6実施形態による欠陥検査装置の構成)
図14に示すように、本発明の第6実施形態による欠陥検査装置600は、第2照射部603と、スペックル・シェアリング干渉計604と、制御部605とを備える。
第2照射部603は、測定領域Paにインコヒーレントな光であるインコヒーレント光L602を照射する。インコヒーレント光L602は、第1照射部2によって照射されるレーザ光L1とは別個の波長を有するように構成されている。
スペックル・シェアリング干渉計604は、測定領域Paの互いに異なる2点(たとえば、位置Pa1および位置Pa2)において反射されたレーザ光L1およびインコヒーレント光L602が共通して通過する互いに異なる2つの光路上の一方に、所定の波長を有する光を透過させる第1バンドパスフィルタ645aを含むとともに、互いに異なる2つの光路上の他方に、所定の波長を有する光を透過させる第2バンドパスフィルタ645bを含むように構成されている。なお、第1バンドパスフィルタ645aは、特許請求の範囲の「第1光学フィルタ」の一例である。また、第2バンドパスフィルタ645bは、特許請求の範囲の「第2光学フィルタ」の一例である。
第1バンドパスフィルタ645aは、ビームスプリッタ41と位相シフタ42との間に配置される。また、第1バンドパスフィルタ645aは、所定の波長を有する光を透過させる。そして、第1バンドパスフィルタ645aは、所定の波長を有しない光については透過させない(減衰させる)ように構成されている。第1バンドパスフィルタ645aは、たとえば、誘電体多層膜を含む。そして、第1バンドパスフィルタ645aは、レーザ光L1の波長を有する光を透過するように構成されている。また、第1バンドパスフィルタ645aは、インコヒーレント光L602の波長を有する光を透過させない(減衰させる)ように構成されている。
第2バンドパスフィルタ645bは、ビームスプリッタ41と第2反射鏡43bとの間に配置される。また、第2バンドパスフィルタ645bは、所定の波長を有する光を透過させる。そして、第2バンドパスフィルタ645bは、所定の波長を有しない光については透過させない(減衰させる)ように構成されている。第2バンドパスフィルタ645bは、たとえば、誘電体多層膜を含む。そして、第2バンドパスフィルタ645bは、レーザ光L1の波長を有する光と、インコヒーレント光L602の波長を有する光と、の両方を透過するように構成されている。
制御部605は、第2照射部603によるインコヒーレント光L602の照射を制御する。また、制御部605は、イメージセンサ46によって撮像されたインコヒーレント光L602の強度パターンに基づいて、外観検査用画像D2を生成する。また、制御部605は、第1照射部2にレーザ光L1を照射させることにより、イメージセンサ46にレーザ光L1を撮像させるタイミングと、第2照射部603にインコヒーレント光L602を照射させることにより、イメージセンサ46にインコヒーレント光L602を撮像させるタイミングと、を互いに異ならせるように構成されている。さらに、制御部605は、振動子1の動作を停止させた状態で、第2照射部603にインコヒーレント光L602を照射させることにより、イメージセンサ46にインコヒーレント光L602を撮像させるように構成されている。
なお、第6実施形態のその他の構成については、第1実施形態と同様である。
(第6実施形態の効果)
第6実施形態では、以下のような効果を得ることができる。
第6実施形態では、上記のように、スペックル・シェアリング干渉計604は、互いに異なる2点において反射されたレーザ光L1およびインコヒーレント光L602が共通して通過する互いに異なる2つの光路上の一方に、所定の波長を有する光を透過させる第1バンドパスフィルタ645a(第1光学フィルタ)を含むとともに、互いに異なる2つの光路上の他方に、所定の波長を有する光を透過させる第2バンドパスフィルタ645b(第2光学フィルタ)を含むように構成されている。そして、第1バンドパスフィルタ645aは、レーザ光L1を透過させるとともに、インコヒーレント光L602を減衰させるように構成されており、第2バンドパスフィルタ645bは、レーザ光L1およびインコヒーレント光L602を透過させるように構成されている。これにより、測定領域Paの1点において反射されたインコヒーレント光L602を結像させるため、外観検査用画像D2がぶれたような画像にならず、鮮明な画像とすることができる。さらに、光路上に第1バンドパスフィルタ645aおよび第2バンドパスフィルタ645bを配置することにより、光路の変更および遮断などを行うためにスペックル・シェアリング干渉計604を構成する部品を動作させる制御が不要となる。その結果、測定領域Paの互いに異なる2点において反射されたレーザ光L1を干渉させる方法(シェアログラフィ法)を用いてレーザ干渉を行う場合でも、外観検査用画像D2の画質が劣化することをより抑制するための処理負担の増大を抑制することができる。
なお、第6実施形態のその他の効果は、上記第1実施形態と同様である。
[第7実施形態]
図15を参照して、第7実施形態による欠陥検査装置700の構成について説明する。この第7実施形態は、レーザ光L1を照射する第1照射部2とインコヒーレント光L2を照射する第2照射部3とを備えるように構成した第1実施形態とは異なり、レーザ光L1を照射する第1照射部2と、照射されたレーザ光L1のコヒーレンスを低下させることによってインコヒーレント光L702を照射する第2照射部703を備えるように構成されている。なお、図中において、上記第1実施形態と同様の構成の部分には、同一の符号を付して図示するとともに説明を省略する。
