JP7279665B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP7279665B2
JP7279665B2 JP2020028412A JP2020028412A JP7279665B2 JP 7279665 B2 JP7279665 B2 JP 7279665B2 JP 2020028412 A JP2020028412 A JP 2020028412A JP 2020028412 A JP2020028412 A JP 2020028412A JP 7279665 B2 JP7279665 B2 JP 7279665B2
Authority
JP
Japan
Prior art keywords
bus bar
phase bus
hollow
phase
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020028412A
Other languages
English (en)
Other versions
JP2021136697A (ja
Inventor
誠一郎 西町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020028412A priority Critical patent/JP7279665B2/ja
Publication of JP2021136697A publication Critical patent/JP2021136697A/ja
Application granted granted Critical
Publication of JP7279665B2 publication Critical patent/JP7279665B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本開示は、電力変換装置に関する。
特許文献1の電力変換装置は、中空を有するバスバを2つ有しており、一方のバスバを他方のバスバの中空内に配置している。
特開2016-158426号公報
電力変換装置は、一方のバスバを他方のバスバの中空内に配置しているため、一方のバスバの外表面全体が、他方のバスバの内表面と対向することになる。また、電力変換装置は、装置全体の小型化のため、一方のバスバと他方のバスバを近接させて配置する場合がある。その場合、一方のバスバは、他方のバスバを流れる電流による磁場の影響を強く受ける虞がある。
本開示は、この事情に基づいて成されたものであり、その目的とするところは、バスバへの磁場の影響を抑制できる電力変換装置を提供することである。
その目的を達成するための本開示の第1の態様は、バッテリから供給される電力を変換して負荷に供給する電力変換部と、電力変換部もしくは、負荷に接続される複数のバスバと、を備え、複数のバスバのうち少なくとも1つのバスバは、中空を形成する中空形成部を有し、バスバは、中空形成部を有する少なくとも1つのバスバの中空の外側に配置されており、少なくとも1つのバスバは、電流が流れる方向に対して垂直な断面の形状が、長辺(23b)と短辺(23c)を有する扁平形状であり、少なくとも1つのバスバは、断面の長辺と短辺を接続する接続部(23d)を有し、接続部が円弧状である電力変換装置。
その目的を達成するための本開示の第2の態様は、バッテリから供給される電力を変換して負荷に供給する電力変換部と、電力変換部もしくは、負荷に接続される複数のバスバと、を備え、複数のバスバのうち少なくとも1つのバスバは、中空を形成する中空形成部を有し、バスバは、中空形成部を有する少なくとも1つのバスバの中空の外側に配置されており、少なくとも1つのバスバは、中空と中空形成部の外側を連通している連通孔(23f)を中空形成部に形成している電変換装置。
電力変換装置はバスバを、中空形成部を有する少なくとも1つのバスバの中空の外側に、配置している。よって、バスバ同士は、互いにバスバの表面全体で近接することを抑制できる。したがって、電力変換装置は、中空内部に別のバスバを配置しているバスバを有する構成と比較して、バスバ同士の電流が近づくことを抑制できる。その結果、電力変換装置は、バスバが、他のバスバを流れる電流による磁場の影響を受けることを抑制できる。
第1実施形態の電力変換システムの回路図である。 第1実施形態の電力変換装置の構成を示した図である。 第1実施形態の電力変換装置の構成を示した図である。 図2のIV-IV断面の断面図である。 第1実施形態の3相バスバの断面図である。 第1実施形態の3相バスバの構成を示した図である。 図2のVII-VII断面の断面図である。 第3の比較例のバスバの構成を示した図である。 第1実施形態のバスバの構成を示した図である。 第2実施形態のU相バスバの構成を示した図である。 図10のXI-XI断面の断面図である。 他の実施形態の3相バスバの断面図である。 他の実施形態の3相バスバの構成を示した図である。