(第7実施形態による欠陥検査装置の構成)
図15に示すように、本発明の第7実施形態による欠陥検査装置700は、第2照射部703と制御部705とを備える。
第2照射部703は、第1照射部2によって照射されたレーザ光L1のコヒーレンスを低下させることによって、測定領域Paにインコヒーレントな光であるインコヒーレント光L702を照射するように構成されている。第2照射部703は、たとえば、スペックルリデューサ703aを含む。スペックルリデューサ703aは、レーザ光L1を拡散させることによって、レーザ光L1の干渉性(コヒーレンス)を低下させる。
制御部705は、第1照射部2および第2照射部703による照射を制御する。すなわち、制御部705は、第1照射部2によってレーザ光L1を照射させる制御を行うとともに、第2照射部703の動作を制御することによって、第1照射部2によって照射されたレーザ光L1のコヒーレンスを低下させることによってインコヒーレント光L702を照射させる。また、制御部705は、第1照射部2にレーザ光L1を照射させることにより、イメージセンサ46にレーザ光L1を撮像させるタイミングと、第2照射部703にインコヒーレント光L702を照射させることにより、イメージセンサ46にインコヒーレント光L702を撮像させるタイミングと、を互いに異ならせるように構成されている。また、制御部705は、イメージセンサ46によって撮像された干渉されたレーザ光L1の強度パターンに基づいて、表層検査用画像D1を生成するとともに、イメージセンサ46によって撮像されたインコヒーレント光L702の強度パターンに基づいて、外観検査用画像D2を生成するように構成されている。
なお、第7実施形態のその他の構成については、第1実施形態と同様である。
(第7実施形態の効果)
第7実施形態では、以下のような効果を得ることができる。
第7実施形態では、上記のように、第2照射部703は、第1照射部2によって照射されたレーザ光L1のコヒーレンスを低下させることによって、インコヒーレント光L702を照射するように構成されている。これにより、1つの光源によってレーザ光L1およびインコヒーレント光L702を照射することができるので、2つの光源(照射部)を備える場合と比較して、部品点数の増大を抑制することができる。また、レーザ光L1を拡散することによってインコヒーレント光L702として照射するため、レーザ光L1とインコヒーレント光L702との波長が、略等しい値となる。その結果、バンドパスフィルタなどの部材を同一のものとすることができるので、部品点数の増大を抑制することができる。
なお、第7実施形態のその他の効果は、上記第1実施形態と同様である。
[変形例]
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
たとえば、上記第1~第7実施形態では、検査対象の測定領域を変位させる変位部として検査対象に接触させ、機械的振動によって測定領域に弾性波を励起する振動子を用いる例を示したが、本発明はこれに限られない。たとえば、検査対象に接触させない位置に配置された強力なスピーカによって弾性波を励起するようにしてもよい。また、パルス高周波源を変位部として、検査対象に熱を付与することによって測定領域を変位させるようにしてもよい。また、パルスレーザを変位部として構成してもよい。
また、上記第1~第7実施形態では、レーザ干渉法としてシェアログラフィ法を用いることで、スペックル・シェアリング干渉計を用いる例を示したが、本発明はこれに限られない。本発明では、他の光干渉計によって、干渉部を構成してもよい。
また、上記第1~第7実施形態では、制御部によって表層検査用画像や外観検査用画像などの画像を生成する例を示したが、本発明はこれに限られない。たとえば、GPU(Graphics Processing Unit)などの、外部の画像処理部を用いて画像を生成するように構成してもよい。
また、上記第1~第7実施形態では、外観検査用画像およびの生成について画像処理を行う際に、画素同士の輝度値の差分値に基づいて、外表面に発生している不良部位の位置を判別する例を示したが、本発明はこれに限られない。複数の画像に対して輝度値の平均値を取得した上で、平均値から所定のしきい値を超える量だけ離れた値をもつ領域を外表面に発生している不良部位の位置として判別するようにしてもよい。また、機械学習によってオートエンコーダーと呼ばれる手法を用いて判別を行うようにしてもよい。
また、上記第1~第3、および、第7実施形態では、シャッタは、ビームスプリッタと第2反射鏡との間の光路(図1中の破線S2)を遮断するように構成されている例を示したが、本発明はこれに限られない。たとえば、ビームスプリッタと第1反射鏡との間の光路(図1中の実線S1)を遮断するように構成してもよい。
また、上記第1~第7実施形態では、第1照射部によるレーザ光の照射および、撮像部によるレーザ光の撮像(検出)を行った後に、第2照射部によってインコヒーレント光の照射を行う例を示したが、本発明はこれに限られない。たとえば、レーザ光を照射する前に、インコヒーレント光を照射するように構成してもよい。また、レーザ光が複数回照射されるうちの、途中にインコヒーレント光を照射するように構成してもよい。
また、上記第1~第7実施形態では、イメージセンサ(撮像部)の例として、CMOSイメージセンサとCCDイメージセンサを用いる例を示したが本発明はこれに限られない。たとえば、ラインセンサやストリークカメラを用いるようにしてもよい。
また、上記第1~第7実施形態では、スペックル・シェアリング干渉計(干渉部)は、レーザ光およびインコヒーレント光の光路上に配置された共通の光学部材を含む例を示したが、本発明はこれに限られない。たとえば、レーザ光を撮像する際と、インコヒーレント光を撮像する際とで、別個の光学部材を用いて撮像するようにしてもよい。
また、上記第1~第5、および、第7実施形態では、第2照射部は、第1照射部によって照射されるレーザ光の波長と等しい波長を有する光を含むインコヒーレント光を照射するように構成されている例を示したが、本発明はこれに限られない。たとえば、第2照射部は、第1照射部によって照射されるレーザ光の波長の光を含まないインコヒーレント光を照射するように構成してもよい。
また、上記第1~第7実施形態では、レーザ干渉法は、測定領域の互いに異なる2点において反射されたレーザ光を干渉させる方法であり、レーザ光の光路の一部とインコヒーレント光の光路の一部とが共通となるように構成されている例を示したが、本発明はこれに限られない。たとえば、測定領域の1点において反射された光を干渉させることによって、測定領域の表面の変位を測定するように構成されていてもよい。
また、上記第1~第3、および、第7実施形態では、互いに異なる2点において反射されたレーザ光が通過する互いに異なる2つの光路のうち、いずれか一方の光路を遮断するシャッタをさらに備え、制御部は、2つの光路のうち、いずれか一方の光路をシャッタに遮断させた状態で、他方の光路を用いて第2照射部にインコヒーレント光を照射させることにより、撮像部(イメージセンサ)にインコヒーレント光を撮像させるように構成されている例を示したが、本発明はこれに限られない。たとえば、インコヒーレント光を撮像する際、遮断部(シャッタ)を備えず、測定領域の互いに異なる2点において反射されたレーザ光が通過する2つの光路のうち、いずれか一方を撮像部(イメージセンサ)において結像しないように構成してもよい。すなわち、遮断部を備えず、スペックル・シェアリング干渉計に含まれる光学部材(たとえば、反射鏡)の位置を変更させることによって、異なる2つの光路のうちいずれか一方が撮像部において結像しないように構成してもよい。
また、上記第4実施形態では、レーザ光が通過する光路上に配置されている反射鏡部材をさらに備え、制御部は、反射鏡部材の位置を変更させることによって、互いに異なる2点において反射されたレーザ光が通過する互いに異なる2つの光路のうち、いずれか一方の光路を変更させた状態で、インコヒーレント光を照射させることにより、撮像部にインコヒーレント光を撮像させるように構成されている例を示したが、本発明はこれに限られない。たとえば、第1反射鏡および第2反射鏡の両方の位置を変更させることによって、互いに異なる2つの光路の両方を変更させた状態で、撮像部にインコヒーレント光を撮像させるようにしてもよい。
また、上記第5実施形態では、撮像部は、互いに異なる2点において反射されたインコヒーレント光を撮像するように構成されており、制御部は、互いに異なる2点において反射されたインコヒーレント光の強度パターンに基づいて生成されたブレのある外観検査用画像に対してブレを減少させる画像処理を行うように構成されている例を示したが、本発明はこれに限られない。たとえば、ブレを減少させる画像処理は行わず、外観検査で不良であると判別された位置を抽出して表示させるように構成してもよい。
また、上記第6実施形態では、スペックル・シェアリング干渉計(干渉部)は、互いに異なる2点において反射されたレーザ光およびインコヒーレント光が共通して通過する互いに異なる2つの光路上の一方に、所定の波長を有する光を透過させる第1バンドパスフィルタ(第1光学フィルタ)を含むとともに、互いに異なる2つの光路上の他方に、所定の波長を有する光を透過させる第2バンドパスフィルタ(第2光学フィルタ)を含むように構成されており、第1バンドパスフィルタは、レーザ光を透過させるとともにインコヒーレント光を減衰させるように構成されており、第2バンドパスフィルタは、レーザ光およびインコヒーレント光を透過させるように構成されている例を示したが、本発明はこれに限られない。たとえば、スペックル・シェアリング干渉計を、互いに異なる2つの光路の片方に第1バンドパスフィルタを含むが、互いに異なる2つの光路上の他方に第2バンドパスフィルタを含まないように構成してもよい。
また、上記第4~第6実施形態では、第2照射部3によってインコヒーレント光L2を照射する例を示したが、本発明はこれに限られない。たとえば、第2照射部3のかわりに第2照射部203を用いることによって3原色(赤色、緑色、青色)の波長を含む光であるインコヒーレント光L202を照射するように構成してもよい。
また、上記第1~第7実施形態では、制御部は、第1照射部にレーザ光を照射させることにより、イメージセンサ(撮像部)にレーザ光を撮像させるタイミングと、第2照射部にインコヒーレント光を照射させることにより、イメージセンサにインコヒーレント光を撮像させるタイミングと、を互いに異ならせるように構成されている例を示したが、本発明はこれに限られない。たとえば、レーザ光を撮像させるタイミングとインコヒーレント光を撮像させるタイミングとを同時に行うようにしてもよい。