以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形例の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
(第1実施形態)
図1に示すように、電力変換システム1は、バッテリ11、電力変換装置12およびモータ13を備えている。バッテリ11は、通電バスバ20を介して電力変換装置12に直流電流を供給する。3相バスバ22は、U相バスバ23、V相バスバ24およびW相バスバ25をまとめて称する名称である。電力変換装置12は、例えば直流電流を3相交流に変換し、3相バスバ22を介してモータ13に3相交流を供給する。モータ13は、例えばU相、V相、W相の3相を有する3相交流モータである。
電力変換装置12は、図2に示すように通電バスバ20、電力変換部21、3相バスバ22、電流センサ26、制御基板27、平滑コンデンサ28および筐体29を有している。筐体29は、電力変換装置12が有する構成を内部に収容している。
電力変換部21は、複数のスイッチング素子21aを有している。図2は、複数のスイッチング素子21aのうち1組のみを図示している。図2は、他の組のスイッチング素子21aの図示を省略している。U相バスバ23は、モータ13のU相に接続されている。同様にV相バスバ24は、モータのV相、W相バスバ25は、モータのW相に接続されている。図2においてV相バスバ24およびW相バスバ25は、U相バスバ23に重なっているため図示していない。
U相バスバ23は、1つのバスバによって構成され、出力端子21cおよびモータ13に接続されている構成であってもよい。もしくは、U相バスバ23は、2つのバスバによって構成され、1つのバスバが出力端子21cに接続され、もう一方のバスバが、モータ13に接続されている構成であってもよい。その構成では、2つのバスバは、接続されており、これによって出力端子21cとモータ13が電気的に接続される。
図2は、電力変換装置12をYZ平面で見た場合の図を示している。スイッチング素子21aは、正極バスバ20Pに接続されているP端子21P、負極バスバ20Nに接続されているN端子21Nおよび3相バスバ22に接続されている出力端子21cを有している。また、スイッチング素子21aは、制御基板27に接続されている信号端子21bを有している。
制御基板27は、信号端子21bを介してスイッチング素子21aのオンまたはオフを制御している。よって、電力変換装置12は、複数のスイッチング素子21aのオンまたはオフを制御することで、3相バスバ22を介してモータ13に周期の異なる3相の交流電流を供給する。
本開示において、Y方向は、U相バスバ23が延びている長手方向である。また、Y方向は、スイッチング素子21aと平滑コンデンサ28が並ぶ方向である。Z方向は、信号端子21bが延びている長手方向である。また、Z方向は、N端子21N、P端子21Pおよび出力端子21cが延びている長手方向である。
平滑コンデンサ28は、正極に通電バスバ20である正極バスバ20Pが接続されており、負極に通電バスバ20である負極バスバ20Nが接続されている。図1に示すように正極バスバ20Pは、バッテリ11の正極と接続されている。同様に負極バスバ20Nは、バッテリ11の負極と接続されている。
図3は、電力変換装置12をXY平面で見た場合の図を示している。複数のスイッチング素子21aは、例えば図3に示すように冷却通路30を挟んで、X方向に積層されている。冷却通路30は、例えばYZ平面でスイッチング素子21aと接触する。もしくは、冷却通路30は、YZ平面が部材を介さずにスイッチング素子21aとX方向に近接して配置されている。
図3は、U相バスバ23、V相バスバ24およびW相バスバ25が、X方向に大きく離間しているように見えるが、各構成の位置関係を示すための図であるため、実際の寸法とは異なっている。
冷却通路30は、流入管31および流出管32と接続されている。スイッチング素子21aは、冷却通路30と接触もしくは近接しているため、流入管31から入った冷媒が冷却通路30を通過する際に冷却される。そして、冷却通路30を通過した冷媒は、流出管32を介して電力変換装置12の外に排出される。冷媒は、例えばLLCであり、ウォータポンプから流入管31にLLCが流入する。
本開示において複数のバスバは、例えばU相バスバ23、V相バスバ24およびW相バスバ25である。U相バスバ23は、図4に示すように、例えば環状の中空形成部23gを有する。中空形成部23gは、環状の内部に中空23aを形成している。つまり中空23aは、中空形成部23gによって周囲が囲まれている。
また、中空形成部23gは、U相バスバにおいて電流がY方向に流れている導電部である。V相バスバ24およびW相バスバ25は、U相バスバ23と同様に中空形成部23gによって中空を形成している。図4では、中空形成部23gが環状の例を示したが、内部に中空を形成できる形状、例えば四角形等であってもよい。