また、上記第1~第7実施形態では、制御部は、振動子(変位部)の動作を停止させた状態で、第2照射部にインコヒーレント光を照射させることにより、イメージセンサ(撮像部)にインコヒーレント光を撮像させるように構成されている例を示したが、本発明はこれに限られない。たとえば、振動子の動作を停止させない状態で、インコヒーレント光を照射するように構成してもよい。
また、上記第1~第7実施形態では、画像を表示させる表示部をさらに備え、制御部は、測定領域のうち内部に発生している不良部位の位置であると判別された位置を視覚的に認識可能なように構成された表層検査用画像を、表示部に表示させる制御を行うとともに、測定領域のうち外表面に発生している不良部位の位置であると判別された位置を視覚的に認識可能なように構成された外観検査用画像を、表示部に表示させる制御を行うように構成されている例を示したが、本発明はこれに限られない。たとえば、画像を表示させる表示部を備えず、生成した画像をデータとして外部に出力するように構成されていてもよい。
また、上記第1~第7実施形態では、制御部は、測定領域のうち内部に発生している不良部位の位置であると判別された位置を強調して示す画像である抽出画像を、外観検査用画像に重畳させて、表示部に表示させる制御を行うように構成されている例を示したが、本発明はこれに限られない。たとえば、抽出画像を外観検査用画像と並べて表示させるように構成してもよい。
また、上記第1~第7実施形態では、制御部は、表層検査用画像と外観検査用画像とを、表示部に並べて表示させる制御を行うように構成されている例を示したが、本発明はこれに限られない。たとえば、表層検査用画像を半透明に透過させた状態で、外観検査用画像に重ねて表示させるようにしてもよい。
また、上記第1~第3実施形態では、スペックル・シェアリング干渉計4(干渉部)は、レーザ光L1およびインコヒーレント光L2の光路上に配置された共通の光学部材を含み、光学部材は、所定の波長を有する光を透過させるバンドパスフィルタ45(光学フィルタ)を有し、干渉されたレーザ光L1と、測定領域Paにおいて反射されたインコヒーレント光L2とが、共通のバンドパスフィルタ45を通過可能な波長を有するとともに、共通のイメージセンサ46によって撮像されるように構成されている例を示したが、本発明はこれに限られない。たとえば、複数のバンドパスフィルタを備えさせ、レーザ光L1とインコヒーレント光L2およびL202との各々の波長に応じて、光路上のバンドパスフィルタを切り替えて、対応する波長を透過させるように構成してもよい。
また、上記第3実施形態では、撮像部は、レーザ光を撮像する第1イメージセンサ(第1撮像部)と、第1イメージセンサとは別個に設けられ、インコヒーレント光を撮像する第2イメージセンサ(第2撮像部)と、を含むように構成されているとともに、第2照射部は、赤色の波長を有する光と、緑色の波長を有する光と、青色の波長を有する光とを含むインコヒーレント光を照射するように構成されている例を示したが、本発明はこれに限られない。たとえば、撮像部を、レーザ光に近い波長を含むインコヒーレント光を照射するように構成するとともに、レーザ光とインコヒーレント光とを別個に設けられた2つの撮像部(第1イメージセンサと第2イメージセンサ)によってそれぞれ撮像するように構成してもよい。
また、上記第2および第3実施形態では、は、赤色の波長を有するインコヒーレント光と、緑色の波長を有するインコヒーレント光と、青色の波長を有するインコヒーレント光とをそれぞれ照射するように構成されている。例を示したが、本発明はこれに限られない。たとえば、第2照射部が、赤色の波長を含む光と、青色の波長を含む光と、緑色の波長を含む光と、を含むインコヒーレントな光である白色光を照射するように構成されていてもよい。また、その際、イメージセンサを、カラーフィルタを備えてカラー画像を取得できるように構成してもよいし、単色センサを備えて、赤色と緑色と青色とのそれぞれの波長を透過するバンドパスフィルタを切り換えながら用いるように構成してもよい。
また、上記第1~第7実施形態では、レーザ光は785nmの波長を有する光(近赤外光)を含む例を示したが、本発明はこれに限られない。たとえば、633nmの波長を有する可視光を含むように構成するようにしてもよい。
[態様]
上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(項目1)
検査対象の測定領域を変位させる変位部と、
前記測定領域にレーザ光を照射する第1照射部と、
前記測定領域にインコヒーレントな光であるインコヒーレント光を照射する第2照射部と、
前記第1照射部および前記第2照射部による照射を制御する制御部と、
前記測定領域において反射された前記レーザ光をレーザ干渉法により干渉させる干渉部と、
干渉された前記レーザ光と、前記測定領域において反射された前記インコヒーレント光と、を撮像する撮像部と、を備え、
前記撮像部によって撮像された前記干渉されたレーザ光の強度パターンに基づいて、前記測定領域における前記検査対象の変位を示す画像である表層検査用画像を生成するとともに、前記撮像部によって撮像された前記インコヒーレント光の強度パターンに基づいて、前記測定領域の外表面の画像である外観検査用画像を生成するように構成されている、欠陥検査装置。
(項目2)
前記干渉部は、前記レーザ光および前記インコヒーレント光の光路上に配置された共通の光学部材を含む、項目1に記載の欠陥検査装置。
(項目3)
前記第2照射部は、前記第1照射部によって照射される前記レーザ光の波長と等しい波長を有する光を含む前記インコヒーレント光を照射するように構成されている、項目1または2に記載の欠陥検査装置。
(項目4)
前記レーザ干渉法は、前記測定領域の互いに異なる2点において反射された前記レーザ光を干渉させる方法であり、
前記レーザ光の光路の一部と前記インコヒーレント光の光路の一部とが共通となるように構成されている、項目1~3のいずれか1項に記載の欠陥検査装置。
(項目5)
前記互いに異なる2点において反射された前記レーザ光が通過する互いに異なる2つの光路のうち、いずれか一方の光路を遮断する遮断部をさらに備え、
前記制御部は、前記2つの光路のうち、いずれか一方の光路を前記遮断部に遮断させた状態で、他方の光路を用いて前記第2照射部に前記インコヒーレント光を照射させることにより、前記撮像部に前記インコヒーレント光を撮像させるように構成されている、項目4に記載の欠陥検査装置。
(項目6)
前記レーザ光が通過する光路上に配置されている反射鏡部材をさらに備え、
前記制御部は、前記反射鏡部材の位置を変更させることによって、前記互いに異なる2点において反射された前記レーザ光が通過する互いに異なる2つの光路のうち、いずれか一方の光路を変更させた状態で、前記インコヒーレント光を照射させることにより、前記撮像部に前記インコヒーレント光を撮像させるように構成されている、項目4に記載の欠陥検査装置。
(項目7)
前記撮像部は、前記互いに異なる2点において反射された前記インコヒーレント光を撮像するように構成されており、
前記制御部は、前記互いに異なる2点において反射された前記インコヒーレント光の強度パターンに基づいて生成されたブレのある外観検査用画像に対して前記ブレを減少させる画像処理を行うように構成されている、項目4に記載の欠陥検査装置。
(項目8)
前記干渉部は、前記互いに異なる2点において反射された前記レーザ光および前記インコヒーレント光が共通して通過する互いに異なる2つの光路上の一方に、所定の波長を有する光を透過させる第1光学フィルタを含むとともに、前記互いに異なる2つの光路上の他方に、所定の波長を有する光を透過させる第2光学フィルタを含むように構成されており、
前記第1光学フィルタは、前記レーザ光を透過させるとともに前記インコヒーレント光を減衰させるように構成されており、
前記第2光学フィルタは、前記レーザ光および前記インコヒーレント光を透過させるように構成されている、項目4に記載の欠陥検査装置。
(項目9)
前記制御部は、前記第1照射部に前記レーザ光を照射させることにより、前記撮像部に前記レーザ光を撮像させるタイミングと、前記第2照射部に前記インコヒーレント光を照射させることにより、前記撮像部に前記インコヒーレント光を撮像させるタイミングと、を互いに異ならせるように構成されている、項目1~8のいずれか1項に記載の欠陥検査装置。
(項目10)
前記制御部は、前記変位部の動作を停止させた状態で、前記第2照射部に前記インコヒーレント光を照射させることにより、前記撮像部に前記インコヒーレント光を撮像させるように構成されている、項目9に記載の欠陥検査装置。
(項目11)
画像を表示させる表示部をさらに備え、
前記制御部は、前記測定領域のうち内部に発生している不良部位の位置であると判別された位置を視覚的に認識可能なように構成された前記表層検査用画像を、前記表示部に表示させる制御を行うとともに、前記測定領域のうち外表面に発生している不良部位の位置であると判別された位置を視覚的に認識可能なように構成された前記外観検査用画像を、前記表示部に表示させる制御を行うように構成されている、項目1~10のいずれか1項に記載の欠陥検査装置。
(項目12)
前記制御部は、前記測定領域のうち内部に発生している不良部位の位置であると判別された位置を強調して示す画像を、前記外観検査用画像に重畳させて、前記表示部に表示させる制御を行うように構成されている、項目11に記載の欠陥検査装置。
(項目13)
前記制御部は、前記表層検査用画像と前記外観検査用画像とを、前記表示部に並べて表示させる制御を行うように構成されている、項目11または12に記載の欠陥検査装置。
(項目14)
前記制御部は、前記干渉されたレーザ光と、前記測定領域において反射された前記インコヒーレント光とを、共通の前記撮像部によって撮像させるように構成されている、項目1~13のいずれか1項に記載の欠陥検査装置。
(項目15)
前記干渉部は、前記レーザ光および前記インコヒーレント光の光路上に配置された共通の光学部材を含み、
前記光学部材は、所定の波長を有する光を透過させる光学フィルタを有し、
前記干渉されたレーザ光と、前記測定領域において反射された前記インコヒーレント光とが、共通の前記光学フィルタを通過可能な波長を有するとともに、前記共通の撮像部によって撮像されるように構成されている、項目14に記載の欠陥検査装置。
(項目16)
前記撮像部は、前記レーザ光を撮像する第1撮像部と、前記第1撮像部とは別個に設けられ、前記インコヒーレント光を撮像する第2撮像部と、を含むように構成されている、項目1~13のいずれか1項に記載の欠陥検査装置。
(項目17)
前記インコヒーレント光は、赤色の波長を有する光と、緑色の波長を有する光と、青色の波長を有する光とを含むように構成されている、項目1~16のいずれか1項に記載の欠陥検査装置。
(項目18)
前記第2照射部は、前記第1照射部によって照射された前記レーザ光のコヒーレンスを低下させることによって、前記インコヒーレント光を照射するように構成されている、項目1~17のいずれか1項に記載の欠陥検査装置。
1 振動子(変位部)
2 第1照射部
3、203、603、703 第2照射部