図5は、U相バスバ23、V相バスバ24およびW相バスバ25の断面図である。例えば、U相バスバ23、V相バスバ24およびW相バスバ25は、X方向に順に並んで配置されている。図5に示すように、U相バスバ23、V相バスバ24およびW相バスバ25は、短辺23cを形成する面どうしがX方向に対向するように配置されている。
また、U相バスバ23とV相バスバ24およびV相バスバ24とW相バスバ25は、X方向に接近した状態で配置されている。本開示において、接近は、例えば図5に示すように、X方向に対向するU相バスバ23およびV相バスバ24の短辺23cを形成する面どうしの離間距離Dが、長辺23bの幅Wよりも小さい状態を示している。
図5に示すように、U相バスバ23は、V相バスバ24およびW相バスバ25の中空23aの外側に配置されている。同様にV相バスバ24およびW相バスバ25は、他のバスバの中空23aの外側に配置される構成となっている。
図6は、U相バスバ23、V相バスバ24およびW相バスバ25をXY平面で見た構成を示している。図6に示すように、例えばU相バスバ23は、X方向でV相バスバ24と対向する範囲の少なくとも一部に中空23aを形成する中空形成部23gを有する。
図6では、U相バスバ23は、中空形成部23gにより、V相バスバ24と対向する範囲の一部に中空23aを形成すると記載したが、中空23aは、U相バスバ23のY方向における一端から他端を貫通するようにU相バスバ23全体に形成されていてもよい。つまり、U相バスバ23は、X方向の両端が開口している筒形状であってもよい。
図2において、U相バスバ23は、一方向つまりY方向に延びており、電流がY方向に流れる。そして、U相バスバ23は、通電方向であるY方向に垂直、つまりXZ断面が、図4に示すような扁平形状である。U相バスバ23は、図4に示すように例えば、中空形成部23gが長辺23bを形成する部分と短辺23cを形成する部分を有している。同様に、V相バスバ24およびW相バスバ25の通電方向に垂直な方向の断面は、長辺23bと短辺23cを有する扁平形状である。
さらに図4に示すように、U相バスバ23は、長辺23bと短辺23cを接続する接続部23dを有している。接続部23dは、円弧状である。また、図4に示すように、U相バスバ23は、短辺23cおよび接続部23dを一連の円弧状にしてもよい。同様に、V相バスバ24およびW相バスバ25は、長辺23bと短辺23cを接続する接続部23dを有している。
U相バスバ23は、一枚の板によって構成される。図4に示すようにU相バスバ23は、一枚の板を曲げ、一端と他端が溶接によって溶着されている溶着部23eを有している。図4のU相バスバ23は、例えば接続部23dで折り返されている形状である。図4に示すようにU相バスバ23は、溶着部23eに例えば、スイッチング素子21aの出力端子21cを溶着し、スイッチング素子21aと電気的に接続を行っている。同様に、V相バスバ24およびW相バスバ25は、一端と他端が溶着されている溶着部23eを有し、出力端子21cと溶着されている。
図5に示すようにU相バスバ23は、中空形成部23gの長辺23bを形成する部分に溶着部23eを有している。同様にV相バスバ24およびW相バスバ25は、長辺23bを形成する部分に溶着部23eを有している。
図7に示すように、電力変換装置12は、中空形成部23gの外周一周を囲むように環状の電流センサ26が配置されている。本開示において、外周は、外周一周を示している。電流センサ26の内表面は、中空形成部23gの外表面と対向し一定距離離間して配置されている。つまり、電流センサ26は、中空形成部23gと接近した状態で配置されている。
電流センサ26は、図2に示すように制御基板27に接続されるホール素子26aを有している。また、図7に示すようにホール素子26aは、電流センサ26の環状の一部を形成している。電流センサ26は、U相バスバ23を流れる電流の値が変化するとホール素子26aで検出される磁場の値が変化する。それにより、電流センサ26は、U相バスバ23の電流値を検知することができる。
図5に示すように、U相バスバ23およびV相バスバ24は、互いにもう一方のバスバの中空23aの外側に配置されている。第1の比較例のU相バスバおよびV相バスバは、中空形成部によって内部に中空を形成する筒状のバスバである。第1の比較例の電力変換装置は、U相バスバが、V相バスバの中空内に筒の中心軸を一致させて配置されている。
よって、第1の比較例のU相バスバは、外表面全体がV相バスバの内表面と対向する。例えば、電力変換装置全体の小型化のために、U相バスバは、V相バスバを接近させた状態で配置される場合がある。
その場合、第1の比較例のU相バスバは、外表面全体でV相バスバと近づくことになる。そして、U相バスバを流れる電流は、V相バスバを流れる電流と近づくことになる。よって、U相バスバを流れる電流は、V相バスバを流れる電流の磁場による近接効果の影響を受けるため、インダクタンスが上昇する。
スイッチング時に流れるサージ電圧Vsは、Vs=L・dI/dtで表される。したがって第1の比較例のようにインダクタンスLが上昇すると、サージ電圧Vsは増加する。そして第1の比較例の電力変換装置は、大きなサージを生じ、サージによるノイズによって制御回路等の誤作動を引き起こす虞がある。
一方で、本実施形態のU相バスバ23は、図5に示すようにV相バスバ24の中空23aの外側に配置されている。U相バスバ23は、V相バスバ24と全面で対向することはない。よって、U相バスバ23は、他のバスバと全面で接近することを抑制できる。
したがって、U相バスバ23は、他のバスバを流れる電流の磁場による近接効果の影響によりインダクタンスが上昇することを、抑制できる。またU相バスバ23は、インダクタンスの上昇を防ぐことができるため、サージの発生を抑制することができる。
第1の比較例のU相バスバは、他のバスバを流れる電流との近接効果により、U相バスバ内を流れる電流密度に偏りが生じる。その結果、U相バスバは、電流密度が増加した部分において発熱量が増加する虞がある。一方で、本実施形態のU相バスバ23は、上記のように他のバスバによる近接効果の影響を低減できるため、電流密度の偏りが発生することを抑制できる。したがって、U相バスバ23は、U相バスバ23での発熱量の増加を抑制できる。
U相バスバ23は、中空形成部23gにより中空23aを形成している。よってU相バスバ23は、発熱した際に中空形成部23gの外側に熱を放熱するだけでなく、中空形成部23gの内部の中空23aにも熱を放熱することができる。したがって、U相バスバ23は、中空23aを有していないバスバよりも熱を効率よく放出することができる。
U相バスバ23は、交流電流が流れる。周波数が高い交流電流の場合、U相バスバ23は、表皮効果によりバスバの中心には電流が流れにくく、外表面付近の電流密度が高くなる。U相バスバは、電流が流れにくい中心部分に中空23aを形成することで、電流が流れにくい部分の材料を消費することを抑制できる。また、U相バスバ23は、中空23aを形成することで中空を形成していないバスバよりも、軽量化することができる。
図4に示すように、U相バスバ23は、長辺23bを形成する面で出力端子21cと接触している。第2の比較例のU相バスバは、断面が円管形状であり、長辺を有さない構成である。第2の比較例のU相バスバは、長辺を有さないため、外表面に広い面積の平面が形成されない。よって、第2の比較例のU相バスバは、端子と接触させる際、平面で接触できないため、端子との接触面積を広くとることができない。
一方で、本実施形態のU相バスバ23は、長辺23bを形成する面により、広い平面を形成することができるので、広い面積で出力端子21cと接触できる。それによりU相バスバ23は、通電によって発生した熱を出力端子21cに効率よく逃がすことができる。また、出力端子21cは、図3に示すように冷却通路30と接近させて配置されているため、冷却通路30を通過する冷媒により冷却される。よって、U相バスバ23から出力端子21cに伝達された熱は、例えば冷却通路30を通過する冷媒によって吸収される。
U相バスバは、例えば高電圧の電流を流す場合、電流を流す面積を確保するため通電方向に垂直な導電部の断面を大きくする必要がある。その場合第2の比較例のU相バスバは、長辺および短辺を有さない円管形状であるため、通電方向をY方向とすると、X方向およびZ方向の双方に向かって断面の形状を大きくする必要が生じる虞がある。
一方で本実施形態のU相バスバ23は、中空形成部23gの長辺23bを形成する部分を大きくするだけで、高電圧の電流を流すための面積を確保することができる。つまり、U相バスバ23は、中空形成部23gの長辺bを形成する部分をX方向に増大させるだけで、高電圧を流すための面積を確保できる。したがってU相バスバ23は、高電圧の電流を流すために、中空形成部23gの短辺23cを形成する部分をZ方向に増大させることを抑制できる。
図8は、第3の比較例のU相バスバ123およびV相バスバ124の断面図である。第3の比較例のU相バスバ123は、長辺123bと短辺123cを接続する接続部123dが角を有する形状になっている。第3の比較例のU相バスバ123は、接続部123dとV相バスバ124が距離dだけ離間して配置されている。
2つの部材間の電圧がVで、2つの部材間の距離がdであるとき、部材における電圧の集中Eは、E=η・V/dで表される。ηは、不平等率を示しており、部材同士が対向する面の形状によって、その値が変化する。
不平等率ηは、部材同士が対向する面の形状が平面に近い、つまり対向する面積が大きいほど小さく、針のように対向する面積が小さいほど大きくなる。第3の比較例の接続部123dは、角を有する形状であり、角でV相バスバ124と対向するため、V相バスバ124と対向する面積が非常に小さくなる。