4、204、304、404、504、604 スペックル・シェアリング干渉計(干渉部)
5、205、305、405、505、605、705 制御部
6 信号発生部
7 表示部
45、245 バンドパスフィルタ(光学フィルタ)
46、246 イメージセンサ(撮像部)
47 シャッタ(遮断部)
100、200、300、400、500、600、700 欠陥検査装置
345a、645a 第1バンドパスフィルタ(第1光学フィルタ)
345b、645b 第2バンドパスフィルタ(第2光学フィルタ)
443b 第2反射鏡(反射鏡部材)
346a 第1イメージセンサ(第1撮像部)
346b 第2イメージセンサ(第2撮像部)

Claims (18)

  1. 検査対象の測定領域を変位させる変位部と、
    前記測定領域にレーザ光を照射する第1照射部と、
    前記測定領域にインコヒーレントな光であるインコヒーレント光を照射する第2照射部と、
    前記第1照射部および前記第2照射部による照射を制御する制御部と、
    前記測定領域において反射された前記レーザ光をレーザ干渉法により干渉させる干渉部と、
    干渉された前記レーザ光と、前記測定領域において反射された前記インコヒーレント光と、を撮像する撮像部と、を備え、
    前記第2照射部に前記インコヒーレント光を照射させずに前記第1照射部に前記レーザ光を照射させることによって、前記撮像部によって撮像された前記干渉されたレーザ光の強度パターンに基づいて、前記測定領域における前記検査対象の変位を示す画像である表層検査用画像を生成するとともに、前記撮像部によって撮像された前記インコヒーレント光の強度パターンに基づいて、前記測定領域の外表面の画像である外観検査用画像を生成するように構成されている、欠陥検査装置。
  2. 前記干渉部は、前記レーザ光および前記インコヒーレント光の光路上に配置された共通の光学部材を含む、請求項1に記載の欠陥検査装置。
  3. 前記第2照射部は、前記第1照射部によって照射される前記レーザ光の波長と等しい波長を有する光を含む前記インコヒーレント光を照射するように構成されている、請求項1または2に記載の欠陥検査装置。
  4. 前記レーザ干渉法は、前記測定領域の互いに異なる2点において反射された前記レーザ光を干渉させる方法であり、
    前記レーザ光の光路の一部と前記インコヒーレント光の光路の一部とが共通となるように構成されている、請求項1~3のいずれか1項に記載の欠陥検査装置。
  5. 前記互いに異なる2点において反射された前記レーザ光が通過する互いに異なる2つの光路のうち、いずれか一方の光路を遮断する遮断部をさらに備え、
    前記制御部は、前記2つの光路のうち、いずれか一方の光路を前記遮断部に遮断させた状態で、他方の光路を用いて前記第2照射部に前記インコヒーレント光を照射させることにより、前記撮像部に前記インコヒーレント光を撮像させるように構成されている、請求項4に記載の欠陥検査装置。
  6. 前記レーザ光が通過する光路上に配置されている反射鏡部材をさらに備え、
    前記制御部は、前記反射鏡部材の位置を変更させることによって、前記互いに異なる2点において反射された前記レーザ光が通過する互いに異なる2つの光路のうち、いずれか一方の光路を変更させた状態で、前記インコヒーレント光を照射させることにより、前記撮像部に前記インコヒーレント光を撮像させるように構成されている、請求項4に記載の欠陥検査装置。
  7. 前記撮像部は、前記互いに異なる2点において反射された前記インコヒーレント光を撮像するように構成されており、
    前記制御部は、前記互いに異なる2点において反射された前記インコヒーレント光の強度パターンに基づいて生成されたブレのある外観検査用画像に対して前記ブレを減少させる画像処理を行うように構成されている、請求項4に記載の欠陥検査装置。
  8. 前記干渉部は、前記互いに異なる2点において反射された前記レーザ光および前記インコヒーレント光が共通して通過する互いに異なる2つの光路上の一方に、所定の波長を有する光を透過させる第1光学フィルタを含むとともに、前記互いに異なる2つの光路上の他方に、所定の波長を有する光を透過させる第2光学フィルタを含むように構成されており、
    前記第1光学フィルタは、前記レーザ光を透過させるとともに前記インコヒーレント光を減衰させるように構成されており、
    前記第2光学フィルタは、前記レーザ光および前記インコヒーレント光を透過させるように構成されている、請求項4に記載の欠陥検査装置。
  9. 前記制御部は、前記第1照射部に前記レーザ光を照射させることにより、前記撮像部に前記レーザ光を撮像させるタイミングと、前記第2照射部に前記インコヒーレント光を照射させることにより、前記撮像部に前記インコヒーレント光を撮像させるタイミングと、を互いに異ならせるように構成されている、請求項1~8のいずれか1項に記載の欠陥検査装置。
  10. 前記制御部は、前記変位部の動作を停止させた状態で、前記第2照射部に前記インコヒーレント光を照射させることにより、前記撮像部に前記インコヒーレント光を撮像させるように構成されている、請求項9に記載の欠陥検査装置。
  11. 画像を表示させる表示部をさらに備え、
    前記制御部は、前記測定領域のうち内部に発生している不良部位の位置であると判別された位置を視覚的に認識可能なように構成された前記表層検査用画像を、前記表示部に表示させる制御を行うとともに、前記測定領域のうち外表面に発生している不良部位の位置であると判別された位置を視覚的に認識可能なように構成された前記外観検査用画像を、前記表示部に表示させる制御を行うように構成されている、請求項1~10のいずれか1項に記載の欠陥検査装置。