したがって、第3の比較例の接続部123dは、不平等率ηが大きくなり、その結果接続部123dでの電圧の集中Eが大きくなる虞がある。そして、電圧の集中Eが材料の耐電圧Ethの値よりも大きくなった場合、比較例のU相バスバ123は、接続部123dとV相バスバ124との間で絶縁破壊を生じる。よって、比較例のU相バスバ123は、他の部材との間で絶縁破壊を生じる虞がある。
一方で図9に示すように、本実施形態のU相バスバ23は、接続部23dの形状が円弧状である。図9に示すようにU相バスバ23は、例えば接続部23dの円弧状の面で、距離dだけ離間したV相バスバ24と対向する。よって、U相バスバ23は、角よりも面積の広い円弧状の面でV相バスバ24と対向できる。
したがって、U相バスバ23は、第3の比較例のU相バスバ23と比較して、不平等率ηが大きくなることを抑制できる。その結果、U相バスバ23は、他の部材例えばV相バスバ24との間で絶縁破壊が生じることを抑制できる。図9では、効果を説明するためにU相バスバ23およびV相バスバ24を図示したような配置にしているが、バスバの配置は、図9のような配置に限定するわけではなく、例えば図5のようにバスバがX方向に順に並ぶ構成である。
図4に示すようにU相バスバ23は、溶着部23eで出力端子21cに接続されている。一方で第4の比較例のU相バスバは、スイッチング素子21aの出力端子とねじで締結されている。第4の比較例のU相バスバは、スイッチング素子21aの出力端子とねじで締結されているため、締結部材によりインダクタンスが増加する虞がある。それに対し本実施形態のU相バスバ23は、溶着によって直接スイッチング素子21aの出力端子21cに接続されているため、締結によりインダクタンスが増加することを抑制できる。
また、第4の比較例のU相バスバは、ねじを介してスイッチング素子の出力端子に接続されているため、第4の比較例のU相バスバから出力端子に熱が伝達される際に、ねじを介すことによって熱の伝達効率が低下する虞がある。よって、第4の比較例のU相バスバは、通電によって生じた熱を出力端子21cに伝達することが抑制される虞がある。
一方で、U相バスバ23は、直接出力端子21cに接続されているため、熱を効率よくU相バスバ23から出力端子21cに伝達できる。例えば、U相バスバ23は、自身で発生した熱を出力端子21cに逃がし、出力端子21cに逃げた熱が冷却通路30によって冷却される。
第5の比較例のU相バスバは、断面が長辺と短辺を有する扁平形状であり、また短辺が円弧状の形状になっている。さらに、第5の比較例のU相バスバは、短辺を形成する部分に溶着部を有している。第5の比較例のV相バスバの断面は、U相バスバと同様に扁平形状である。第5の比較例のU相バスバおよびV相バスバは、短辺を形成する部分の表面同士が対向するように配置されている。
第5の比較例のU相バスバは、円弧状の表面同士でV相バスバと対向するため、平面で対向する場合よりも対向する面積が小さくなる。さらに、第5の比較例のU相バスバは、溶着部を円弧状の部分に形成している。溶着部は、例えば表面に凹凸を有する場合があり、凸は平面よりも他の部材と対向できる面積が小さくなる。
よって、第5の比較例のU相バスバは、円弧状の面に凹凸を有する溶着部が形成されているため、V相バスバと対向する面積が小さくなる虞がある。つまり、第5の比較例のU相バスバは、平面である長辺を形成する部分の表面と比較して、不平等率ηが大きくなる。その結果、比較例のU相バスバは、溶着部と対向する部品間で絶縁破壊を生じる虞がある。
一方で、本実施形態のU相バスバ23は、図5に示すように溶着部23eを、長辺23bを形成する部分に設けている。長辺23bを形成する部分の表面は、平面形状であるため、溶着部23eを設けたとしても、第5の比較例のように円弧状の面に溶着部を設ける場合より不平等率ηが大きくなることを抑制できる。よって、U相バスバ23は、他の部品と対向している場合でも、他の部品との間で絶縁破壊が生じることを抑制できる。
また、図5に示すようにU相バスバ23は、V相バスバ24とX方向で短辺23cを形成する部分の表面同士が対向し、長辺23bを形成する部分の表面は他のバスバと対向していない。よって、U相バスバ23は、長辺23bを形成する部分に溶着部23eを設けることで溶着部23e同士が対向することを抑制できる。これにより、U相バスバ23は、V相バスバ24との間で絶縁破壊が生じることを抑制できる。
図4に示すようにU相バスバ23は、出力端子21cと接続されているため、スイッチング素子21aから高速スイッチングによる電流が流れる。よって、U相バスバ23は、高速スイッチングによる電流によって大きな熱を生じる虞がある。しかし、U相バスバ23は、熱を中空23aに逃がすことができるので、U相バスバ23から周囲の部品に熱が伝達されることを抑制できる。
図7に示すように、電流センサ26は、U相バスバ23の中空形成部23gの外周1周を覆う環状の形状である。U相バスバ23は、中空形成部23gによって囲まれる中空23aを有している。よって、中空形成部23gを流れる電流によって生じた熱は、中空23aに伝達される。
したがって、U相バスバ23は、中空形成部23gで発生した熱が電流センサ26に伝達されることを抑制できる。これにより、U相バスバ23は、中空形成部23gに大きな電流を流した場合でも、中空23aを有していないバスバと比較して、電流センサ26の耐熱可能な温度を超えることを抑制できる。よって、U相バスバ23は、中空23aを有していないバスバと比較して、大きな電流をU相バスバ23に流した場合でも、電流センサ26にて電流を検出させることができる。
(第2実施形態)
本実施形態における電力変換システム1は、第1実施形態と同様の構成を有している。よって、本実施形態では、第1実施形態と同じ符号を用いる。なお、本実施形態では、主に第1実施形態と異なる点について説明する。
図10は、本実施形態におけるU相バスバ23をXY平面で見た場合の図を示している。図11は、図10のU相バスバ23のXI-XI断面を示している。U相バスバ23は、中空形成部23gの長辺23bを形成する部分に、中空23aと中空形成部23gの外側を連通する連通孔23fを有している。つまり、連通孔23fは、長辺23bを形成する部分の外側表面23iと、中空23a側の内側表面23jを貫通する孔である。図11に示すように、U相バスバ23は、連通孔23fを、長辺23bを形成する部分に複数有していてもよい。
U相バスバ23は、長辺23bを形成する部分同士がZ方向に対向している。U相バスバ23は、長辺23bを形成する部分のうち、一方の長辺23bを形成する部分のみに連通孔23fを有していてもよい。もしくは、図11に示すように、U相バスバ23は、長辺23bを形成する双方の部分に連通孔23fを有している構成であってもよい。
U相バスバ23は、連通孔23fによって中空23a内と中空形成部23gの外部を冷媒等が通過できるようにすることができる。これにより、U相バスバ23は、連通孔23fから流入される冷媒によって中空23aが冷却されることで、U相バスバ23が冷却される。また、U相バスバは、冷媒が流れない場合でも、自然対流により中空23aに放出された熱が、連通孔23fを介して中空形成部23gの外部へと放出される。
図11に示すようにU相バスバ23は、連通孔23fを有する場合、連通孔23fの開口縁に角部23hを有する。例えば第6の比較例のU相バスバは連通孔を、短辺を形成する部分に設けており、短辺の曲面と角部23hの組み合わせにより不平等率ηが上昇する。よって、第6の比較例のU相バスバは、絶縁破壊を生じる虞が大きい。一方で、U相バスバ23は、平面である長辺23bを形成する部分に連通孔23fを設けているため、絶縁破壊が生じることを抑制できる。
(他の実施形態)
以上、本開示の実施形態を説明したが、本開示は上述の実施形態に限定されるものではなく、次の実施形態も本開示の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
電力変換装置12は、U相バスバ23、V相バスバ24およびW相バスバ25に中空23aを設けているとしたが、少なくとも一つのバスバに中空23aを設けていればよい。例えば図12に示すように、V相バスバ24は、中空形成部23gにより中空23aが形成されている。U相バスバ23およびW相バスバ25は、中空23aが形成されていないバスバである。U相バスバ23およびW相バスバ25は、V相バスバ24の中空23aの外側に配置されている。
電力変換装置12は、3相バスバ22に中空23aを設けているとしたが、通電バスバ20である正極バスバ20P、負極バスバ20N少なくとも一方の通電バスバが、中空23aを形成する中空形成部23gを有している構成であってもよい。
例えば、正極バスバ20Pが中空形成部23gを有している場合、負極バスバ20Nは、正極バスバ20Pの中空形成部23gによって形成されている中空23aの外側に配置されている。また、正極バスバ20Pおよび負極バスバ20Nは、双方のバスバが中空形成部23gを有していてもよい。
U相バスバ23は、中空23aを有するとしたが、U相バスバ23全体に中空23aを設けても、少なくとも一部に設ける形状であってもよい。U相バスバ23は、例えば端子や筐体など他の部材に接続される部分のように他の部材からの応力や振動等に対する強度が必要な部分は中空23aを設けない。そして、U相バスバ23は、他の部材と接触していない強度が必要のない部分に中空23aを設ける等してもよい。
図13に示すようにU相バスバ23、V相バスバ24およびW相バスバ25は、複数の中空23aを有する構成であってもよい。その場合、U相バスバ23は、例えばY方向に、中空形成部23gによって複数の中空23aが断続的に形成される構成である。