  12. 前記制御部は、前記測定領域のうち内部に発生している不良部位の位置であると判別された位置を強調して示す画像を、前記外観検査用画像に重畳させて、前記表示部に表示させる制御を行うように構成されている、請求項11に記載の欠陥検査装置。
  13. 前記制御部は、前記表層検査用画像と前記外観検査用画像とを、前記表示部に並べて表示させる制御を行うように構成されている、請求項11または12に記載の欠陥検査装置。
  14. 前記制御部は、前記干渉されたレーザ光と、前記測定領域において反射された前記インコヒーレント光とを、共通の前記撮像部によって撮像させるように構成されている、請求項1~13のいずれか1項に記載の欠陥検査装置。
  15. 前記干渉部は、前記レーザ光および前記インコヒーレント光の光路上に配置された共通の光学部材を含み、
    前記光学部材は、所定の波長を有する光を透過させる光学フィルタを有し、
    前記干渉されたレーザ光と、前記測定領域において反射された前記インコヒーレント光とが、共通の前記光学フィルタを通過可能な波長を有するとともに、前記共通の撮像部によって撮像されるように構成されている、請求項14に記載の欠陥検査装置。
  16. 前記撮像部は、前記レーザ光を撮像する第1撮像部と、前記第1撮像部とは別個に設けられ、前記インコヒーレント光を撮像する第2撮像部と、を含むように構成されている、請求項1~13のいずれか1項に記載の欠陥検査装置。
  17. 前記インコヒーレント光は、赤色の波長を有する光と、緑色の波長を有する光と、青色の波長を有する光とを含むように構成されている、請求項1~16のいずれか1項に記載の欠陥検査装置。
  18. 前記第2照射部は、前記第1照射部によって照射された前記レーザ光のコヒーレンスを低下させることによって、前記インコヒーレント光を照射するように構成されている、請求項1~17のいずれか1項に記載の欠陥検査装置。
JP2019169774A 2019-09-18 2019-09-18 欠陥検査装置 Active JP7283324B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019169774A JP7283324B2 (ja) 2019-09-18 2019-09-18 欠陥検査装置
EP20182786.2A EP3795941A1 (en) 2019-09-18 2020-06-29 Defect inspection apparatus
US16/920,148 US11226294B2 (en) 2019-09-18 2020-07-02 Defect inspection apparatus
CN202010825129.1A CN112525924A (zh) 2019-09-18 2020-08-17 缺陷检查装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019169774A JP7283324B2 (ja) 2019-09-18 2019-09-18 欠陥検査装置

Publications (2)

Publication Number Publication Date
JP2021047090A JP2021047090A (ja) 2021-03-25
JP7283324B2 true JP7283324B2 (ja) 2023-05-30

Family

ID=71266449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019169774A Active JP7283324B2 (ja) 2019-09-18 2019-09-18 欠陥検査装置

Country Status (4)

Country Link
US (1) US11226294B2 (ja)
EP (1) EP3795941A1 (ja)
JP (1) JP7283324B2 (ja)
CN (1) CN112525924A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129209A1 (ja) * 2018-12-20 2020-06-25 株式会社島津製作所 欠陥検査装置および欠陥検査方法
US20240230601A1 (en) * 2021-05-14 2024-07-11 Shimadzu Corporation Defect inspection apparatus and defect inspection method
CN215574705U (zh) * 2021-05-19 2022-01-18 富泰华工业(深圳)有限公司 检测装置
KR20230067759A (ko) * 2021-11-08 2023-05-17 삼성디스플레이 주식회사 광학 검사 장치 및 이를 이용한 검사 방법
JP7439157B2 (ja) * 2022-03-30 2024-02-27 本田技研工業株式会社 検査装置