負荷は、モータ以外にもバッテリ11やコンデンサ28等の素子であってもよい。
U相バスバ23は、断面が長辺23bと短辺23cを有する扁平形状であるとしたが、円形や正方形等の扁平ではない形状であっても良い。
U相バスバ23は、溶着部23eによって出力端子21cと溶着されると記載したが、締結部材によって出力端子21cに接続される構成であってもよい。
U相バスバ23は、長辺23bを形成する部分に溶着部23eおよび連通孔23fを設けると記載したが、短辺23cを形成する部分に設けてもよい。
U相バスバ23は、連通孔23fを有すると記載したが、連通孔23fを有さない構成であってもよい。
3相バスバ22は、電流センサ26を有する構成であると記載したが、電流センサ26を有さない、もしくは、一部のバスバにのみ電流センサ26が設けられる構成にしてもよい。
接続部23dは、円弧状であるとしたが、曲面形状であれば他の形状であってもよい。
1・・・電力変換システム、11・・・バッテリ、12・・・電力変換装置、13・・・モータ、20・・・通電バスバ、21・・・電力変換部、21a・・・スイッチング素子、21b・・・信号端子、21c・・・出力端子、22・・・3相バスバ、23・・・U相バスバ、23a・・・中空、23b・・・長辺、23c・・・短辺、23d・・・接続部、23e・・・溶着部、23f・・・連通孔、23g・・・中空形成部、23h・・・角部、23i・・・外側表面、23j・・・内側表面、24・・・V相バスバ、25・・・W相バスバ、26・・・電流センサ、27・・・制御基板、28・・・平滑コンデンサ、29・・・筐体、30・・・冷却通路、31・・・流入管、32・・・流出管

Claims (9)

  1. バッテリ(11)から供給される電力を変換して負荷に供給する電力変換部(21)と、
    前記電力変換部もしくは、前記負荷に接続される複数のバスバ(22)と、を備え、
    前記複数のバスバのうち少なくとも1つのバスバは、中空(23a)を形成する中空形成部(23g)を有し、
    前記バスバは、前記中空形成部を有する前記少なくとも1つのバスバの前記中空の外側に配置されており、
    前記少なくとも1つのバスバは、電流が流れる方向に対して垂直な断面の形状が、長辺(23b)と短辺(23c)を有する扁平形状であり、
    前記少なくとも1つのバスバは、前記断面の前記長辺と前記短辺を接続する接続部(23d)を有し、前記接続部が円弧状である電力変換装置。
  2. バッテリ(11)から供給される電力を変換して負荷に供給する電力変換部(21)と、
    前記電力変換部もしくは、前記負荷に接続される複数のバスバ(22)と、を備え、
    前記複数のバスバのうち少なくとも1つのバスバは、中空(23a)を形成する中空形成部(23g)を有し、
    前記バスバは、前記中空形成部を有する前記少なくとも1つのバスバの前記中空の外側に配置されており、
    前記少なくとも1つのバスバは、前記中空と前記中空形成部の外側を連通している連通孔(23f)を前記中空形成部に形成している電力変換装置。
  3. 前記少なくとも1つのバスバは、電流が流れる方向に垂直な断面の形状が、長辺(23b)と短辺(23c)を有する扁平形状であり、
    前記連通孔は、前記長辺を形成している部分に設けられている請求項2に記載の電力変換装置。
  4. 前記少なくとも1つのバスバは、電流が流れる方向に対して垂直な断面の形状が、長辺(23b)と短辺(23c)を有する扁平形状である請求項2または請求項3に記載の電力変換装置。
  5. 前記少なくとも1つのバスバは、前記断面の前記長辺と前記短辺を接続する接続部(23d)を有し、前記接続部が円弧状である請求項4に記載の電力変換装置。
  6. 前記少なくとも1つのバスバは、一端と他端が溶接された溶着部(23e)を有する請求項1から請求項5のいずれか1項に記載の電力変換装置。
  7. 前記少なくとも1つのバスバは、電流が流れる方向に垂直な断面の形状が、長辺(23b)と短辺(23c)を有する扁平形状であり、
    前記溶着部は、前記長辺を形成している部分に設けられている請求項6に記載の電力変換装置。
  8. 前記負荷は、3相交流モータであり、
    前記複数のバスバは、前記電力変換部と前記3相交流モータを接続している請求項1から請求項7のいずれか1項に記載の電力変換装置。
  9. 前記少なくとも1つのバスバに流れる電流を検出する電流センサ(26)を備え、
    前記電流センサは、前記バスバの外周に配置されている請求項8に記載の電力変換装置。