CN114858755B (zh) * 2022-07-05 2022-10-21 中国航发四川燃气涡轮研究院 一种航空发动机涂层变频原位激光检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239261A2 (de) 2001-03-09 2002-09-11 Stefan Dengler Prüfeinrichtung und -verfahren für verformbare Prüflinge
JP2010212460A (ja) 2009-03-10 2010-09-24 Canon Inc 計測装置、露光装置及びデバイス製造方法
JP2017219318A (ja) 2016-06-02 2017-12-14 株式会社島津製作所 欠陥検査方法及び欠陥検査装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060084852A (ko) * 2003-09-15 2006-07-25 지고 코포레이션 표면 3각 측량 및 박막 코팅을 통한 프로파일링
JP2007024674A (ja) 2005-07-15 2007-02-01 Hitachi Ltd 表面・表層検査装置、及び表面・表層検査方法
CN105785741B (zh) * 2014-12-15 2018-08-28 南京采薇且歌信息科技有限公司 一种3d全息数字光处理投影装置
US10666928B2 (en) * 2015-02-06 2020-05-26 The University Of Akron Optical imaging system and methods thereof
US10302923B2 (en) * 2016-10-26 2019-05-28 Molecular Devices, Llc Trans-illumination imaging with use of interference fringes to enhance contrast and find focus
JP6805930B2 (ja) * 2017-03-29 2020-12-23 株式会社島津製作所 振動測定装置
JP6791029B2 (ja) * 2017-06-12 2020-11-25 株式会社島津製作所 欠陥検出方法及び欠陥検出装置
CN108007677B (zh) * 2017-12-27 2023-10-27 杭州远方光电信息股份有限公司 一种激光投影散斑测量系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239261A2 (de) 2001-03-09 2002-09-11 Stefan Dengler Prüfeinrichtung und -verfahren für verformbare Prüflinge
JP2010212460A (ja) 2009-03-10 2010-09-24 Canon Inc 計測装置、露光装置及びデバイス製造方法
JP2017219318A (ja) 2016-06-02 2017-12-14 株式会社島津製作所 欠陥検査方法及び欠陥検査装置

Also Published As

Publication number Publication date
CN112525924A (zh) 2021-03-19
US11226294B2 (en) 2022-01-18
US20210080399A1 (en) 2021-03-18
EP3795941A1 (en) 2021-03-24
JP2021047090A (ja) 2021-03-25

Similar Documents

Publication Publication Date Title
JP7283324B2 (ja) 欠陥検査装置
JP6316068B2 (ja) 検査システムおよび検査方法
WO2015152306A1 (ja) 検査システムおよび検査方法
WO2020213101A1 (ja) 欠陥検査装置および欠陥検査方法
JP6553412B2 (ja) 検査システム
JP2024123175A (ja) 欠陥検査装置
JP7095751B2 (ja) 欠陥検査装置および欠陥検査方法
JP2018009849A (ja) 検査システムおよび検査方法
JP2023521175A (ja) 表面を光学的に検査するための方法及び検査デバイス
JP6276092B2 (ja) 検査システムおよび検査方法
JP6420131B2 (ja) 検査システム、及び検査方法
JP3768029B2 (ja) パターン欠陥修正装置
JP7396374B2 (ja) 欠陥検査装置および欠陥検査方法
WO2020129209A1 (ja) 欠陥検査装置および欠陥検査方法
JP6909378B2 (ja) 検査システム
JP6909377B2 (ja) 検査システムおよび検査方法
WO2022239522A1 (ja) 欠陥検査装置および欠陥検査方法
JP2018040599A (ja) 検査システム
JP6826813B2 (ja) 検査装置及び検査方法
JP2020012816A (ja) 検査システムおよび検査方法
JP2005221458A (ja) 膜厚分布検査方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R151 Written notification of patent or utility model registration

Ref document number: 7283324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151