JP2020028412A 2020-02-21 2020-02-21 電力変換装置 Active JP7279665B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020028412A JP7279665B2 (ja) 2020-02-21 2020-02-21 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020028412A JP7279665B2 (ja) 2020-02-21 2020-02-21 電力変換装置

Publications (2)

Publication Number Publication Date
JP2021136697A JP2021136697A (ja) 2021-09-13
JP7279665B2 true JP7279665B2 (ja) 2023-05-23

Family

ID=77661817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020028412A Active JP7279665B2 (ja) 2020-02-21 2020-02-21 電力変換装置

Country Status (1)

Country Link
JP (1) JP7279665B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209159A (ja) 2010-03-30 2011-10-20 Toyota Motor Corp 電流センサ組立体およびその組立方法
JP2014195392A (ja) 2013-02-27 2014-10-09 Jtekt Corp モータ駆動用制御装置
JP2017154150A (ja) 2016-03-01 2017-09-07 Jfeスチール株式会社 電縫溶接クラッド鋼管の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209159A (ja) 2010-03-30 2011-10-20 Toyota Motor Corp 電流センサ組立体およびその組立方法
JP2014195392A (ja) 2013-02-27 2014-10-09 Jtekt Corp モータ駆動用制御装置
JP2017154150A (ja) 2016-03-01 2017-09-07 Jfeスチール株式会社 電縫溶接クラッド鋼管の製造方法

Also Published As

Publication number Publication date
JP2021136697A (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
JP4708951B2 (ja) インバータモジュールおよびそれを用いたインバータ一体型交流モータ
JP5205595B2 (ja) 電力変換装置およびモータ駆動システム
US9538680B2 (en) Laminated busbar for power converter and the converter thereof
JP5289348B2 (ja) 車載用電力変換装置
JP5312386B2 (ja) 電力変換装置
US7518890B2 (en) AC/DC/AC converter with reduced inductance in the DC filter capacitors
JP5830480B2 (ja) 配線板およびそれを用いた電力変換装置
WO2016035651A1 (ja) パワーモジュール
JP3622782B2 (ja) 半導体装置
JP2004507195A (ja) 電気エネルギーを変換するためのコンバータ
JP4651653B2 (ja) 電力変換装置
WO2019123818A1 (ja) 電力変換装置
JP7279665B2 (ja) 電力変換装置
JP2000069766A (ja) 電力変換装置
JP5906313B2 (ja) 電力変換装置
JP6515836B2 (ja) インバータ装置
JP5092654B2 (ja) 電力変換装置
JP2004056984A (ja) 電力変換装置
JP6314099B2 (ja) 電力変換装置
JP3972855B2 (ja) インバータモジュール
JP2021158781A (ja) 電力変換装置
JP2005094882A (ja) パワーモジュール
JP7294289B2 (ja) 電力変換装置
JP7276028B2 (ja) 電力変換装置
JP2000295864A (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R151 Written notification of patent or utility model registration

Ref document number: 7279665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151